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Abstract— We introduce a game-theoretic framework to study
the hypothesis testing problem in the presence of an adversary
aiming to prevent a correct decision. Specifically, this paper
considers a scenario in which an analyst has to accept or reject
the null hypothesis H0 characterized by a probability mass
function (pmf) PX based on the evidence provided by a test
sequence. In turn, the goal of the adversary is to take a sequence
generated according to a different pmf and modify it in such a
way to induce a decision error. PX is known only through one or
more training sequences. We derive the asymptotic equilibrium
of the game under the assumption that the analyst relies only
on first order statistics of the test and training sequences, and
compute the asymptotic payoff of the game when the length
of the sequences tends to infinity. We introduce the concept
of indistinguishability region, defined as the set of pmfs that
can not be distinguished reliably from PX in the presence of
attacks. Two different scenarios are considered: in the first one
the analyst and the adversary share the same training sequence,
in the second scenario, they rely on independent sequences. The
obtained results are compared with a version of the game in
which the pmf PX is perfectly known to both the analyst and
the adversary.

Index Terms— Hypothesis testing, adversarial signal process-
ing, cybersecurity, game theory, source identification, multimedia
forensics, counter-forensics.

I. INTRODUCTION

HYPOTHESIS testing is a widely studied topic with appli-
cations in virtually all technological and scientific fields.

In its most basic form, an analyst is asked to decide which
among two hypotheses, usually referred to as null hypothesis
(or H0) and alternative hypothesis (H1), is true based on a
set of observables, say xn = (x1, x2 . . . xn). Several versions
of the problem are obtained according to the knowledge that
the analyst has on the probability distribution of the observ-
ables when one of the two hypotheses holds. In some cases,
the probability mass function (pmf)1 conditioned to the two
hypotheses is known, in other cases only the pmf under H0 is
known, in yet other cases only a number of sample observables
(hereafter referred to as training sequences) obtained under
H0 and H1 are available.
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1Since in the rest of the paper we will assume that the elements of xn belong

to a finite alphabet, we prefer to use the term probability mass function instead
of probability density function, even if at this stage we do not need to restrict
our attention to the discrete case.

Due to its importance, hypothesis testing has been exten-
sively studied and a solid theoretical framework has been built
permitting to analyze and understand its many facets. In the
last years, though, many applications have emerged in which
hypothesis testing is given a new twist, due to the presence of
an adversary aiming at making the test fail [1]. In multimedia
forensics [2], for instance, a forensic analyst may be asked
to decide whether an image has been acquired by a given
camera, notwithstanding the presence of an adversary aiming
at deleting the acquisition traces left by the camera. In the
same way, the analyst may be asked to decide whether a
signal has undergone a certain processing or not, by taking
into account the possibility that someone deliberately tried to
delete the traces left during the processing phase. Another
popular example comes from spam filtering [3], wherein an
anti-spam filter is presented with a test e-mail and must decide
whether the e-mail contains a genuine or a spam message.
It is obvious that such a test can not neglect the presence
of an adversary trying to shape the message in such a way
to fool the filter. Biometric authentication provides a further
example. In this case the authentication system must decide
whether a biometric template belongs to a certain individual,
despite the opposite efforts of an attacker aiming at building
a fake template that passes the authentication test [4], [5].
Other examples include: watermarking, where the detector
is asked to decide whether a document contains a given
watermark or not [6], steganalysis, in which the steganalyzer
has to distinguish between cover and stego images [7], network
intrusion detection, wherein anomalous traffic conditions must
be distinguished from normal ones [8], reputation systems [9],
for which it is essential to distinguish between genuine
and malevolent scores, anomaly detection, cognitive radio
[10], [11], and many others. In all these fields, the system

designer has to take into account the presence of one or more
adversaries explicitly aiming at system failure.

In the framework depicted above, the goal of this paper
is to move a first step towards the construction of a general
theoretical framework to analyze the binary hypothesis testing
problem by taking into account the presence of an adversary
aiming at impeding a correct decision. More specifically, we
introduce and analyze an adversarial version of the Neyman-
Pearson setup in which an analyst and an adversary, hereafter
referred to as the Defender (D) and the Attacker (A), face each
other in a rigorously defined context. Given a null hypothesis
H0 and a test sequence xn , D must decide whether to accept
hypothesis H0 characterized by the pmf PX , or not. As in
the classical Neyman-Pearson scenario, the defender must
ensure that the type-I error probability (i.e., the probability
of rejecting H0 when H0 holds) is lower than a certain value.
In turn, the attacker takes a sequence yn generated under an
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Fig. 1. The adversarial hypothesis testing set up considered in this paper.

alternative hypothesis H1, characterized by a different pmf
PY , and transforms it into a modified sequence zn so that
when presented with the modified sequence D still accepts
H0. In other words, A aims at maximizing the type-II error
probability (i.e. the probability that the defender accepts H0
when H1 holds), while D’s goal is to minimize it by tak-
ing into account the presence of the attacker. A schematic
representation of the above framework is depicted in Fig. 1.
Even if the above scenario fits many real-world applications,
throughout the paper we will use multimedia forensics as a
leading example. Specifically, we will often refer to the case
of a forensic analyst (playing the role of the defender), who
wants to decide whether a given signal, say a video or an
image, has been produced by an authorized acquisition device,
for instance a video surveillance camera, or not. The analyst
wants to do that in presence of a forger (playing the role of
the attacker) aiming at taking a sequence drawn from a non
authorized source and modify it in such a way that it seems
to have been produced by the authorized device.

In order to analyze the framework reported in Fig. 1, we
adopt a game-theoretic approach, in which the defender and
the attacker have opposite goals and operate by satisfying a
different set of requirements, all together specifying the nature
of the game. The final goal will be the derivation of the
optimum strategies for the defender and the attacker in terms
of game equilibrium points, and the study of the achievable
performance at the equilibrium.

A. Prior Work

The use of game theory to model the impact that the pres-
ence of an adversary has on (binary) hypothesis testing is not
an absolute novelty. In many security oriented fields in which
hypothesis testing plays a central role, game theory has been
advocated to avoid entering a cat and mouse loop in which
researchers alternatively play the role of the defender and the
attacker, and continuously develop new countermeasures, each
time by attacking a specific algorithm or strategy.

By referring to multimedia forensics, in [12] Böhme
and Kirchner cast the forensic problem in a hypothesis
testing framework. Several versions of the problem are
defined according to the particular hypothesis being tested,
including distinction between natural and computer generated
images, manipulation detection, source identification. Counter-
forensics is then defined as a way to degrade the performance

of the hypothesis test envisaged by the analyst. By rely-
ing on arguments similar to those used in steganography
and steganalysis [13], Böhme and Kirchner argue that the
divergence between the probability density functions of the
observed signals after the application of the counter-forensic
attack is a proper way to measure the effectiveness of the
attack. Noticeably, such measure does not depend on the
particular investigation technique adopted by the analyst. Even
if Böhme and Kirchner do not explicitly use a game-theoretic
formulation, their attempt to decouple the counter-attack from
a specific forensic strategy can be seen as a first - implicit -
step towards the definition of the equilibrium point of a general
multimedia forensics game. Another work loosely related to
the present paper is [14], where the authors introduce a game-
theoretic framework to evaluate the effectiveness of a given
attacking strategy and derive the optimum countermeasures.
As opposed to our analysis, in [14] the attacker’s strategy
is fixed and the game-theoretic framework is used only to
determine the optimum parameters of the forensic analysis and
the attack, thus failing to provide a complete characterization
of the game between the attacker and the analyst.

Game theory and information theory have been used in
watermarking to model the interplay between the watermarker
and the attacker. In [15]–[17], the game is played between the
watermark embedder/decoder and an attacker who attempts to
degrade the embedded message by modifying the watermarked
signal, e.g. by adding some noise. The payoff of the game
is usually the capacity of the watermark channel. A problem
that is closer to the one addressed in this paper is the one
considered in [18], where the jointly optimum embedding and
detection strategies for a detector with limited resources are
derived. Indeed, the approach used in the present paper is
reminiscent of the analysis carried out in [18], given that in
both cases the analysis focuses on an asymptotic version of
the problem in which the resources available to the defender
are limited. As opposed to the present work, however, the
analysis in [18] is carried out under the assumption that no
attack is present or that the attack channel is fixed, and the
resort to a min-max optimization is due only to the necessity
of finding the jointly optimum watermark embedding and
detection strategies.

The work that is most closely related to the present paper
is [19], where the source identification game with known
statistics is introduced and the corresponding asymptotic Nash
equilibrium derived. As a matter of fact, even if [19] restricts
the analysis to multimedia forensics, the framework adopted
to model the game between the forensic analyst and the
adversary is very general and can also be used to model a
binary hypothesis testing problem in which the statistics of
the observables under the null hypothesis are perfectly known
to the defender and the attacker. In contrast to [19], here
we focus on a different version of the game in which the
statistics of the observables under H0 are known only through
training data. This is a very important step that permits to
get closer to real applications wherein an accurate statistical
model of H0 is rarely available, and the analyst can rely only
on the knowledge of some sample outputs produced when H0
holds. Also from a technical point of view, knowing PX only
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through training data represents a major deviation from [19],
since it requires a thorough reformulation of the problem and
a new derivation of the equilibrium point. In order to make
the current paper self-contained and allow the reader to better
appreciate the difference between the results obtained in [19]
and the new findings provided here, we summarize the main
definitions and results of [19] in Section III.

B. Contribution

With the above ideas in mind, in this paper we address
the following problem, hereafter referred to as the binary
hypothesis testing problem with training data (H Ttr). Let
X ∼ PX be a discrete memoryless source (DMS) ruling the
emission of observables under the null hypothesis H0, and let
xn be a test sequence, i.e., a sequence of observables. The goal
of the defender is to accept or reject hypothesis H0, that is,
to decide whether xn was drawn from X or not.2 In doing so,
D must ensure that the type-I error probability does not exceed
a predefined value. Let then Y ∼ PY be a second discrete
memoryless source and let yn = (y1, y2 . . . yn) be a sequence
generated by Y . It is the aim of A to transform yn into a
new sequence zn in such a way that when presented with zn

the defender accepts H0. We also impose that A satisfies
a distortion constraint requiring that the distance between
yn and zn is below a certain threshold. As opposed to [19],
D and A do not know the exact statistics of PX and PY , since
all they know is a training sequence drawn from X .

Given the above scenario, the goal of this paper is to propose
a rigorous game-theoretic framework to cast the H Ttr problem
in, and derive the asymptotic equilibrium point of the game
under a simplifying hypothesis about the kind of analysis
which D can carry out. We will do so for two different versions
of the game stemming from different assumptions about the
relationship between the training sequence available to the
defender and that available to the attacker. In a first case, we
will assume that A and D share the same training sequence,
while in the second part of the paper we will assume that the
two sequences are generated independently from each other.
The main results proven in the paper can be summarized as
follows:

1) We show that under the limited resources assumptions
[18], the H Ttr game admits an asymptotic equilibrium.
We also prove that the asymptotic equilibrium is the only
rationalizable equilibrium of the game [20], [21]. Such
an equilibrium is much stronger than the usual notion of
Nash equilibrium, since the strategies corresponding to
such an equilibrium are the only ones that two rational
players may adopt (Theorem 3, Section V);

2) We compute the payoff at the equilibrium for the
defender and the attacker, and introduce the notion of
indistinguishability region, defined as the region with the
PY ’s that can not be distinguished reliably (i.e. with a
vanishing type II error probability) from PX (Theorem 4,
Section VI);

2In order to keep the notation as light as possible, we use the symbol xn

to indicate the test sequence even if, in principle, it is not known whether xn

originated from X or not.

3) We compare the achievable payoff of the H Ttr game
with the results obtained in [19], where D and A have a
perfect knowledge of PX , showing that the H Ttr game
is more favorable to the attacker with respect to the
situation analyzed in [19] (Theorem 5, Section VI);

4) We show that the indistinguishability region is the same
when D and A share the same training sequence and
when they rely on independent sequences (Theorem 6,
Section VII).

