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S
ystems employing biometric traits for people authenti-
cation and identification are witnessing growing popu-
larity due to the unique and indissoluble link between 
any individual and his/her biometric characters. For 
this reason, biometric templates are increasingly used 

for border monitoring, access control, membership verification, 
and so on. When employed to replace passwords, biometrics have 
the added advantage that they do not need to be memorized and 
are relatively hard to steal. Nonetheless, unlike conventional secu-
rity mechanisms such as passwords, biometric data are inherent 
parts of a person’s body and cannot be replaced if they are compro-
mised. Even worse, compromised biometric data can be used to 
have access to sensitive information and to impersonate the victim 
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for malicious purposes. For the same reason, biometric leakage in 
a given system can seriously jeopardize the security of other sys-
tems based on the same biometrics. A further problem associated 
with the use of biometric traits is that, due to their uniqueness, 
the privacy of their owner is put at risk. Geographical position, 
movements, habits, and even personal beliefs can be tracked by 
observing when and where the biometric traits of an individual are 
used to identify him/her. 

Processing biometric signals while they are encrypted provides 
a secure and elegant way to overcome the aforementioned prob-
lems [1], especially those related to privacy protection. Thanks to 
the opportunities offered by secure multiparty computation 
(SMPC) techniques [2], it is, in fact, possible to carry out the 
match between any two biometric templates by working only on 
encrypted data. Furthermore, it is also possible to design the 
underlying matching protocol in such a way that the final result of 
the match is known only to the intended party without leaking 
any information about the biometric templates or the identity of 
the biometric owner. The wide range of techniques allowing to 
process encrypted signals are usually known as signal processing 
in the encrypted domain (SPED). 

As an example, let us consider a scenario in which a server is 
interested to know whether the owner of a biometric template is 
part of a list of enrolled individuals, e.g., the users who can access 
a certain service, or the criminals contained in a police record. The 
server has a database of plain biometric templates and the user 
submitting the query is interested to access the service without 
revealing his/her identity. Alternatively, the user submitting the 
query may be interested to know whether a biometric signal 
matches with one of the templates stored in the server—without 
that the server accesses the result of the query. According to the 
SPED paradigm, the aforementioned goals are achieved by letting 
the server comparing the templates in the database with the one 
provided by the user directly in the encrypted domain. While 
apparently impossible, a functionality like the aforementioned can 
be implemented by resorting to SMPC. It is known that virtually 
any computable function or algorithm can be evaluated by means 
of an SMPC protocol [3]. In the simplest cases, like those consid-
ered in this article, the protocol involves only two parties. In this 
case, we talk about secure two-party computation (STPC). In a 
general STPC setting, one party, say the client ,C  owns a signal 
that must be processed in some way by the other party, hereafter 
referred to as the server .S  S  must process C ’s signal without 
getting any information about it, in some cases not even the result 
of the computation. At the same time, S  is interested to protect 
the information used to process the signal. 

Two of the main approaches to SPED are homomorphic 
encryption (HE) [4] and garbled circuits (GCs) [5]. HE provides a 
way to evaluate linear operations on encrypted data, however 
when nonlinear operations are involved, it is necessary to resort 
to ad hoc, interactive, and usually complex protocols. On the 
other hand, GCs allow the evaluation of any function that can be 
represented with an acyclic boolean circuit. In some cases, how-
ever, the boolean circuit required to describe the functionality is 
so complex that it makes the use of GCs problematic. Given the 

complementary pros and cons of HE, oblivious transfer (OT), 
and GCs, the use of hybrid protocols has also been proposed to 
take advantage of the benefits offered by the two approaches [6]. 
Recently, fully HE (FHE) schemes [7] have been devised, allow-
ing the evaluation of any function without any interaction 
between the involved parties. Unfortunately, FHE is still highly 
inefficient, principally due to the huge size of the public key. 

Despite many recent advances and the introduction of more effi-
cient cryptographic primitives, the complexity of SPED protocols is 
often high to prevent their use in practical applications. To reduce 
the complexity down to a manageable level, it is necessary that the 
underlying biometric processing algorithms and the STPC protocol 
are designed jointly by taking into account both the cryptographic 
and the signal processing facets of the problem. On the contrary, 
the most common approach used so far has been that of taking a 
classical biometric matching algorithm and transforming it into a 
protocol to be run in the encrypted domain. It is arguable that 
much better results can be obtained by developing a class of algo-
rithms that are explicitly thought to ease a SPED implementation, 
e.g., by considering in advance which are the most complex opera-
tions to be carried out in a secure way and trying to avoid them. 

In general, it is necessary that the biometric templates are rep-
resented through a vector of features of constant length and that a 
simple distance measure (e.g,. the Hamming or Euclidean dis-
tance) can be used to measure the degree of similarity between two 
vectors. If the previously mentioned conditions are satisfied, a bio-
metric authentication or verification protocol can be developed 
easily by composing few blocks: distance computation, minimum 
selection, and comparison against a threshold [8], [9]. The search 
for efficiency is not limited to the choice of a suitable matching 
algorithm: representation issues must be considered as well. In the 
end, the complexity of SPED primitives depends on both the num-
ber of features the matching algorithm relies on and the number 
of bits used to represent them. By using fewer features and/or 
fewer bits, the complexity of the protocol decreases at the expense 
of matching accuracy. It is then necessary to find a proper configu-
ration to couple efficiency and accuracy. Signal processing exper-
tise can be exploited in several other ways: for example, it has been 
proven in [10] that using a common mask for iris recognition 
instead of a varying one dramatically simplifies the implementa-
tion of an iris-recognition system in the encrypted domain, with a 
very reduced impact on the performance of the system. 

