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Abstract— We analyze the distinguishability of two sources
in a Neyman–Pearson setup when an attacker is allowed to
modify the output of one of the two sources subject to an
additive distortion constraint. By casting the problem in a game-
theoretic framework and by exploiting the parallelism between
the attacker’s goal and optimal transport theory, we introduce
the concept of security margin defined as the maximum average
per-sample distortion introduced by the attacker for which the
two sources can be distinguished ensuring arbitrarily small, yet
positive, error exponents for type I and type II error probabilities.
Several versions of the problem are considered according to the
available knowledge about the sources. We compute the security
margin for some classes of sources and derive general bounds
assuming that the distortion is measured in terms of the mean
square error between the original and the attacked sequence.
The analysis of the game and the study of the distinguishability
of the sources are extended to the case in which the distortion
constraint is defined in terms of the maximum distance.

Index Terms— Adversarial signal processing, hypothesis
testing, source identification, multimedia forensics, cybersecu-
rity, game theory, optimal transportation theory, earth mover
distance (EMD).

I. INTRODUCTION

ADVERSARIAL Signal Processing (Adv-SP) is an
emerging research field targeting the study of signal

processing techniques explicitly thought to withstand the
intentional attacks of one or more adversaries aiming at
system failure. Adv-SP methods can be applied to a wide
variety of security-oriented applications including multimedia
forensics, biometrics, digital watermarking, steganography and
steganalysis, network intrusion detection, traffic monitoring,
video-surveillance, just to mention a few [1].

Source identification, often modeled as a binary decision
or hypothesis testing problem, is one of the most common
problems in Adv-SP. In multimedia forensics [2], for instance,
a forensic analyst may be asked to decide whether an image
has been acquired by a given camera, notwithstanding the
presence of an adversary aiming at deleting the acquisition
traces left by the camera. Similarly, the analyst may be
asked to decide whether a document has undergone a certain
processing or not, by taking into account the possibility
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that someone deliberately tried to delete the traces left by
the processing operator. Biometric authentication provides
a further example. In this case, the authentication system
must decide whether a biometric trait belongs to a certain
individual, despite the presence of an attacker aiming at
building a fake template that passes the authentication
test [3], [4]. In 1-bit watermarking, the detector is asked to
decide if a document contains a given watermark or not [5],
in the presence of possible attackers aiming at undermining
the detection process. Other examples include: steganalysis, in
which the steganalyzer has to distinguish between cover and
stego images [6] and network intrusion detection, wherein
anomalous traffic conditions must be distinguished from
normal ones [7]. In all these fields, taking into account the
presence of the adversary in the design phase is essential to
build a system which works properly also in hostile settings.

In [8], a game-theoretic framework is proposed to analyze
the source identification problem under adversarial conditions.
To be specific, [8] introduces the so called source identifica-
tion game. The game is played by a Defender (D) and an
Attacker (A) and is defined as follows: given two discrete
memoryless sources X and Y with alphabet X and proba-
bility mass functions (pmf) PX and PY , and a test sequence
xn = (x1, x2 . . . xn), the goal of D is to decide between
hypothesis H0 that xn has been drawn from X and hypoth-
esis H1 that xn has been generated by Y . The goal of A
is to take a sequence yn generated by Y and modify it in
such a way that D classifies it as being generated by X .
In doing so, D must ensure that the type I error probability
(usually referred to as false positive error probability Pf p) of
deciding for H1 when H0 holds stays below a given threshold,
whereas A has to respect a distortion constraint, limiting
the amount of modifications he can introduce into yn . The
payoff of the game is the type II error probability, or false
negative error probability P f n , i.e., the probability of deciding
for H0 when H1 holds. Of course, D aims at minimizing Pf n ,
while A wishes to maximize it. The above scenario accounts
for a situation in which PX corresponds to so-to-say normal
conditions and PY refers to an anomalous situation. It is the
goal of the attacker to modify a sequence produced under
anomalous conditions in such a way that the defender does not
recognize that the observed system exited the normal state.