With regard to 1), the asymptotic equilibrium point when
D and A rely on the same training sequence was already
derived in [22], without realizing that the equilibrium is indeed
stronger than a Nash equilibrium. The case of independent
training sequences has never been studied before. The method-
ology used to derive the equilibrium point goes along the same
lines used in [18] to derive the jointly optimum watermark
embedding and detection strategy. Finally, the optimum strat-
egy of the defender can be paralleled to the results obtained
in [23], even if in a completely different context. As to point
2), our results are closely related to Sanov’s theorem [24], [25],
however, to the best of our knowledge, their derivation in a
game-theoretic context is not trivial and represents an original
contribution of the present paper.

The rest of this work is organized as follows. In Section II
we introduce the notation and definitions used throughout the
paper. In Section III, we recall the main results proved in [19]
by casting them into a hypothesis testing framework. Such
results represent the baseline against which we will compare
the new results obtained in this paper. In Section IV, we
formally introduce the H Ttr game and lay the basis for the
analysis carried out in the subsequent sections. Section V is
devoted to the derivation of the equilibrium point of the H Ttr

game when A and D share the same training sequence. The
payoff at the equilibrium is analyzed in Section VI, where
we also introduce the notion of indistinguishability region.
The case of independent training sequences is analyzed in
Section VII. The paper ends in Section VIII, with some
conclusions and hints for future research. Some of the most
technical proofs are given in the the appendix, so as to avoid
interrupting the main flow of ideas.

II. NOTATION AND DEFINITIONS

In the rest of this work we will use capital letters to
indicate discrete memoryless sources (e.g. X). Sequences of
length n drawn from a source will be indicated with the
corresponding lowercase letters (e.g. xn). In the same way,
we will indicate with xi , i = 1, . . . , n the i−th element of
a sequence xn . The alphabet of an information source will
be indicated by the corresponding calligraphic capital letter
(e.g. X ). The pmf of a discrete memoryless source X will be
denoted by PX . The same notation will be used to indicate the
probability measure ruling the emission of sequences from a
source X , so we will use the expressions PX (a) and PX (xn)
to indicate, respectively, the probability of symbol a ∈ X and
the probability that the source X emits the sequence xn , the
exact meaning of PX being always clearly recoverable from
the context wherein it is used. Given an event A (be it a subset
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of X or X n), we will use the notation PX (A) to indicate the
probability of the event A under the probability measure PX .

Our analysis relies extensively on the concepts of type and
type class defined as follows (see [24] and [26] for more
details). Let xn be a sequence with elements belonging to an
alphabet X . The type Pxn of xn is the empirical pmf induced
by the sequence xn , i.e. ∀a ∈ X , Pxn (a) = 1

n

∑n
i=1 δ(xi , a),

where δ(xi , a) = 1 if xi = a and zero otherwise. In the fol-
lowing we indicate with Pn the set of types with denominator
n, i.e. the set of types induced by sequences of length n. Given
P ∈ Pn , we indicate with T (P) the type class of P , i.e. the
set of all the sequences in X n having type P .

The Kullback-Leibler (KL) divergence between two distri-
butions P and Q on the same finite alphabet X is defined
as:

D(P||Q) =
∑

a∈X
P(a) log

P(a)

Q(a)
, (1)

where, as usual, 0 log 0 = 0 and p log p/0 = ∞ if p > 0.

A. Hypothesis Testing Framework

Given a sequence xn ∈ X n , as a result of the test, X n is
partitioned into two complementary regions � and �̄, such
that for xn ∈ � the defender decides in favor of H0, while
for xn ∈ �̄ H1 is preferred. We say that a Type-I error
occurs if H1 is chosen when H0 holds. In the same way,
we say that a Type-II error occurs when H1 holds but H0
is chosen. In the following, we will refer to Type-I errors as
false positive errors (or false alarms) and to Type-II as false
negative (or missed detection), and will indicate the probability
of such events as PF P and PF N respectively. The motivation
for such a terminology comes from applications in which H0
is seen as a standard situation and its rejection in favor of H1
raises an alarm since something unusual happened. This is the
case, for instance, of multimedia forensics applications, where
H0 corresponds to the hypothesis that xn was produced by a
legitimate source, and an alarm is raised whenever this is not
the case. It goes without saying that our derivation remains
valid even in different scenarios where the false positive and
false negative terms may not be appropriate. In our analysis we
are mainly interested in the asymptotic behavior of PF P and
PF N when n tends to infinity. In particular we define the false
positive (λ) and false negative (ε) error exponents as follows:

λ = − lim sup
n→∞

log PF P

n
; ε = − lim sup

n→∞
log PF N

n
, (2)

where the log’s are taken in base 2. Note that when the
classical limit exists the above definitions can be simplified
by avoiding the use of lim sup. Given that this is the case in
all our derivations, for sake of simplicity, throughout the paper
we will use lim instead of lim sup.

B. Game Theory

As we said, the goal of this paper is to model the binary
hypothesis testing problem in an adversarial setting as a
2-player game. More formally, a 2-player game is defined
as a 4-uple G(S1,S2, u1, u2), where S1 = {s1,1 . . . s1,n1} and

S2 = {s2,1 . . . s2,n2} are the sets of strategies (actions) the
first and the second player can choose from, and ul(s1,i , s2, j ),
l = 1, 2, is the payoff of the game for player l, when the first
player chooses the strategy s1,i and the second chooses s2, j .
A pair of strategies (s1,i , s2, j ) is called a profile. In a zero-sum
competitive game, the two payoff functions are strictly related
to each other since for any profile we have u1(s1,i , s2, j ) +
u2(s1,i , s2, j ) = 0. In other words, the win of a player is equal
to the loss of the other. In the particular case of a zero-sum
game, then, only one payoff function needs to be defined.
Without loss of generality we can specify the payoff of the first
player (generally indicated by u), with the understanding that
the payoff of the second player u2 is equal to −u. In the most
common formulation, the sets S1, S2 and the payoff functions
are assumed to be known to both players. In addition, it is
assumed that the players choose their strategies before starting
the game so that they have no hints about the strategy actually
chosen by the other player (strategic game).

A common goal in game theory is to determine the existence
of equilibrium points, i.e. profiles that, in some sense represent
a satisfactory choice for both players. While there are many
definitions of equilibrium, the most famous and commonly
adopted is the one due by Nash [27], [28]. For the particular
case of a 2-player game, a profile (s1,i∗ , s2, j∗) is a Nash
equilibrium if:

u1(s1,i∗ , s2, j∗) ≥ u1(s1,i , s2, j∗) ∀s1,i ∈ S1

u2(s1,i∗ , s2, j∗) ≥ u2(s1,i∗ , s2, j ) ∀s2, j ∈ S2, (3)

where for a zero-sum game u2 = −u1. In practice, a profile is
a Nash equilibrium if each player does not have any interest
in changing his choice assuming the other does not change its
strategy.

Despite its popularity, the practical meaning of Nash equi-
librium is difficult to grasp, since there is no guarantee that
the players will end up playing at the equilibrium. This is
particularly evident when more than one Nash equilibrium
exists. A definition of game equilibrium with a more practical
meaning can be obtained by relying on the notion of dominant
and dominated strategies. A strategy is said to be strictly
dominant for one player if it is the best strategy for the player,
no matter how the other player may play. In a similar way, we
say that a strategy sl,i is strictly dominated by strategy sl, j , if
the payoff achieved by player l choosing sl,i is always lower
than that obtained by playing sl, j regardless of the choice made
by the other player. The recursive elimination of dominated
strategies is one common technique for solving games. In the
first step, all the dominated strategies are removed from the
set of available strategies, since no rational player would ever
play them. In this way a new smaller game is obtained. At this
point, some strategies, that were not dominated before, may be
dominated in the remaining game, and hence are eliminated.
The process goes on until no dominated strategy exists for
any player. A rationalizable equilibrium is any profile which
survives the iterated elimination of dominated strategies. If at
the end of the process only one profile is left, the remaining
profile is said to be the only rationalizable equilibrium of
the game, which is also the only Nash equilibrium point.
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The corresponding strategies are the only rational choice for
the two players and we say that the game is dominance
solvable. Dominance solvable games are easy to analyze since,
under the assumption of rational players, we can anticipate
that the players will choose the strategies corresponding to
the unique rationalizable equilibrium [29].

III. BINARY HYPOTHESIS TESTING GAME

WITH KNOWN SOURCES

In this section, we use the framework introduced in [19]
to define a version of the hypothesis testing game in which
the pmf’s ruling the emission of sequences from X and Y are
known to both D and A. We also summarize the main results
proven in [19], so to ease the comparison with the new results
that will be proven in the rest of the paper.

Let H0 and H1 be two hypotheses characterized by the
pmf’s PX and PY respectively, defined over the same alpha-
bet X . Let yn be a sequence drawn under hypothesis H1 and
let zn be a modified version of yn produced by A in the attempt
to deceive D. The binary hypothesis testing game under the
known source assumption (H Tks) is defined as follows.

Definition 1: The H Tks(SD,SA, u) game is a zero-sum,
strategic, game played by D and A, defined by the following
strategies and payoff.

• The set of strategies D can choose from is the set
of acceptance regions � for which the false positive
probability is below a certain threshold:

SD = {� : PX (xn /∈ �) ≤ PF P}. (4)

• The set of strategies A can choose from is formed by all
the functions that map a sequence yn ∈ X n into a new
sequence zn ∈ X n subject to a distortion constraint:

SA = { f : d(yn, zn) ≤ nL}, (5)

where d(·, ·) is a proper distortion measure and L is the
maximum allowed per-letter distortion.

• The payoff function is defined as the false negative error
probability (PF N ), namely:

u(�, f ) = −PF N = −
∑

yn : f (yn)∈�

PY (yn). (6)

Given the difficulty of studying the game defined above, a
simplified version of the game is introduced in [19] wherein
the set of strategies available to D is limited. More specifi-
cally, the so-called limited resources assumption is introduced,
forcing D to base its analysis only on first order statistics
of xn . Stated in another way, it is required that � is a union
of type classes. Since a type class is univocally defined by the
empirical probability mass function of the sequences contained
in it, the acceptance region � can be seen as a union of types
P ∈ Pn . As an additional simplification, the constraint on
the false positive probability is defined in asymptotic terms,
requiring that PF P decreases exponentially fast with a given
decay rate. All these considerations lead to the following
definition:

Definition 2: The H T lr
ks (SD,SA, u) game is a game

between D and A defined by the following strategies and
payoff:

SD = {� ∈ 2Pn : PF P ≤ 2−λn}, (7)

SA = { f : d(yn, f (yn)) ≤ nL}, (8)

u(�, f ) = −PF N , (9)

where 2Pn indicates the power set of Pn . From the analysis
given in [19] we know the following results.

Theorem 1: The profile (�∗
ks , f ∗

ks ) with

�∗
ks =

{

P ∈ Pn : D(P||PX ) < λ − |X | log(n + 1)

n

}

, (10)

and

f ∗
ks (yn) = arg min

zn :d(zn,yn)≤nL
D(Pzn ||PX ). (11)

defines an asymptotic Nash equilibrium for the H T lr
ks game.

As a matter of fact, from the proof given in [19], it is easy
to see that (�∗

ks , f ∗
ks ) is the only rationalizable equilibrium of

the game and hence H T lr
ks is a dominance solvable game.

A fundamental consequence of Theorem 1 is that the
optimum strategies for D and A do not depend on PY hence
making the assumption that PY is known irrelevant. With a few
modifications, then, Theorem 1 can be applied to a composite
hypothesis testing scenario in which only the pmf conditioned
to H0 is known [30].

