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Abstract— Optimum decision fusion in the presence of mali-
cious nodes—often referred to as Byzantines—is hindered by the
necessity of exactly knowing the statistical behavior of Byzantines.
In this paper, we focus on a simple, yet widely adopted, setup in
which a fusion center (FC) is asked to make a binary decision
about a sequence of system states by relying on the possibly
corrupted decisions provided by local nodes. We propose a
game-theoretic framework, which permits to exploit the superior
performance provided by optimum decision fusion, while limiting
the amount of a priori knowledge required. We use numerical
simulations to derive the optimum behavior of the FC and
the Byzantines in a game-theoretic sense, and to evaluate the
achievable performance at the equilibrium point of the game.
We analyze several different setups, showing that in all cases,
the proposed solution permits to improve the accuracy of data
fusion. We also show that, in some cases, it is preferable for
the Byzantines to minimize the mutual information between the
status of the observed system and the reports submitted to the
FC, rather than always flipping the decision made by the local
nodes.

Index Terms— Adversarial signal processing, Byzantine nodes,
distributed detection with corrupted reports, decision fusion, data
fusion in malicious settings, game theory, dynamic programming.

I. INTRODUCTION

DECISION fusion for distributed detection in the pres-
ence of malicious nodes, often referred to as Byzanti-

nes [1], has received an increasing attention for its importance
in several application scenarios, including wireless sensor
networks [2], [3], cognitive radio [4]–[7], distributed
detection [8], [9], multimedia forensics [10] and many others.

The most commonly studied scenario is the parallel dis-
tributed data fusion model. According to such a model, the
n nodes of a multi-sensor network collect information about
a system through the observation vectors x1, x2 . . . xn . Based
on the observation vectors, the nodes compute n reports and
send them to a Fusion Center (FC). The fusion center gathers
the local reports and makes a final decision about the state
of the system. In the setup considered in this paper, the state
of the system is represented by a sequence sm = (s1, s2 . . . sm).
The m components of sm may correspond to the state of the
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system at different time instants or to several characteristics
of a complex system. Spectrum sensing in cognitive radio
networks is a typical example of the above scenario: the
observed system is the frequency spectrum of a primary
communication network, while sm may correspond to the state
of the spectrum (busy or idle) at different time instants, or
to the state of different frequency channels. An additional
example is provided by online reputation systems. In such
systems, the FC must compute the global rating of a good or
a service by relying on the feedback and ratings coming from
users, whom, in turn, could be interested to provide a biased
feedback in order to increase or decrease the reputation of an
item [11].

Hereafter we assume that each component of sm can take
only two values (si ∈ {0, 1}). Additionally, we make the
simplifying assumption that the reports correspond to local
decisions made by the nodes about the system state. Specifi-
cally, we indicate by ri j ∈ {0, 1}, i = 1 . . . n, j = 1 . . . m the
report sent by node i regarding the j -th component of sm .

Decision fusion must be carried out in an adversarial setting,
that is by taking into account the possibility that some of the
nodes malevolently alter their reports to induce a decision
error. This is a recurrent situation in many scenarios where
a decision error results in a profit for the nodes (see [1] for a
general introduction to this topic). To be specific, we assume
that the nodes do not know the exact state of the system, so
they estimate it based on the observation vectors xi ’s. Let us
denote with ui j the binary decision made by node i regarding
the j -th component of sm . While for honest nodes ri j = ui j ,
malicious nodes flip ui j with a certain probability Pmal , so that
ui j �= ri j with probability Pmal . Hereafter, we assume that the
same probability Pmal is used by all malicious nodes and for
all the components of sm , that is Pmal does not depend either
on i1 or j . A pictorial representation of the setup analyzed in
this paper is given in Figure 1.

A. Prior Work
In a simplified and widely adopted version of the problem,

the FC makes its decision on s j by looking only at the cor-
responding reports, i.e. (r1 j , r2 j . . . rnj ). This is a reasonable
assumption in some applications, e.g., when the components
of sm correspond to the state of the observed system at
different time instants, and a decision must be made as soon
as the reports regarding the state at time j are available.

1Of course, assuming that the i-th node is a Byzantine, otherwise we
obviously have Pmal = 0.

1556-6013 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1334 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 11, NO. 6, JUNE 2016

Fig. 1. Sketch of the adversarial decision fusion scheme.

In the absence of Byzantines, the optimum way to combine
the local decisions according to the Bayesian approach has
been determined in [12] and [13], and is known as Chair-
Varshney rule. If local error probabilities are symmetric and
equal across the nodes, Chair-Varshney rule corresponds to a
simple majority-bases decision.

When Byzantines are present, the application of
Chair-Varshney rule requires that the position of the byzantine
nodes is known, along with the flipping probability Pmal ,
an information that is rarely available, thus forcing the FC to
adopt suboptimal fusion strategies. In [8], decision fusion
is framed into a Neyman-Pearson setup and the asymptotic
performance of the system when the number of nodes tends
to infinity are analyzed as a function of the percentage of
corrupted reports. As a result, the fraction of Byzantines
impeding any correct decision is determined. Another
noticeable aspect of [8] is that the Byzantines are assumed to
cooperate among them to infer the exact status of the system
and corrupt their reports accordingly. The analysis carried
out in [8] is extended in [5], where the interplay between
the strategy adopted by the Byzantines to attack the system
and the fusion rule adopted by FC together with the local
decision strategy used by honest nodes is modeled as a zero
sum game, whose payoff is either the overall error probability
or the divergence between the probability mass function
(pmf) of the observed reports under the hypothesis that s = 0
and s = 1. Even in [5], the authors determine the minimum
fraction of Byzantines impeding any correct decision with
both cooperative and noncooperative Byzantines.

Better results can be obtained if the FC collects all the
reports and estimate the state vector as a whole. In a cognitive
radio scenario, for instance, this corresponds to decide about
spectrum occupancy over an entire time window, or, more
realistically, to jointly decide about the state of the spectrum
at different frequency slots. As an example, the FC may try
to identify the malicious nodes by measuring the similarity
(or dissimilarity) between the submitted reports and use such
an estimate to ignore the reports coming from suspect nodes
in the decision fusion process. Such an approach, which is
usually referred to as Byzantine isolation [1], is adopted
in [5]. According to such a work, all the components of the
state vector are analyzed to assign to each node a reputation

measure which is eventually used to isolate the byzantine
nodes, which are identified as the nodes with a low reputation.
A different isolation scheme based on adaptive learning is
described in [14], where the observed behavior of the nodes
is compared with the expected behavior of honest nodes.
A peculiarity of this scheme is that it works even when
the majority of the nodes are byzantine, but it requires
very long state vectors to achieve good performances. Better
performance can be obtained if some additional knowledge
about the Byzantine behavior is available, as in [15], where
the knowledge about Pmal and the number of Byzantines in
the networks is exploited to develop a soft isolation scheme.
As in [16], a game theoretic approach is used to determine
the optimum strategies for the Byzantines and the FC. This
corresponds to determining the optimum value of Pmal for
the Byzantines and the value of some internal parameters
of the isolation scheme for the FC. As in that work, it
turns out that setting Pmal = 1 is a dominant strategy for
the Byzantines. Tolerant schemes which mitigate the impact
of Byzantines in the decision, instead of removing them,
have also been proposed, like in [17], where the reports are
weighted differently according to the reputation score of the
nodes.