Under the assumption that the defender bases its analysis
only on first order statistics of xn , [8] derives the asymptotic
equilibrium point of the game when the length of the test
sequence tends to infinity and Pf p tends to zero exponentially
fast with decay rate at least equal to λ (λ is nothing but
the error exponent of the false positive error probability).
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Given two pmf’s PX and PY , an additive distortion measure
d(·, ·) and the maximum allowed distortion Lmax , the analysis
in [8] permits to determine whether, at the equilibrium, the
false negative error probability Pf n tends to 0 or to 1 when
n → ∞, for a prescribed false positive error exponent λ. This,
in turn, permits to define the so-called indistinguishability
region �(PX , λ, Lmax ) as the set of pmf’s that can not be
distinguished from PX when n → ∞ due to the presence of
the attacker. If PY ∈ �(PX , λ, Lmax ), in fact, a strictly positive
false negative error exponent can not be achieved and the
attacker is going to win the game. A similar analysis is carried
out in [9] and [10] for a scenario in which PX and PY are
not known, and the statistics of the two sources are obtained
through the observation of training sequences.

A. Contribution

A drawback with the analysis carried out in [8]–[10] is
the asymmetric role of the false positive and false negative
error exponents, namely λ and ε (ε = limn→∞ − 1

n log Pf n).
In such works, in fact, the defender aims at ensuring a given λ,
but is satisfied with any strictly positive ε. In this paper,
we make a more reasonable assumption and say that the
defender wins the game if - at the equilibrium - both error
probabilities tend to zero exponentially fast, regardless of
the particular values assumed by the error exponents. More
precisely, by mimicking Stein’s lemma [11], we analyze the
behavior of �(PX , λ, Lmax ) when λ → 0 to see whether,
given a maximum allowable distortion Lmax , it is possible
for D to simultaneously attain strictly positive error exponents
for the two kinds of error. Having done so, we introduce a
new distinguishability measure, called Security Margin (SM),
defined as the maximum distortion allowed to the attacker,
for which two sources can be distinguished reliably. As we
will see, this is a powerful concept that permits to summarize
in a single quantity the distinguishability of two sources
X and Y under adversarial conditions. In order to derive our
main results, we parallel the optimum attacker’s strategy to
an optimal transport theory problem [12]. This allows to get
an insightful interpretation of the optimum attacker’s strategy
and to find out that the distinguishability of two sources
is ruled by a quantity (namely the security margin SM),
which corresponds to the Earth Mover Distance (EMD) [13].
We derive the SM for a wide class of pmf’s in both the
discrete and the continuous case and, by relying on some
results in the field of optimal transport theory, we present
a numerical algorithm for its efficient computation. We also
extend the analysis to a version of the source identification
game in which PX and PY are known only through training
sequences [10]. Eventually, we introduce a new version of the
game in which the distortion constraint is expressed in terms
of maximum absolute distancesx. This is a very interesting,
yet non-trivial, scenario, that opens the way to the application
of our theory to all the cases in which the distortion constraint
is applied uniformly to all the elements of yn .

It is worth stressing that this paper complements and gener-
alizes some recent studies in the field of Multimedia security,
namely [14]–[16], regarding image counterforensics, and [17],

related to perfect steganography. As a matter of fact, all the
solutions proposed in those papers can be seen as particular
instances of the general optimal transport problem addressed
and solved in Section VI.

Some of the results presented in this paper have already
been stated (but not proven) in [18]. With respect to [18], the
current paper contains a complete proof of all the main the-
orems, the extension to the case of source identification with
training data, the derivation of a fast numerical methodology to
compute the security margin between any two discrete sources,
and the extension of the analysis to the case of L∞ distortion.