This article aims to illustrate the basics of STPC, including 
the way it can be applied to the protection of biometric tem-
plates, and to explain how the signal processing and crypto-
graphic points of view can be considered together to obtain 
efficient, secure, and accurate SPED protocols. We also review 
some works in which such an approach has been used success-
fully for different biometric modalities, including fingerprint 
matching, iris recognition, and face recognition. 

Overview Of baSic SPeD tOOlS
In this section, we provide a concise introduction to the basic 
primitives on which SPED technology relies. The tools presented 
here and the protocols described in the next sections are provably 
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secure in a semihonest setting [1], i.e., when the involved parties 
execute the protocol without deviating from it, but at the same 
time try to obtain as much information as possible about the 
other party’s data. The choice of a semihonest model is due to the 
fact that while protocols providing security against a malicious 
party would be preferable, their implementation has a very high 
complexity. Moreover, at least in principle, protocols guaranteeing 
security in the semihonest model can always be modified to make 
them secure under more stringent threat models, even if such an 
increased security comes at the price of a higher complexity. Next 
we provide a qualitative description of various tools, focusing on 
their strengths and limitations. 

HomomorpHic Encryption
A cryptographic scheme (cryptosystem) is homomorphic [11] if 
an operation over encrypted data exists that correspond to 
another operation over the plain message. In other words, by 
indicating with x" , the encryption of a plain value ,x  we have 

,x y x yZX =" " ", , ,  for some operations X  and Z . Most HE 
schemes rely on asymmetric cryptography, and the homomorphic 
property holds under encryption with the public key of one of the 
parties involved in the protocol. Unless otherwise stated, in the fol-
lowing we assume that the private key is known only to the client 

,C  while the server S  has access only to the public key. 
The most common homomorphic cryptosystems (see, for 

instance, [12] and [13]) are additively homomorphic, i.e., X #=  and 
.Z=+  An additively homomorphic cryptosystem allows a party 

that does not know the decryption key to obtain the encryption of 
the sum between two values available to him only in encrypted form. 
In the same way, he can compute the encryption of the product 
between a known integer value c  and a value available to him under 
encryption as .cx x c=" ", ,  More complex operations can be imple-
mented by resorting to an interactive protocol between S  and .C

Despite its elegance, the use of HE to compute with encrypted 
data comes at quite a high computational cost. In Paillier’s crypto-
system, for instance, even plain values represented with few bits 
are encrypted in 2,048-bit-long ciphertexts (the plaintext after the 
encryption) so that sums and products between plain values are 
mapped respectively to products and exponentiations on very long 
ciphertexts. Nonlinear operations, such as products between 
encrypted values or comparisons, are even more complex and 
require interaction between the parties. For this reason, the com-
munication complexity of an HE protocol depends on the number 
of transmitted ciphertexts, as well as on the number of communi-
cation rounds, while computation complexity is usually domi-
nated by the number of exponentiations on encrypted values (the 
most expensive operation) required by the protocol. Multiplicative 
homomorphic cryptosystems exist as well [4], [14], allowing the 
evaluation of products between encrypted values ( , ),X # Z #= =  
but they have a lower practical utility with respect to additive HE. 

Fully HE (FHE) schemes allow both the evaluation of addi-
tions and products in the encrypted domain. C. Gentry [7] devel-
oped the first secure somewhat HE (SHE) and FHE schemes, 
working on binary data. SHE allows the evaluation of a limited 
number of additions and multiplications, while FHE extends 

SHE to bypass such a restriction at the price of a huge incre-
ment of memory and computational complexity, thus making all 
FHE schemes proposed so far highly impractical. 

By using Gentry’s original SHE scheme and subsequent 
improvements, it is possible to evaluate binary circuits composed by 
up to a maximum number of XOR and AND gates directly on S ’s 
side without any interaction with ,C  thus making protocols based 
on SHE very appealing for clients equipped with low-power devices. 
Efficient SHE solutions can be designed to evaluate circuits having a 
given (small) number of AND gates and then transformed into more 
expensive FHE solutions, if necessary. Luckily in most biometric rec-
ognition algorithms, the number of required operations is known in 
advance, making the use of protocols based on SHE possible. 

A further simplification has been introduced in [15] where a 
SHE scheme operating on integer values has been proposed, thus 
allowing to encrypt each input directly, instead of decomposing it 
into bits and then using bitwise encryption. On the other hand, 
SHE (or FHE) schemes working on integers permit only the eval-
uation of polynomial functions (up to a certain degree for SHE). 

oblivious transfEr
An OT [16] is an STPC protocol that enables one party, say the 
server ,S  to forward one out of n  messages ( , , , )x x xn1 2 f  to the 
client .C  C  chooses the index i  of the element that he would like 
to get. At the end of the protocol, the server gets no information 
on the index i , and the client does not get any information on the 
other x js. The possibility to move great part of the computation 
to an offline phase, during which several OTs are evaluated on ran-
domly chosen values, permits to greatly simplify the complexity of 
OT. The random values are replaced by the actual values during a 
much more efficient online phase [17]. Neglecting the offline 
complexity, and thanks to precomputation, the online communi-
cation of multiples one-out-of-two OTs is reduced to about 2,  bits 
for each OT, where ,  is the message bit length, transmitted in par-
allel in two rounds. With regard to computational complexity, only 
simple XOR  operations are required on both sides. 