The second main result proven in [19] regards the payoff
at the equilibrium, and specifies under which conditions it is
possible for D to devise a decision strategy such that PF N

tends to zero exponentially fast when n tends to infinity. Let
�n

ks be defined as follows:

�n
ks={P ∈ Pn : ∀yn ∈ T (P), ∃zn ∈ �∗

ks s.t. d(yn, zn) ≤ nL}
(12)

and let the asymptotic version of �n
ks be defined as

�∞
ks = cl

(
⋃

n

�n
ks

)

, (13)

where cl(S) indicates the closure of the set S. The following
theorem holds:

Theorem 2: For the H T lr
ks game, the error exponent of the

false negative error probability at the equilibrium is given by:

εks = min
P∈�∞

ks

D(P||PY ), (14)

leading to the following cases:

1) εks = 0, if PY ∈ �∞
ks ;

2) εks �= 0, if PY /∈ �∞
ks .

where εks indicates the false negative error exponent at the
equilibrium and where the use of min instead of inf is justified
by the compactness of �∞

ks . Given two pmf’s PX and PY ,
a maximum distortion L and the desired false positive error
exponent λ, Theorem 2 permits to understand whether D
may ever succeed to make the false negative error probability
vanishingly small and thus win the game. As a matter of
fact, this is possible only if PY /∈ �∞

ks , since otherwise
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εks = 0. We will call �∞
ks the indistinguishability region for

PX , i.e. set of pmf’s characterizing H1 for which, under certain
conditions (summarized by L and λ), hypothesis H0 can not
be distinguished from H1.

IV. BINARY HYPOTHESIS TESTING GAME

WITH TRAINING DATA

The analysis carried out in [19] requires that PX and PY

are known to D and A (as we have seen in the previous
section, in the asymptotic case only the knowledge of PX is
required); in real applications, however, this is rarely the case.
As an example, let us consider again a multimedia forensics
scenario in which D is asked to verify that a signal has been
generated by a given acquisition device. It is very unlikely
that a good statistical model of the device is available. On the
contrary, it is likely that the analyst will build a suitable model
to characterize H0 by relying on a number of signals produced
by the same acquisition device [31]. To get closer to a realistic
scenario, then, we remove the assumption that PX and PY are
known and introduce the hypothesis testing game with training
data.

Let C be the class of discrete memoryless sources with
alphabet X , and let X ∼ PX be a source in C characteriz-
ing H0. As for the H Tks game, D accepts or rejects H0 by
deciding whether a test sequence xn was drawn from X or not.
To make his decision, D relies on the knowledge of a training
sequence t N

D drawn from X . On his side, A takes a sequence yn

emitted by another source Y ∼ PY still belonging to C and
tries to modify it in such a way that D thinks that the modified
sequence was generated by the same source that generated t N

D .
As usual, the attacker must satisfy a distortion constraint
stating that the distance between the modified sequence and
yn must be lower than a threshold. Like the defender, A derives
his knowledge about the statistics of the sequences generated
under H0 through a training sequence t K

A drawn from PX ,
that in general may not coincide with t N

D . We assume that
t N
D , t K

A , xn and yn are generated independently. With regard
to PY , we could also assume that it is known through two
training sequences, one available to A and one to D, however
we will see that - as for known sources and at least in the
asymptotic case - such an assumption is not necessary, and
hence we take the simplifying assumption that PY is known
to neither D nor A. In this framework, H0 is equivalent to
the hypothesis that the test sequence has been generated by
the same source that generated t N

D . As usual � indicates the
acceptance region for H0, however now it is more convenient
to think of � as a subset of X n ×X N , i.e., as the set of all the
pairs of sequences (xn, t N

D ) that the defender considers to be
drawn from the same, unknown, source. With the above ideas
in mind, and by paralleling the definition given in Section III,
we define a first version of the binary hypothesis testing game
with training sequences as follows:

Definition 3: The H Ttr,a(SD,SA, u) game is a zero-sum,
strategic, game played by D and A, defined by the following
strategies and payoff.

• The set of strategies D can choose from is the set
of acceptance regions � for which the maximum false

positive probability across all possible PX ∈ C is lower
than a given threshold:

SD = {� : max
PX ∈C

PX {(xn, t N
D ) /∈ �} ≤ PF P}, (15)

where PF P is a prescribed maximum false positive
probability, and where PX {(xn, t N

D ) /∈ �} indicates the
probability that two independent sequences generated by
X do not belong to �. Note that the acceptance region
is defined as a union of pairs of sequences, and hence
� ⊂ X n × X N .

• The set of strategies A can choose from is formed by all
the functions that map a sequence yn generated by Y into
a new sequence zn subject to a distortion constraint:

SA = { f : d(yn, f (yn, t K
A )) ≤ nL}, (16)

where d(·, ·) is a proper distortion function and L is
the maximum allowed per-letter distortion. Note that the
function f (·) depends on t K

A , since when performing
his attack A can exploit the knowledge of his training
sequence.

• The payoff function is defined in terms of the false
negative error probability, namely:

u(�, f ) = −PF N = −
∑

t N
D ∈X N , t K

A ∈X K

yn:( f (yn,t K
A ),t N

D )∈�

PY (yn)PX (t N
D )PX (t K

A ), (17)

where the error probability is averaged across all possible
yn and training sequences and where we have exploited
the independence of yn, t N

D and t K
A .

A. Discussion

Before going on with the analysis, we pause to discuss some
of the choices we implicitly made with the above definition.

A first observation regards the payoff function. As a matter
of fact, the expression in (17) looks problematic, since its
evaluation requires that the pmf’s PX and PY are known,
however this is not the case in our scenario since we have
assumed that PX is known only through t N

D and t K
A , and that

PY is not known at all. As a consequence it may seem that
the players of the game are not able to compute the payoff
associated to a given profile and hence have no arguments
upon which they can base their choice. While this is indeed
a problem in a generic setup, we will show later on in the
paper that asymptotically (when n, N and K tend to infinity)
the optimum strategies of D and A are uniformly optimum
across all PX and PY and hence the ignorance of PX and PY

is not a problem. One may wonder why we did not define the
payoff under a worst case assumption (from D’s perspective)
on PX and/or PY . The reason is that doing so would result in
a meaningless game since the worst case for D would always
correspond to PY = PX for which no decision is possible.3

As a second remark, we stress that we decided to limit
the strategies available to A to deterministic functions of yn .
This may seem a limiting choice, however we will see in the

3Alternatively, we could assume that X and Y belong to two disjoint source
classes CX and CY . We leave this analysis for further research.
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subsequent sections that, at least asymptotically, the optimum
strategy of D depends neither on the strategy chosen by A
nor on PY , then, it does not make sense for A to adopt a
randomized strategy to confuse D.

A last, even more basic, comment regards the overall
structure of the game. In our definition we assumed that
the attacker does not intervene when H0 holds, since we
restricted his interest to the false negative error probability.
An alternative approach could be to let the attacker modify also
the sequences generated under H0 in the attempt to increase
the false positive rate. We could also depart from the Neyman-
Pearson set up and define the payoff in terms of the overall
error probability, or the overall Bayes risk defined on the
basis of suitable cost functions associated to the two kinds
of errors.4 While these are interesting research directions, in
this paper we restrict our analysis to the game specified by
Definition 3, and leave the alternative approaches for future
research.

B. A Variant of the Game

An interesting variant of the H Ttr,a game is obtained by
assuming that the training sequence available to A is equal to
that available to D, leading to the following definition.

Definition 4: The H Ttr,b(SD,SA, u) game is a zero-sum,
strategic, game defined as the H Ttr,a game with the only
difference that K = N and t K

A = t N
D (simply indicated

as t N in the following). The set of strategies of D and A
are the same as in the H Ttr,a game, while the payoff is
redefined as:

u(�, f ) = −PF N = −
∑

t N ∈X N

yn :( f (yn,t N ),t N )∈�

PY (yn)PX (t N ). (18)

Due to its simplicity, in the rest of the paper we will first
focus on version b of the game, and then extend our results
so to cover version a as well.

C. Hypothesis Testing Game With Limited Resources (H T lr
tr,b)

Studying the existence of an equilibrium point for the H Ttr,b

game is a prohibitive task, hence we use the same approach
adopted in [18] and [19] and consider a simplified version
of the game in which D can only base his decision on a
limited set of statistics computed on the test and training
sequences. Specifically, we require that D relies only on the
relative frequencies with which the symbols in X appear in
xn and t N , i.e. Pxn and Pt N . Following [18] and [19], we
call this version of the game hypothesis testing with limited-
resources, and we refer to it as the H T lr

tr,b game. Note that
Pxn and Pt N are not sufficient statistics for D, since even if
Y is a memoryless source, the attacker could introduce some
memory within the sequence as a result of the application
of f . In the same way, he could introduce some dependencies
between the attacked sequence zn and t N . It is then necessary
to treat the assumption that D relies only on Pxn and Pt N as an

4In this case it would be necessary that the a priori probabilities of the two
hypotheses are known.

explicit requirement. At first sight, requiring that D relies only
on the relative frequencies of the symbols of X in xn and t N

may seem too much a limiting assumption, however this is
not the case. First of all, such an assumption is often met in
several practical applications. In image forensics, for instance,
it is common to rely on first order statistics of either frequency
or spatial image samples. This is the case with all the systems
proposed so far for the detection of double JPEG compression
(which are commonly based on the first order statistics of
DCT coefficients [32]), and the systems for the detection of
contrast enhancement in grey-level images [33]. As a second
observation, we note that our analysis (which strongly relies
on the method of types) can be extended to include a wider
class of acceptance regions, not necessarily defined in terms of
relative frequencies only. In fact, even if the method of types
was initially developed to work with memoryless sources, it
can be extended to more complicated models, e.g. to sources
with memory [34]. This is the case, for instance, of Markov
sources with finite order [34] and renewal processes [35].

As a consequence of the limited resources assumption,
� can only be a union of Cartesian products of pairs of type
classes, i.e. if the pair of sequences (xn, t N ) belongs to �,
then any pair of sequences belonging to the Cartesian product
T (Pxn )×T (Pt N ) will also be contained in �. Since a type class
is univocally defined by the empirical pmf of the sequences
contained in it, we can redefine � as a union of pairs of types
(P, Q) with P ∈ Pn and Q ∈ PN . In the following, we will
use the two interpretations of � (as a set of pairs of sequences
or pairs of types) interchangeably, the exact meaning being
always recoverable from the context.

We are interested in studying the asymptotic behavior of the
game when n and N tend to infinity. To avoid the necessity
of considering two limits with n and N tending to infinity
independently, we will express N as a function of n, and study
what happens when n tends to infinity. This assumption does
not reduce the generality of our analysis, however it destroys
the symmetry of the hypothesis testing problem with respect
to the two sequences xn and tN . The consequences of this loss
of symmetry will be discussed in Section V-A.

We are now ready to define the asymptotic H T lr
tr,b game.

Specifically, we have:
Definition 5: The H T lr

tr,b(SD,SA, u) game is a zero-sum,
strategic, game played by D and A, defined by the following
strategies and payoff:

SD = {� ⊂ Pn × PN :
max
PX ∈C

PX {(xn, t N(n)) /∈ �} ≤ 2−λn}, (19)

SA = { f : d(yn, f (yn, t N(n))) ≤ nL}, (20)

u(�, f ) = −PF N = −
∑

t N(n)∈X N(n)

yn :( f (yn,t N(n)),t N(n))∈�

PY (yn)PX (t N(n)). (21)

Note that we ask that the false positive error probability
decays exponentially fast with n, thus opening the way to the
asymptotic solution of the game. A similar definition can be
given for version a of the game.
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V. ASYMPTOTIC EQUILIBRIUM OF THE H T lr
tr,b GAME

We start the analysis of the asymptotic equilibrium point
of the H T lr

tr,b game by determining the optimum acceptance
region for D. To do so we will use an analysis similar to that
carried out in [23] to study hypothesis testing with observed
statistics. The main difference between our analysis and [23]
is the presence of the attacker, i.e. the game-theoretic nature
of our problem. The derivation of the optimum strategy for D
passes through the definition of the generalized log-likelihood
ratio function h(xn, t N ). Given the test and training sequences
xn and t N , the generalized log-likelihood ratio function is
defined as ([23], [36])5:

h(xn, t N ) = D(Pxn ||Prn+N ) + N

n
D(Pt N ||Prn+N ), (22)

where Prn+N indicates the empirical pmf of the sequence
rn+N , obtained by concatenating xn and t N , i.e.

ri =
{

xi i ≤ n
ti−n n < i ≤ n + N.

