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Forensic Analysis of SIFT Keypoint
Removal and Injection
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Abstract— Attacks capable of removing SIFT keypoints from
images have been recently devised with the intention of com-
promising the correct functioning of SIFT-based copy–move
forgery detection. To tackle with these attacks, we propose three
novel forensic detectors for the identification of images whose
SIFT keypoints have been globally or locally removed. The
detectors look for inconsistencies like the absence or anom-
alous distribution of keypoints within textured image regions.
We first validate the methods on state-of-the-art keypoint removal
techniques, then we further assess their robustness by devising
a counter-forensic attack injecting fake SIFT keypoints in the
attempt to cover the traces of removal. We apply the detectors
to a practical image forensic scenario of SIFT-based copy-move
forgery detection, assuming the presence of a counterfeiter who
resorts to keypoint removal and injection to create copy–move
forgeries that successfully elude SIFT-based detectors but are in
turn exposed by the newly proposed tools.

Index Terms— Image forensics, counter-forensics, SIFT,
keypoint removal, keypoint injection, copy-move forgery
detection.

I. INTRODUCTION

OVER the last few years, increasing attention has been
devoted to counter-forensics, that is the discipline aiming

at hindering forensic analysis by taking advantage of its limits.
Despite the relative youth, counter-forensic literature already
offers a number of techniques to conceal relevant footprints
like the artefacts introduced by lossy compression, resampling
or histogram manipulations [1]; by relying on such techniques,
a clever counterfeiter can create forgeries that are undetectable
by the targeted forensic algorithms.

Copy-move forgery, whereby a portion of the image is
cloned once or more times to either hide or introduce seman-
tically relevant content, is one of the most common ways to
alter the message conveyed by an image [2]. Among the most
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robust copy-move detectors there are those based on the Scale
Invariant Feature Transform (SIFT) [3], whose capability to
discover correspondences between similar content allows a fast
and accurate detection of cloned areas [4], [5].

Although resilient to several processing, state-of-the-art
techniques can be successfully challenged by manipulating
SIFT features (or keypoints) so to prevent the match between
cloned image regions. In general, such objective is pursued
either by altering the keypoint neighbourhoods in such a way
that keypoint descriptors of corresponding points in cloned
areas do not match anymore or by directly removing the
keypoints from the cloned regions; to the best of our knowl-
edge, the attacks to SIFT-based copy-move detection proposed
so far belong to the latter category [6], [7] and although
there are no doubts about their effectiveness, the statistical
detectability of this kind of attacks should concern the attacker.
Like any other processing, in fact, keypoint removal leaves
traces into the manipulated areas, in the form of high-variance
textured regions where keypoints should be found but are
instead absent. Despite that, no method has been devised so far
to find such footprints. To take advantage of these footprints
and restore the efficiency of SIFT-based forensic analysis,
it is recommendable to devise adversary-aware algorithms
to understand whether SIFT keypoints have been artificially
removed.

A. Previous Works

To the best of our knowledge, the first study on SIFT
security is the one by Hsu et al. [8], where an authentication
system based on SIFT and image hashing was bypassed by
deleting keypoints. The technique in [8] was later applied
by Do et al. against Content Based Image Retrieval [9]
and, despite being ineffective in such a scenario, it inspired
new attacks to SIFT spatial locations [10] and dominant
orientations [11]. The purpose of these attacks was to cause
a wrong answer to an image query by removing or altering
the keypoints of the queried image so to decrease its similarity
score with the data base entries. A similar approach was
adopted in [12] by Lu et al. to disable an image copy detection
system. The elimination of large amounts of keypoints has
been investigated in-depth also in the context of image foren-
sics. A first attempt in this sense is described in [6], where
warping attacks typical of watermarking were used to bypass
SIFT-based copy-move detection. A more powerful attack
against the same category of detectors has been proposed
in [7], where existing and new algorithms are combined to
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remove an arbitrary amount of keypoints by preserving at
the same time the overall image quality. Recently, the same
authors approached the dual problem of re-introducing forged
keypoints by using adaptive image enhancing algorithms as
a means to conceal the traces of keypoint removal [13].

B. Contributions

The main contribution of this paper consists in three
forensic detectors for the identification of images whose
SIFT keypoints have been artificially removed and, possibly,
re-inserted. The proposed algorithms scan image regions with
sufficiently high variance in search of suspect inconsistencies
in the number and in the distribution of SIFT keypoints.
By relying on such algorithms, the forensic analyst can decide
on the authenticity of the image as a whole or localise
tampered regions within the image by means of a sliding
window approach.

We studied the performance of the detectors in two different
cases of increasing complexity, when only keypoint removal is
carried out and when fake keypoints are re-introduced into the
image to hide the traces of the preceding removal. For the latter
case, we also developed a new scheme for keypoint injection,
which represents the second contribution of this work. Such
an attack is based on the classification of image regions
(salient/non-salient) followed by a set of injection algorithms
specifically tailored to each class. The attack outperforms the
injection techniques discussed in [13], thus representing a
harder challenge for the proposed detectors. The results we
obtained show that, regardless of the attack, we can effectively
discriminate between authentic and forged images.

We demonstrate the usefulness of the keypoint removal
detectors in a SIFT-based copy-move detection scenario.
In particular, we show how a counterfeiter who resorts to
keypoint removal and injection to successfully bypass copy-
move detection [5] is unable to evade the exposure of the
forgery by means of the proposed algorithms.

The outline of this paper is the following. Sec. II briefly
summarises the working principles of the state-of-the-art
attack that we will be using to remove SIFT keypoints; Sec. III
describes the detectors and Sec. IV experimentally validates
them; Sec. V introduces a new algorithm to inject fake SIFT
keypoints; Sec. VI evaluates the injection capability of the
proposed scheme; finally, in Sec. VII all the above techniques
are evaluated in the context of copy-move forgery detection.

II. SIFT KEYPOINT REMOVAL

Throughout the paper we will assume that the reader is
familiar with the theoretical and technical aspects of the SIFT
algorithm, for which we refer to [3]. Here we briefly outline
the working principles of the SIFT keypoint removal scheme,
called Classification-Based Attack (CLBA) [7], which we are
going to use for the rest of the paper.

A. Classification-Based Keypoint Removal

The rationale behind CLBA is that not all SIFT keypoints
have the same properties and thus their robustness to certain

manipulations aiming at removing them varies. Therefore,
CLBA resorts to keypoint classification preceding the manipu-
lation itself, in such a way that each class is addressed by one
or more attacks specifically tailored to exploit its weaknesses.

More specifically, keypoints are classified according to
the number of modes of the grayscale histogram of the
neighbourhood surrounding them in the pixel domain. A
keypoint can be assigned to one among three classes, i.e.
unimodal, bimodal and multimodal, each corresponding to a
different class of visual contents: respectively, uniform low-
variance regions, edges or geometric shapes and noisy high-
variance regions. Depending on the class, each keypoint is
removed by manipulating a small square region (referred
to as support) around it by means of one or more of the
following attacks: Gaussian Smoothing (GS), Collage and
Removal with Minimum Distortion (RMD) [10]. GS flattens
the local pixel intensities in such a way that the contrast value
of keypoints slightly above the SIFT threshold is artificially
decreased. The Collage attack consists in the substitution of
the keypoint neighbourhood with a new neighbourhood not
containing a keypoint, chosen from a database according to a
similarity criterion. The RMD attack relies on a constrained
optimisation problem to determine coefficients that are added
to the keypoint neighbourhood to artificially decrease the local
contrast value below SIFT acceptance threshold.