GarblEd circuits
The possibility of securely evaluating any binary circuits was 
proposed for the first time by Yao in his seminal paper [5]. Yao’s 
protocol, the GC, involves both the parties in the computation 
and distributes the computation between S  and .C  S  encrypts 
(garbles) each gate of the circuit and maps each input bit into a 
random string. Then S  sends the GC to C  together with the 
secrets corresponding to S ’s inputs. The secrets associated to 
C ’s inputs are transmitted to C s by means of OT. In the last 
phase of the protocol, C  decrypts the gates by using the input 
secrets and obtains the final output of the circuit. 

For a long time, GC were thought to be highly impractical. 
However, they have recently gained renewed popularity, thanks to 
several efficiency improvements (most of which summarized in 
[18]). The protocol associates a secret of 80 bits to each bit involved 
in the computation, making single-core operations lighter than in 
HE (we recall that a Paillier ciphertext is 2,048 bits long). Unluck-
ily, even if most of the computation is performed on S ’s side, C  
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must also take an active part in the protocol. The computational 
complexity depends linearly on the number of nonXOR gates 
composing the circuit (which in turn depends on the input bit 
lengths), in fact, XOR gates can be evaluated with negligible com-
putational and communicational complexity. It is important to 
underline that a GC protocol requires only two rounds, regardless 
of the circuit size and the number of input bits (an additional 
round is necessary if the final result must be sent to ) .S  We also 
point out that circuit garbling does not depend on the actual 
inputs and, in some particular scenarios where the functionality 
to evaluate is known in advance, circuit encryption and transmis-
sion can be precomputed. 

Given that the complexity depends on the number of gates 
composing the circuit, GCs are suited for operations such as 
sums and comparisons, for which the number of gates depends 
linearly on the input bit length. On the contrary, GCs are less 
efficient when the number of gates grows more than linearly with 
the input bit length. This is the case, for instance, of products and 
divisions for which the circuit size depends quadratically on the 
bit length of the inputs. 

Hybrid protocols
Sometimes complex protocols can be divided into subprotocols, 
and different tools can be used for their implementation to take 
the best from each approach. Such an idea has been applied to 
develop hybrid protocols working with HE and GCs in [6], but 
can also be extended to different tools. Hybrid protocols require 
the adoption of proper interfacing protocols to link subparts 
implemented by relying on different technologies. For instance, 
it may happen that an intermediate value x  output by an HE 
protocol must be used as input in a GC subroutine, or vice 
versa. In this case, the different parts of the protocol must be con-
nected in such a way that the security of the whole system is guar-
anteed. At the same time, the representation of the variable x  
must be adapted to the subprotocol requirements. 

biOmetric recOgnitiOn PrOtOcOlS 
Biometric recognition protocols can be divided in two main cate-
gories: in the first scenario, usually referred to as authentication, 
the user is interested in demonstrating that he is who he claims to 
be, while in the second one, called identification, the goal of the 
protocol is to determine the identity of the user submitting the bio-
metric template. To better protect the users’ privacy, in some 
cases, SPED-based identification protocols simply verify whether 
the user is enrolled in the database or not. The server S  owns a 
database of enrolled biometric feature vectors  ({ }, , , )Y i n1i f=  
and the client C  owns a biometric vector .X  In all cases, S  and 
C  are interested in protecting the privacy of their data. 

In the authentication problem [Figure 1(a)], C  submits a 
new instance of his biometrics. The fresh biometric template is 
processed to extract a feature vector X  that is sent to S  
together with an identifier, used by S  to select the correspond-
ing enrolled template Yid  in the database. The distance ( , )d X Yid  
between the query X  and the template Yid  is evaluated and the 
result is compared against an acceptance threshold. 

In the identification scenario [Figure 1(b)], the client extracts 
the feature vector X  from the fresh biometric template and sub-
mits it to the server without revealing his identity. The server 
must verify whether an index i  exists such that ( , ) .d X Yi 1 f  To 
do so, C  and S  first evaluate ( , )d d X Yi i=  for all ,i n1f=  
then they find the minimum among all di  and the threshold 
through a minimum selection tree returning “yes” if the mini-
mum distance is below the threshold, and “no” otherwise. It is 
also possible to modify the minimum tree so that the output is a 
user’s identification index instead of a yes/no answer. 

As can be seen, a general recognition protocol is composed of a 
few basic blocks: feature extraction, distance computation, compar-
ison, and minimum selection. Feature extraction involves only data 
provided by one party, and for this reason it is usually implemented 
in the plain domain. On the other hand, distance computation, 
comparison, and minimum selection involve private data owned by 
C  and S , and so they must be implemented by resorting to SPED. 

[fig1] biometric recognition protocols: (a) authentication and  
(b) identification.
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There are many possibilities to implement these blocks in a pri-
vacy-preserving way. The choice depends on many factors, such as 
device configuration, network bandwidth, and latency, computa-
tional capabilities of S  and .C  In this section, we provide a brief 
description of how the various blocks can be implemented, leaving 
a more detailed description to the next sections. 