(23)

Observing that h(xn, t N ) depends on the test and the training
sequences only through their empirical pmf, we can also use
the notation h(Pxn , Pt N ). The study of the equilibrium for the
H T lr

tr,b game passes through the following lemmas.
Lemma 1: For any PX we have:

nD(Pxn ||Prn+N ) + ND(Pt N ||Prn+N )

≤ nD(Pxn ||PX ) + ND(Pt N ||PX ), (24)

with equality holding if only if PX = Prn+N .
The proof of Lemma 1 is given in Appendix A.

Lemma 2: �∗
tr,b being defined as follows:

�∗
tr,b =

{

(Pxn , Pt N ) :

h(Pxn , Pt N )<λ−|X | log(n + 1)(N + 1)

n

}

(25)

with

lim
n→∞

log(N(n) + 1)

n
= 0, (26)

then:

1) maxPX PX {(xn, t N ) /∈ �∗
tr,b} ≤ 2−n(λ−νn), with νn → 0,

for n → ∞,
2) ∀� ∈ SD, we have �̄ ⊆ �̄∗

tr,b.

Proof: Being �∗
tr,b a union of pairs of types (or, equiva-

lently, a union of Cartesian products of type classes), we have:

max
PX

PF P = max
PX

∑

(xn,t N )∈�̄∗
tr,b

PX (xn, t N )

= max
PX

∑

(Pxn ,Pt N )∈�̄∗
tr,b

PX (T (Pxn ) × T (Pt N )). (27)

For the class of discrete memoryless sources, the number of
types with denominators n and N is bounded by (n + 1)|X |

5To simplify the notation, when it is not strictly necessary, we omit to
indicate explicitly the dependence of N on n.

and (N + 1)|X | respectively [24], so we can write:

max
PX

PF P ≤ max
PX

max
(Pxn ,Pt N )∈�̄∗

tr,b

[(n + 1)|X |(N + 1)|X | PX (T (Pxn ) × T (Pt N ))]
≤ (n + 1)|X |(N + 1)|X | · max

PX

max
(Pxn ,Pt N )∈�̄∗

tr,b

2−n[D(Pxn ||PX )+ N
n D(Pt N ||PX )], (28)

where in the second inequality we have exploited the inde-
pendence of xn and t N and the property of types according
to which for any sequence xn we have PX (T (Pxn )) ≤
2−nD(Pxn ||PX ) (see [24]). By exploiting Lemma 1, we can
write:

max
PX

PF P ≤ (n + 1)|X |(N + 1)|X |

· max
(Pxn ,Pt N )∈�̄∗

tr,b

2−n[D(Pxn ||Prn+N )+ N
n D(Pt N ||Prn+N )]

≤ (n + 1)|X |(N + 1)|X | 2−n(λ−|X | log(n+1)(N+1)
n )

= 2−n(λ−2|X | log(n+1)(N+1)
n ), (29)

where the last inequality derives from the definition of �∗
tr,b.

Together with (26), equation (29) proves the first part of the
lemma with νn = 2|X | log(n+1)(N+1)

n .
For any � ∈ SD , let (xn, t N ) be a generic pair of sequences

contained in �̄, due to the limited resources assumption the
cartesian product between T (Pxn ) and T (Pt N ) will be entirely
contained in �̄. Then we have:

2−λn ≥ max
PX

PX (�̄)

(a)≥ max
PX

PX (T (Pxn ) × T (Pt N ))

(b)≥ max
PX

2−n[D(Pxn ||PX )+ N
n D(Pt N ||PX )]

(n + 1)|X |(N + 1)|X |

(c)= 2−n[D(Pxn ||Prn+N )+ N
n D(Pt N ||Prn+N )]

(n + 1)|X |(N + 1)|X | , (30)

where (a) is due to the limited resources assumption, (b) fol-
lows from the independence of xn and t N and a lower
bound on the probability of a pair of type classes [24], and
(c) derives from Lemma 1. By taking the logarithm of both
sides we find that (xn, t N ) ∈ �̄∗

tr,b, thus completing the
proof.

The first part of Lemma 2 shows that, at least asymptot-
ically, �∗

tr,b belongs to SD , while the second part implies
the optimality of �∗

tr,b. An important observation is that the
optimum strategy of D is univocally determined by the false
positive constraint. This solves the apparent problem that we
pointed out when defining the payoff of the game, namely
that the payoff depends on PX and PY and hence it is not
fully known to D. We also observe that �∗

tr,b does not depend
on t K

A , hence it is the optimum defender’s strategy even for
version a of the H T lr

tr game. For this reason, from now on
we will simply indicate it as �∗

tr .
The most important consequence of Lemma 2 is that the

optimum strategy of D does not depend on the strategy chosen
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by the attacker, that is �∗
tr is a strictly dominant strategy

for D. In turn this simplifies the analysis of the optimum
attacking strategy. In fact, a rationale defender will surely play
the dominant strategy �∗

tr , hence A can choose his strategy by
assuming that D chooses �∗

tr . The derivation of the optimum
attacking strategy is now an easy task. We only need to observe
that the goal of A is to take a sequence yn drawn from Y and
modify it in such a way that:

h(zn, t N ) < λ − |X | log(n + 1)(N + 1)

n
, (31)

with d(yn, zn) ≤ nL. The optimum attacking strategy, then,
can be expressed as a minimization problem, i.e.:

f ∗
tr,b(yn, t N ) = arg min

zn :d(yn,zn)≤nL
h(zn, t N ). (32)

Note that to implement this strategy A needs to know t N , i.e.,
(32) determines the optimum strategy only for version b of
the game.

Having determined the optimum strategies for D and A, we
can state the first main result of the paper, summarized in the
following theorem.

Theorem 3 (Asymptotic Equilibrium of the H T lr
tr,b Game):

The H T lr
tr,b game is a dominance solvable game and the

profile (�∗
tr , f ∗

tr,b) is the only rationalizable equilibrium.
Proof: Lemma 2 says that �∗

tr is a strictly dominant
strategy for D, thus permitting us to eliminate all the other
strategies in SD (since they are strictly dominated by �∗

tr ).
The theorem, then, follows by observing that f ∗

tr,b maximizes
the false negative error probability when �∗

tr is fixed. In fact,
if the minimum in (32) is not lower than the acceptance
threshold, no other strategy will succeed in deceiving D.

A. Discussion

As a first remark, we observe that (�∗
tr , f ∗

tr,b) is the unique
Nash equilibrium of the game. In addition to the properties
of Nash equilibria, however, (�∗

tr , f ∗
tr,b) has the desirable

characteristic of being the only possible choice if the two
players behave rationally. In fact, a rational defender will
surely adopt the acceptance region �∗

tr , since any other choice
will lead to a (asymptotically) higher PF N , regardless of the
choice made by A. On his side, a rational attacker, knowing
that D will behave rationally, will adopt the strategy f ∗

tr,b,
since this is the strategy that optimizes his payoff when D
plays �∗

tr .
To get a better insight into the meaning of the equilibrium

point of the H T lr
tr,b game, it is instructive to compare it

with the equilibrium of the corresponding game with known
sources, namely the H T lr

ks game. To start with, we observe
that the use of the h function instead of the divergence D
derives from the fact that D must ensure that the false positive
probability stays below the desired threshold for all possible
DMS’s. To do so, he has to estimate the pmf that better
explains the evidence provided by both xn and t N, that is
the pmf maximizing the probability of observing xn and t N.
As shown in the Appendix (see (A6)), such a maximizing pmf
corresponds to Prn+N , and the generalized log-likelihood ratio
corresponds to 1 over n the log of the (asymptotic) probability

Fig. 2. Geometric interpretation of the difference between D (left) and
h (right) functions.

that a source with pmf equal to Prn+N outputs the sequences
xn and t N . A geometric illustration of the difference between
the D and the h functions used, respectively, in the optimum
acceptance regions for the H T lr

ks and the H T lr
tr,b games is given

in Fig. 2. Another observation regards the optimum strategy
of the attacker. As a matter of fact, the functions h(Pxn , Pt N )
and D(Pxn ||Pt N ) share a similar behavior: both are positive
and convex functions achieving the absolute minimum when
Pxn = Pt N , so one may be tempted to think that from A’s point
of view minimizing D(Pxn ||Pt N ) is equivalent to minimizing
h(Pxn , Pt N ). While this is the case in some situations, e.g.
when the absolute minimum can be reached, in general the
two minimization problems yield different solutions.

To further compare the H T lr
tr,b and the H T lr

ks games, it is
useful to rewrite the generalized likelihood function in a more
convenient way. By applying some algebra, it is easy to prove
the following equivalent expression for h:

h(Pxn , Pt N ) = D(Pxn ||Pt N ) − N + n

n
D(Prn+N ||Pt N ), (33)

showing that h(Pxn , Pt N ) ≤ D(Pxn ||Pt N ) with the equality
holding only in the trivial case Pxn = Pt N . This suggests that,
at least for large n, it should be easier for A to bring a sequence
generated by Y within �∗

tr than to bring it within �∗
ks . This is

indeed the case, as it will be shown in Section VI-A, where we
will provide a rigorous proof that the H Tlr

tr,b game is actually
more favorable to the attacker than the H Tlr

ks game.
We conclude this section by investigating the behavior of the

optimal acceptance strategy for different values of the ratio N
n .

To do so we introduce the two quantities cx = n
n+N and

ct = N
n+N , representing the weights of the sequences xn and

t N in rn+N . It is easy to show, in fact, that

Prn+N = cx Pxn + ct Pt N . (34)

In the simplest case, n and N will tend to infinity with the same
speed, hence we can assume that the ratio between N and n
is fixed, namely, N

n = c �= 0 (we obviously have cx = 1
1+c

and ct = c
1+c ). Under this assumption, the decision of D is

dictated by (25) and no particular behavior can be noticed.
This is not the case when N/n tends to 0 or ∞.

If N/n → 0, then Prn+N → Pxn and h(Pxn , Pt N ) → 0. This
means that the defender will always decide in favor of H0.
This makes sense since when the test sequence is infinitely
longer than the training sequence, the evidence provided by
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the training sequence is not strong enough to let the defender
reject hypothesis 0.

If N/n → ∞, the analysis is slightly more involved. In this
case ct → 1 and Prn+N → Pt N , hence the first term in
(22) tends to D(Pxn ||Pt N ). To understand the behavior of
the second term of (22) when n → ∞, we can use the
Taylor expansion of D(P||Q) when P approaches Q (see
[25, Ch. 4]), which applied to the second term of the h function
yields:

N

n
· D(Pt N ||Prn+N ) ≈ N

2n
·
∑

x

(Pt N (x)− Prn+N (x))2

Prn+N (x)

= N

2n
·
∑

x

(cx Pt N (x) − cx Pxn (x))2

Prn+N (x)

=
n
N

2( n
N +1)2

∑

x

(Pt N (x)− Pxn(x))2

Prn+N (x)
. (35)

When N/n → ∞, the above expression clearly tends to 0,
and hence h(Pxn , Pt N ) → D(Pxn ||Pt N ). In other words, the
optimum acceptance region tends to be equal to the one
obtained for the case of known sources with PX replaced
by Pt N . This is also an intuitively reasonable result: when
the training sequence is much longer than the test sequence,
the empirical pmf of the training sequence provides such a
reliable estimate of PX that the defender can treat it as the
true pmf.