CLBA arranges the above attacks into an iterative proce-
dure. At the first iteration, a grayscale image is fed to the
system, which starts by detecting SIFT keypoints. Then, the
neighbourhood of each keypoint is assigned to a class and
attacked accordingly. Once all first-iteration keypoints have
been attacked, the procedure is iterated on the manipulated
image. Intuitively, earlier iterations are aimed to remove
weaker keypoints by means of GS, whereas later iterations
deal with robust keypoints by means of the more effective
Collage and RMD. The iterations continue until a target con-
dition on the percentage of removed keypoints, the minimum
allowed image quality or the maximum number of iterations, is
satisfied. The advantages of such an iterative approach reside
in the fact that it allows to adjust the strength of the attacks
as more robust keypoints keep surviving and to deal with the
keypoints that may be introduced into the image as a side effect
of removal. In CLBA, in fact, new keypoints accidentally
generated during an iteration are classified and attacked again
at the subsequent iterations. For a detailed description of the
above concepts, we refer to [7].

Note that CLBA addresses only the first-octave keypoints,
i.e. those extracted from the image at its original resolution.
This fact prevents CLBA from being a threat to applications
relying on the fewer but more robust higher-octave keypoints.
The attack, however, can effectively counter copy-move detec-
tion, whereby the majority of matches linking the cloned
regions are extracted from the first octave.

B. Performance of Keypoint Removal

CLBA’s effectiveness is evaluated in terms of keypoint
removal rate (KRR), i.e. the percentage of keypoints that are
successfully deleted, whereas its perceptibility is evaluated
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in terms of average Peak Signal-to-Noise Ratio (PSNR) and
Structural SIMilarity (SSIM) index [14] between the manipu-
lated and the original neighbourhoods. In [7], it was shown that
CLBA outperforms the other class-unaware removal attacks
proposed thus far (see [9], [10]) and ensures a good trade-off
between effectiveness and imperceptibility.

In this work we make use of a more powerful variant of
the original algorithm based on two supports of increasing
size, whereby the image is first attacked with support 8 × 8
to remove the majority of keypoints and then attacked again
with support 10 × 10 to remove those keypoints that were
not affected by the first manipulation. The first stage of the
attack is halted after 25 iterations, the second stage after 40.
This modification yields higher removal rates than the original
version (99.1% versus 92% average KRR on the same image
data set used in [7]) without further deteriorating the visual
quality of the forgery.

When practical applications require a larger amount of
keypoints, SIFT can upscale the image by a factor 2 before
extraction [3]. These keypoints, however, are not robust against
CLBA and thus can be removed (99.8% KRR) with less
iterations (15) and smaller attack supports (4 × 4 pixels).
In this case, one can first remove all the keypoints of the
octave −1, then iterate again CLBA on the keypoints of the
octave 0. For the sake of simplicity, in this paper we will
consider only the first-octave keypoints.

Before moving to the next section, it is worth mentioning
that the keypoint removal detectors we are going to present do
not depend on a specific removal algorithm, whose choice is
thus arbitrary. Other methods than the one we adopted could
be employed such as, for example, the one in [12]. In [12],
the authors cast keypoint removal as a constrained optimisation
problem minimising image distortion and obtain KRR values
comparable to those in [7].

III. DETECTION OF SIFT KEYPOINT REMOVAL

A. Keypoint-to-Corner Ratio Detector

Our first keypoint removal detector is based on two simple
observations. The first observation is that SIFT keypoints lie
in proximity of corners, i.e. interest points where two edges
intersect, which can be identified by means of methods like
the Harris [15] or the Shi and Tomasi [16] detectors. Such an
observation is supported both by SIFT theory, which selects
keypoints according to a corner response metric inspired to
the Harris detector, and by the experimental results that we
will discuss in Sec. IV-C.

The second observation is that all removal attacks devised
so far have been designed to preserve as much as possible
image content by working on small neighbourhoods of the
keypoints. As a consequence, while the number of keypoints
is significantly reduced by a removal attack, the number and
the pixel-domain locations of corners are subject to negligible
variations. In Sec. IV-C we demonstrate experimentally the
validity of these assumptions. We believe that a possible
theoretical explanation of this fact is the following. At the
detection stage, a DoG extremum is considered a stable
keypoint if both the local contrast and the corner response are

Fig. 1. Impact of keypoint removal on keypoints (left column) and corners
(right column) distribution. First row: before CLBA; second row: after CLBA;
third row: difference in corners and keypoints.

higher than a threshold. Two of the attacks composing CLBA
(i.e. RMD and Gaussian Smoothing) are designed to lower the
local contrast so that the keypoint is rejected based on the first
check and consequently they tend to leave the corner response
unaltered.

If the above two assumptions hold, then we can understand
whether an image has been subject to a keypoint removal
attack based on the conservation of corners and on the
reduction of keypoints in proximity of corners. Let Ncorners

be the number of corners; consider a square patch of side d
centred on each corner and let Nkeypoints be the total amount of
keypoints falling into all such patches. An image is labelled as
forged if the ratio between the above two quantities (Keypoint-
to-Corner Ratio or KCR) falls below a threshold:

K C R = log10

(
Nkeypoints

Ncorners

)
?≤ T1. (1)

Under the hypothesis that keypoint removal does not affect
corners, the denominator of (1) is approximately the same
for the authentic and the manipulated image. Conversely, the
numerator of (1) is drastically reduced by the attack, hence the
KCR index of the attacked image should be smaller than that
of its authentic counterpart. The value d defining the corner
proximity as well as the threshold T1 are empirically derived
in Secs. IV-C and IV-E.

Even though technical details are left to the sequel, in Fig. 1
we show an example of the population of SIFT keypoints
(left column) and Harris corners (right column) before and
after CLBA (respectively, first and second row), in order to
emphasise the conservation of corners and the reduction of
keypoints. To help understanding the consequences of the
attack, we highlighted the differences in the last row of Fig. 1,
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Fig. 2. Histograms hL , h M and h H for a test image. Top row: authentic;
bottom row: forged.

where the green markers identify the deleted keypoints (left)
and corners (right). The K C R index is respectively −1.6 for
the authentic image and −15.7 for the forgery.

B. CHI-Square Distance Detector

The second detector is based on the observation that
keypoints are concentrated in image regions characterised by
high variance, due to the fact that SIFT discards candidate
keypoints whose neighbourhoods have low contrast. Conse-
quently, an image targeted by keypoint removal should exhibit
high variance regions unnaturally deprived of keypoints.
To translate this intuition into a detectable footprint, we studied
the distributions of SIFT keypoints in image blocks charac-
terised by different variance. In practice, first we assigned
each non overlapping block of side B of the image to one
among three classes depending on its variance: low, medium
and high (see Sec. IV-A for technical details on variance-
based classification); then, we examined each class in search of
anomalies in the distribution of keypoints. More specifically,
we adopted the following strategy.

1) Divide an image I into non-overlapping 32 × 32 blocks
whose variance is assigned either to the low, medium or
high class.

2) For each class of variance and given a fixed amount of
bins (10 in our implementation), compute the percentage
of blocks containing a certain number of keypoints.1 The
resulting percentages correspond to histograms referred
to as hL , hM and h H .

3) Attack the image with CLBA and repeat steps 1)–2) on
the forged image.

The result of the above procedure is shown in Fig. 2,
where the first row corresponds to the histograms of an
authentic image and the second row to those of its tampered
version. As a matter of fact, we can recognise different shapes,
especially in the case of medium and high variance histograms,
where the attack has generated an anomalous percentage of
textured blocks without keypoints.

1For example, in the case of the medium class, for bin = 0, we count
the percentage of medium blocks containing 0 keypoints; for bin = 1, the
percentage of medium blocks containing 1 keypoint and so on, until we reach
the last bin.

Fig. 3. Accumulated reference histograms for the CHI detector. Top row:
authentic; bottom row: forged.

Since one image alone is not sufficient to draw any conclu-
sion on the reliability of the above footprint, we repeated the
same procedure on a large data set of images (see Sec. IV-A).
We accumulated each class histogram of all the images with a
bin-by-bin sum and we averaged them, first for the authentic
images and then for their forged versions, as follows:

Ĥ (auth)
Ck

= 1

Nauth

Nauth∑
i=1

h(i)
Ck

(2)

Ĥ ( f orged)
Ck

= 1

N f orged

N f orged∑
j=1

h( j )
Ck

, (3)

where: h(i)
Ck

is the histogram of blocks belonging to the variance
class Ck for the i -th image; Nauth and N f orged are the number
of authentic and forged images, respectively.