B. Contribution

Our research starts from the observation that the knowledge
of Pmal and the probability distribution of Byzantines across
the network will allow the derivation of the optimum decision
fusion rule, thus permitting to the FC to obtain the best
achievable performance. We also argue that, in the presence
of such an information, discarding the reports received from
suspect nodes is not necessarily the optimum strategy, since
such reports may still convey some useful information about
the status of the system. This is the case, for instance, when
Pmal = 1. If the FC knows the identity of byzantine nodes, in
fact, it only needs to flip the reports received from such nodes
to cancel the Byzantines’ attack. In this sense, the method
proposed in [15] is highly suboptimal, since it does not fully
exploit the knowledge of Byzantine distribution and Pmal .

As a first step, we derive the optimum decision fusion
rule when the FC knows both the probability distribution of
Byzantines and Pmal . Our analysis goes along a line which
is similar to that used in [12] to derive the Chair-Varshney
optimal fusion rule. As a matter of fact, by knowing Pmal and
assuming that the probability that a node is Byzantine is fixed
and independent on the other nodes, the Chair-Varshney rule
can be easily extended to take into account the presence of
Byzantines. In contrast to [12], however, the optimal fusion
rule we derive in this paper, makes a joint decision on the
whole sequence of states hence permitting to improve the
decision accuracy. Furthermore, the analysis is not limited
to the case of independently distributed Byzantines. We also
describe an efficient implementation of the optimum fusion
strategy based on dynamic programming.

Starting from the optimum decision fusion rule, and as
a main contribution, we focus on the a-priori knowledge
required to implement the optimum rule, namely Pmal and the
distribution of Byzantines across the network. In order to cope
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with the lack of knowledge regarding Pmal , we introduce a
game-theoretic approach according to which the FC arbitrarily
sets the value of Pmal to a guessed value P FC

mal and uses such
a value within the optimum fusion rule. At the same time,
the Byzantines choose the value of Pmal so to maximize the
error probability, without knowing the value of P FC

mal used by
the fusion center. The payoff is defined as the overall error
probability, with the FC aiming at minimizing it, while the
goal of the Byzantines is to maximize it. Having defined the
game, we use numerical simulations to derive the existence of
equilibrium points, which then identify the optimum behavior
for both the FC and the Byzantines in a game-theoretic
sense. While the adoption of a game-theoretic framework
to model decision fusion in the presence of Byzantines has
been used before, its adoption as an alternative to optimum
decision fusion in the absence of precise information about
Byzantines behavior is a novel contribution of this work.
With regard to the knowledge that the FC has about the
distribution of Byzantines, we consider several cases, ranging
from a maximum entropy scenario in which the uncertainty
about the distribution of Byzantines is maximum, through a
more favorable situation in which the FC knows the exact
number of Byzantines present in the network.

As a further contribution, we use numerical simulations to
get more insights into the optimum strategies at the equilib-
rium and the achievable performance under various settings.
The simulations show that in all the analyzed cases, the
performance at the equilibrium outperform those obtained
in previous works (specifically in [5] and [15]). Simulation
results also confirm the intuition that, in some instances,
it is preferable for the Byzantines to minimize the mutual
information between the status of the observed system and
the reports submitted to the FC, rather than always flipping
the decision made by the local nodes as it is often assumed
in previous works. This is especially true when the length of
the observed sequence and the available information about the
Byzantine distribution allow a good identification of byzantine
nodes.

The rest of this paper is organized as follows. In Section II,
we derive the optimum fusion rule under different assumptions
on the distribution of Byzantines. In Section III, we propose
an efficient implementation of the optimum fusion rule based
on dynamic programming. In Section IV, we introduce the
game-theoretic framework modeling the interplay between the
Byzantines and the FC. In Section V, we present simulations
results and discuss optimum attacking and fusion strategies in
various settings. We conclude the paper in Section VI with
some final remarks.

II. OPTIMUM FUSION RULE

In the rest of the paper, we will use capital letters to denote
random variables and lowercase letters for their instantiations.
Given a random variable X , we indicate with PX (x) its prob-
ability mass function (pmf). Whenever the random variable
the pmf refers to is clear from the context, we will use the
notation P(x) as a shorthand for PX (x).

With the above notation in mind, we let Sm = (S1,
S2 . . . Sm) indicate a sequence of independent and identically

distributed (i.i.d.) random variables indicating the state of the
system. The independence of the different components of the
state vector is a reasonable assumption in several scenarios,
e.g. when they represent the status of the frequency spec-
trum of a cognitive radio system at different frequencies [5].
We assume that all states are equiprobable, that is PS j (0) =
PS j (1) = 0.5. We denote by Uij ∈ {0, 1} the local decision
made by node i about Sj . We exclude any interaction between
the nodes and assume that Uij ’s are conditionally independent
for a fixed status of the system. This is equivalent to assuming
that the local decision errors are i.i.d.

With regard to the position of the Byzantines, let
An = (A1 . . . An) be a binary random sequence in which
Ai = 0 (res. Ai = 1) if node i is honest (res. byzantine).
The probability that the distribution of Byzantines across the
nodes is an is indicated by PAn (an) or simply P(an).

Finally, we let R = {Rij }, i = 1 . . . n, j = 1 . . . m
be a random matrix with all the reports received by the
fusion center. Accordingly, we denote by r = {ri j } a specific
instantiation of R. As stated before, Rij = Uij for honest
nodes, while P(Rij �= Uij ) = Pmal for byzantine nodes.
Byzantine nodes flip the local decisions Uij independently of
each other with equal probabilities, so that their action can
be modeled as a number of independent binary symmetric
channels with crossover probability Pmal .