One may wonder the reason behind the asymmetric behavior
of the optimum decision strategy when the length of one
between the two sequences under analysis grows much faster
than the other. This apparent anomaly derives from the choice
of analyzing the asymptotic behavior by letting n tend to
infinity, a choice that breaks the symmetry between the test
and training sequences. If we had defined the false positive
and false negative error exponents in terms of N , the situation
would have been completely reversed.

In the following we will always assume that N/n = c, since
from the above analysis this turns out to be most interesting
case.

VI. ANALYSIS OF THE PAYOFF AT THE EQUILIBRIUM

Now that we have derived the equilibrium point of
the H T lr

tr,b game, we are ready to analyze the payoff at the
equilibrium to understand who, between the defender and the
attacker is going to win the game. Our aim is to derive a result
similar to Theorem 2, so that given two pmf’s PX and PY , a
false positive error exponent λ and a distortion constraint L,
we can derive the best achievable (for the defender) false
negative error exponent εtr,b. Specifically, we would like to
know whether it is possible for D to obtain a strictly positive
value of εtr,b, thus ensuring that the false negative error
probability tends to zero exponentially fast for increasing
values of n.

In our proofs we will find it necessary to generalize the
h function so that it can be applied to general pmf’s not
necessarily belonging to Pn or PN . By remembering that
N/n = c, we introduce the following definition:

hc(P, Q) = D(P||U) + cD(Q||U), (36)

with

U = 1

1 + c
P + c

1 + c
Q. (37)

Note that when P ∈ Pn and Q ∈ PN , the above definition is
equivalent to (22). By using hc instead of h, we can generalize
the expression of the optimum acceptance region �∗

tr so to
make it possible to apply it to any pair of pmf’s P and Q
(of course when P and Q are not empirical pmf’s the meaning
of �∗

tr as acceptance region for H0 is lost):

�∗
tr =

{

(P, Q) : hc(P, Q) < λ−|X | log(n + 1)(N + 1)

n

}

.

(38)

With these ideas in mind, let us introduce the set �n
tr,b

containing all the pairs of sequences (yn, t N ), for which A is
able to bring yn within �∗,n

tr (for sake of clarity we use
the apex n to explicitly indicate that �∗,n

tr refers to pairs of
sequences respectively of length n and N = cn):

�n
tr,b = {(yn, t N ) : ∃zn

s.t. (zn, t N ) ∈ �∗,n
tr and d(yn, zn) ≤ nL}. (39)

By observing that �∗,n
tr depends on t N only through Pt N and

by reasoning as in the proof of [19, Property 1] (we need to
assume that the distortion measure d is permutation-invariant),
we can show that �n

tr,b is still a union of pairs of type classes,
and hence we can redefine it as:

�n
tr,b = {(Pyn , Pt N ) : ∀yn ∈ T (Pyn ) ∃zn

s.t. (Pzn , Pt N ) ∈ �∗,n
tr and d(yn, zn) ≤ nL}. (40)

Note that, by adopting the generalized version of �∗
tr in which

hc is used instead of h, the above definition can also be applied
when Pt N is replaced by a generic pmf Q not necessarily
belonging to PN . We will also find it convenient to fix Q and
consider the set of types Pxn for which (Pxn , Q) belongs to
�∗,n

tr and �n
tr,b, that is:

�∗,n
tr (Q) = {Pxn : (Pxn , Q) ∈ �∗,n

tr }, (41)

�n
tr,b(Q) = {Pyn : ∀yn ∈ T (Pyn ) ∃zn

s.t. Pzn ∈ �∗,n
tr (Q) and d(yn, zn) ≤ nL}. (42)

The derivation of the false negative error exponent at the
equilibrium passes through the following asymptotic extension
of �n

tr,b(Q):

�∞
tr,b(Q) = cl

(
⋃

n

�n
tr,b(Q)

)

. (43)

The importance of the above definition is that for any
source PX , given λ and the maximum allowed per-letter
distortion L, the set �∞

tr,b(PX ) corresponds to the indistin-
guishability region of the H T lr

tr,b game, i.e. the set of all the
pmf’s for which D does not succeed in distinguishing between
H0 and H1 ensuring a false negative error probability that
tends to zero exponentially fast. In other words, if PY ∈
�∞

tr,b(PX ), no strictly positive false negative error exponent
can be achieved by D. To prove that this is indeed the case,
we need to prove the following theorem.



4858 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014

Theorem 4 (Asymptotic Payoff of the H T lr
tr,b Game): For

the H T lr
tr,b game, with N/n = c and assuming an additive

distortion measure, the false negative error exponent at the
equilibrium is given by

εtr,b = min
Q

[c · D(Q||PX ) + min
P∈�∞

tr,b(Q)
D(P||PY )]. (44)

Proof: By using the definitions given in this section,
the false negative error probability at the equilibrium, for a
given n, can be written:

PF N =
∑

t N

PX (t N )
∑

P∈�n
tr,b(Pt N )

PY (T (P))

=
∑

Q∈PN

PX (T (Q))
∑

P∈�n
tr,b (Q)

PY (T (P)). (45)

We start by deriving an upper-bound of the false negative error
probability. By exploiting some well-known bounds on the
probability of a type class and the number of types in Pn [24],
we can write:

PF N ≤
∑

Q∈PN

PX (T (Q))
∑

P∈�n
tr,b (Q)

2−nD(P||PY )

≤
∑

Q∈PN

PX (T (Q))(n + 1)|X |2
−n min

P∈�n
tr,b (Q)

D(P||PY )

≤
∑

Q∈PN

PX (T (Q))(n + 1)|X |2
−n min

P∈�∞
tr,b (Q)

D(P||PY )

≤ (n + 1)|X |(N + 1)|X |

·2
−n min

Q∈PN
[ N

n D(Q||PX )+ min
P∈�∞

tr,b (Q)
D(P||PY )]

≤ (n + 1)|X |(N + 1)|X |

·2
−n min

Q
[cD(Q||PX )+ min

P∈�∞
tr,b (Q)

D(P||PY )]
, (46)

where the last inequality is obtained by minimizing over all Q
without requiring that Q ∈ PN and where the use of the
minimum instead of the infimum is justified by the fact that
�n

tr,b(Q) and �∞
tr,b(Q) are compact sets. By taking the log and

dividing by n we find:

− log PF N

n
≥ min

Q∈C
[
cD(Q||PX )

+ min
P∈�∞

tr,b(Q)
D(P||PY )

] + αn, (47)

with αn = |X | log(n+1)(N+1)
n tending to 0 when n tends to

infinity.
We now turn to the analysis of a lower bound for PF N .

Let Q∗ be the pmf achieving the minimum in (44). Due to the
density of rational numbers within real numbers, we can find
a sequence of pmf’s Qn ∈ Pn that tends to Q∗ when n tends
to infinity. By remembering that N = nc, the subsequence
QN = Qnc will also tend to Q∗ when n (and hence N) tends
to infinity.6 Let us now consider the following sequence of

6In order to simplify the analysis, we assume that c is a non-null integer
value, the extension of the proof to non-integer values of c is tedious but
straightforward.

inequalities:

PF N
(a)≥

∑

Q∈PN

PX (T (Q))
∑

P∈�n
tr,b(Q)

2−nD(P||PY )

(n + 1)|X |

≥
∑

Q∈PN

PX (T (Q))
2
−n min

P∈�n
tr,b (Q)

D(P||PY )

(n + 1)|X |

(b)≥
∑

Q∈PN

2−ND(Q||PX )

(N + 1)|X |
2
−n min

P∈�n
tr,b (Q)

D(P||PY )

(n + 1)|X |

=
∑

Q∈PN

2
−n[cD(Q||PX )+ min

P∈�n
tr,b (Q)

D(P||PY )]

(N + 1)|X |(n + 1)|X |

(c)≥ 2
−n[cD(Q N ||PX )+ min

P∈�n
tr,b (QN )

D(P||PY )]

(N + 1)|X |(n + 1)|X | , (48)

where inequalities (a) and (b) derive from a known lower
bound on the probability of a type class [24], and in (c) we
have replaced the sum with a single element of the subse-
quence QN defined previously. By taking the log and dividing
by n, we obtain

− log PF N

n
≤ cD(QN ||PX ) + min

P∈�n
tr,b (Q N )

D(P||PY ) + αn,

(49)

where, as in (47), αn = |X | log(n+1)(N+1)
n tends to 0 when n

tends to infinity. To continue, let P∗ be defined as follows

P∗ = arg min
P∈�∞

tr,b(Q∗)
D(P||PY ). (50)

In Appendix B, we show that it is possible to find a
sequence Pn , where each Pn belongs to �n

tr,b(QN ), that tends
to P∗ when n tends to infinity. By starting from (49) and by
exploiting the continuity of the divergence function, for n large
enough we can write

− log PF N

n
≤ cD(Q∗||PX )+β ′

n+D(Pn ||PY )+αn,

≤ cD(Q∗||PX )+β ′
n+D(P∗||PY )+β ′′

n +αn, (51)

where all the sequences αn , β ′
n and β ′′

n tend to zero when n
tends to infinity.

By coupling equations (47) and (51) and by letting n → ∞,
we eventually obtain:

− lim
n→∞

log PF N

n
= min

Q
[c · D(Q||PX ) + min

P∈�∞
tr,b(Q)

D(P||PY )],
(52)

thus proving the theorem.
According to Theorem 4, we can distinguish two cases

depending on the relationship between PX and PY .

1) PY ∈ �∞
tr,b(PX ) then εtr,b = 0;

2) PY /∈ �∞
tr,b(PX ) then εtr,b > 0.

In the former case, for which the minimum in (44) is obtained
by letting Q∗ = PX , it is not possible for D to obtain a
strictly positive false negative error exponent while ensuring
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Fig. 3. Geometric interpretation of the sets �∗,∞
tr and �∞

tr,b . When
PY ∈ �∞

tr,b , a reliable distinction between H0 and H1 is not possible and
the attacker wins the game.

that the false positive error exponent is at least equal to λ.
In the latter case, it is not possible that the two divergences
in (44) are simultaneously equal to zero, hence PF N tends to 0
exponentially fast. In other words, given λ and L, the condition
PY /∈ �∞

tr,b(PX ) ensures that the distance between PY and
PX is large enough to allow a reliable discrimination between
H0 and H1 despite the presence of the adversary. As antic-
ipated, then, �∞

tr,b(PX ) is the indistinguishability region of
the H T lr

tr,b game. A pictorial representation of the sets �∗,∞
tr

(obtained by letting n → ∞ in (38)) and �∞
tr,b is given in

Fig. 3.

A. Comparison Between the H T lr
ks and H T lr

tr,b Games

In this section we compare the asymptotic performance
achievable by D for the H Tlr

ks and H T lr
tr,b games. We start the

analysis by comparing the indistinguishability regions of the
two games, namely �∞

ks (PX ) and �∞
tr,b(PX ) (where, as opposed

to Section III, we now explicitly indicate the dependence of
�∞

ks on PX ).
The comparison between the two regions relies on the com-

parison between the divergence and the generalized likelihood
function. In particular, the starting point of our analysis is the
following lemma.

Lemma 3 (Relationship Between hc and D): Let N/n = c,
with c �= 0, c �= ∞, for any P �= PX we have,

hc(P, PX ) < D(P||PX ). (53)
Proof: By rewriting hc(P, PX ) as in (33), we have:

hc(P, PX ) = D(P||PX ) − (1 + c)D(U ||PX ), (54)

with U = P/(1 + c) + cPX/(1 + c), which is equal to PX

if and only if P = PX , when we have D(U ||PX ) = 0 thus
yielding hc(P, PX ) = D(P||PX ) = 0.
In the subsequent proofs we will refer to the way the mapping
function f operates on yn to produce zn .7 Specifically, we
will indicate with n f (i → j) the number of times that f
transforms the i -th symbol of X into the j -th one. The main
result of our analysis is stated in the following theorem.