The resulting histograms are shown in Fig. 3; the trends
we observed on a single image are now even more evident.
We will refer to the accumulated histograms as Ĥ (auth)

L ,
Ĥ (auth)

M and Ĥ (auth)
H for authentic images and as Ĥ ( f orged)

L ,
Ĥ ( f orged)

M and Ĥ ( f orged)
H for forged images. We will consider

such histograms our ground truth.
The shape difference for low variance histograms is not

as pronounced as for the other classes because candidate
keypoints in uniform regions are less likely to pass the SIFT
contrast check. Therefore, we rely only on the other two
histograms. In particular, we look at the distance between the
medium variance histogram of the image under analysis and
Ĥ (auth)

M and compare it against a threshold. In our implemen-
tation we chose the chi-square distance [17], hence the name
CHI detector:

χ2 = 1

2

L∑
l=1

(
hM (l) − Ĥ (auth)

M (l)
)2

hM (l) + Ĥ (auth)
M (l)

?≥ T2, (4)

where l denotes one histogram bin and L indicates the number
of bins. The image is considered as forged if the distance
exceeds T2, whose value is empirically derived in Sec. IV-E.

Note that in (4) we chose the histogram of medium variance
blocks but, according to our experiments, similar performance
can be attained by considering the histogram of high variance
blocks. Nevertheless, we prefer the former because it is more
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reliable on images characterised by few textured regions and
consequently by few blocks with high variance.

C. SVM Detector

The last detector is based on a Support Vector Machine
(SVM) learning model discriminating between authentic and
CLBA-forged images. The feature vector F that we used to
represent the examples of each class is obtained by concate-
nating the bin values of the histograms hL , hM and h H and
thus consists of 30 elements. We used a large amount of
examples F coming from authentic and forged images to train
a probabilistic SVM [18]. By resorting to such model, in fact,
we can determine not only the class to which a new example
(i.e. the image under analysis) belongs, but also its probability
of belonging to the assigned class. Consequently, the analysed
image I is labelled as tampered if the SVM output Osvm is
higher than a threshold:

Osvm = Prob(I is forged)
?≥ T3. (5)

In Sec. IV-D we provide all the technical details of the adopted
SVM and in Sec. IV-E we experimentally determine the value
of T3. Once we introduced the notion of injection of fake
SIFT keypoints, in Sec VI-C we extend the SVM to a multi-
class model in such a way to discriminate between authentic,
CLBA-forged and injected images.

IV. EXPERIMENTAL VALIDATION OF

KEYPOINT REMOVAL DETECTORS

A. Experimental Setup

Variance-based classification is carried out on square blocks
of side B = 32. The value of each element V (i, j) is the
variance within a square window centred on the corresponding
image pixel I (i, j). We first binarise V and then we subdivide
both V and I into non overlapping B × B blocks. Let IB be
one of such image blocks and VB the corresponding variance
block; the ratio τ of pixels having value 1 with respect to the
total number of pixels of VB is computed and IB is classified
as follows: if 0 ≤ τ ≤ 1

3 , then IB is low; if 1
3 < τ ≤ 2

3 , then
IB is medium; and if 2

3 < τ ≤ 1, then IB is high.
First-octave keypoints are removed by means of CLBA with

100% target removal rate and a maximum of 40 iterations,
unless specified otherwise. For the detection of SIFT features
we rely on the popular VLFeat libraries [19], with edge and
peak-difference thresholds set to 10 and 4 respectively.

It is important to point out that the results we show are
obtained by taking into account only the keypoints belonging
to first octave (i.e. octave 0), i.e. those deleted by the CLBA.
The conclusions drawn for the detectors, however, are general
and retain their validity on all octaves.

B. Image Data Sets

We collected two image data sets to test the algorithms,
one consisting of the first 1000 images of the well-known
INRIA Holidays data set [20] and one consisting of the first
100 images of the INRIA Copydays data set. In the sequel, we
will refer to the data sets as Holidays1000 and Copydays100.

Fig. 4. Percentage of keypoints in the d × d neighbourhood of corners for
three different corner detectors.

To limit the complexity of the experiments, we downscaled
all the images to 1600 × 1200 pixels. We have chosen fairly
large images because the amount of keypoints (on average,
in the order of 2500 for both data sets) allows us to assess
more accurately the performance of the detectors; however, in
Sec. IV-E we also consider smaller images.

The idea behind the two data sets is to use the Holi-
days1000 for the verification of the hypotheses underlying the
detectors, for parameter tuning (e.g. determining thresholds)
and to train the SVM. Once we gathered such information,
the three algorithms are tested on the Copydays100.

C. Verification of the Hypotheses Behind the Detectors

The proposed detectors rely on hypotheses that require
the support of experimental data. In particular, we need
to verify that SIFT keypoints lie in proximity of corners
and that keypoint removal does not affect significantly the
number and the position of corners nor variance-based block
classification.

1) SIFT Keypoints Lie in Proximity of Corners: For all the
images of the Holidays1000 data set, we measured the percent-
age of SIFT keypoints falling within a d ×d neighbourhood of
the corners provided by three detectors: Harris [15], Shi and
Tomasi [16] and FAST (Features from Accelerated Segment
Test) [21]. We set the free parameter k, the response threshold
R and the width of the derivative filter σ of the Harris detector
to 0.04, 1000 and 3 respectively; the same R and σ were
used for the Shi and Tomasi detector; for the FAST detector,
we considered circular regions of 16 pixels centred on the
candidate corners and corner threshold 20.

When d = 0, we count only the number of keypoints
coinciding with corners; as d increases, we also include the
keypoints in the proximity of the corner. Clearly, a keypoint is
counted only once even if it falls in the neighbourhood of more
than one corner. Fig. 4 shows the result of this experiment
averaged over all the images. The percentage of keypoints
coinciding with corners is lower for the Shi and Tomasi and
the FAST detectors because they provide less numerous but
more robust corners. However, regardless of the algorithm,
on average more than 95% of the keypoints of an image
are contained in small neighbourhoods of side d = 3, thus
confirming our starting assumption.

2) Keypoint Removal Does Not Affect Corners: Fig. 5
reports the difference in the number of Harris corners before
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Fig. 5. Difference in the number of Harris corners following CLBA.

Fig. 6. Difference in block-based variance classification following CLBA.
Top: low variance; middle: medium variance; and bottom: high variance.

and after CLBA on the Holidays1000 data set (given the
similarity, we omit the other corner detectors for sake of
brevity). For each image, we express the difference between
the number of corners of the authentic and CLBA-forged
images in terms of percentage. The reduction in the number
of corners in the majority of the images is due to the
smoothing operators used by the removal attack; neverthe-
less, for 97% of the images the difference is bounded in
[+1%,−3%].

Furthermore, to verify whether keypoint removal modifies
the spatial location of corners, for each image of the data set
we proceeded as follows. First, we computed the Euclidean
distance between each original corner and the corners in
the CLBA-forged image, extracted by means of the Harris
detector. Then, we evaluated the distance dc of the closest
corner: if dc = 0, then the corner under analysis is not affected
by CLBA. The results we obtained by averaging over all
corners and images support our assumption on the robustness
of corners, as 85% of corners conserve their spatial location.
It is also worth mentioning that the new location of the altered
corners is very close to the original one (average Euclidean
distance 1.44 pixels).

3) Keypoint Removal Does Not Affect Block Classifica-
tion: The procedure leading to the graphs of Fig. 6 is
the same as above. This time, however, we plot the differ-
ences in number of low, medium and high variance blocks
before and after the removal attack. Again, variations are not
significant, being confined to the interval [−1%,+1%] for all
classes.

Fig. 7. KCR scattergram. Blue squares: authentic images red circles:
CLBA-forged images.