The Hamming and the squared Euclidean distances are the 
most commonly used distances because they can be easily imple-
mented in a SPED setting. The Hamming distance is used when-
ever the biometric template corresponds to a binary vector, while 
the squared Euclidean distance is used on integer biometric vec-
tors (the squared version is used to avoid the expensive computa-
tion of the square root). Both distances can been implemented by 
using GC, HE, or OT. In [8, Ch. 7] the authors show that, due to 
its binary nature, the Hamming distance can be efficiently imple-
mented by using GC, while an HE implementation is preferable 
for the squared Euclidean distance [19], since HE allows an effi-
cient computation of products. An efficient OT implementation 
of both Hamming and squared Euclidean Distance has been pro-
posed in [20]. It is also possible to implement such distances 
through SHE [21], while, given the limited number of operations 
required in both cases, resorting to FHE is not necessary. 

A comparison is needed to verify whether a certain distance is 
lower than the acceptance threshold (squared threshold if the 
squared Euclidean distance is used). Its implementation [8, Ch. 7] 
requires that the involved quantities are represented in binary 
form, thus making GC-based implementations more attractive. 
Implementations based on HE [19] have also been proposed, but 
they require several interactions between the parties. 

Starting from a comparison protocol, it is possible to evaluate 
the minimum among two encrypted values by using the output of 

the comparison to select between two numbers x  and y  in a mul-
tiplexer. Given the necessity of a comparison operator, a GC imple-
mentation is usually preferable. The protocol for the selection of 
the minimum between two numbers can be easily extended to the 
computation of the minimum among n  values using a reverse 
tree implementation [8, Ch. 7] where each node computes the 
minimum between the results of the previous left and right sub-
trees. The minimum selection tree can be modified to output the 
minimum value or the corresponding identifier. 

OPtimizatiOn Of SPeD PrOtOcOlS thrOugh 
cryPtOgraPhic Primitive SelectiOn
In this section, we provide an overview of how the use of different 
cryptographic primitives can be exploited to improve the perfor-
mance of biometric recognition protocols. For the sake of simplic-
ity, we do not discuss the improvements in the implementation of 
the basic cryptographic primitives and we leave the description of 
signal processing optimizations to the next section. 

One of the first papers addressing privacy-preserving biomet-
ric authentication is [22]. The protocol does not focus on a spe-
cific biometric modality, but rather on a general biometric 
representation consisting of a binary string. It then presents a 
secure implementation of the Hamming distance computation 
based on private information retrieval. 

An implementation of privacy-preserving biometric identifica-
tion protocols operating in the semihonest setting, implemented 
according to the overall scheme presented in the previous section, 
has been proposed by Erkin et al. in [19]. The recognition protocol 
is based on eigenfaces [23], it achieves 96% correct classification 
averaged over different lightning conditions, 85% when different 
face orientations are considered, and 64% when face size varies as 
well. In contrast to most SPED biometric-recognition protocols, 
the feature extraction step is carried out in the encrypted domain 
by relying on the homomorphic properties of the Paillier crypto-
system [12]. Squared Euclidean distance computation is also 
implemented by relying on the Paillier system, while the compari-
son protocol is implemented according to the scheme proposed by 
Damgard et al. in [13]. The protocol complexity was evaluated by 
running it on a computer with a 2.4-GHz dual-core processor, and 
using the “ORL Database of Faces” [24] obtaining a runtime of 
about 40 seconds for a single match. The runtime could be 
reduced to 18 seconds by resorting to precomputation. As shown 
in Table 1, the authors have demonstrated that it is possible to fur-
ther reduce the computational and communication complexity by 
assuming that the parameters of the eigenface extraction protocol 
are public (such an assumption has been adopt by virtually all sub-
sequent works on the same topic). 

[table 1] cOmPutatiOnal anD cOmmunicatiOn cOmPlexity Of Privacy-PreServing face recOgnitiOn [19].

DatabaSe Size cOmPutatiOnal cOmPlexity (SecOnDS) cOmmunicatiOn cOmPlexity (KilObyteS)

n full Query with PrecOmPutatiOn Public eigenfaceS full Query Public eigenfaceS

10 24 8.5 1.6 2,725 149 
200 34.2 14.5 11.4 5,497 2,921 

320 40 18 18.2 7,249 4,674 

[fig2] the runtime comparison of he [19] and hybrid [25] 
implementations of the eigenface protocol.
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Erkin et al. protocol has been improved by Sadeghi et al. [25], 
who proposed a full-GC and a hybrid protocol for eigenface bio-
metric recognition, where HE is used to compute the distance and 
GC for the comparison. As shown in Figure 2, the resulting proto-
col is 30% faster than [19], when implemented on a PC having a 
2.6-GHz processor. 

In [26], the authors propose a new technique for template 
extraction called SCiFI. The protocol evaluates distances between 
faces by using Paillier HE and then implements the comparison by 
using a one-out-of-d  OT, where d  is the maximum value that the 
distance can assume. The experiments were performed on two 
computers with a 2.6-GHz processor and a 2.8-GHz dual-core pro-
cessor, respectively. The online time complexity is about 
0.30 seconds for a single match. 