7To keep the notation as light as possible, we will not distinguish between
the mapping functions used for the known source case and those applying
to hypothesis testing with training sequences, even if, rigorously speaking,
these are quite different functions since the latter also depend on the training
sequence t N .

Theorem 5 (H Tlr
tr,b vs H T lr

ks ): For any finite, non-null
value of c, any PX , λ > 0 and L we have

�∞
ks (PX ) ⊂ �∞

tr,b(PX ). (55)

Proof: We will prove the theorem by first showing that
�∞

ks (PX ) ⊆ �∞
tr,b(PX ), and then finding at least one point

(actually an infinite set of points) that belongs to �∞
tr,b(PX )

but does not stay in �∞
ks (PX ).

The idea behind the proof that �∞
ks (PX ) ⊆ �∞

tr,b(PX ) is that
since hc(P, PX ) < D(P||PX ) and given that the thresholds
defining the acceptance regions for both the H Tlr

tr,b and the
H T lr

ks games tend to the same value λ for large values of n, if
the attacker is able to bring a sequence within �∗,n

ks he is also
able to bring it within �∗,m

tr (for some large values of n and m).
We now turn the above idea into a rigorous proof. Let yn be a
sequence such that Pyn ∈ �n

ks(PX ), this means that a mapping
fn exists that transforms yn into a sequence zn belonging to
�∗,n

ks (PX ), while satisfying the distortion constraint. Let now
m be a multiple of n (m = kn). For k large enough we have

λ − |X | log(n + 1)

n
< λ − |X | log(m + 1)(cm + 1)

m
. (56)

Since Pzn ∈ �∗,n
ks (PX ), Lemma 3 permits us to write:

hc(Pzn , PX ) ≤ D(Pzn ||PX )

< λ − |X | log(n + 1)

n

< λ − |X | log(m + 1)(cm + 1)

m
. (57)

Given that m is a multiple of n, any P ∈ Pn also belongs to
Pm , permitting us to conclude that Pzn ∈ �∗,m

tr (PX ). Let now
ym be an m-long sequence having the same type of yn (this is
surely possible since m is a multiple of n). If we apply to ym a
mapping function vm for which nvm (i → j) = kn fn (i → j),
the sequence zm = vm(ym) will have the same type of zn ,
and hence by virtue of (57) Pzm ∈ �∗,m

tr (PX ). In addition, the
mapping vm introduces the same per-letter distortion of fn

for any additive distortion measure, permitting us to conclude
that Pym ∈ �m

tr,b(PX ). In summary, we have shown that for
any P ∈ �n

ks (PX ) an m = kn exists such that P ∈ �m
tr,b(PX ),

and hence:

�∞
ks (PX ) = cl

(
⋃

n

�n
ks(PX )

)

⊆ cl

(
⋃

m

�m
tr,b(PX )

)

= �∞
tr,b(PX ). (58)

We now prove that there is at least one point that belongs to
�∞

tr,b(PX ) but does not belong to �∞
ks (PX ) (actually we will

prove that there is an infinite number of such points). The
main idea behind the proof is the following. For the types
on the border of �∞

tr,b(PX ), or arbitrarily close to the border
but still within �∞

tr,b(PX ), the optimum attacking strategy will
only succeed in modifying the sequences within the type class
so that the h function is lower than the acceptance threshold
(which for large n is essentially equal to λ) but arbitrarily
close to it. Given that the divergence is strictly larger than the
hc function (see Lemma 3) and that the thresholds of the two
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games tend both to λ, it is impossible for the attacker to modify
the sequences belonging to the type classes on the border of
�∞

tr,b(PX ), or very close to it, so to satisfy the acceptance
conditions of the H T lr

ks game, thus proving that such types
do not belong to �∞

ks (PX ). More rigorously, let us consider
a point P∗ belonging to the boundary of �∞

tr,b(PX ). Since by
definition �∞

tr,b(PX ) is a closed set, P∗ ∈ �∞
tr,b(PX ). Due to

Lemma 4 (Appendix B), we can find a sequence of types
Pi

n in �n
tr,b(PX ) that tends to P∗ from the inside of �∞

tr,b(PX ).
On the other hand, due to the density of rational numbers
in real numbers, it is possible to find also an outer sequence
of types Po

n , i.e. lying inside �∞
tr,b(PX ), tending to P∗ for

n → ∞, and for which Po
n ∈ Pn for each n. By construction,

for each n, no mapping function exists that when applied to the
sequences in the type class of Po

n moves them into �∗,n
tr (PX )

with a per-letter distortion equal or lower than L. In other
words, for any sequence yn ∈ Po

n and any (distortion-limited)
mapping f (yn) = wn we have

hc(Pwn , PX ) ≥ λ − |X | log(n + 1)(cn + 1)

n
. (59)

Let f n be the sequence of optimum mapping functions that
applied to the sequences in T (Pi

n) result in a sequence zn for
which hc(Pzn , PX ) < λ−|X |[log(n+1)(cn+1)]/n. We argue
that

lim
n→∞ hc(Pzn , PX ) = λ. (60)

To show that this is indeed the case, we observe that

lim sup
n→∞

hc(Pzn , PX ) ≤ λ, (61)

because by construction the types Pi
n belong to �n

tr,b(PX ).
On the other side, we can prove that

lim inf
n→∞ hc(Pzn , PX ) ≥ λ. (62)

In fact, if such a limit were lower than λ, say λ′, a type
Pi

n would always exist such that n is arbitrarily large and
for any sequences in T (Pi

n) we have hc(Pzn , PX ) = λ′ + β
with an arbitrarily small β (e.g. lower than λ − λ′). Then,
by choosing n large enough, we could find a type Po

m (with
large m) which is arbitrarily close to Pi

n . By applying the
optimum mapping fn to the sequences in T (Po

m),8 by the
continuity of the hc function and the mapping fn , we would
obtain a sequence wm satisfying the distortion constraint and
for which hc(Pwn , PX ) is arbitrarily close to λ′ and hence
lower than λ, which contradicts the hypothesis that the types
of the sequence Po

m do not belong to �∞
tr,b(PX ).

Let us now consider the following positive quantity

τ = D(P∗||PX ) − hc(P∗, PX ). (63)

8Rigorously speaking, there’s no guarantee that fn can be applied as is
to the sequences in Po

m . To ensure that this is the case, we should first of
all choose m = kn for some large k, define a new mapping νm such that
nνm (i → j) = kn fn (i → j) and then modify νm so that nνm (i → j) is
never larger than the number of times that the symbol i appears in the to-
be-mapped sequence. Given that the types Pi

n and Po
m are arbitrarily close,

and given that n and m can be taken arbitrarily large, the application of the
modified mapping will result in a sequence z′m for which hc(Pz′m , PX ) is
arbitrarily close to hc(Pzm , PX ).

Due to (60), for large n, for any mapping function, and for all
the sequences in T (Pi

n), by the continuity of the D and the
hc functions we, have

D(Pzn ||PX ) = hc(Pzn , PX ) + τ + βn

> λ − τ

2
+ τ + βn > λ, (64)

where zn indicates the output of the optimum mapping func-
tion, βn is a vanishingly small sequence and where the last
inequality holds for sufficiently large n, hence proving that
for large n the types in the sequence Pi

n do not belong to
�∞

ks (PX ).
Theorem 5 has two simple corollaries.

Corollary 1: For any pmf P belonging to the boundary of
�∞

ks (PX ) there exists a positive value ε such that B(P, ε) ⊂
�∞

tr,b(PX ), where B(P, ε) is a ball centered in P with radius
ε. In the same way, for any pmf P belonging to the boundary
of �∞

tr,b(PX ) there exists a positive value ε such that B(P, ε)∩
�∞

ks (PX ) = ∅.
Proof: It follows immediately from the proof of

Theorem 5.
Corollary 2: Let εks and εtr,b denote the error exponents

at the equilibrium for the H T lr
ks and H T lr

tr,b games. Then we
have:

εtr,b ≤ εks , (65)

where the equality holds if and only if PY ∈ �∞
ks (PX ), when

both error exponents are equal to 0.
Proof: The corollary is obvious when PY ∈ �∞

tr,b(PX ),
since in this case εtr,b = 0 while ε is equal to zero if PY ∈
�∞

ks (PX ) and nonzero otherwise. When PY /∈ �∞
tr,b(PX ), by

considering the expression of the error exponent for the H T lr
tr,b

game we have:

εtr,b = min
Q

[c · D(Q||PX ) + min
P∈�∞

tr,b(Q)
D(P||PY )]

≤ cD(PX ||PX ) + min
P∈�∞

tr,b(PX )
D(P||PY )

(a)= min
P∈�∞

tr,b (PX )
D(P||PY )

< min
P∈�∞

ks (PX )
D(P||PY ) = εks, (66)

where the last strict inequality is justified by observing that the
absolute minimum of D(P||PY ) is obtained for P = PY which
we have assumed to lie outside �∞

tr,b(PX ) and hence, due to
the convexity of D, the value P satisfying the minimization
on the right-hand side of equality (a) belongs to the boundary
of �∞

tr,b(PX ) and then, by Corollary 1, lies outside the closed
set �∞

ks (PX ).
Theorem 5 and Corollary 2 permit us so to conclude that

hypothesis testing with training data is more favorable to
the attacker than hypothesis testing with known sources. The
reason behind such a result is the use of the h function instead
of the divergence, which in turn stems from the need for the
defender to ensure that the constraint on the false positive error
probability is satisfied for all PX ∈ C. It is such a worst case
assumption that ultimately favors the attacker in the H T lr

tr,b
game.
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VII. BINARY HYPOTHESIS TESTING GAME WITH

INDEPENDENT TRAINING SEQUENCES (H T lr
tr,a)

We now pass to the analysis of version a of the H T lr
tr game.

We remind that in this case D and A rely on independent
training sequences, namely t N

D and t K
A . As for version c, we

assume that both N and K grow linearly with n and that the
asymptotic analysis is carried out by letting n go to infinity.
As a matter of fact, assuming that K grows more than linearly
with n is not reasonable in practical applications, since usually
the defender has a better knowledge of the system than the
attacker. This is the case, for instance, in source identification
for multimedia forensics, where we can assume that the analyst
has a better knowledge of the statistics of authorized sources.
On the contrary, one could consider the case where K grows
less than linearly with n. While this could be an interesting
research direction, we leave it for future research.

Given the above, in the following, we assume that N = cn
and K = dn. As we already noted in Section V, the strategy
�∗

tr identified by Lemma 2 is optimum regardless of the
relationship between t N

D and t K
A , hence the only difference

between versions a and b of the game is in the strategy of
the attacker. In fact, now the attacker does not have a perfect
knowledge of the acceptance region adopted by the defender,
since such a region depends on the empirical pmf of t N

D which
A does not know.

A reasonable strategy for the attacker could be to use the
empirical pmf of t K

A instead of the one derived from t N
D . More

precisely, by using the notation introduced in Section VI (equa-
tion (42)), the attacker could try to move yn into �∗,n

tr (Pt K
A
),

while the acceptance region adopted by the defender is
�∗,n

tr (Pt N
D
). Given that t N

D and t K
A are generated by the same

source, their empirical pmf’s will both tend to PX when n
goes to infinity, and hence using �∗,n

tr (Pt K
A
) should be in some

way equivalent to using �∗,n
tr (Pt N

D
). In fact, in the following

we will show that, given PX , L and λ, the indistinguishability
region for version a of the game, let us call it �∞

tr,a(PX ),
is identical to the indistinguishability region of version b.
Of course, this does not mean that the achievable payoff for
the H Tlr

tr,a game is equal to that of the H T lr
tr,b game, since,

even if the indistinguishability region is the same, outside it
the false negative error exponent for case a may be different
(actually larger) than that of case b.