D. Detection of Full-Frame Keypoint Removal

The contribution of this section is twofold: first, we analyse
and compare the performance of each detector by means of
Receiving Operator Characteristics (ROC); then, we derive
the thresholds ensuring an acceptable trade-off between the
probabilities of detection and false alarm.

1) KCR Detector: We extracted corners by means of
Shi and Tomasi’s algorithm [16] for two reasons: 1) its corners
are more robust and less numerous than those extracted by the
Harris detector, thus providing higher KCR scores for authen-
tic images2; and 2) the significantly lower time complexity
with respect to the FAST detector. The performance of KCR
based on other detectors, however, are only marginally inferior
to those granted by the chosen corner extractor. In accordance
with the data of Sec. IV-C, we set the corner neighbourhood
side to d = 3.

To assess the discriminative power of the KCR index, we
computed the scattergram shown in Fig. 7. In practice, the
index is calculated for all the images of the Holidays1000
data set and their forged versions (respectively, blue squares
and red circles). The observations sitting exactly on the
x-axis correspond to the images with very low KCR, which
we set to −4.5 for better readability. It comes out that scores
cluster into two distinct and separable groups, as confirmed by
the ROCs of Fig. 8 (a). We obtained each curve by varying
the threshold separating the clusters in the interval [0,−5]
(step 0.01) and CLBA’s target removal rate in the interval
[10%, 100%] (step 10), in order to understand to what extent
the forgery is detectable. Expectedly, the more keypoints are
left into the image, the harder the separation of the clusters;
regardless of that, acceptable results can be obtained even for
very low removal rates.

2) CHI Detector: We validated the CHI detector by using
the same procedure of KCR. Because the behaviour is very
similar, we do not show the scattergram for the χ2 distance.
The curves of Fig. 8 (b) and (c) have been calculated on the
Copydays100 data set by relying on the reference histograms
obtained from the Holidays1000 (Sec. III-B, Fig. 3) and by
varying the threshold T2 in [0, 80] (step 1) and the target
removal rate in [10%, 100%]. We show two ROCs: the one
on the top right is based on the χ2 distance from Ĥ (auth)

M

2The higher amount of Harris corners, in fact, tends to unnecessarily
increase the denominator of (1), thus making the discrimination between
authentic and CLBA-forged images harder.
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Fig. 8. ROCs depending on removal rate: (a) KCR; (b) CHI, χ2 distance
from Ĥ (auth)

M ; (c) CHI, χ2 distance from Ĥ ( f orged)
M ; and (d) SVM.

TABLE I

AUC FOR THE DETECTORS AS A FUNCTION OF REMOVAL RATE

and the one on the bottom left on the χ2 distance from the
manipulated medium reference Ĥ ( f orged)

M ; both solutions are
equally viable.

3) SVM Detector: The SVM detector is implemented by
relying on the well-established LIBSVM software [22]. The
training stage has been carried out on 2000 feature vectors
F, i.e. those extracted from the Holidays1000 data set and its
CLBA-forged version. Recall that each feature vector consists
of 30 elements, i.e. the 10 bins for low, medium and high
variance histograms. The tests have been carried out on the
200 feature vectors coming from the Copydays data set.
We used a Radial Basis Function kernel with parameters
C = 8 and γ = 0.5 derived from a 5-fold cross-validation
on 400 images, which were not considered again for training
to prevent over-fitting. The SVM model is probabilistic, i.e.
it outputs the probability that the image under analysis is
tampered. We calculated each ROC curve of Fig. 8 (d) by
varying T3 in [0, 1] (step 0.01) and the target removal rate as
in the previous tests.

To conclude this set of experiments, in Tab. I and Tab. II we
compare the detectors in terms of Area Under Curve (AUC)
and true positive rate (fixed false positive rate of 0.15), as
a function of keypoint removal rate; noticeable differences in
performance exist only for removal rates below 50%, for which
the KCR detector appears to be the most reliable.

TABLE II

TRUE POSITIVE RATE FOR THE DETECTORS FOR A FALSE POSITIVE

RATE 0.15 AS A FUNCTION OF REMOVAL RATE

Fig. 9. ROC for mixed removal rates depending on image size. From left
to right: KCR, CHI and SVM.

E. Dependence on Image Size and Removal Rate

While assigning the values of the thresholds T1, T2 and T3,
we took into account two factors: the target removal rate
and the image size, as both parameters may impact on the
performance of the detectors: low removal rates cause the
forged image to be similar to the authentic one; image resizing
reduces the number of keypoints and corners and thus it could
alter their ratio.

In the following experiment we used 100 images randomly
drawn from the Holidays1000 to build 4 new data sets
by progressively downscaling the images to 1600 × 1200,
1200 × 900, 800 × 600 and 400 × 300. Then, we randomly
subdivided each data set in 5 sets of 20 images which
have been attacked by means of CLBA with removal rate
{50, 60, 70, 80, 100} respectively. From the ROC curves of
Fig. 9 it turns out that the performances of KCR and SVM
do not depend excessively on the image size, as opposed to
CHI, for which the detection is easier on larger images. We
investigated more in-depth the relationship between downscal-
ing and keypoint removal detection by considering the sizes
1600 × 1200 and 400 × 300. On average, the reductions of
keypoints and corners due to resizing are consistent with each
other (81% and 83%) and consequently the corresponding
KCR index is not significantly altered. On the contrary,
following resizing the proportion of medium variance blocks
undergoes a variation of about 12% with respect to the total
amount of blocks, causing erroneous assignments to the class
of low variance blocks; this variation reduces the performance
of the CHI detector based on the medium reference histograms.
The SVM detector, which relies on all the classes of variance,
does not seem to be affected by such a problem.

To determine the thresholds, we fixed a maximum value of
0.1 for the false positive rate and we gathered the correspond-
ing value for the true positive rate from each curve. Finally,
we retrieved the threshold responsible for that specific point
in the ROC curves. The results summarised in Tab. III show
that the KCR threshold is stable for the various sizes, whereas
the CHI and SVM thresholds require more tweaking.
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TABLE III

THRESHOLDS VS IMAGE SIZE FOR A PROBABILITY OF FALSE ALARM 0.1

F. Detection of Local Keypoint Removal

In practical applications, the attacker may not need to
remove all the SIFT keypoints (or a large portion of them)
in an image, but rather just a small portion according to the
forgery. This may be the case, for example, of an attacker try-
ing to impair a SIFT-based copy-move detector (see Sec. VII
for details). For this reason, we now take into consideration
the case in which keypoints are removed from a specific area
of the image.

To reveal a local forgery, we apply the detectors in a block-
wise fashion: each 32×32 non-overlapping block of the image
is processed by analysing the statistics of a larger square region
surrounding it. In fact, a statistical analysis of a small block
would not be meaningful enough; consequently, on the one
hand the analysed region should be large enough, while on the
other hand it should be small enough so that its characteristics
are representative of the to-be-classified block.

In practice, for each block we run the detectors on the
600 × 600 area surrounding it, we compute a soft value
describing the degree of tampering and we assign it to the inner
32 × 32 block. Then, we shift by 32 pixels and we repeat the
procedure. This procedure provides a soft-valued map roughly
localising areas artificially deprived of SIFT keypoints, which
is binarised by applying the detector’s threshold. The map
is finally cleaned by removing those regions whose area is
smaller than 2% of the total image area.

The results we show in this section have been obtained by
using a 600 × 600 region to classify each image block but,
according to our experiments, such a size can be reduced to
300 × 300 pixels at the cost of an increased processing time.
Localisation, in fact, is computationally intense as it takes,
for example, about 9 minutes with a 600 × 600 window on a
64 bit OS with 8 GB RAM to process the 1333 ×2000 image
of Fig. 10 (top). The main advantage of a smaller window
is the capability of revealing tampered regions of minimum
size in the order of 300 × 300 pixels. In this latter case, the
average percentage of keypoints belonging to a patch with
respect to number of keypoints of the whole image is around
4.1%. Such a percentage is satisfactory and, above all, in
line with the localisation resolution performances shown by
SIFT-based methods designed to detect copy-move forgeries.