We are now ready to derive the optimum decision rule
on the sequence of states at the FC. We stress that, while
considering a joint decision on the sequence of states does
not give any advantage in the non-adversarial scenario with
i.i.d. states, such an approach permits to improve the accuracy
of the decision in the presence of byzantine nodes. Given the
received reports r and by adopting a maximum a posteriori
probability criterion, the optimum decision rule minimizing
the error probability can be written as:

sm,∗ = arg max
sm

P(sm |r). (1)

By applying Bayes rule and exploiting the fact that all state
sequences are equiprobable we obtain:

sm,∗ = arg max
sm

P(r|sm). (2)

In order to go on, we condition P(r|sm) to the knowledge
of an and then average over all possible an:

sm,∗ = arg max
sm

∑

an

P(r|an, sm)P(an) (3)

= arg max
sm

∑

an

( n∏

i=1

P(ri |ai , sm)

)
P(an) (4)

= arg max
sm

∑

an

( n∏

i=1

m∏

j=1

P(ri j |ai , s j )

)
P(an), (5)

where ri indicates the i -th row of r. In (4) we exploited the
fact that, given an and sm , the reports sent by the nodes
are independent of each other, while (5) derives from the
observation that each report depends only on the corresponding
element of the state sequence.

It goes without saying that in the non-adversarial case
(P(an) = 1 for an = (0, · · · , 0) and 0 otherwise) the
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maximization in (5) is equivalent to the following component-
wise maximization

s∗
j = arg max

s j

n∏

i=1

P(ri j |s j ), ∀ j = 1, · · · , m, (6)

which corresponds to the Chair-Varshney rule.
We now consider the case in which the probability of a

local decision error, say ε, is the same regardless of the system
status, that is ε = Pr(Uij �= Sj |Sj = s j ), s j = 0, 1. For a
honest node, such a probability corresponds to the probability
that the report received by the FC does not correspond to the
system status. This is not the case for byzantine nodes, for
which the probability δ that the FC receives a wrong report is

δ = ε(1 − Pmal) + (1 − ε)Pmal . (7)

According to the above setting, the nodes can be modeled
as binary symmetric channels, whose input corresponds to
the system status and for which the crossover probability is
equal to ε for the honest nodes and δ for the Byzantines.
With regard to ε, it is reasonable to assume that such a
value is known to the fusion center, since it depends on
the characteristics of the channel through which the nodes
observe the system and the local decision rule adopted by the
nodes. The value of δ depends on the value of Pmal which is
chosen by the Byzantines and then is not generally known to
the FC. As we outlined in Section I-B, we will first derive the
optimum fusion rule assuming that Pmal is known and then
relax this assumption by modeling the problem in a game-
theoretic framework (see Section IV).

From (5), the optimum decision rule can be written:

sm,∗ = arg max
sm

∑

an

( ∏

i:ai =0

(1 − ε)meq (i)εm−meq (i)

∏

i:ai =1

(1 − δ)meq (i)δm−meq (i)
)

P(an), (8)

where meq(i) is the number of j ’s for which ri j = s j .
As a notice, when there are no Byzantines in the network,

the optimum decision in (8) boils down to the majority rule.
To go on with the study of the adversarial setup we need

to make some assumptions on P(an).

A. Unconstrained Maximum Entropy Distribution

As a worst case scenario, we could assume that the FC
has no a-priori information about the distribution of Byzan-
tines. This corresponds to maximizing the entropy of An ,
i.e. to assuming that all sequences an are equiprobable,
P(an) = 1/2n . In this case, the random variables Ai are inde-
pendent of each other and we have PAi (0) = PAi (1) = 1/2.
It is easy to argue that in this case the Byzantines may impede
any meaningful decision at the FC. To see why, let us assume
that the Byzantines decide to use Pmal = 1. With this choice,
the mutual information between the vector state Sm and R is
zero and so any decision made by the FC center would be
equivalent to guessing the state of the system by flipping a
coin. The above observation is consistent with previous works
in which it is usually assumed that the probability that a node

is Byzantine or the overall fraction of Byzantines is lower
than 0.5, since otherwise the Byzantines would always succeed
to blind the FC [1].

B. Constrained Maximum Entropy Distributions

A second possibility consists in maximizing the entropy
of An subject to a constraint which corresponds to the
a-priori information available to the fusions center. We con-
sider two cases. In the first one the FC knows the expected
value of the number of Byzantines present in the network, in
the second case, the FC knows only an upper bound of the
number of Byzantines. In the following, we let NB indicate
the number of Byzantines present in the network.

1) Maximum Entropy With Given E[NB ]: Let
α = E[NB ]/n indicate the expected fraction of
Byzantines nodes in the network. In order to determine
the distribution P(an) which maximizes H (An) subject to α,
we observe that E[NB ] = E[∑i Ai ] = ∑

i E[Ai ] = ∑
i μAi ,

where μAi indicates the expected value of Ai . In order to
determine the maximum entropy distribution constrained to
E[NB ] = αn, we need to solve the following problem:

max
P(an):∑i μAi =nα

H (An). (9)

We now show that the solution to the above maximization
problem is obtained by letting the Ai ’s to be i.i.d. random
variables with μAi = α. We have:

H (An) ≤
∑

i

H (Ai) =
∑

i

h(μAi ), (10)

where h(μAi ) denotes the binary entropy function2 and where
the last equality derives from the observation that for a binary
random variable A, μA = PA(1). We also observe that equality
holds if and only if the random variables Ai ’s are independent.
To maximize the rightmost term in equation (10) subject to∑

i μAi = nα, we observe that the binary entropy is a concave
function [18], and hence the maximum of the sum is obtained
when all μAi ’s are equal, that is when μAi = α.

In summary, the maximum entropy case with known average
number of Byzantines, corresponds to assuming i.i.d. node
states for which the probability of being malicious is constant
and known to the FC.3 We also observe that when α = 0.5, we
go back to the unconstrained maximum entropy case discussed
in the previous section.

Let us assume, then, that Ai ’s are Bernoulli random
variables with parameter α, i.e., PAi (1) = α, ∀i . In this
way, the number of Byzantines in the network is a random
variable with a binomial distribution. In particular, we have
P(an) = ∏

i P(ai ), and hence (4) can be rewritten as:

sm,∗ = arg max
sm

∑

an

( n∏

i=1

P(ri |ai , sm)P(ai )

)
. (11)

The expression in round brackets corresponds to a factoriza-
tion of P(r, an |sm). If we look at that expression as a function
of an , it is a product of marginal functions. By exploiting the

2For any p ≤ 1 we have: h(p) = p log2 p + (1 − p) log2(1 − p).
3Sometimes this scenario is referred to as Clairvoyant case [5].
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distributivity of the product with respect to the sum we can
rewrite (11) as follows

sm,∗ = arg max
sm

n∏

i=1

( ∑

ai∈{0,1}
P(ri |ai , sm)P(ai )

)
, (12)

which can be computed more efficiently, especially for large n.
The expression in (12) can also be derived directly from (2)
by exploiting first the independence of the reports and then
applying the law of total probability. By reasoning as we did
to derive (8), the to-be-maximized expression for the case of
symmetric error probabilities at the nodes becomes

sm,∗ = arg max
sm

n∏

i=1

[
(1 − α)(1 − ε)meq (i)εm−meq (i)

+ α(1 − δ)meq (i)δm−meq (i)
]
. (13)

Due to the independence of node states, the complexity of
the above maximization problem grows only linearly with n,
while it is exponential with respect to m, since it requires
the evaluation of the to-be-minimized function for all possible
sequence sm . For this reason, the optimal fusion strategy can
be adopted only when the length of the state sequence is
limited.