The rest of this paper is organized as follows. In Section II,
we introduce the notation used throughout the paper, give
some definitions and review some basic concepts in game
theory. In Section III, we give a rigorous definition of the
addressed problem and summarize the main results proven
in [8]. Section IV is the core of the paper: we use optimal
transport to shed new light on the addressed problem and
introduce the security margin concept. In Section V, we extend
the analysis to cover the case of source identification with
training data. In Section VI, we derive the security margin for
several classes of sources, and provide an efficient algorithm
to compute it when a close form solution does not exist.
Section VII extends the analysis to a situation in which
the allowed distortion is defined in terms of L∞ distance.
In Section VIII, we discuss the value of our analysis in prac-
tical applications, and show how the security margin concept
can be applied to a well known problem in image forensics.
The paper ends in Section IX, with some conclusions and
highlights for future research. The most technical proofs are
given in the appendices to avoid interrupting the flow of ideas.

II. NOTATIONS AND DEFINITIONS

We will use capital letters (e.g. X) to indicate discrete
memoryless sources. Sequences of length n drawn from a
source will be indicated with the corresponding lowercase
letter (e.g. xn); accordingly, xi will denote the i−th element
of a sequence xn . The alphabet of a source will be indicated
by the corresponding calligraphic capital letter (e.g. X ). The
probability mass function (pmf) of a discrete memoryless
source X will be denoted by PX , while the cumulative mass
function will be indicated with CX . For the sake of simplicity,
the same notation will be adopted to denote the probability
density function (pdf) of a continuous random variable X .
The notation PX will also be used to indicate the probability
measure ruling the emission of sequences from a source X ,
so we will use the expressions PX (a) and PX (xn) to indicate,
respectively, the probability of symbol a ∈ X and the probabil-
ity that the source X emits the sequence xn , the exact meaning
of PX being always recoverable from the context wherein it is
used. Finally, we will use the notation PX (A) to indicate the
probability of an event A (be it a subset of X or X n) under
the probability measure PX . The calligraphic letter P will be
used to indicate the set of all pmf’s.

Our analysis relies on the concepts of type and type class
defined as follows [11], [19]. Let xn be a sequence with
elements belonging to a finite alphabet X . The type Pxn

of xn is the empirical pmf induced by the sequence xn ,
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i.e. ∀a ∈ X , Pxn (a) = 1
n

∑n
i=1 δ(xi , a), where δ(xi , a) = 1

if xi = a and zero otherwise. In the following we indicate
with Pn the set of types with denominator n, i.e. the set of
types induced by sequences of length n. Given P ∈ Pn , we
indicate with T (P) the type class of P , i.e. the set of all the
sequences in X n having type P . We denote by D(P||Q) the
Kullback-Leibler (KL) divergence between two distributions
P and Q, defined on the same finite alphabet X [11].

A. Game Theory in a Nutshell

A 2-player game is defined as a 4-uple G(S1,S2, u1, u2),
where S1 = {s1,1 . . . s1,n1} and S2 = {s2,1 . . . s2,n2} are the
set of actions (usually called strategies) the first and the
second player can choose from, and ul(s1,i , s2, j ), l = 1, 2,
is the payoff of the game for player l, when the first player
chooses the strategy s1,i and the second chooses s2, j . A pair of
strategies (s1,i , s2, j ) is called a profile. When u1(ss1,i , s2, j ) +
u2(s1,i , s2, j ) = 0, the game is said to be a competitive
(or zero-sum) game. In the set-up adopted in this paper,
S1, S2 and the payoff functions are assumed to be known to
the two players. In addition, we assume that the players choose
their strategies before starting the game without knowing the
strategy chosen by the other player (strategic game).