Fig. 10 displays an example of local removal detection
by means of KCR (T1=−1.9). The keypoints of an authentic
image were removed from the framed region (top left), with
decreasing removal rate of 100%, 80%, 60%, 40% and 20%.
As expected, detection becomes more difficult as the removal
rate lowers; nevertheless, even in the case of the lowest
removal rate, the detector is still able to correctly localise 39%
of the manipulated area.

Fig. 10. Example of local removal. From top left to bottom right: authentic
image; 100%, 80%, 60%, 40% and 20% removal rate.

Fig. 11. Local removal in presence of authentic regions with few or
no keypoints. Left: keypoints following CLBA; right: masking avoids false
positives in the sea and in the sky.

One issue with the windowed approach is that blocks
surrounded by regions naturally poor of keypoints, such as
in the sky or sea areas, are erroneously considered tampered.
Our solution conveniently resorts to the binarised variance
map V : first, very low blocks (variance ≤ 0.1) are set to 0;
then, morphological flood-fill and area opening are used to
remove holes and isolated pixels. The actual tampering map
is obtained by AND-ing V and the localisation map provided
by the removal detector. Two examples of this procedure are
shown in Fig. 11.
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V. SIFT KEYPOINT INJECTION

Arguably, the most straightforward strategy to bypass key-
point removal detection consists in introducing fake keypoints
in suitably chosen positions. If enough of such keypoints are
reintroduced, then the discriminative power of the forensic
tools of Sec. III may be compromised. This is the typical case
of SIFT-based copy-move counter-forensics, whereby a wise
attacker who has removed the matching keypoints revealing
the forgery injects fake keypoints to bypass the localisation by
means of the proposed detectors (we will explore this scenario
in Sec. VII).

To further investigate this topic, we devised a new injection
attack based on the exploratory studies presented in [13].
In [13], it has been proved that image enhancement tools
can effectively inject keypoints by exalting image details.
In particular, the following algorithms have been exam-
ined: Anisotropic Diffusion [23], Contrast Limited Adaptive
Histogram Equalisation (CLAHE) [24], Brightness Preserving
Fuzzy Histogram Enhancement (BPFHE) [25] and Gaussian
Smoothing.3 To these four enhancers, we added the Forging
with Minimum Distortion (FMD) attack proposed by Do et al.
in [10]; such attack triggers false positives at the SIFT contrast
check by adding a patch (obtained by minimising the local
distortion) to the neighbourhood of the injection location.

The advantage of FMD with respect to the use of image
enhancers is that it allows to choose the coordinates at which
a keypoint should be injected. Consequently, with FMD we
can define suitable locations wherein to inject the keypoints,
while with the rest of the tools keypoints are injected randomly
and the appropriateness of their positions verified afterwards.
On the other hand, FMD strongly affects the quality of the
forgery and thus it should be used sparingly.

The attack we used in this paper resorts to three of the
above image enhancers and to the FMD with an approach
that is similar to CLBA, that is a classification-driven pro-
cedure exploiting the advantages of each single algorithm
while limiting its weaknesses. For this reason we refer to
it as Classification-Based Injection (CLBI). Intuitively, CLBI
injects keypoints with FMD where they must be found (i.e. in
proximity of corners and edges) and with the three enhancers
where they should be found (i.e. in sufficiently textured,
non-flat regions). Therefore, the classification task basically
consists in distinguishing between regions containing edges
and corners and the rest of the image.

A. Scheme of the Proposed Injection Method

CLBI takes as input an image Irem without keypoints
and produces the injected image J in four steps as shown
by the block diagram in Fig. 12: 1) classification of Irem ’s
regions (red blocks); 2) FMD injection (green); 3) contrast-
enhancement injection (orange); 4) match refinement (cyan).
In the sequel we provide details on each block.

1) Region Classification: To distinguish image regions
according to the structures they contain, we apply the tensor
operator [23] to Irem , producing a map of the same size

3It has been observed experimentally in [10] that Gaussian blur with a
suitably large width σ > 2 tends to create rather than remove keypoints.

Fig. 12. Schematisation of the injection framework. Keypoints are injected
with FMD or contrast enhancement tools depending on the saliency of the
image regions and then refined to avoid matches with the original image.

of the image highlighting edges and flow-like, T-shaped and
Y-shaped structures. By normalising the output of the operator
in [0, 1], we obtain the injection map Map wherein each
element (i, j) quantifies the saliency of the corresponding
pixel. The idea is to use the most salient points such that
Map(i, j) ≥ 0.5 as preferred injection locations for the FMD,
while the remaining less descriptive points (whose score is
however not null) are left for the image enhancers.

2) FMD Injection: The coordinates of all the pixels belong-
ing to the salient regions as well as the input image Irem are
fed to the first injection block, where the FMD attempts to
introduce a keypoint in each location. The large amount of
candidate locations is a direct consequence of FMD’s charac-
teristics: the artefacts it introduces are visually unacceptable if
the attack is too intense, thus forcing us to set its strength to
the minimum (that is 1); by doing so, however, the attack can
not ensure a positive outcome and for this reason we repeat
the injection for all the locations; following each attempt, we
run a SIFT check to verify whether a new keypoint has been
introduced. If this is the case, we do not further alter its
8×8 neighbourhood, to avoid undoing the forgery. This stage
produces a first version I f md of the injected image.

3) Contrast-Enhancement Injection: A copy of the input
image Irem is fed to each enhancer to produce the three
partially injected images referred to as Ianiso, Ibpd f he and
Igauss in Fig. 12. All the 8 × 8 neighbourhoods of the
injected keypoints of these images are extracted and ordered
according to their local PSNR with respect to Irem . If more
than one enhancer has created a keypoint in the same
location, we keep only the one with highest PSNR. The
goal of this procedure is to generate as much keypoints
of acceptable quality as possible to repopulate the more
uniform (but still significant) regions of I f md , which were
not touched by the previous stage of the attack; there-
fore, keypoints passing this selection are pasted with their
neighbourhoods into I f md only if 0 < Map(i, j) < 0.5,
producing the injected image Iinj .

4) Match Refinement: Finally, we check that the keypoints
of Iinj do not match with their counterparts in the authentic
image. We consider a match correct if the distance between
the old and new descriptors falls below a certain threshold
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(8 in our case). This final stage addresses two types of
matches at the same time, i.e. those accidentally created by
the injection procedure and those left because of non-perfect
removal. We suppress the former by restoring the correspond-
ing neighbourhood from Irem . If such neighbourhood already
contains keypoints, then they are suppressed by applying the
Removal with Minimum Distortion (RMD) attack [10]; in fact,
RMD is very effective when its strength δ is increased at least
to 3 (against a default of 1), although this tends to introduce
salt and pepper noise.

The output of this stage is the final refined image J . It is
worth noting that, despite all the controls, J may still have
some correct matches, mainly due to two factors: the changes
in pixel values while pasting overlapping neighbourhoods
and the extreme robustness of some keypoints even to the
strengthened RMD. The number of such matches is very small
when compared to that of the authentic ones (see Sec. VI-A
and Fig. 14 in particular).

VI. EXPERIMENTAL VALIDATION OF

KEYPOINT INJECTION

We now investigate the robustness of the proposed
keypoint removal detectors against injection. First, we study
CLBI’s performance in terms of injected keypoints and correct
matches between the forgery and the authentic image and then
we evaluate whether it represents a threat to the detectors.

A. Performance of Keypoint Injection

In order to keep the complexity of the experiments under
control,4 we considered smaller images, i.e. those composing
the UCID data set [26], which consists of 1338 images of
size 512 × 384 pixels. Concerning the experimental setup, the
parameters of each injection algorithm needed by CLBI were
set to their default values as in [23]–[25], and descriptors were
matched by means of nearest neighbour (threshold 0.8 as in
[3]) and k-d trees [27]. Given the similarity of the results, we
discuss only the former matching strategy.