2) Maximum Entropy With NB < h: As a second possibil-
ity, we assume that the FC knows only that the number of
Byzantines NB is lower than a certain value h (h ≤ n). For
instance, as already observed in previous works [1], [5], [19],
when the number of Byzantines exceeds the number of honest
nodes no meaningful decision can be made. Then, as a worst
case assumption, it makes sense for the FC to assume that
NB < n/2 (i.e., h = n/2), since if this is not the case, no
correct decision can be made anyhow. Under this assumption,
the maximum entropy distribution is the one which assigns
exactly the same probability to all the sequences an for which∑

i ai < n/2. More in general, the FC might have some
a priori knowledge on the maximum number of corrupted
(or corruptible) links in the network, and then he can constraint
NB to be lower than H with h < n/2. To derive the optimum
fusion strategy in this setting, let I be the indexing set
{1, 2, ..., n}. We denote with Ik the set of all the possible
k-subsets of I. Let I ∈ Ik be a random variable with the
indexes of the byzantine nodes, a node i being byzantine if
i ∈ I , honest otherwise. We this notation, we can rewrite (3)
as

sm,∗ = arg max
sm

h−1∑

k=0

∑

I∈Ik

P(r|I, sm )p(sm), (14)

where we have omitted the term P(I ) (or equivalently P(an))
since all the sequences for which NB < h have the same
probability. In the case of symmetric local error probabilities,
(14) takes the following form:

sm,∗ = arg max
sm

h−1∑

k=0

∑

I∈Ik

(∏

i∈I

(1 − δ)meq (i)δm−meq (i)

∏

i∈I\I

(1 − ε)meq (i)εm−meq (i)
)

. (15)

Since, reasonably, h is a fraction of n, a problem with (15) is
the complexity of the inner summation, which grows exponen-
tially with n (especially for values of k close to h). Together
with the maximization over all possible sm , this results in
a doubly exponential complexity, making the direct imple-
mentation of (15) problematic. In Section III, we introduce
an efficient algorithm based on dynamic programming which
reduces the computational complexity of the maximization
in (15).

We conclude by stressing an important difference between
the case considered in this subsection and the maximum
entropy case with fixed E[NB ], with the same average number
of Byzantines. In the setting with a fixed E[NB ] (< n/2) there
is no guarantee that the number of Byzantines is always lower
than the number of honest nodes, as it is the case in the setting
analyzed in this subsection when h ≤ n/2. This observation
will be crucial to explain some of the results that we will
present later on in the paper.

C. Fixed Number of Byzantines

The final setting we are going to analyze assumes that
the fusion center knows the exact number of Byzantines, say
nB . This is a more favorable situation with respect to those
addressed so far. The derivation of the optimum decision
fusion rule stems from the observation that, in this case,
P(an) �= 0 only for the sequence for which

∑
i ai = nB .

For such sequences, P(an) is constant and equal to
( n

nB

)−1.
By using the same notation used in the previous section, the
optimum fusion rules, then, is:

sm,∗ = arg max
sm

∑

I∈InB

P(r|I, sm)p(sm), (16)

which reduces to

sm,∗ = arg max
sm

∑

I∈InB

( ∏

i∈I

(1 − δ)meq (i)δm−meq (i)

∏

i∈I\I

(1 − ε)meq (i)εm−meq (i)
)

, (17)

in the case of equal local error probabilities. With regard
to computational complexity, even if the summation over
all possible number of Byzantines is no more present, the
direct implementation of (17) is still very complex due to the
exponential dependence of the cardinality of InB with respect
to n.

III. AN EFFICIENT IMPLEMENTATION BASED

ON DYNAMIC PROGRAMMING

The computational complexity of a direct implementation
of (15) and (17) hinders the derivation of the optimum decision
fusion rule for large size networks. Specifically, the problem
with (15) and (17) is the exponential number of terms of the
summation over Ik (InB in (17)). In this section, we show that
an efficient implementation of such summations is possible
based on Dynamic Programming (DP) [20].

Dynamic programming is an optimization strategy which
allows to solve complex problems by transforming them into
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subproblems and by taking advantage of the subproblems
overlap in order to reduce the number of operations. When
facing with complex recursive problems, by using dynamic
programming we solve each different subproblem only once by
storing the solution for subsequent use. If during the recursion
the same subproblem is encountered again, the problem is not
solved twice since its solution is already available. Such a
re-use of previously solved subproblems is often referred in lit-
erature as memoization algorithm [20]. Intuitively, DP allows
to reduce the complexity of problems with a structure, such
that the solutions of the same subproblems can be reused many
times.

We now apply dynamic programming to reduce the com-
plexity of our problem. Let us focus on a fixed k (and n) and
let us define the function fn,k as follows:

fn,k =
∑

I∈Ik

( ∏

i∈I

(1 − δ)meq (i)δm−meq (i)

∏

i∈I\I

(1 − ε)meq (i)εm−meq (i)
)

. (18)

By focusing on node i , there are some configurations
I ∈ Ik for which such a node belongs to I , while for others
the node belongs to the complementary set I \ I . Let us define
b(i) = (1−δ)meq(i)δm−meq (i) and h(i) = (1−ε)meq(i)εm−meq (i),
which are the two contributions that node i can provide to
each term of the sum, depending on whether it belongs to
I or I\ I . Let us focus on the first indexed node. By exploiting
the distributivity of the product with respect to the sum,
expression (18) can be rewritten in a recursive manner as:

fn,k = b(1) fn−1,k−1 + h(1) fn−1,k . (19)

By focusing on the second node, we can iterate on
f (n − 1, k − 1) and f (n − 1, k), getting:

fn−1,k−1 = b(2) fn−2,k−2 + h(2) fn−2,k−1, (20)

and

fn−1,k = b(2) fn−2,k−1 + h(2) fn−2,k . (21)

We notice that the subfunction fn−2,k−1 appears in
both (20) and (21) and then it can be computed only once. The
procedure can be iterated for each subfunction until we reach
a subfunction whose value can be computed in closed form,
that is: fr,r = ∏n

i=n−r+1 b(i) and fr,0 = ∏n
i=n−r+1 h(i), for

some r ≤ k. By applying the memoization strategy typical of
dynamic programming, the number of required computations
is given by the number of nodes in the tree depicted in
Figure 2, where the leaves correspond to the terms computable
in closed form.4 By observing that the number of the nodes of
the tree is k(k+1)/2+k(n−k−k)+k(k+1)/2 = k(n−k+1),
we conclude that the number of operations is reduced from

(n
k

)

to k(n − k + 1), which corresponds to a quadratic complexity
instead of an exponential one.