Moving from face recognition to iris-based systems, Luo et al. 
[27] implemented an HE-based privacy-preserving iris identification 
protocol based on IrisCode [28] and tested it on the CASIA Iris data-
base [29], containing 100 IrisCodes of 9,600 bits each. The resulting 
protocol needs 27.1 minutes on average for a single query on a com-
puter equipped with a 2.4-GHz processor. Such a large complexity is 
justified by the very large bit length of IrisCodes (9,600-bit), which 
are bitwise encrypted by means of the Paillier cryptosystem. A differ-
ent approach is presented in [30], where the authors use a hybrid 
(HE and GC) protocol for biometric identification and optimize it by 
precomputing most of the operations. Further improvements are 
obtained by optimizing the multiplication protocols and by using 
the DGK scheme [13] for comparison computation. A C  implemen-
tation of the protocol has been tested on a 2.13-GHz dual-core pro-
cessor obtaining results about 25% faster with respect to the same 
protocol implemented by using HE. Online computation times are 
summarized in Table 2. In particular, the comparison between two 
encrypted 2,048-bit IrisCodes requires only 0.15 seconds. 

In [31] and [10], the authors present an iris identification 
protocol based on two different full-GC implementations (more 
details are given in the next section). In [31], the authors run a 
Java implementation of the protocol on a client with a 2.66-GHz 
quad-core processor connected through a local area network 
with a server equipped with a 2-GHz processor. They tested the 
protocol on databases of different sizes n  obtaining a total 
bandwidth of .n n475 0 08 2+  kilobytes and a runtime of about  
2.4 seconds for each match. 

The protocol described in [10] has been implemented in Java 
and run on a machine mounting a 3.00-GHz processor over 
IrisCodes of the CASIA Iris database [29] represented with 9600 
and 2,048 bits. Thanks to offline computation of the circuit gar-
bling phase and circuit transmission, the matching between two 

IrisCodes represented with 2,048 bits needs 0.56 seconds and 
the transmission of 571 kilobytes, while the matching between 
two IrisCodes represented with 9,600 bits needs 2.5 seconds and 
the transmission of 2,655 kilobytes. 

We conclude this section by considering fingerprint matching. 
Given the necessity of working with finite-length feature vectors, 
most schemes proposed so far rely on the fingercode representa-
tion of fingerprints [32]. This is the case of the system proposed by 
Barni et al. [33], [34] implementing a Paillier-based identification 
protocol. The execution of the protocol on a database with 64 
identities takes about 16 seconds on a PC equipped with a 2.4-GHz 
dual-core processor. Fingerprint identification is also addressed in 
[30], where protocols similar to those used for iris recognition are 
used. With respect to [34], the implementation based on finger-
code is 35 times faster (client online runtime is 0.35 seconds while 
server’s one is 0.45 seconds). The protocol has been also adapted to 
operate on minutiae [35] (results in [32] reports an FAR lower 
than 1%), but runtimes increase significantly. Table 2 shows the 
performance of the protocol when 32 minutiae are used to 
represent the fingerprint. Yet another hybrid implementation is 
described in [36] for fingercode-based identification. Table 3 shows 
the online computation time obtained with a Java implementation 
running on two machines equipped with a 2.0-GHz processor. 

A somewhat different approach, relying on a different use of the 
available cryptographic primitives, has been proposed by Bringer 
et al. [20]. The new approach, called GSHADE, is based on a 
hybrid use of OT and GMW [37]. GMW is an SMPC primitive simi-
lar to Yao’s GCs. It implements the to-be-computed functionality 
as a binary circuit; however, it performs the secure evaluation by 
relying on shares rather than encrypted gates. GSHADE has been 
tested by running a C++ implementation on two computers with 
3.2-GHz precessor. By considering a database of 320 IrisCodes of 
2,048 bits each, the communication complexity of GSHADE is 
around three times larger than that of the hybrid protocol 
described in [30]. However, the GSHADE protocol is 35 times 
faster than the system presented in [30]. Similar results have been 
obtained with fingercodes (runtime improves by a factor 500 with 
respect to [36]) and eigenfaces (with a runtime improvement of a 
factor ranging from 66 to 100 with respect to [19]). 

With the increased popularity of FHE and SHE schemes, a few 
completely noninteractive solutions for privacy-preserving biomet-
ric recognition have been proposed. In [21], the first noninterac-
tive biometric authentication protocol, based on an integer 
extension of the SHE scheme described in [38], is presented. All 
the computation is moved on the server’s side, leaving only the 
encryption of the inputs and the decryption of the result to the 

[table 2] the Online PerfOrmanceS Of iriScODe-, fingercODe-, anD minutiae-baSeD  
fingerPrint iDentificatiOn [30]. SOme Of the OverheaDS DePenD On the Server’S DatabaSe Size,  
in which caSe the cOmPutatiOn are inDicateD Per recOrD (“/rec”).