1) Injected Keypoints: We quantified the injection effective-
ness by means of the Keypoint Injection Rate (KIR), that is
to say the percentage of forged keypoints with respect to the
original amount prior to keypoint removal. First, we removed
the keypoints from each image; secondly, we forged new
keypoints with CLBI and we computed the KIR; finally, we
organised all the KIRs in a histogram. We show the envelope
of such histogram in Fig. 13 and we compare it to those of
the class-unaware injection algorithms presented in [13]. CLBI
provided an average KIR of 49.7% outperforming the rest of
the algorithms, which attained the following rates: 27.9% for
Gaussian Smoothing; 23.4% for Anisotropic Diffusion; 17%
for FMD; 14% for CLAHE; and 11% for BPFHE.

2) Matches Among Authentic Images and Forgeries: In
Fig. 14 we show the cumulative distribution (with superposed
normalised histogram) of the matches among authentic and
forged images after removal (dash-dotted blue line) and after

4On average, our Matlab implementation takes up to 180 seconds on a
400 × 400 image, due to the several thousands of iterations required by the
FMD, each of which also includes SIFT detection (64 bit OS, 8 GB RAM).

Fig. 13. KIR envelopes for the CLBI attack and for the class-unaware
injection algorithms presented in [13].

Fig. 14. Cumulative distribution (with superposed normalised histogram)
of correct matches following removal (dash-dotted blue line) and following
injection (solid red line).

injection (solid red line). Following refinement, the matches
left because of non-perfect removal and those introduced
accidentally during injection are effectively reduced, to the
point that 61% of the images have less than 3 matches
(versus 39% before injection); furthermore, the images without
matches increased from 11% to 25% of the data set. Such
results are satisfactory, especially if we consider that prior to
the attack images have on average 232 matches.

Even though the number of injected keypoints may appear
low when compared to the original ones, it should be con-
sidered that this is a consequence of our assumptions rather
than a limitation of the algorithm. In fact, we imposed that
no matches should be found between the authentic and forged
image in order for the method to be practically useful against
copy-move detection. In those applications where such a
constraint can be relaxed, the injection algorithm is capable
of creating up to 82% of the original amount of keypoints,
with 16 average matches.

3) Visual Quality of the Forgery: In Tab. IV we give
some results about the quality loss caused by removal and
injection in terms of PSNR and SSIM, evaluated both globally
(averaged on all the data set) and locally (averaged on all
the attacked neighbourhoods). Both the visual quality with
respect to the authentic image and to the outcome of removal
are not significantly worsened by the injection. We close this
series of experiments with Fig. 15, where we show the key-
points of two authentic images (left) and their corresponding
forgeries (right).

In conclusion, the proposed injection attack allows to reach
a good compromise between percentage of removed keypoints,
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TABLE IV

QUALITY OF REMOVAL-INJECTION: AVERAGE PSNR (db) AND SSIM ON

ENTIRE IMAGES AND ON THE ATTACKED NEIGHBOURHOODS

Fig. 15. Original (left) and injected keypoints (right). The 46 (132) authentic
keypoints were removed by CLBA and replaced with 40 (58) fakes by CLBI.

percentage of injected keypoints, correct matches accidentally
left or introduced and perceptual quality of the forged image.
In the next section we will evaluate whether such tool is
powerful enough to counter keypoint removal detection.

B. Impact of Injection on Keypoint Removal Detection

We used 300 images to assess the effect of injection on the
detectors of Sec. III: 100 randomly drawn from the UCID data
set; the corresponding 100 CLBA forgeries (effective removal
rate ≥ 90%); the same 100 images after CLBI injection.
We ran each of the detectors on all the images, we collected
the detection scores and we organised them into scattergrams
like in Sec. IV-D. In Fig. 16 we show the scattergrams
relative to the KCR (top) and SVM (bottom) detectors. The
blue squares represent authentic images, red circles and green
triangles correspond to images after keypoint removal and
keypoint removal-injection. For sake of brevity, we omit CHI’s
scattergram because its trend is similar to that of the SVM.

The capability of separating the classes of authentic and
CLBA-forged images is in line with the results obtained with
different data sets in Sec. IV-D, but the scores of injected
images tend to scatter and mix with those of the other two
classes. This phenomenon is noticeable especially for SVM
and CHI detectors, while KCR proves once again to be the
most robust tool, as green triangles still appear separable
from blue squares despite their proximity (see Fig. 16). This
observation is corroborated by the data of Tab. V showing
the confusion matrices for each of the detectors when the
thresholds suggested in Sec. IV-E for small images are used
(T1= − 1.9, T2 = 48 and T3 = 0.41). Authentic and

Fig. 16. KCR (top) and SVM (bottom) scattergrams; blue squares: authentic
images; red circles: CLBA forgeries; green triangles: injected images.

TABLE V

CONFUSION MATRICES BEFORE AND AFTER INJECTION FOR THE

PROPOSED DETECTORS

TABLE VI

DETECTION ACCURACY FOR THE 3-CLASS SVM DETECTOR

CLBA-forged images are correctly labelled with average
detection accuracies of 92.5%, 93.5% and 100%, whereas the
accuracy in labelling injected images as forgeries is 84%, 2%
and 26% respectively; the consequences of keypoint injection
are severe on CHI and SVM, for which slightly better results
can be obtained, at the expense of the capability of identifying
authentic images, by tweaking T2 and T3.

C. Three-Class SVM Detector

Based on the above observations, we improved the SVM
detector by reformulating the underlying classification as a
3-class problem, in such a way to discriminate between
authentic, CLBA-forged and injected images. In doing so, not
only we were able to recognise a forged image but also to
identify the manipulation it has undergone.

We have used 1200 UCID images of each class to build
the probabilistic SVM model (200 for 5-fold cross-validation,
1000 for training with C = 32 and γ = 0.125) and the
remaining 138 images per class to test it. In Tab. VI we
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report the confusion matrix we obtained by assigning each test
image to the class corresponding to the maximum of the output
probability. The discriminative power of the 3-class SVM in
presence of keypoint injection is now comparable to that of the
KCR, with authentic and injected images misclassified in the
15% of the cases. We believe that such a behaviour is at least
in part due to the nature of the UCID data set, whose relatively
low amount of keypoints in images makes distinctions harder,
and that it should subside as the image size grows.

VII. APPLICATION TO COPY-MOVE DETECTION

As a final test, we investigate the interplay between all
the tools described so far in the context of the detection
of copy-move forgeries; this is, in fact, a typical image
forensic problem that can be effectively tackled with by
relying on SIFT features, whose robustness and distinctiveness
allow to reliably match cloned areas. The goal of copy-move
counter-forensics is to create a forgery that is undetectable by
SIFT-based techniques like [4] or [5]; a wise counterfeiter can
attain such a goal by first applying keypoint removal to disable
the targeted algorithm and then keypoint injection to hide the
traces of removal exploited by our detectors.5 It goes without
saying that all the manipulations are carried out locally on one
(or more) of the cloned areas and leave the rest of the image
unaltered.

A. Evaluation Procedure and Employed Detectors

Without loss of generality, we considered only two copy-
moved areas, the source A1 and its clone A2, both containing
a fair amount of keypoints because otherwise concealing the
forgery would be trivial. We collected 10 images ranging from
1600 × 1200 to 3000 × 2000 pixels (some belonging to the
data set used in [2]) and we created 10 realistic forgeries by
duplicating one region of size in the order of 300×400 pixels
and variable shape (see for example Figs. 17 and 19 (a)–(b)).

We chose Amerini et al.’s copy-move forgery detector
(CMFD) [29], which improves the one presented by the same
authors in [5]. In a nutshell, following SIFT feature detection
and hierarchical clustering, the algorithm in [5] considers an
image as forged if at least 3 matches are found within pairs
of image regions. The major drawback with this approach is
that requiring only 3 matches may lead to a large number
of false positives, especially in images with many keypoints
and repeated texture patterns such as walls. To overcome
this problem, a new clustering technique was devised in [29]
allowing to better estimate the affine transformation between
two sets of matched points. By extending such transformation
to the image regions underlying matching sets, it becomes
possible to localise the tampered areas. According to the
improved detector, an image is tampered if at least one affine
transformation is found among pairs of clusters. We refer
to [5] and [29] for a detailed description of the algorithms.
We detected keypoint removal by means of the KCR detector

5Block-based detection is not considered; however, due to its lack of
robustness to geometric manipulations, it can be disabled by cascading CLBA
and simple geometric attacks such as the one in [28], as shown in [7].