A common goal in game theory is to determine the existence
of equilibrium points, i.e. profiles that in some way represent
a satisfactory choice for both players [20]. The most famous
equilibrium notion is due to Nash. Intuitively, a profile is a
Nash equilibrium if each player does not have any interest
in changing his choice assuming the other does not change
his strategy. Despite its popularity, the practical meaning of
Nash equilibrium is doubtful, since there is no guarantee that
the players will end up playing at the equilibrium. A notion
with a more practical meaning is that of dominant equilibrium.
A strategy is said to be strictly dominant for one player
if it is the best strategy for the player, regardless of the
strategy chosen by the other player. When a dominant strategy
exists for one of the players, he will surely adopt it. The
other players, in turn, will choose their strategies anticipating
that the first player will play the dominant strategy. As a
consequence, in a two-player game, if a dominant strategy
exists the players have only one rational choice called the
only rationalizable equilibrium of the game [21]. Games with
the above property are called dominance solvable games.

III. THE SIks GAME

In this section, we formally define the source identification
game and summarize the main results proven in [8].

A. Definition of the SIks Game and Equilibrium Point

We start with the definition of the source identification game
with known sources (SIks ). Given a test sequence xn , we
indicate with H0 the hypothesis that xn has been generated by
PX and with H1 the alternative hypothesis that xn has been
generated by PY .

Defender’s strategies. The set of strategies of the
Defender (SD) consists of all possible acceptance regions

for H0. More precisely, by following [8], we require that
D bases its analysis only on the first order statistics of xn .
This is equivalent to ask that the acceptance region for H0,
hereafter referred to as �n , is a union of type classes. Since
a type class is univocally defined by the empirical pmf of the
sequences it contains, �n can be seen as a union of types
P ∈ Pn . We consider an asymptotic version of the game and
require that the false positive error probability P f p decreases
exponentially with decay rate at least equal to λ. Under the
above assumptions, the space of strategies of D is given by:

SD = {�n ∈ 2Pn : Pf p ≤ 2−λn}, (1)

where 2Pn indicates the power set of Pn .
Attacker’s strategies. Given a sequence yn drawn from Y ,

the goal of A is to transform it into a sequence zn belong-
ing to �n . Let us indicate by n(i, j) the number of times
that the i -th symbol of the alphabet is transformed into the
j -th one as a consequence of the attack. Similarly, we indi-
cate by Sn

Y Z (i, j) = n(i, j)/n the relative frequency with
which the i -th symbol is transformed into the j -th one.
In the following, we refer to Sn

Y Z as transportation map.
For any additive distortion measure, the overall distortion
introduced by the attack can be expressed as d(yn, zn) =∑

i, j n(i, j)d(i, j), where d(i, j) is the distortion introduced
when symbol i is transformed into symbol j . Similarly, the
average per-sample distortion depends only on Sn

Y Z ; in fact,
d(yn, zn)/n = ∑

i, j Sn
Y Z (i, j)d(i, j). The map Sn

Y Z deter-
mines also the type of the attacked sequence. In fact, by
indicating with Pzn ( j) the relative frequency of symbol j in zn ,
we have Pzn ( j) = ∑

i Sn
Y Z (i, j) � Sn

Z ( j). Finally, we observe
that the attacker can not change more symbols than there are in
the sequence yn ; as a consequence a map Sn

Y Z can be applied
to a sequence yn only if Sn

Y (i) �
∑

j Sn
Y Z (i, j) = Pyn (i). The

above reasoning suggests an interesting interpretation of Sn
Y Z ,

which can be seen as the joint empirical pmf between the
sequences yn and zn . In the same way, Sn

Y and Sn
Z correspond,

respectively, to the type of yn and zn .
By remembering that �n depends only on the type of the

test sequence, and given that the type of the attacked sequence
depends on Sn

Z only through Sn
Y Z , we can define the action of

the attacker as the choice of a transportation map in the set of
admissible maps defined as:

An(Lmax , Pyn ) =
{

Sn
Y = Pyn

∑
i, j Sn

Y Z (i, j)d(i, j) ≤ Lmax ,
(2)

where the second condition expresses the per-letter distortion
constraint the attacker is subject to, and Lmax is the maximum
allowed (average) per-letter distortion. With the above defin-
itions, the space of strategies of the attacker is the set of all
the possible ways of associating an admissible transformation
map to the to-be-attacked sequence. In the following, we
will refer to the result of such an association as Sn