4The figure refers to the case k < n − k, which is always the case in our
setup since k < �n/2�.

Fig. 2. Efficient implementation of the function in (18) based on dynamic
programming. The figure depicts the tree with the iterations for the case
k < n − k.

IV. DECISION FUSION WITH BYZANTINES GAME

The optimum decision fusion rules derived in Section II
assume that the FC knows the attacking strategy adopted
by the Byzantines, which in the simplified case studied
in this paper corresponds to knowing Pmal . By knowing
Pmal , in fact, the FC can calculate the value of δ used in
equations (8), (13), (15) and (17), and hence implement the
optimum fusion rule. In previous works, as in [5] and [21], it
is often conjectured that Pmal = 1. In some particular settings,
as the ones addressed in [15] and [16], it has been shown that
this choice permits to the Byzantines to maximize the error
probability at the fusion center. Such an argument, however,
does not necessarily hold when the fusion center can localize
the byzantine nodes with good accuracy and when it knows
that the byzantine nodes always flip the local decision. In such
a case, in fact, the FC can revert the action of the Byzantines
by simply inverting the reports received from such nodes, as
it is implicitly done by the optimal fusion rules derived in the
previous section. In such a situation, it is easy to argue that it is
better for the Byzantines to let Pmal = 0.5 since in this way the
mutual information between the system status and the reports
received from the byzantine nodes is equal to zero. In general,
the byzantine nodes must face the following dilemma: is it
better to try to force the FC to make a wrong decision by
letting Pmal = 1 and run the risk that if their location in the
network is detected the FC receives some useful information
from the corrupted reports, or erase the information that
the FC receives from the attacked nodes by reducing to
zero the mutual information between the corrupted reports
and Sm?

Given the above discussion, it is clear that the FC cannot
assume that the Byzantines use Pmal = 1, hence making the



ABRARDO et al.: GAME-THEORETIC FRAMEWORK FOR OPTIMUM DECISION FUSION 1339

actual implementation of the optimum decision fusion rule
impossible.

In order to exit this apparent deadlock, we propose to
model the struggle between the Byzantines and the FC as a
two-player, zero-sum, strategic game, whose equilibrium
defines the optimum choices for the FC and the Byzantines.

A. Game Theory in a Nutshell

A 2-player game is defined as a 4-uple G(S1,S2, v1, v2),
where S1 = {z1,1 . . . z1,n1} and S2 = {z2,1 . . . z2,n2}
are the set of actions (usually called strategies) the first
and the second player can choose from, and vl(z1,i , z2, j ),
l = 1, 2, is the payoff of the game for player l, when the
first player chooses the strategy z1,i and the second chooses
z2, j . A pair of strategies (z1,i , z2, j ) is called a profile. When
v1(z1,i , z2, j ) + v2(z1,i , z2, j ) = 0, the game is said to be a
zero-sum game. In the set-up adopted in this paper, S1, S2
and the payoff functions are assumed to be known to the
two players. In addition, we assume that the players choose
their strategies before starting the game without knowing the
strategy chosen by the other player (strategic game).

A common goal in game theory is to determine the existence
of equilibrium points, i.e. profiles that in some way represent
a satisfactory choice for both players [22]. The most famous
equilibrium notion is due to Nash. Intuitively, a profile is a
Nash equilibrium if each player does not have any interest in
changing his choice assuming the other does not change his
strategy. For the particular case of a 2-player game, a profile
(z1,i∗ , z2, j∗) is a Nash equilibrium if:

v1((z1,i∗ , z2, j∗)) ≥ v1((z1,i , z2, j∗)) ∀z1,i ∈ S1

v2((z1,i∗ , z2, j∗)) ≥ v2((z1,i∗ , z2, j )) ∀z2, j ∈ S2, (22)

where for a zero-sum game v2 = −v1.
A stronger equilibrium notion is that of dominant

equilibrium. A strategy is said to be strictly dominant for one
player if it is the best strategy for the player, regardless of the
strategy chosen by the other player. In many cases dominant
strategies do not exist, however when one such strategy exists
for one of the players, he will surely adopt it (at least under
the assumption of rational behavior). The other players, in
turn, will choose their strategies anticipating that the first
player will play the dominant strategy. As a consequence, in a
two-player game, if a dominant strategy exists the players
have only one rational choice called the only rationalizable
equilibrium of the game [23]. Games with the above property
are called dominance solvable games.

The above definition assumes that the players determin-
istically choose one of the strategies in Si (pure strategy).
A more flexible approach consists in letting each player choose
a strategy with a certain probability. In this way, we introduce
a new game in which the strategies available to the players are
probability distributions over Si ’s. The payoff is redefined as
the average payoff under the probability distributions chosen
by the players. A probability distribution over Si ’s is said
a mixed strategy for player i . A central result of game
theory [24] states that if we allow mixed strategies, then
every game with a finite number of players and with a finite

number of pure strategies for each player has at least one
Nash equilibrium.

As anticipated, we model the interplay between the value of
Pmal adopted by the Byzantines and the value used by the FC
in its attempt to implement the optimum fusion rule as game.
For sake of clarity, in the following we indicate the flipping
probability adopted by the Byzantines as P B

mal , while we use
the symbol P FC

mal to indicate the value adopted by the FC in
its implementation of the optimum fusion rule. With the above
ideas in mind, we introduce the Decision Fusion Game.

Definition 1: The DFByz(SB ,SFC , v) game is a two player,
zero-sum, strategic, game played by the FC and the Byzantines
(collectively acting as a single player), defined by the follow-
ing strategies and payoff.

• The sets of strategies the Byzantines and the FC can
choose from are, respectively, the set of possible values
of P B

mal and P FC
mal :

SB = {P B
mal ∈ [0, 1]};

SFC = {P FC
mal ∈ [0, 1]}. (23)

• The payoff function is defined as the error probability at
the FC, indicated as Pe

v = Pe = P(S∗ �= S). (24)

where S is the true system state and S∗ is the decision
made by FC. Of course the Byzantines aim at maximiz-
ing Pe, while the FC aims at minimizing it.

Note that according to the definition of DFByz , the sets
of strategies available to the FC and the Byzantines are
continuous sets. In practice, however, continuous values can
be replaced by a properly quantized version of P B

mal and P FC
mal .