Server runtime client runtime banDwiDth 
IRISCODE 89 mIllISECOnDS + 149.25 mIllISECOnDS/REC 0 mIllISECOnDS + 22.61 mIllISECOnDS/REC 0.5 kIlObytES + 19.9 kIlObytES/REC 

FIngERCODE 0.22 mIllISECOnDS + 1.42 mIllISECOnDS/REC 4.7 mIllISECOnDS + 1.08 mIllISECOnDS/REC 2.12 kIlObytES + 0.86 kIlObytES/REC
mInutIAE 6 mIllISECOnDS + 339 mIllISECOnDS/REC 25 mIllISECOnDS +1,876 mIllISECOnDS/REC 16 kIlObytES + 294 kIlObytES/REC
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client. With regard to complexity, a C++ implementation of the 
protocol has been run on a machine mounting a 3.30-GHz proces-
sor. With respect to an equivalent implementation based on the 
Pailler cryptosystem, the computational complexity is considerably 
reduced (59 seconds for Troncoso et al. implementation versus the 
420 seconds of an equivalent Paillier implementation), with the addi-
tional advantage of avoiding the interaction between the parties. On 
the other hand, due the larger expansion factor of a lattice-based 
cryptosystem like [38], the communication complexity is larger than 
the Paillier-based version: 393 megabytes in [21] and 16.4 megabytes 
for the Paillier-based version. Another authentication protocol based 
on SHE has been proposed in [39]. Thanks to a packed representa-
tion of the biometric templates, the protocol is able to compute the 
Hamming distance with only three products. Tests performed on a 
3.07-GHz processor show that only 18.10 milliseconds are necessary 
for distance computation, which is not only faster than the SHE-
based implementation of [21], but also faster than the Hamming dis-
tance computational time of SCiFI (310 milliseconds) [26] and [30] 
(150 milliseconds). In both [21] and [39], only the distance is com-
puted by means of SHE operating on integers. Such schemes permit 
only the computation of polynomial functions of the inputs, and they 
cannot be used for comparisons. For this reason, in [21] and [39] the 
final comparison is carried out in plain domain by the client. 

For completeness, we highlight that beyond papers strictly 
focusing on biometric recognition, other interesting privacy-pre-
serving applications that can be also applied to biometric protocols 
have been developed. For example, [40] presents a new scheme for 
a privacy-preserving evaluation of a sample set similarity 
(EsPRESSo) that can be used for iris matching, while in [41] the 
authors address privacy-aware media classification, and also face 
recognition, on public databases. 

Signal PrOceSSing OPtimizatiOn
Even if the development of more and more efficient cryptographic 
primitives and their adaptation to the specific needs of biometric-rec-
ognition protocols, has led to considerable complexity reduction, fur-
ther ways to reduce the complexity of SPED protocols are needed to 

match the requirements set by practical applications. A less explored, 
but promising, strategy is the optimization of the signal processing 
aspects of the algorithms to be implemented in a SPED fashion. Gen-
erally speaking, signal processing optimization can be carried out at 
three different levels: 1) the algorithmic level, 2) the feature choice 
and distance selection, and 3) the feature representation level. (While 
this classification is quite general, in some cases the various levels 
cannot be clearly identified and optimizations operating at different 
levels may depend on each other in a complex way.) In the first case, 
the matching algorithm is designed in such a way to avoid the opera-
tions that most complicate a SPED implementation. As an example, 
when considering an HE-based implementation, algorithm designers 
should try to minimize the use of nonlinear operations. With regard 
to feature and distance selection, it is desirable that the computation 
of distances between feature vectors can be easily implemented by 
means of the available STPC primitives. In identification scenarios, 
the number of distances to be computed grows linearly with the size 
of the database [31], calling for a careful design of this part of the 
protocol. The last optimization level concerns the size of the fea-
ture vector and the number of bits used to represent the feature 
values. Both aspects have a great impact on protocol efficiency. 
Investigating the relationship between the size of the feature vec-
tor and the number of bits used to represent it on one side and the 
accuracy of the matching process on the other side may lead to a 
significant simplification of the resulting protocol. Of course, all of 
the above considerations are not independent from the STPC 
primitives on which the protocol relies. Hence the preferable tool 
for each algorithm configuration must be selected among all the 
available SPED tools. As shown in the previous section, this is 
often a hard choice depending on many factors such as the band-
width and the latency of the network, the characteristics of the 
devices available at the client and server side, etc. 

In the following, the various optimization levels are 
described in more detail. For each level, we provide one or more 
practical examples of its use in a biometric-matching protocol. 

alGoritHm-lEvEl optimization
Given a matching algorithm, some optimizations can be applied 
to improve its performance, trying to avoid the operations that 
are most expensive when implemented in a SPED setting. 

In identification protocols, the complexity mainly depends 
on the number of biometric templates contained in the data-
base, since this directly affects the number of matches that 
must be computed. In the iris-recognition protocol presented in 
[31], the matching between two IrisCodes is based on a normal-
ized Hamming distance involving two iris masks (one for each 
iris template) that are used to remove the noninformative parts 
of the iris code, usually those impaired by reflexes, eyelashes, and 
shades. Given the binary nature of the IrisCode, a GC solution is 
very efficient with regard to Hamming distance computation, 
but the use of the two masks involves two nonfree AND gates for 
each bit, approximately tripling the complexity of the modified 
Hamming distance circuit. The idea put forward in [31] is to 
reduce the database size through a filtering phase during which 
only the most promising templates are selected. The nonmasked 

[table 3] Online PerfOrmanceS Of the fingercODe 
iDentificatiOn PreSenteD in [36].