Y Z (yn), or
Sn

Y Z (i, j ; yn). In the same way, Sn
Z ( j ; yn) indicates the output

marginal of Sn
Y Z (i, j ; yn). By adopting the above symbolism,

the space of strategies for the attacker can be defined as:

SA = {Sn
Y Z (i, j ; yn) : Sn

Y Z (i, j) ∈ An(Lmax , Pyn )}. (3)
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The payoff. Having fixed the maximum false positive error
probability, we adopt a Neyman-Pearson approach and define
the payoff as the false negative error probability:

u D = −u A = −
∑

yn:Sn
Z ( j ;yn)∈�n

PY (yn). (4)

The main result of [8] is given by the following theorem.
Theorem 1: Let

�n,∗ =
{

P ∈ Pn : D(P||PX ) < λ − |X | log(n + 1)

n

}

, (5)

and

Sn,∗
Y Z (i, j ; yn) = arg min

Sn
Y Z∈An(Lmax ,Pyn )

D(Sn
Z ||PX ). (6)

Then �n,∗ is a dominant equilibrium for D and the profile
(�n,∗, Sn,∗

Y Z (i, j ; yn)) is the only rationalizable equilibrium of
the SIks game, which, then, is a dominance solvable game.

B. Payoff of the SIks Game at the Equilibrium

Given the optimal acceptance region �n,∗ and the optimum
attacking strategy Sn,∗

Y Z (yn), we can introduce the finite-length
indistinguishability region �n(PX , λ, Lmax ) as follows:

�n(PX , λ, Lmax )

= {P ∈ Pn : ∃ Sn
Y Z ∈ An(Lmax , P) s.t. Sn

Z ∈ �n,∗}. (7)

The indistinguishability region defines all the type classes
(with denominator n) whose sequences can be moved
within �n,∗ by the attacker. When n tends to infinity, we can
define the asymptotic counterpart of �n [8]:

�(PX , λ, Lmax )

= {P ∈ P : ∃ SY Z ∈ A(Lmax , P) s.t. SZ ∈ �∗(PX , λ)},
(8)

where

�∗(PX , λ) = {P ∈ P : D(P||PX ) ≤ λ}, (9)

and where the definitions of SY Z (i, j), SZ ( j) and A(Lmax , P)
derive from those of Sn

Y Z (i, j), Sn
Z ( j) and An(Lmax , P), by

relaxing the requirement that SY Z (i, j), SZ ( j) and P(i) are
rational numbers with denominator n. More precisely, we can
state the following theorem:

Theorem 2: For the SIks game, the error exponent of the
false negative error probability at the equilibrium is given by1:

ε = min
P∈�(PX ,λ,Lmax )

D(P||PY ), (10)

leading to the following cases:
1) ε = 0, if PY ∈ �(PX , λ, Lmax );
2) ε 	= 0, if PY /∈ �(PX , λ, Lmax ).
According to Theorem 2, �(PX , λ, Lmax ) can be interpreted

as the region with the sources that cannot be distinguished
from PX guaranteeing a false positive error exponent at least
equal to λ in the presence of an adversary with allowed
distortion Lmax . A geometric interpretation of Theorem 2 is
given in Figure 1.

1Here and in the rest of the paper the use of the minimum instead of the
infimum is justified by the compactness of �(PX , λ, Lmax ).

Fig. 1. Geometric interpretation of Theorem 2.

IV. THE SECURITY MARGIN

In this section, we use the optimal transport interpretation
of the attacker’s strategy to introduce a measure of source
distinguishability in the set-up defined by the SIks game.