In the next section, we use numerical simulations to derive
the equilibrium point of various versions of the game obtained
by varying the probability distribution of byzantine nodes as
detailed in Section II. As we will see, while some versions of
the game has a unique Nash (or even dominant) equilibrium
point in pure strategies, in other cases, a Nash equilibrium
exists only in mixed strategies.

V. SIMULATION RESULTS AND DISCUSSION

In order to investigate the behavior of the DFByz game for
different setups and analyze the achievable performance when
the FC adopts the optimum decision strategy with parameters
tuned following a game-theoretic approach, we run extensive
numerical simulations. The first goal of the simulations was to
study the existence of an equilibrium point in pure or mixed
strategies, and analyze the expected behavior of the FC and
the Byzantines at the equilibrium. The second goal was to
evaluate the payoff at the equilibrium as a measure of the best
achievable performance of Decision Fusion in the presence
of Byzantines. We then used such a value to compare the
performance of the game-theoretic approach proposed in this
paper with respect to previous works.

A. Analysis of the Equilibrium Point of the DFByz Game

As we said, the first goal of the simulations was to determine
the existence of an equilibrium point for the DFByz game.
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To do so, we quantized the set of available strategies consider-
ing the following set of values: Sq

B = {0.5, 0.6, 0.7, 0.8, 0.9, 1}
and Sq

FC = {0.5, 0.6, 0.7, 0.8, 0.9, 1}. We restricted our analy-
sis to values larger than or equal to 0.5 since it is easily
arguable that such values always lead to better performance
for the Byzantines.5 As to the choice of the quantization step,
we set it to 0.1 to ease the description of the results we have
got and speed up the simulations. Some exploratory test made
with a smaller step gave similar results.

Let v denote the payoff matrix of the game, that is, the
matrix of the error probabilities for each pair of strategies
(P B

mal , P FC
mal ) ∈ Sq

FC ×Sq
B . For each setting, the payoff matrix v

is obtained by running the simulations for all the possible
moves of FC and the Byzantines.

Sometimes (when the game can be solved with pure
strategies), the equilibrium point easily comes out through
inspection of the payoff matrix, especially when a rational-
izable equilibrium exists. In the general case, we can find
equilibrium point by relying on the minimax theorem [22].
Let pB (res. pFC) be a column vector with the probability
distribution over the possible values of P B

mal (res. P FC
mal ). The

mixed strategies Nash equilibrium (p∗
B, p∗

FC) can be found by
solving separately the max-min and min-max problems:

p∗
B = arg maxpB(Sq

B) min
pFC (Sq

FC )
pT

Bv pFC

p∗
FC = arg minpFC (Sq

FC ) max
pB (Sq

B)
pT

BvpFC (25)

which can be reduced to two simple linear programming
problems.

We found that among all the parameters of the game, the
value of m has a major impact on the equilibrium point. The
value of m, in fact, determines the ease with which the FC can
localize the byzantine nodes, and hence plays a major role in
determining the optimum attacking strategy for the Byzantines.
For this reason, we split our analysis in two parts: the former
refers to small values of m, the latter to intermediate values
of m. Unfortunately, the exponential growth of the complexity
of the optimum decision fusion rule as a function of m
prevented us from running simulations with large values of m.

Simulations were carried out by adopting the following
setup. We run 50,000 trials to compute Pe at for each row
of the matrix. In particular, for each P B

mal , we used the same

50,000 states to compute Pe for all P FC
mal strategies. In all the

simulations, we let PS j (0) = PS j (1) = 0.5, n = 20, and
ε = 0.1. We used the linear programming tools from Matlab
Optimization Toolbox [25] to solve (25).

1) Small Values of m: For the first set of simulations,
we used a rather low value of m, namely m = 4. The
other parameters of the game we set as follows: n = 20,
ε = 0.1. With regard to the number of byzantine nodes
present in the network we used α = {0.3, 0.4, 0.45} for the
case of independent node states studied in Section II-B.1, and
nB = {6, 8, 9} for the case of known number of Byzantines
(Section II-C). Such values were chosen so that in both cases

5By using a game-theoretic terminology, this is equivalent to say that the
strategies corresponding to P B

mal < 0.5 are dominated strategies and hence
can be eliminated.

TABLE I

PAYOFF OF THE DFByz GAME (103 × Pe ) WITH INDEPENDENT NODE

STATES WITH α = 0.3, m = 4, n = 20, ε = 0.1. THE EQUILIBRIUM
POINT IS HIGHLIGHTED IN BOLD

TABLE II

PAYOFF OF THE DFByz GAME (102 × Pe ) WITH INDEPENDENT NODE
STATES WITH α = 0.4, m = 4, n = 20, ε = 0.1. THE EQUILIBRIUM

POINT IS HIGHLIGHTED IN BOLD

TABLE III

PAYOFF OF THE DFByz GAME (102 × Pe ) WITH INDEPENDENT NODE

STATES WITH α = 0.45, m = 4, n = 20, ε = 0.1. THE EQUILIBRIUM

POINT IS HIGHLIGHTED IN BOLD

we have the same average number of Byzantines, thus easing
the comparing between the two settings.

Tables I through III report the payoff for all the profiles
resulting from the quantized values of P B

mal and P FC
mal , for

the case of independent node states (constrained maximum
entropy distribution). Due to space limits, the error proba-
bilities are scaled by a convenient power of 10. In all the
cases P B

mal = 1 is a dominant strategy for the Byzantines, and
the profile (1, 1) is the unique rationalizable equilibrium of
the game. As expected, the error probability increases with
the number of Byzantines. The value of the payoff at the
equilibrium ranges from Pe = 0.0349 with α = 0.3 to
Pe = 0.3314 with α = 0.45. For completeness, we report
the value of the error probability in the non-adversarial setup,
which is Pe = 0.34 · 10−5.

Tables IV through VI report the payoffs for the case of fixed
number of Byzantines, respectively equal to 6, 8 and 9.