Fig. 17. Copy-moved image I2. (a) Authentic; (b) copy-move forgery;
(c) keypoints of (a) (blue square markers indicate the keypoints of the cloned
area); (d) output of the CMFD; (e) keypoints following removal; (f) output
of KCR on (e); (g) keypoints following injection; (h) output of KCR on (g).

Fig. 18. Examples of localisation. Left: CMFD output highlighting copy-
moved regions; right: KCR output following removal.

which, based on the experiments of Secs. IV and VI, proved
to be the most robust detector.

Since the majority of keypoints are matching across the
cloned areas, we let the attacker remove all the keypoints
of A2 by means of CLBA; those matches that are robust
enough to survive the attack on A2 are attacked on A1. Then,
A2 is repopulated by means of CLBI. This solution limits the
perceptibility of the attacks by taking advantage of the fact that
a match can be deleted by removing only one of its members.

B. Experimental Analysis

Following each stage of the manipulation, the performance
of the CMFD and the KCR detector are measured at image
level to evaluate their capability of detecting tampered images
and at the pixel level to assess their accuracy in localising
forged regions. For the first level, we consider the fraction of
tampered images that are correctly identified. The metrics we
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Fig. 19. Copy-moved image I3. (a) Authentic; (b) copy-move; (c) keypoints of (a) (blue square markers indicate the keypoints of the cloned area);
(d) matches revealed by the CMFD before keypoint removal; (e) keypoints following removal; (f) output of KCR on (e); (g) keypoints following injection;
(h) output of KCR on (g).

TABLE VII

KEYPOINTS IN A2 , MATCHES BETWEEN A1 AND A2 AND BINARY

DECISION ON AUTHENTICITY ACCORDING TO THE CMFD

chose for the second level are precision p and recall r :

p = T p

T p + Fp
r = T p

T p + Fn
. (6)

When (6) are applied on a pixel basis, T p is the number of
forged pixels that are correctly identified; Fp is the number
of authentic pixels erroneously labelled as forged; Fn is the
number of forged pixels erroneously labelled as authentic.
Hence, precision is the fraction of pixels identified as tampered
that are truly tampered and recall (or true positive rate) is
the fraction of tampered pixels that are correctly classified as
such. Precision and recall can be conveniently combined by
considering their harmonic mean, called F1-score, as follows:

F1 = 2
p · r

p + r
. (7)

1) Authenticity Verification: In our implementation, an
image is forged according to the CMFD if there is at least
one affine transformation linking A1 to A2, and according to
the KCR detector if there is at least one tampered region whose
area is ≥ 2% of the image area. In Tab. VII, for each test image
we report the number of keypoints of A2, matches between
A1 and A2 and the binary decision on image authenticity

TABLE VIII

PRECISION, RECALL AND F1-SCORE FOR THE CFMD AND THE KCR

according to the CMFD in the plain copy-move, following
removal and following removal-injection. Regardless of the
underlying detection criterion (at least either 3 matches as
in [5] or 1 affine transformation as in [29]), the CMFD
reveals 100% of the plain forgeries but is always disabled
by the keypoint manipulations. Obviously, the KCR detector
is incapable of discriminating until keypoints are actually
altered; in the other cases, it recognises 100% of the counter-
forensically treated copy-moves, since the regions it detects
have on average an area which is 12% of the total image area
after removal and 9% after removal-injection.

2) Tampering Localisation: Tab. VIII shows the localisation
accuracy of the CMFD and the KCR in terms of average p, r
and F1-score (computed over all the images’ pixels) following
each stage of the forgery and confirms the inadequateness
of the CMFD in presence of keypoint manipulations. The
repercussion of injection on KCR’s performance is twofold:
on the one hand, the probability of detecting forged pixels (i.e.
r ) is lowered by 18%, even though the reduction is insufficient
to hide keypoint removal; on the other hand, the false positives
caused by the sliding window on the borders of the tampered
areas are also reduced, hence explaining the higher p.

Figs. 17 (I2) and 19 (I3), wherein the exit sign was
hidden by replicating a portion of the wall and a cookie was
duplicated, exemplify well the data of Tabs. VII–VIII and the
capability of injection to hide the traces of keypoint removal to
a visual investigation. The distributions of SIFT keypoints in
Figs. 17–19 (e) can still raise the suspicion of a keen observer
but those of Figs. 17–19 (g) certainly require specialised tools.
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It is also worth noting that the CMFD allows to localise both
the cloned areas whilst the KCR detector, due to the attacker’s
strategy, can identify only the one that has been tampered with.
Two additional examples of localisation are shown in Fig. 18:
the left column corresponds to the CMFD output on the plain
copy-moves and the right column to the KCR output on the
CLBA-attacked forgeries (on which the CMFD fails).

It must also be said that adversary-unaware forensic meth-
ods could detect and localise the regions altered by means
of keypoint removal and injection. Methods which examine
the statistical consistency over the whole image, such as for
example the one proposed by Pan et al. in [30], could reveal
anomalies due to the cancellation of salient features. However,
it is out of the scope of this paper to make a comparison
among adversary-aware/unaware techniques to detect this kind
of alterations.

In conclusion, we can say that in the examined scenario the
adversary fails to evade copy-move detection if the forensic
analyst resorts to the combination of the two above categories
of detectors, e.g. by OR-ing their binary outputs on image
authenticity or the tampering maps.

VIII. CONCLUSION

We tackled with the growing attention given by counter-
forensic research on deceiving SIFT-based copy-move detec-
tion techniques. Because the existing attacks against such
techniques delete SIFT keypoints to suppress the matches
linking the cloned areas, we have devised three forensic
detectors revealing global or local keypoint removal, based on
the anomalies of the distribution of keypoints after the manip-
ulation. The detectors are effective not only against keypoint
removal but also against the injection of fake keypoints as
a means to conceal removal, as confirmed by the results we
obtained in supporting a state-of-the-art copy-move detector
that was disabled by the above two forgeries.

Among the open issues, we mention: investigating the
possibility of recognising the injection forgery by studying
potential anomalies in the properties of the fake keypoints
with respect to the original ones (e.g. distribution of scales
or dominant orientations); extending keypoint removal attacks
to the higher octaves to further assess the effectiveness of the
newly devised detectors. Such attacks, in fact, would allow to
counter those applications that, unlike copy-move detection,
rely on less numerous but more robust keypoints.

REFERENCES

[1] R. Böhme and M. Kirchner, “Counter-forensics: Attacking image
forensics,” in Digital Image Forensics, H. T. Sencar and N. Memon,
Eds. New York, NY, USA: Springer-Verlag, 2012, ch. 10.

[2] V. Christlein, C. Riess, J. Jordan, C. Riess, and E. Angelopoulou, “An
evaluation of popular copy-move forgery detection approaches,” IEEE
Trans. Inf. Forensics Security, vol. 7, no. 6, pp. 1841–1854, Dec. 2012.

[3] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[4] X. Pan and S. Lyu, “Region duplication detection using image
feature matching,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 4,
pp. 857–867, Dec. 2010.

[5] I. Amerini, L. Ballan, R. Caldelli, A. D. Bimbo, and
G. Serra, “A SIFT-based forensic method for copy–move attack
detection and transformation recovery,” IEEE Trans. Inf. Forensics
Security, vol. 6, no. 3, pp. 1099–1110, Sep. 2011.

[6] R. Caldelli, I. Amerini, L. Ballan, G. Serra, M. Barni, and
A. Costanzo, “On the effectiveness of local warping against SIFT-based
copy-move detection,” in Proc. 5th Int. Symp. Commun., Control, Signal
Process. (ISCCSP), Rome, Italy, May 2012, pp. 1–5.