A. Characterization of the Indistinguishability
Region Using Optimal Transport

To start with, we find it convenient to rephrase the results
described in the previous section as an optimal transport
problem [12]. Let P and Q be two pmf’s defined over the
same finite alphabet, and let c(i, j) be the cost of transporting
the i -th symbol into the j -th one. In one of its instances,
optimal transport theory looks for the transportation map that
transforms P into Q by minimizing the average cost of the
transport. By using the notation introduced in the previous
section, this corresponds to solving the following problem:

min
SY Z :SY =P,SZ=Q

∑

i, j

SY Z (i, j)c(i, j). (11)

A nice interpretation of the problem defined by equation (11)
is obtained by interpreting the pmf’s P and Q as two different
ways of piling up a certain amount of earth, and c(i, j) as the
cost necessary to move a unitary amount of earth from posi-
tion i to position j . In this case, the minimum cost achieved
in (11) can be seen as the minimum effort required to turn one
pile into the other. Due to such a viewpoint, in computer vision
applications, the minimum in equation (11) is usually known
as Earth Mover Distance (EMD) between P and Q [13]. When
P and Q are probability mass functions and c(i, j) = d(i, j)p

for some distance measure d (with p ≥ 1), the EMD has a
more general statistical meaning. Given two random variables
with probability distributions PX and PY , the EMD between
PX and PY corresponds to the minimum expected p-th power
distance between the random variables X and Y taken over all
joint probability distributions PXY with marginal distributions
respectively equal to PX and PY :

E M Dd p (PX , PY ) = min
PXY :

∑
y PXY =PX∑
x PXY =PY

EXY [d(X, Y )p]. (12)

In transport theory terminology, expression (12) is the p-th
power of the Wasserstein distance [12], [22] (or the
Monge-Kantorovich metric of order p [23], [24]). In particular,
when c(i, j) = |i − j |2 (i.e. d(i, j) = |i − j | and p = 2)
the earth mover distance EMDL2

2
(PX , PY ) is equivalent to the
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squared Mallows distance between PX and PY [25]. In the
following, we will continue to refer to (11) as EMD(P,Q).
We also observe that even if we introduced the EMD by
considering finite-alphabet sources, there is no need to restrict
the definition in (12) to discrete random variables. In fact, in
the second part of the paper, we will extend our analysis and
use the EMD to measure the distinguishability of continuous
sources.

Optimal transport theory permits to rewrite the indistin-
guishability region in a more compact and easier-to-interpret
way. In fact, it is immediate to see that equation (8) can be
rewritten as:

�(PX , λ, Lmax )

= {P ∈ P : ∃ Q ∈ �∗(PX , λ) s.t EMD(P, Q) ≤ Lmax },
(13)

where now c(i, j) corresponds to the distortion metric used to
constraint the strategies available to the attacker.

B. Security Margin Definition

We now study the behavior of �(PX , λ, Lmax ) when λ → 0.
Doing so will allow us to investigate whether two sources
X and Y are ultimately distinguishable in the setting defined
by the SIks game. The rationale behind our analysis derives
directly from equations (8) and (9). In fact, it is easy to see that
decreasing λ in the definition of SD leads to a more favorable
game for the defender, since he can adopt a smaller acceptance
region and obtain a larger payoff. Stated in another way,
from D’s perspective, evaluating the behavior of the game for
λ → 0 corresponds to exploring the best achievable false
negative error exponent, when Pf p tends to 0 exponentially
fast.

More formally, we start by proving the following property.
Property 1: For any two values λ1 and λ2 such that

λ2 < λ1, �(PX , λ2, Lmax) ⊆ �(PX , λ1, Lmax).
Proof: The property follows immediately from equa-

tion (13) by observing that �(PX , λ, Lmax ) depends on λ
only through the acceptance region �∗(PX , λ), for which
we obviously have �∗(PX , λ2) ⊆ �∗(PX , λ1) whenever
λ2 < λ1.

Thanks to Property 1, we can compute the limit of the
false negative error exponent when λ tends to zero, as summa-
rized in the following theorem (somewhat resembling Stein’s
Lemma [11]).