DatabaSe Size
running time 
 (SecOnDS)

banDwiDth 
(KilObyteS)

128 2.22 966.84 
256 4.33 1,927.71 
512 9.12 3,849.48 
1,024 18.11 7,692.98 

[table 4] falSe rejectiOn rateS (frrs) Of [31] 
 accOrDing tO the number Of biOmetric temPlateS 
SelecteD in the filtering PhaSe amOng the 2,710 
elementS in the DatabaSe.

1k = 10k =  20k = nO filter 
19.5% 8.2% 6.1% 3.1%
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Hamming distance is evaluated on a subset of 128 bits, whose 
position is chosen between the usually unmasked bits, selected 
in the query and all the n  templates in the database. Then the 
randomized indexes of the k  templates with the smallest dis-
tances are passed to the client. After the filtering phase, C  and 
S  run an identification protocol where the masks are used to 
refine the distance computation and the input secrets of the k  
templates and masks are retrieved by C  through an OT proto-
col. Thanks to the above solution, the complexity of the proto-
col is significantly reduced: with /k n 10.  a total bandwidth of 

.n n475 0 08 2+  kilobytes is reported, which is considerably 
lower than the . n3 6  megabytes needed for an exhaustive com-
parison. On the negative side, the protocol does not guarantee 
that the correct biometrics are selected for the second phase, 
hence decreasing the accuracy of the identification. Table 4 
shows the FRRs with different values of k  and without filtering. 

A different algorithmic optimization for iris-based identifica-
tion has been proposed in [10]. It relies on the use of a common 
mask, estimated from all the masks associated to the IrisCodes in 
the database. Given a data set, the distribution of the mask over-
lap regions is computed. Figure 3(a) shows that masks from the 
same individuals have larger overlap than those from different 
individuals, concluding that among all masks, those of each indi-
vidual have larger intercorrelation. On the other hand, as shown 
in Figure 3(a), masks also belonging to different individuals are 
quite similar. By relying on this observation, the authors pro-
posed to simplify the circuit implementing the masked distance 
by using a common mask for all the IrisCodes. The common 
mask is set to “1” at all bit positions, where the percentage of the 
prealigned masks equal to “1” at those positions exceeds an 
empirically determined threshold .m  The common masks do not 
reveal information about the single templates in the database and 
can be publicly disclosed. Figure 3(b) and (c) shows the distribu-
tion of the distance when using individual masks and a common 
mask, respectively. By using a common mask, built by setting 

. ,0 8m =  the overlap between the two distributions increases. 
Anyway, the best result with individual masks are obtained by 
using a similarity threshold f  between the iris templates equal to 

. ,0 41  providing an FAR equal to 0.53% and an FRR equal to 
0.54%. By using a common mask, the best FAR and FRR are 
1.44% and 1.47%, respectively, obtained with . ,0 43f =  resulting 
in an accuracy loss lower than 1%. The protocol has been tested 
on two different data sets, one containing IrisCodes represented 
with 2,048 bits and the other containing IrisCodes represented 
with 9,600 bits. By using a common mask, a speedup factor of up 
to 8.7 can be achieved in the first data set and a speedup factor of 
up to 4.7 in the second one. In both cases the bandwidth is 
reduced by a factor ~ . .4 3  As reported in the original paper [10],  
the online time for an iris match is 65 milliseconds and requires 
the transmission of 133.7 kilobytes. 

Another example of algorithmic optimization has been pro-
posed in the SHE-based face recognition protocol described in 
[21]. The authors use a Gabor filter (a linear filter used for edge 
detection) to build the feature vector. To minimize the amount of 
data to be processed, they discard the phase information and use a 
novel statistical characterization to model the magnitude of Gabor 
coefficients. Moreover, coefficient representation does not rely on 
quantization as usual but is obtained by dividing the probability 
density function into 2,  numbered sections. A coefficient is repre-
sented through the index of the segment to  which it belongs. The 
authors compared the performance of such an indexing procedure 
with classical quantization-based schemes while varying the coeffi-
cient bit length. Experiments were run on several databases. Results 
obtained on the XM2VTS data set [42] show that 4 bits are sufficient 
to produce a much better fit, equaling the original performance of 
[42] (~ %96 ) when using a support vector machine (SVM) imple-
mented as a weighted distance, while the accuracy decreases by 
~ %3  if no SVM is used. On the other hand, the server runtime 
increases from 59 to 120 seconds when an SVM is used. 

fEaturE and distancE cHoicE
The choice of the features used to represent the biometric tem-
plates has a major impact on the complexity of SPED biometric 
matching protocols, due to the strict correlation between the 
type of features used to represent the biometric signals and the 
distance function used to evaluate the match. Let us consider, 
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for example, fingerprint matching. The most popular and effi-
cient matching algorithms are based on minutiae. However, in 
[33] and [34] the authors chose the fingercode representation. 
Even if the experiments show that filter-based matchers such as 
the fingercode tend to perform slightly worse than state-of-the-art 
minutiae-based matchers, the fingercode matching function has a 
much lower computational complexity and is more suitable for 
being implemented in an STPC setting. On the contrary, a privacy-
preserving protocol operating on minutiae would be difficult to 
implement, mainly due to the variable length of the feature vector 
and the lack of a simple distance measure between minutiae fea-
tures. The intuition of [33] and [34] was later validated in [30], 
wherein a hybrid implementation of both fingercode and minutia 
based identification protocols is described. As shown in Table 2, 
the runtime of the protocol based on minutiae is 100 times higher 
than that of the fingercode protocol. 