When nB = 6, P B
mal = 0.5 is a dominant strategy

for the Byzantines, and the profile (0.5, 0.5) is the unique
rationalizable equilibrium of the game corresponding to a
payoff Pe = 3.8·10−4. This marks a significant difference with
respect to the case of independent nodes, where the optimum
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TABLE IV

PAYOFF OF THE DFByz GAME (104 × Pe ) WITH nB = 6, m = 4, n = 20,
ε = 0.1. THE EQUILIBRIUM POINT IS HIGHLIGHTED IN BOLD

TABLE V

PAYOFF OF THE DFByz GAME (103 × Pe ) WITH nB = 8, m = 4, n = 20,
ε = 0.1. NO PURE STRATEGY EQUILIBRIUM EXISTS

TABLE VI

PAYOFF OF THE DFByz GAME (102 × Pe ) WITH nB = 9, m = 4, n = 20,
ε = 0.1. THE EQUILIBRIUM POINT IS HIGHLIGHTED IN BOLD

strategy for the Byzantines was to let P B
mal = 1. The reason

behind the different behavior is that in the case of fixed number
of nodes, the a-priori knowledge available at the FC is larger
than in the case of independent nodes with the same average
number of nodes. This additional information permits to the
FC to localize the byzantine nodes, which now cannot use
P B

mal = 1, since in this case they would still transmit some
useful information to the FC. On the contrary, by letting
P B

mal = 0.5 the information received from the byzantine
nodes is zero, hence making the task of the FC harder. When
nB = 9 (Table VI), the larger number of Byzantines makes the
identification of malicious nodes more difficult and P B

mal = 1
is again a dominant strategy, with the equilibrium of the game
obtained at the profile (1,1) with Pe = 0.0551. A somewhat
intermediate situation is observed when nB = 8 (Table V).
In this case, no equilibrium point exists (let alone a dominant
strategy) if we consider pure strategies only. On the other hand,
when mixed strategies are considered, the game has a unique
Nash equilibrium for the strategies reported in Table VII
(each row in the table gives the probability vector assigned
to the quantized values of Pmal by one of the players at
the equilibrium). Interestingly the optimum strategy of the
Byzantines corresponds to alternate playing P B

mal = 1 and
P B

mal = 0.5, with intermediate probabilities. This confirms

TABLE VII

MIXED STRATEGIES EQUILIBRIUM FOR THE DFByz GAME WITH nB = 8,
m = 4, n = 20, ε = 0.1. P∗

e INDICATES THE ERROR PROBABILITY AT

THE EQUILIBRIUM

TABLE VIII

PAYOFF OF THE DFByz GAME (102 × Pe ) WITH NB < n/2. THE OTHER

PARAMETERS OF THE GAME ARE SET AS FOLLOWS: m = 4, n = 20,
ε = 0.1. THE EQUILIBRIUM POINT IS HIGHLIGHTED IN BOLD

the necessity for the Byzantines to find a good trade-off
between two alternative strategies: set to zero the information
transmitted to the FC or try to push it towards a wrong
decision. We also observe that the error probabilities at the
equilibrium are always lower than those of the game with
independent nodes. This is an expected result, since in the
case of fixed nodes the FC has a better knowledge about the
distribution of byzantine nodes.

The last case we have analyzed corresponds to a situation
in which the FC knows that the number of Byzantines cannot
be larger than a certain value h (see Sec. II-B.2).

We first consider the case in which the FC knows only that
the number of Byzantines is lower than n/2. The payoff for
this instantiation of the DFByz game is given in Table VIII.
In order to compare the results of this case with those obtained
for the case of independent nodes and that of fixed number of
Byzantines, we observe that when all the sequences an with
nB < n/2 have the same probability, the average number of
Byzantines turns out to be 7.86. The most similar settings,
then, are that of independent nodes with α = 0.4 and that
of fixed number of nodes with nB = 8. With respect to the
former, the error probability at the equilibrium is significantly
smaller, thus confirming the case of independent nodes as the
worst scenario for the FC. This is due to the fact that with
α = 0.4 it is rather likely that the fraction of Byzantines is
larger than 0.5 this making any reliable decision impossible.
The error probability obtained with a fixed number of Byzan-
tines equal to 8, however, is much lower. This is a reasonable
result, since in that case the a-priori information available to
the FC permits a better localization of the corrupted reports.

We now move to the case with h < n/2. Table IX reports
the payoffs of the game when NB < n/3. By assuming a
maximum entropy distribution over the admissible configura-
tions an with NB < n/3, the average number of Byzantines
turns out to be 4.64. In this case, the equilibrium point shifts
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TABLE IX

PAYOFF OF THE DFByz GAME (104 × Pe ) WITH NB < n/3. THE OTHER

PARAMETERS OF THE GAME ARE SET AS FOLLOWS: m = 4, n = 20,
ε = 0.1. THE EQUILIBRIUM POINT IS HIGHLIGHTED IN BOLD

TABLE X

PAYOFF OF THE DFByz GAME (103 × Pe ) WITH INDEPENDENT NODE

STATES WITH α = 0.3, m = 10, n = 20, ε = 0.1. THE EQUILIBRIUM
POINT IS HIGHLIGHTED IN BOLD

to (0.5, 0.5). This confirms the behavior discussed in the
previous paragraph: since the average number of Byzantines
is lower the FC is able to localize them with a better accuracy,
then it is better for the Byzantines to minimize the information
delivered to the FC.

2) Intermediate Values of m: In this section we report the
results that we got when the length of the observation vector
increases. We expect that by comparing the reports sent by
the nodes corresponding to different components of the state
vector allows a better identification of the byzantine nodes,
thus modifying the equilibrium of the game. Specifically, we
repeated the simulations carried out in the previous section, by
letting m = 10. Though desirable, repeating the simulations
with even larger values of m is not possible due to the
exponential growth of the complexity of the optimum fusion
rule with m.

Tables X through XII report the payoffs of the game for
the case of independent node states. As it can be seen,
P B

mal = 1.0 is still a dominant strategy for the Byzantines
and the profile (1,1) is the unique rationalizable equilibrium
of the game. Moreover, the value of Pe at the equilibrium is
slightly lower than for m = 4, when α = 0.3 and α = 0.4
(see Tables I and II). Such an advantage disappears when
α = 0.45 (see Table III), since the number of Byzantines
is so large that identifying them is difficult even with m = 10.

The results of the simulations for the case of fixed
number of nodes with nB = {6, 8, 9} are given in
Tables XIII through XV. With respect to the case of m = 4,
the optimum strategy for the Byzantines shifts to P B

mal = 0.5.
When nB = 6, P B

mal = 0.5 is a dominant strategy, while for
nB = 8 and nB = 9, no equilibrium point exists if we consider
only pure strategies. The mixed strategy equilibrium point for
these cases is given in Tables XVIII and XIX. By comparing
those tables with those of the case m = 4, the preference
towards P B

mal = 0.5 is evident.