Theorem 3: Given two sources X ∼ PX and Y ∼ PY

and a maximum average per-letter distortion Lmax (defined
according to an additive distortion measure), let us adopt the
following definition:

�(PX , Lmax ) = {P ∈ P : EMD(P, PX ) ≤ Lmax}; (14)

then the maximum achievable false negative error exponent ε
for the SIks game is

lim
λ→0

lim
n→∞ − 1

n
log P f n = min

P∈�(PX ,Lmax )
D(P||PY ). (15)

Fig. 2. Geometric interpretation of Theorem 3.

Proof: The innermost limit in (15) defines the error
exponent for a fixed λ, say it ε(λ). Thanks to (10), we know
that

lim
n→∞ − 1

n
log Pf n = ε(λ) = min

P∈�(PX ,λ,Lmax )
D(P||PY ). (16)

Then, according to Property 1, the sequence ε(λ) is monoton-
ically non decreasing as λ decreases. In addition, since
�(PX , Lmax) ⊆ �(PX , λ, Lmax ) ∀λ, we have:

ε(λ) ≤ min
P∈�(PX ,Lmax )

D(P||PY ). (17)

Being ε(λ) bounded from above and non-decreasing, the limit
for λ → 0 exists and is finite. We must now prove that
the limit is indeed equal to minP∈�(PX ,Lmax ) D(P||PY ). Let
P∗

0 be the point achieving the minimum in (15) and P∗
λ

the point achieving the minimum in the set �(PX , λ, Lmax ),
i.e. the point achieving the minimum in equation (10) (see
Figure 1 for a pictorial representation of P∗

λ ). Due to Lemma 1
(Appendix A), for any arbitrarily small τ , we can choose
a small enough λ such that, for any P in �(PX , λ, Lmax ),
a pmf P ′ in �(PX , Lmax) exists whose distance from P is
lower than τ . By taking P = P∗

λ and exploiting the continuity
of the D function, we have

D(P ′||PY ) ≤ min
P∈�(PX ,λ,Lmax )

D(P||PY ) + δ(τ ), (18)

for some P ′ ∈ �(PX , Lmax) and some value δ(τ ) such that
δ(τ ) → 0 as τ → 0. A fortiori, relation (18) holds for
P ′ = P∗

0 and then we can write

ε(λ) ≥ min
P∈�(PX ,Lmax )

D(P||PY ) − δ(τ ), (19)

where δ(τ ) can be made arbitrarily small by decreasing λ.
Equation (19), together with equation (17), shows that we
can get arbitrarily close to minP∈�(PX ,Lmax ) D(P||PY ), by
decreasing λ, hence proving that minP∈�(PX ,Lmax ) D(P||PY )
is the limit of the sequence ε(λ) as λ → 0.

Figure 2 gives a geometric interpretation of Theorem 3.
The figure is obtained from Figure 1 by observing that when
λ → 0 the optimum acceptance region collapses into the single
pmf PX , i.e., �∗ = {PX }.

By the light of Theorem 3, �(PX , Lmax) is the smallest
indistinguishability region for the SIks game. Moreover, from
equation (14), we see that the distinguishability of two pmf’s
(in the SIks setting) ultimately depends on their EMD. In fact,
if EMD(PY , PX ) > Lmax , the defender is able to distinguish
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X from Y by adopting a sufficiently small λ. On the contrary,
if EMD(PY , PX ) ≤ Lmax , there is no positive value of λ
for which the sequences emitted by the two sources can be
asymptotically distinguished.

By adopting a different perspective, given two sources
X and Y , one may ask which is the maximum attacking
distortion for which D can tell X and Y apart. The answer to
this question follows immediately from Theorem 3 and leads
to the following definition.