Another example of protocol simplification through feature selec-
tion is the SCiFI protocol for face recognition [26]. The representa-
tion used by SCiFI is based on the idea of composing a face as a 
collection of fragments taken from a dictionary of facial features. The 
resulting feature vector consists of two parts: the first part with the 
indexes of the dictionary fragments that better represent the face, the 

second one with the position of each part with respect to the face 
center. The feature vector is then represented as a fixed length binary 
vector and matching is carried out by relying on the Hamming dis-
tance. Authors compared SCiFI with eigenface-based recognition 
[19] by evaluating its robustness to various factors such as large illu-
mination variation and near-frontal changes in pose, mild facial 
expressions, and mild illumination changes. The results shown in 
Figure 4, where the recognition rate is plotted as a function of the 
false positive rate, demonstrate that is possible to improve the accu-
racy of the face recognition protocol, while, thanks to extensive 
precomputation, the online execution time required for the match of 
a query and a face in the database is reduced to about 0.31 seconds. 

fEaturE vEctor sizE  
and rEprEsEntation accuracy
A further simplification can be obtained by decreasing the number 
of features used to represent the biometric template and the num-
ber of bits used to represent each feature. One example of such an 
approach is the HE face-recognition protocol proposed by Erkin et 
al. [19]. The signal processing analysis is limited to the definition 
of the scaling factor used to quantize the parameters of the proto-
col (which in turns determines the number of bits used to repre-
sent the parameters and hence the accuracy of the representation) 
and the number k  of features used to represent a face. The 
authors aimed to obtain the same classification accuracy provided 
by a standard plain implementation—a correct recognition rate 
equal to 96%. As shown in Figure 5, such a goal is reached with 
a scaling factor ~ ,1 000. Moreover, experiments proved that no 
improvement is observed by using .k 122  By relying on such 
an analysis, the authors show that matching a face image against 
a database of 320 biometrics takes roughly 40 seconds and 
requires the transmission of 7,249 kilobytes (see Table 1). 

A more accurate signal processing analysis has been per-
formed in the fingerprint recognition protocol described in [33]. 
Considering that a protocol computing the squared Euclidean 
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distances on 640 features would have a very high complexity, the 
authors checked if a lower number of features can be used with-
out degrading significantly the matching accuracy and selected 
the minimum number of bits necessary to represent each feature. 
To this purpose, the matching algorithm was tested by using 
eight different fingercode configurations (Table 5) and varying the 
feature bit length between 1 and 8. Figure 6 shows the behavior of 
the equal error rate (EER) on the test set. As highlighted in the 
figure, it is evident that the accuracy of the system does not 
improve significantly when more than 96 features, each repre-
sented with 2 bits, are used. At the same time, the EER increases 
when only 1 bit is used for the representation, thus impeding the 
use of a more efficient protocol based on the Hamming distance. 
By the light of the above considerations, the authors chose to 
focus on configurations C and D, with 2 or 4 bits for feature rep-
resentation. The results obtained in [33] are reported in Table 6. 
Moving from 192 features to 96 features and halving the number 
of bits, we observe a significant simplification of the protocol, 
with only a minor decrease of matching accuracy. 

To improve the efficiency of a protocol, it is also possible to 
work on the representation of intermediate values. For example 
in the HE and GC hybrid protocols described in [36], the authors 
modify the protocol to use a more compact representation of 
intermediate distances. They assume that the acceptance thresh-
old and its bit length l  are publicly known. After computing a 
distance by means of an HE protocol, they start the GC section 
by checking if the distance is greater than 2l . In this case, the 
distance value is replaced with the threshold. In such a way the 
minimum selection circuit can operate on shorter values hence 
reducing the total number of gates (results are given in Table 3). 

cOncluSiOnS
As shown throughout this article, processing biometric signals 
in the encrypted domain provides an elegant and provably secure 

mechanism to protect both the biometric data and the privacy of 
the individuals subject to biometric controls. Thanks to the use 
of STPC cryptographic primitives, biometric matching algo-
rithms can be implemented in such a way that the parties 
involved in the matching do not get access to either the data 
owned by the other party or the result of the match. From a dec-
ade of research in the field, it is now well evident that the ques-
tion is not whether a certain computation can be carried out in 
the encrypted domain, but whether such a computation can be 
carried out efficiently. 

While the quest for efficiency has driven the agenda of 
researchers in the last years, research has been mainly focused 
on the development of more efficient STPC primitives and their 
use to implement conventional biometric matching algorithms 
in a SPED framework. We believe, though, that significant 
advantages can also be obtained by working at the signal pro-
cessing level or, even better, by jointly considering the crypto-
graphic and signal processing facets of the problem. It was the 
goal of this article to introduce the readers to the main concepts 
behind SPED biometric matching and to show how a clever 
design of the underlying matching protocol may help to fill the 
gap between the complexity of SPED protocols and the effi-
ciency required for the deployment of such protocols in real sys-
tems. We hope that the readers appreciate our effort and will 
contribute to the future advancement of this exciting field. 
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cOnfig.
feature
bit length eer

banDwiDth 
(bitS)
408 entrieS

runtime 
(SecOnDS)
100 entrieS
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[table 5] the cOnfiguratiOn fOr feature Size 
reDuctiOn in fingercODe PrOtOcOl [33].
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