[7] I. Amerini, M. Barni, R. Caldelli, and A. Costanzo, “Counter-forensics
of SIFT-based copy-move detection by means of keypoint classification,”
EURASIP J. Image Video Process., vol. 2013, no. 1, p. 18, 2013.

[8] C.-Y. Hsu, C.-S. Lu, and S.-C. Pei, “Secure and robust SIFT,” in Proc.
17th ACM Int. Conf. Multimedia (MM), New York, NY, USA, 2009,
pp. 637–640.

[9] T.-T. Do, E. Kijak, T. Furon, and L. Amsaleg, “Understanding the
security and robustness of SIFT,” in Proc. 18th ACM Int. Conf.
Multimedia. New York, NY, USA, 2010, pp. 1195–1198.

[10] T.-T. Do, E. Kijak, T. Furon, and L. Amsaleg, “Deluding image
recognition in SIFT-based CBIR systems,” in Proc. 2nd ACM Workshop
Multimedia Forensics, Security, Intell., New York, NY, USA, 2010,
pp. 7–12.

[11] T.-T. Do, E. Kijak, L. Amsaleg, and T. Furon, “Enlarging hacker’s
toolbox: Deluding image recognition by attacking keypoint orientations,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Mar. 2012, pp. 1817–1820.

[12] C.-S. Lu and C.-Y. Hsu, “Constraint-optimized keypoint
inhibition/insertion attack: Security threat to scale-space image
feature extraction,” in Proc. 20th ACM Int. Conf. Multimedia, 2012,
pp. 629–638.

[13] I. Amerini, M. Barni, R. Caldelli, and A. Costanzo,
“SIFT keypoint removal and injection for countering
matching-based image forensics,” in Proc. 1st ACM Workshop Inform.
Hiding Multimedia Security (IH MMSec), 2013, pp. 123–130.

[14] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[15] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proc. Alvey Vis. Conf., vol. 15. Manchester, U.K., 1988, p. 50.

[16] J. Shi and C. Tomasi, “Good features to track,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 1994,
pp. 593–600.

[17] O. Pele and M. Werman, “The quadratic-chi histogram distance family,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2010, pp. 749–762.

[18] J. C. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” in Advance in
Large Margin Classifiers. Cambridge, MA, USA: MIT Press, 1999,
pp. 61–74.

[19] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library
of computer vision algorithms,” in Proc. ACM Int. Conf. Multimedia,
2010, pp. 1469–1472. [Online]. Available: http://www.vlfeat.org

[20] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2008, pp. 304–317. [Online]. Available:
http://lear.inrialpes.fr/ jegou/data.php

[21] E. Rosten and T. Drummond, “Fusing points and lines for high
performance tracking,” in Proc. 10th IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2005, pp. 1508–1511.

[22] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support
vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3,
pp. 27:1–27:27, 2011. [Online]. Available: http://www.csie.ntu.edu.tw/
cjlin/libsvm/

[23] J. Weickert and H. Scharr, “A scheme for coherence-enhancing diffusion
filtering with optimized rotation invariance,” J. Vis. Commun. Image
Represent., vol. 13, nos. 1–2, pp. 103–118, 2002.

[24] K. Zuiderveld, “Contrast limited adaptive histogram equalization,”
in Graphics Gems IV. New York, NY, USA: Academic, 1994,
pp. 474–485.

[25] D. Sheet, H. Garud, A. Suveer, M. Mahadevappa, and J. Chatterjee,
“Brightness preserving dynamic fuzzy histogram equalization,” IEEE
Trans. Consum. Electron., vol. 56, no. 4, pp. 2475–2480, Nov. 2010.

[26] G. Schaefer and M. Stich, “UCID: An uncompressed
color image database,” in Proc. Electron. Imag. Int. Soc.
Opt. Photon., 2003, pp. 472–480. [Online]. Available:
http://homepages.lboro.ac.uk/ cogs/datasets/ucid/ucid.html

[27] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, 1975.

[28] H. C. Nguyen and S. Katzenbeisser, “Security of copy-move forgery
detection techniques,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), May 2011, pp. 1864–1867.



1464 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 9, SEPTEMBER 2014

[29] I. Amerini, L. Ballan, R. Caldelli, A. D. Bimbo, L. D. Tongo, and
G. Serra, “Copy-move forgery detection and localization by means
of robust clustering with J-linkage,” Signal Process., Image Commun.,
vol. 28, no. 6, pp. 659–669, 2013.

[30] X. Pan, X. Zhang, and S. Lyu, “Exposing image forgery with blind
noise estimation,” in Proc. 13th ACM Multimedia Workshop Multimedia
Security, 2011, pp. 15–20.

Andrea Costanzo received the Laurea degree in
telecommunications engineering and the Ph.D.
degree in information engineering from the
University of Siena, Siena, Italy, in 2009 and
2014, respectively. He is a member of the Visual
Information Processing and Protection Group at the
Department of Information Engineering and
Mathematics, University of Siena, and the National
Inter-University Consortium for Telecommuni-
cations. His main research interests focus on
multimedia forensics and counter forensics.

Irene Amerini received the Laurea degree in
computer engineering and the Ph.D. degree in com-
puter engineering, multimedia, and telecommunica-
tion from the University of Florence, Florence, Italy,
in 2006 and 2010, respectively. She is currently
a Post-Doctoral Researcher with the Image and
Communication Laboratory, Media Integration and
Communication Center, University of Florence. She
was a Visiting Scholar with Binghamton University,
Binghamton, NY, USA, in 2010. Her main research
interests focus on multimedia content security tech-

nologies, secure media, and digital and multimedia forensics.

Roberto Caldelli (M’11) received the degree in
electronic engineering and the Ph.D. degree in com-
puter science and telecommunication from the Uni-
versity of Florence, Florence, Italy, in 1997 and
2001, respectively.

From 2005 to 2013, he was an Assistant Professor
with the Media Integration and Communication Cen-
ter, University of Florence. In 2014, he joined the
National Inter-University Consortium for Telecom-
munications (CNIT) as a Permanent Researcher.
His main research activities, witnessed by several

publications, include digital image processing, interactive television, image
and video digital watermarking, and multimedia forensics. He holds two
patents in the field of content security and multimedia interaction.

Mauro Barni (M’92–SM’06–F’12) received the
degree in electronic engineering and the Ph.D.
degree in informatics and telecommunications from
the University of Florence, Florence, Italy, in 1991
and 1995, respectively. He is currently an Associate
Professor with the University of Siena, Siena, Italy.
During the last decade, his activity has focused on
digital image processing and information security,
with a particular reference to the application of
image processing techniques to copyright protection
(digital watermarking) and multimedia forensics.

Recently, he has been studying the possibility of processing signals that have
been previously encrypted without decrypting them. He led several national
and international research projects on these subjects. He has authored about
270 papers, and holds four patents in the field of digital watermarking and doc-
ument protection. He has coauthored the book Watermarking Systems Engi-
neering (Dekker, 2004). He was a recipient of the IEEE SIGNAL PROCESSING

MAGAZINE Best Column Award in 2008, and the IEEE Geoscience and
Remote Sensing Society Transactions Prize Paper Award in 2011. He was the
Chairman of the IEEE Multimedia Signal Processing Workshop (Siena, 2004),
and the International Workshop on Digital Watermarking (Siena, 2005). He
was the founding Editor-in-Chief of the EURASIP Journal on Information
Security. He currently serves as an Associate Editor of the IEEE TRANS-
ACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY and the
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY. From
2010 to 2011, he was the Chairman of the IEEE Information Forensic and
Security Technical Committee of the Signal Processing Society. He has been
a member of the IEEE Multimedia Signal Processing Technical Committee
and the Conference Board of the IEEE Signal Processing Society. He was
appointed as a Distinguished Lecturer of the IEEE Signal Processing Society
from 2012 to 2013.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