We start our analysis by assuming that c = d (and
hence N = K ), i.e. the training sequences available to the
defender and the attacker have the same length. Our goal is to
investigate the asymptotic behavior of the payoff of the H T lr

tr,a
game for the profile (�∗,n

tr (Pt N
D
), f̃ ), where the, not necessarily

optimum, strategy f̃ adopted by the attacker is defined as:

f̃ (yn, t N
A ) = arg min

zn :d(zn,yn)≤nL
h(Pzn , Pt N

A
). (67)

A problem with the above strategy arises when the minimiza-
tion has several solutions {zn(1) . . . zn(k)}, some of which,
say the first m, fall within �∗,n

tr (Pt N
D
) while the others don’t.

If we consider a permutation of yn , say σ(yn), instead
of yn , {σ(zn(1)) . . . σ (zn(k))} will still be solutions of the
minimization problem. In addition, the first m sequences will

still belong to �∗,n
tr (Pt N

D
), while the others will not. Since

we want that �̃n
tr,a is a union of triple of type classes, it is

necessary to require that when yn is permuted, f̃ continues
to pick up a minimizer inside (or outside) �∗,n

tr (Pt N
D
). For this

reason we also impose the additional constraint that, for any
permutation σ ,

f̃ (σ (yn), t N
A ) = σ( f̃ (yn, t N

A )). (68)

Given that we are not interested in proving the optimality of f̃ ,
the further constraint in (68) does not impair the value of our
analysis. As a matter of fact, we will use f̃ only to bound the
false negative error exponent and show that, even if the H Tlr

tr,a
game is less favorable to the attacker than the H T lr

tr,b game,
the two games have the same indistinguishability region.

By following the same flow of ideas used in Section VI, we
consider the set of sequences for which the attacker is able to
move yn within the acceptance region �∗,n

tr (Pt N
D
), i.e.:

�̃n
tr,a = {(yn, t N

D , t N
A ) : f̃ (yn, t N

A ) ∈ �∗,n
tr (Pt N

D
)}. (69)

Thanks to the additional constraint in (68), and by reasoning
as in the proof of Property 1 in [19], it is easy to show that
�̃n

tr,a is a union of triple of type classes, hence permitting us
to redefine it in terms of types. Similarly to version b of the
game, we find it useful to introduce the following definition:

�̃n
tr,a(Pt N

D
, Pt N

A
) = {Pyn ∈ Pn : ∀yn ∈ T (Pyn ),

( f̃ (yn, t N
A ), t N

D ) ∈ �∗,n
tr }. (70)

By using the generalized function hc instead of h, we can
apply the above definition to any pair of pmf’s. Specifically,
given two pmf’s Q and R, we define:

�̃n
tr,a(Q, R) = {Pyn ∈ Pn : ∀yn ∈ T (Pyn ),

( f̃ (yn, R), Q) ∈ �∗,n
tr }. (71)

It is easy to see that:

�̃n
tr,a(Q, R) ⊆ �̃n

tr,a(Q, Q) (72)

�̃n
tr,a(Q, Q) = �n

tr,b(Q),

since when (and only when) Q = R, A performs its attack by
using exactly the same acceptance region adopted by D, while
in all the other cases he can rely only on an estimate based
on its own training sequence. Paralleling the analysis of the
H T lr

tr,b game, we introduce the set

�̃∞
tr,a(Q, R) = cl

(
⋃

n

�̃n
tr,a(Q, R)

)

(73)

for which, thanks to (72), we have �̃∞
tr,a(Q, R) ⊆

�̃∞
tr,a(Q, Q) = �∞

tr,b(Q).
We are now ready to prove our main result regarding the

H T lr
tr,a game.
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Theorem 6 (Asymptotic Payoff of the H Tlr
tr,a Game): The

error exponent of the payoff associated to the profile
(�∗,n

tr (Pt N
D
), f̃ (·, t N

A )) is lower (res. upper) bounded as follows

ε̃tr,a ≥ min
Q,R

{
c[D(Q||PX ) + D(R||PX )]

+ min
P∈�̃∞

tr,a (Q,R)
D(P||PY ))

}
, (74)

ε̃tr,a ≤ min
Q

[
2c · D(Q||PX )+ min

P∈�̃∞
tr,a (Q,Q)

D(P||PY )
]
. (75)

Proof: The proof is similar to the proof of Theorem 4,
with the noticeable difference that now the lower and upper
bounds are different hence preventing us to derive a precise
expression for the error exponent. Let us start with the lower
bound. By recalling the definition of the false negative error
probability, for any n we can write:

PF N =
∑

t N
D

∑

t N
A

PX (t N
D )PX (t N

A )
∑

P∈�̃n
tr,a (P

t N
D

,P
t N
A

)

PY (T (P))

=
∑

Q∈PN

∑

R∈PN

PX (T (Q))PX (T (R))
∑

P∈�̃n
tr,a (Q,R)

PY (T (P))

≤
∑

Q∈PN

∑

R∈PN

PX (T (Q))PX (T (R))

·(n + 1)|X |2
−n min

P∈�̃n
tr,a (Q,R)

D(P||PY )

≤
∑

Q∈PN

PX (T (Q))(n + 1)|X |(N + 1)|X |

·2
−n min

R∈PN
[cD(R||PX )+ min

P∈�̃n
tr,a (Q,R)

D(P||PY )]

≤ (n + 1)|X |(N + 1)2|X |

·2
−n min

Q,R
[cD(Q||PX )+cD(R||PX )+ min

P∈�̃n
tr,a (Q,R)

D(P||PY ))]
,

(76)

where the use of the minimum instead of the infimum is
justified by the compactness of the involved sets, and where
in the last inequality we replaced the minimization over all
Q and R in PN , with a minimization over the entire space of
pmf’s. By taking the logarithm of both sides and by letting n
tend to infinity, the lower bound in (74) is proved.

We now turn the attention to the upper bound. To do so, let
Q∗ be the pmf achieving the minimum in (75). Due to the den-
sity of rational numbers within real numbers, we can find two
sequences of pmf’s Qn and Rn that tend to Q∗ when n tends
to infinity, and such that Qn ∈ Pn , Rn ∈ Pn,∀n. By remem-
bering that N = nc, we can say that the subsequences
QN = Qnc and RN = Rnc also tend to Q∗ when n (and
hence N) tends to infinity. We can, then, use the subsequences
QN and RN to write the following chain of inequalities:

PF N =
∑

Q∈PN

∑

R∈PN

PX (T (Q))PX (T (R))
∑

P∈�̃n
tr,a (Q,R)

PY (T (P))

≥
∑

Q,R ∈PN

PX (T (Q))PX (T (R))
∑

P∈�̃n
tr,a (Q,R)

2−nD(P||PY )

(n + 1)|X |

(a)≥
∑

Q,R ∈PN

PX (T (Q))PX (T (R))
2
−n min

P∈�̃n
tr,a (Q,R)

D(P||PY )

(n + 1)|X |

≥
∑

Q,R ∈PN

PX (T (Q))
2
−n[cD(R||PX )+ min

P∈�̃n
tr,a (Q,R)

D(P||PY )]

(N + 1)|X |(n + 1)|X |

(b)≥
∑

Q∈PN

PX (T (Q))
2
−n[cD(RN ||PX )+ min

P∈�̃n
tr,a (Q,RN )

D(P||PY )]

(N + 1)|X |(n + 1)|X |

≥
∑

Q∈PN

2
−n[cD(Q||PX )+cD(RN ||PX )+ min

P∈�̃n
tr,a (Q,RN )

D(P||PY )]

(N + 1)2|X |(n + 1)|X |

(c)≥ 2
−n[cD(Q N ||PX )+cD(RN ||PX )+ min

P∈�̃n
tr,a (QN ,RN )

D(P||PY )]

(N + 1)2|X |(n + 1)|X | , (77)

where inequalities (a), (b) and (c) have been obtained by
replacing the summation with a single element of the sum
(two elements of the sequences QN and RN for (b) and (c)),
and the others rely on a known lower bound on the probability
of a type class ([24, Ch. 12]). By taking the logarithm of each
side in (77), we can write:

ε̃tr,a ≤ cD(QN ||PX ) + cD(RN ||PX )

+ min
P∈�̃n

tr,a (Q N ,RN )
D(P||PY ) + βn, (78)

with βn = [2|X | log(N + 1) + |X | log(n + 1)]/n tending to 0
for n → ∞. Let then P∗ be defined as:

P∗ = arg min
P∈�̃∞

tr,a (Q∗,Q∗)
D(P||PY ). (79)

By recalling that both QN and RN tend to Q∗ for increas-
ing N , we can invoke Lemma 5 in Appendix C, to build a
sequence Pn such that each term of the sequence belongs to
�̃n

tr,a(QN , RN ) and Pn → P∗, when n → ∞. By recalling
that

Q∗ = arg min
Q

[
2c ·D(Q||PX )+ min

P∈�̃∞
tr,a (Q,Q)

D(P||PY )
]
, (80)

and by reasoning as in the proof of Theorem 4 (equations (51)
and (52) and discussion therein), we can eventually prove the
upper bound (75).

Theorem 6 has an important corollary.
Corollary 3 (Indistinguishability Region for H T lr

tr,a): The
false negative error exponent associated to the profile
(�∗,n

tr (Pt N
D
), f̃ (·, t N

A )) is equal to zero if and only if

PY ∈ �̃∞
tr,a(PX , PX ) = �∞

tr,b(PX ), and hence the
indistinguishability region of the H T lr

tr,a game is equal
to that of the H T lr

tr,b game.
Proof: From the upper bound in Theorem 6, it follows

that ε̃tr,a = 0 if PY ∈ �̃∞
tr,a(PX , PX ), whereas from the

lower bound we see that ε̃tr,a = 0 implies that PY ∈
�̃∞

tr,a(PX , PX ).
Corollary 3 provides an interesting insight into the achiev-

able performance of the H T lr
tr,a game. While, in general,

version a of the game is less favorable to the attacker than
version b, since in the latter case the attacker knows exactly
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the acceptance region adopted by the defender, if the attacker
adopts the strategy f̃ , the indistinguishability regions of the
two games are the same. Such a strategy, then, is optimal
at least as far as the indistinguishability region is concerned.
On the other side, there is no guarantee that the attacker can
achieve the same payoff as for version b.

A. Training Sequences With Different Length

We conclude this section by discussing briefly the case in
which the training sequences t N

D and t K
A have different lengths,

i.e. c �= d . To simplify the analysis we assume that c is known
to the attacker, in this way A knows at least the exact form the
hc function used by D. We focus on the following attacking
strategy: use the training sequence t K

A to estimate Pt N
D

and
use the estimate to attack the sequence yn . Specifically, the
attacker may use the following estimate of Pt N

D
:

P̃t N
D
(i) = 1

N

⌊

Pt K
A
(i) · N

⌋

∀i = 1 . . . |X | − 1,

P̃t N
D
(|X |) = 1 −

|X |−1∑

i=1

P̃t N
D
(i), (81)

to implement the attacking function:

f̃ (yn, t K
A ) = arg min

zn :d(zn,yn)≤nL
hc(Pzn , P̃t N

D
). (82)

With the above definitions, we can easily extend the analysis
carried out for the case c = d and obtain very similar results.
Specifically, the upper bound in Theorem 6 can be rewritten as:

ε̃tr,a ≤ min
Q

[
(c + d) · D(Q||PX ) + min

P∈�̃∞
tr,a (Q,Q)

D(P||PY )
]
,

(83)

whose proof is practically identical to the proof of Theorem 6
and is omitted for sake of brevity. By observing that the perfor-
mance achievable by the defender in version a of the game are
at least as good as those achievable in version b, since in the
latter case A knows exactly the acceptance region adopted by
D and hence his attacks will surely be more effective, equation
(83) allows us to conclude that the indistinguishability region
is equal to that obtained for the case c = d .

We end this section by considering yet another version of
the H T lr

tr game. In certain cases, in fact, we may assume that
D has the possibility to observe the output of the system under
H0, and hence the output of the source X , for a longer time
than A (see [37] for a multimedia forensics scenario in which
such an assumption holds quite naturally). In our framework,
we can model such a situation by assuming that the sequence
t K
A is a subsequence of t N

D , leading to the following definition.