TABLE XI

PAYOFF OF THE DFByz GAME (102 × Pe ) WITH INDEPENDENT NODE

STATES WITH m = 10, n = 20, α = 0.4, ε = 0.1. THE EQUILIBRIUM
POINT IS HIGHLIGHTED IN BOLD

TABLE XII

PAYOFF OF THE DFByz GAME (102 × Pe ) WITH INDEPENDENT NODE

STATES WITH α = 0.45, m = 10, n = 20, ε = 0.1. THE EQUILIBRIUM
POINT IS HIGHLIGHTED IN BOLD

TABLE XIII

PAYOFF OF THE DFByz GAME (104 × Pe ) WITH nB = 6, m = 10, n = 20,
ε = 0.1. THE EQUILIBRIUM POINT IS HIGHLIGHTED IN BOLD

TABLE XIV

PAYOFF OF THE DFByz GAME (104 × Pe ) WITH nB = 8, m = 10, n = 20,
ε = 0.1. NO PURE STRATEGY EQUILIBRIUM EXISTS

Table XVI, gives the results for the case NB < n/2. As in
the case of fixed number of Byzantines, the equilibrium point
strategy passes from the pure strategy (1,1) to a mixed strategy
(see Table XX). Once again, the reason for such a behavior,
is that when m increases, the amount of information available
to the FC increases, hence making the detection of corrupted
reports easier. As a result, the Byzantines must find a trade-off
between forcing a wrong decision and reducing the mutual
information between the corrupted reports and system states.
Eventually, Table XVII reports the results of the game for
the case with NB < n/3 and m = 10. As one could expect,
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TABLE XV

PAYOFF OF THE DFByz GAME (104 × Pe ) WITH nB = 9, m = 10, n = 20,
ε = 0.1. NO PURE STRATEGY EQUILIBRIUM EXISTS

TABLE XVI

PAYOFF OF THE DFByz GAME (104 × Pe ) WITH NB < n/2. THE OTHER

PARAMETERS OF THE GAME ARE SET AS FOLLOWS: m = 10, n = 20,
ε = 0.1. NO PURE STRATEGY EQUILIBRIUM EXISTS

TABLE XVII

PAYOFF OF THE DFByz GAME (104 × Pe ) WITH NB < n/3 IN THE
FOLLOWING SETUP: m = 10, n = 20, ε = 0.1. THE EQUILIBRIUM

POINT IS HIGHLIGHTED IN BOLD

TABLE XVIII

MIXED STRATEGIES EQUILIBRIUM FOR THE DFByz GAME WITH nB = 8,
m = 10, n = 20, ε = 0.1. P∗

e INDICATES THE ERROR PROBABILITY AT

THE EQUILIBRIUM

the profile (0.5, 0.5) is still the equilibrium point of the game,
as the optimum strategy for the Byzantines continues to be the
one which minimizes the amount of information delivered to
the FC. We conclude observing that even with m = 10, the
case of independent nodes results in the worst performance.

B. Performance at the Equilibrium and Comparison With
Prior Works

As a last analysis we compare the error probability obtained
by game-theoretic optimum decision fusion introduced in this
paper, with those obtained by previous solutions. Specifically,
we compare our scheme against a simple majority-based
decision fusion rule according to which the FC decides that

TABLE XIX

MIXED STRATEGIES EQUILIBRIUM FOR THE DFByz GAME WITH nB = 9,
m = 10, n = 20, ε = 0.1. P∗

e INDICATES THE ERROR PROBABILITY AT

THE EQUILIBRIUM

TABLE XX

MIXED STRATEGIES EQUILIBRIUM FOR THE DFByz GAME WITH NB <n/2
WITH m = 10, n = 20, ε = 0.1. P∗

e INDICATES THE ERROR

PROBABILITY AT THE EQUILIBRIUM

TABLE XXI

ERROR PROBABILITY AT THE EQUILIBRIUM FOR VARIOUS FUSION

SCHEMES. ALL THE RESULTS HAVE BEEN OBTAINED BY LETTING

m = 4, n = 20, ε = 0.1

s j = 1 if and only if
∑

i ri j ≥ n/2 (Maj), against the
hard isolation scheme described in [5] (HardIS), and the soft
isolation scheme proposed in [15] (SoftIS).

In order to carry out a fair comparison and to take into
account the game-theoretic nature of the problem, the perfor-
mance of all the schemes are evaluated at the equilibrium.
For the HardIS and SoftIS schemes this corresponds to
letting P B

mal = 1. In fact, in [15], it is shown that this is a
dominant strategy for these two specific fusion schemes. As a
consequence, P FC

mal is also set to 1, since the FC knows in
advance that the Byzantines will play the dominant strategy.
For the Maj fusion strategy, the FC has no degrees of freedom,
so no game actually exists in this case. With regard to the
Byzantines, it is easy to realize that the best strategy is to
let P B

mal = 1. When the equilibrium corresponds to a mixed
strategy, the error probability is averaged according to the
mixed strategies at the equilibrium. Tables XXI and XXII show
the error probability at the equilibrium for the tested systems
under different setups. As it can be seen, the fusion scheme
resulting for the application of the optimum fusion rule in a
game-theoretic setting, consistently provides better results for
all the analyzed cases. Expectedly, the improvement is more
significant for the setups in which the FC has more information
about the distribution of the Byzantines across the network.
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TABLE XXII

ERROR PROBABILITY AT THE EQUILIBRIUM FOR VARIOUS FUSION
SCHEMES. ALL THE RESULTS HAVE BEEN OBTAINED BY LETTING

m = 10, n = 20, ε = 0.1

VI. CONCLUSIONS

We have studied the problem of decision fusion in multi-
sensor networks in the presence of Byzantines. We first derived
the optimum decision strategy by assuming that the statistical
behavior of the Byzantines is known. Then we relaxed such
an assumption by casting the problem into a game-theoretic
framework in which the FC tries to guess the behavior of the
Byzantines. The Byzantines, in turn, must fix their corruption
strategy without knowing the guess made by the FC. We con-
sidered several versions of the game with different distribu-
tions of the Byzantines across the network. Specifically, we
considered three setups: unconstrained maximum entropy dis-
tribution, constrained maximum entropy distribution and fixed
number of Byzantines. In order to reduce the computational
complexity of the optimum fusion rule for large network sizes,
we proposed an efficient implementation based on dynamic
programming. Simulation results show that increasing the
observation window m leads to better identification of the
Byzantines at the FC. This forces the Byzantines to look for
a trade-off between forcing the FC to make a wrong decision
on one hand, and reducing the mutual information between
the reports and the system state on the other hand. Simulation
results confirm that, in all the analyzed cases, the performance
at the equilibrium are superior to those obtained by previously
proposed techniques.

An interesting direction for future work is to enhance
the Byzantines performance by granting them access to the
observation vectors. In this way, they can focus their attack on
the most uncertain cases thus avoiding to flip the local decision
when it is expected that the attack will have no effect on the
FC decision. Another interesting research direction regards the
extension to a scenario in which the sequence of system states
is a Markov sequence. In this case, the observations at the FC
can be statistically modeled through a Hidden Markov Model.
In this setup, the attacking model should be refined w.r.t.
to the one considered in this paper, by letting the malicious
nodes acting as a channel with memory. Considering a scenario
where the nodes can send more extensive reports rather than
one single bit [26] is another interesting extension.
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