Definition 6: The H T lr
tr,sub(SD,SA, u) game is a zero-sum,

strategic, game defined as the H T lr
tr,a game with the only

difference that t K
A = (tD,l+1, tD,l+2 . . . tD,l+K ) with l and K

known to D.
In some sense, we can say that this new version of the game

is halfway between versions a and b. Like in version a, the
attacker does not have a perfect knowledge of the training
sequence used by the defender and hence he must resort to

an estimate of the true acceptance region. On the other hand,
the situation is more favorable to the attacker with respect to
version a with d < c, since now D knows at least part of
the training samples used by D. Given that versions a and
b of the game have the same indistinguishability region, we
can conclude that the indistinguishability region of this latest
version of the game will also be the same.

VIII. CONCLUDING REMARKS

The need to protect the cyberworld that surrounds us
has spurred researchers to look for suitable countermeasures
against the ever increasing number of attacks that every day
are brought against the digital world we live in. In many
cases, though, research has focused on specific security threats,
each time by developing tailored solutions that can not be
easily extended to other scenarios. It is no surprise, then, that
similar solutions are re-invented several times, and that the
same problems are faced with again and again by ignoring
that satisfactory solutions have already been discovered in
contiguous fields. Even worse, the lack of a unifying view
does not permit to grasp the essence of the addressed problems
and work out effective and general solutions to be applied
with limited effort to different fields. Times are ripe to
develop general tools and models that can be used to analyze
very general classes of problems wherein the presence of an
adversary aiming at system failure can not be neglected.

As a first attempt in this sense, we have introduced a
framework to analyze the achievable performance of binary
hypothesis testing in an adversarial setting, i.e. in the pres-
ence of an adversary with the explicit goal of degrading the
performance of the test. We did so by casting the hypothesis
testing problem into a game-theoretic framework. In this way,
in fact, we have been able to define rigorously the goals and
constraints of the two contenders, namely the analyst, a.k.a.
the defender, and the adversary or attacker. More specifically,
we introduced several versions of the hypothesis testing game,
by paying attention to distinguish between hypothesis testing
with known sources and hypothesis testing with training data.
Then we focused on hypothesis testing with training data
(the H Ttr game). From a more technical point of view, we
derived the asymptotic equilibrium point of two different
versions of the game, and analyzed the achievable payoff at
the equilibrium. In addition to shedding a new light on the
achievable performance of hypothesis testing in an adversarial
environment, the analysis we carried out has the merit to
clearly show the potentiality of the use of game-theoretic
concepts coupled with tools typical of information theory and
statistics.

Several directions for future research can be pointed out.
The extension of our analysis to multiple hypothesis testing
and classification is one of the most promising research
directions, together with the extension to games characterized
by more than two players. The analysis of situations in which
the players do not have a perfect knowledge of the strategies
available to the other players, or even the payoff function, by
modeling the problem as a game with imperfect knowledge,
is another interesting research direction. The investigation of
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sequential games, in which the players move repeatedly each
time by exploiting the result of the previous round of the game
also offers many interesting hints for a fruitful research.

From a more focused perspective, it would be interesting
to study specific instances of the H Ttr game, in which the
sources belong to a specific class, e.g. binary sources. We pre-
dict that in this way simpler expressions of the equilibrium
point, the achievable payoff and, most of all, the indistin-
guishability region could be obtained, thus permitting to get
additional insights. Finally, we mention the opportunity of
extending the analysis to the case of continuous sources. While
the general ideas would remain the same, passing from discrete
to continuous sources does not seem to be a trivial step, since
our analysis relies heavily on the method of types, whose
extension to continuous sources, though possible, comes with
a number of additional difficulties.

APPENDIX

A. Proof of Lemma 1

We rewrite (24) by moving all the non zero terms to the
left-hand side:

nD(Pxn ||Prn+N ) + ND(Pt N ||Prn+N )

−nD(Pxn ||PX ) − ND(Pt N ||PX ) ≤ 0. (A1)

By using the definition of empirical KL divergence stated in
(1) and grouping the first term with the third and the second
with the fourth, the left hand side of (A1) is equivalent to

n
∑

a∈X
Pxn (a) log

PX (a)

Prn+N (a)
+ N

∑

a∈X
Pt N (a) log

PX (a)

Prn+N (a)
.

(A2)

Being rn+N the concatenation of xn and t N , we argue that
n Pxn (a) + N Pt N (a) = (n + N)Prn+N (a) ∀a ∈ X , which
permits to rewrite the sum in (A2) as follows:

(n + N)
∑

a∈X
Prn+N (a) log

PX (a)

Prn+N (a)

= −(n + N)D(Prn+N ||PX ). (A3)

Hence, the proof of relation (A1) follows from the positivity
of the divergence function, which equals zero if and only if
PX = Prn+N .

In hindsight, relation (A1) derives from the property that the
empirical probability distribution Prn+N maximizes the prob-
ability that a source outputs the concatenation of xn and t N ,
i.e., PX (rn+N ) ≤ Prn+N (rn+N ) ∀PX . To show this, from (A3)
we write: ∑

a∈X
Nrn+N (a) log

PX (a)

Prn+N (a)
≤ 0. (A4)

Exploiting the properties of the logarithm, relation (A4) is
equivalent to the following

log
∏

a∈X
PX (a)Nrn+N (a) ≤ log

∏

a∈X
Prn+N (a)Nrn+N (a), (A5)

which implies

PX (rn+N ) ≤
∏

a∈X
Prn+N (a)Nrn+N (a) = Prn+N (rn+N ). (A6)

B. Topology of �∞
tr,b(Q)

Many of the proofs in the body of the paper relies on the
following lemma.

Lemma 4: Let {QN(n)} be a sequence of pmf’s such that
QN(n) → Q when n → ∞. Then, for any pmf P∗ in �∞

tr,b(Q)
a sequence Pn exists such that Pn ∈ �n

tr,b(QN(n)) for each n
and Pn → P∗.

Proof: To prove the lemma, we will show that for any
ε > 0 and n large enough, we can find a pmf Pn ∈
�n

tr,b(QN(n)) such that d(Pn, P∗) < ε, where d is a proper
distance measure between pmf’s. Specifically, we will do so
by assuming that P∗ ∈ ∪n�n

tr,b(Q). If this is not the case,
in fact, by the definition of �∞

tr,b(Q), it is possible to find a
pmf P ′ ∈ ∪n�n

tr,b(Q) that is arbitrarily close to P∗, and then a
pmf in �n

tr,b(QN(n)) that is arbitrarily close to P ′ and hence to
P∗. Let then P∗ belong to �m

tr,b(Q) for some m. This means
that for any sequence ym ∈ T (P∗) a mapping f exists that
transforms ym into a sequence zm such that

hc(Pzm , Q) = λ − δm − δ (A7)

with δm = |X |[log(m + 1)(N(m) + 1)]/m and where δ is
a strictly positive quantity. Due to the density of ∪nPn in
set of all pmf’s, we can find a sequence of pmf’s Pn that
tends to P∗ when n tends to infinity and for which Pn ∈ Pn

for each n. Let yn be a sequence in T (Pn). Let n f (i → j)
indicate the number of times that the mapping f transforms
the i -th symbol of the alphabet into the j -th one. By starting
from the mapping f , for each n we build a mapping v(n) for
which nv(n)(i → j) = �n f (i → j) · n/m�. When n increases
the type of zn = v(n)(yn) will approach that of zm = f (ym)
for any ym in P∗. By remembering that QN(n) → Q when
n tends to infinity, and by exploiting the continuity of the h
function, we can write:

hc(Pzn , QN(n)) = hc(Pzn , Q) + β ′
n

= hc(Pzm , Q) + β ′
n + β ′′

n

= λ − δm − δ + β ′
n + β ′′

n , (A8)

where β ′
n and β ′′

n tend to zero when n → ∞. Given that δ is
a fixed and strictly positive number, we conclude that when
n is large, Pzn belongs to �n

tr (QN(n)) and hence Pn belongs
to �n

tr,b(QN(n)), thus completing the proof.

C. Topology of �̃∞
tr,a(Q, Q)

The analysis of version a of the hypothesis testing game
needs that lemma 4 is generalized as follows.

Lemma 5: Let {QN(n)} and {RN(n)} be two sequences of
pmf’s such that QN(n) → Q and RN(n) → Q as n → ∞.
Then, for any pmf P∗ in �̃∞

tr,a(Q, Q) a sequence Pn ∈
�̃n

tr,a(QN(n), RN(n)) exists such that Pn → P∗.
Proof: Given the definition of �̃∞

tr,a(Q, Q) as the closure
of

⋃
n �̃n

tr,a(Q, Q), we proceed as in Lemma 4, and limit our
proof to the special case in which P∗ ∈ ⋃

n �̃n
tr,a(Q, Q). Let

then P∗ belong to �̃m
tr,a(Q, Q) for some m. This means that

for any sequence ym ∈ T (P∗) the function

f̃ (ym, Q) = arg min
zm :d(zm,ym)≤mL

hc(Pzm , Q) (A9)
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maps ym into a sequence zm such that

hc(Pzm , Q) = λ − δm − δ, (A10)

with δm = |X |[log(m + 1)(N(m) + 1)]/m and where δ is
a strictly positive quantity. Due to the density of rational
numbers in the real line, we can find a sequence of pmf’s Pn

that tends to P∗ when n tends to infinity and for which Pn ∈
Pn for each n. Let un be a sequence in T (Pn). By reasoning
as in Lemma 4, we can define a, distortion-limited, mapping
v for which nv (i → j) = �n f̃ (i → j) · n/m�. As we have
shown in Lemma 4, when n is large, v brings the sequence
un into a sequence wn ∈ �∗,n

tr , so that, for any QN(n) → Q
and n large enough, we have:

hc(Pwn , QN(n)) = λ − δm − δ + β ′
n, (A11)

with β ′
n approaching zero when n increases. The above

property, however, is not enough to ensure that Pn ∈
�̃n

tr,a(QN(n), RN(n)), since for this to be the case the mini-
mization (A9) has to be carried by using RN(n) instead of
QN(n) , and so there is no guarantee that the optimum mapping
function will be v (or another mapping better than that).
Despite this observation, we can exploit the fact that RN(n)

tends to Q when n tends to infinity, to show that indeed, for
large n, Pn ∈ �̃n

tr,a(QN (n), RN(n)). Given un ∈ Pn , let rn be
defined as follows:

rn = arg min
rn :d(rn,un)≤nL

hc(Prn , RN(n)). (A12)

Since both QN(n) and RN(n) tend to Q, when n increases
they will get arbitrarily close to each other. By exploiting the
continuity of the hc function, we can write the following chain
of inequalities:

hc(Prn , QN(n))
(a)≤ hc(Prn , RN(n)) + β ′′

n
(b)≤ hc(Pwn , RN(n)) + β ′′

n
(c)≤ hc(Pwn , QN(n)) + β ′′

n + β ′′′
n

(d)= λ − δm − δ + β ′
n + β ′′

n + β ′′
n

(e)≤ λ − δn − δ + β ′
n + β ′′

n + β ′′′
n , (A13)

where β ′
n, β

′′
n and β ′′′

n can be made arbitrarily small by
increasing n, and where (a) and (c) derive from the continuity
of the hc function and from the fact that QN(n) and RN(n) tend
to the same limit, (b) is due to the fact that rn is the solution
of the minimization in (A12), (d) derives from (A11), and
(e) is due to the fact that for a fixed m when n increases
δn = |X |[log(n + 1)(N(n)+ 1)]/n ≤ |X |[log(m + 1)(N(m)+
1)]/m = δm .

Equation (A13) proves that Pn ∈ �̃n
tr,a(QN (n), RN(n)), thus

completing the proof of the lemma.
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