Definition 1 (Security Margin): Let X ∼ PX and Y ∼ PY

be two discrete memoryless sources. The maximum average
per-letter distortion for which X and Y can be distinguished
in the SIks setting is called Security Margin and is given by

SM(PY , PX ) = EMD(PY , PX ). (20)
Interestingly, the EMD is a symmetric function of PX and
PY [13], and hence the security margin does not depend on the
role of X and Y in the test, i.e. SM(PX , PY ) = SM(PY , PX ).
The security margin is a powerful measure summarizing
in a single quantity how securely two sources can be
distinguished.

It is worth remarking that the security margin between two
sources pertains to the security of the hypothesis test behind
the source identification problem and not to its robustness,
since it is measured at the equilibrium of the game, i.e. by
assuming that both the players of the game make optimal
choices. To better exemplify the above concept, let us consider
the simple case of two binary sources. Specifically, let X and Y
be two Bernoulli sources with parameters p = PX (1) and
q = PY (1) respectively. Let also assume that the distortion
constraint is expressed in terms of the Hamming distance
between the sequences, that is d(i, j) = 0 when i = j
and 1 otherwise. Without loss of generality let p > q . The
distortion associated to a transportation map SXY can be
written as:

∑

i, j

SY X (i, j)d(i, j) = SY X (0, 1) + SY X (1, 0). (21)

Since p > q , it is easy to conclude that the minimum
of the above expression is obtained when SY X (1, 0) = 0
(intuitively, if the source X outputs more 1’s than Y , it does
not make any sense to turn the 1’s emitted by Y into 0’s).
As a consequence, to satisfy the constraint SX (1) = p we
must let SY X (0, 1) = p − q , yielding SM(PY , PX ) = p − q ,
or more generally |p−q|. We can conclude that if the attacker
is allowed to introduce an average Hamming distortion larger
or equal than |p − q|, then there is no way for the defender to
distinguish the two sources. This is not the case if the output
of the source Y passes through a binary symmetric channel
with crossover probability equal to |p − q|, since the output
of the channel will still be distinguishable from the sequences
emitted by X . Consider, for example, a simple case in which
q = 1/2 and p > 1/2. Regardless of the crossover probability,
the output of the channel will still be a binary source with
equiprobable symbols, which is distinguishable from X given
that p > 1/2. In other words, the two sources can not be
distinguished in the presence of an attacker introducing a
distortion equal to |p − q|, while they can be distinguished

if the output of Y passes through a channel introducing the
same average distortion introduced by the attacker.

V. SOURCE IDENTIFICATION WITH TRAINING DATA

In this section, we extend the analysis to the case of source
identification with training data (SItr ). In such a scenario,
the sources X and Y are not completely known to D and A,
so they must base their actions on the knowledge of a training
sequence drawn from X . In [10], it is proven that the source
identification game with training data is more favorable to the
attacker than the SIks game. Then one could argue that in
the SItr setup the security margin between the two sources
is smaller, implying that a lower distortion is sufficient to the
attacker to make the sources undistinguishable. The remark-
able result that we will prove in this section is that this is not
the case, hence showing that the ultimate distinguishability of
two sources is the same for the two games.

A. The Source Identification Game With Training Data (SItr )

In the source identification game with training data, the
defender must decide whether a test sequence xn has been
generated by a source X whose statistics are known through an
N-sample training sequence t N

D drawn from X . This is equiv-
alent to deciding whether to accept or not the hypothesis H0
that the test and the training sequences have been generated
by the same source. Consequently, the acceptance region �
is defined as the set with all the pairs of sequences (xn, t N

D )
that D classifies as being generated by the same source. Once
again, we require that � is a union of pairs of type classes,
or equivalently, pairs of types (P, Q), where P ∈ Pn and
Q ∈ PN . As for the SIks case, the defender must ensure that
Pf p tends to zero exponentially fast with a certain decay rate.
Since PX is not known, the constraint must be satisfied in a
worst case sense, i.e. for all PX ∈ P .

Given a sequence yn drawn from a source Y 	= X , the goal
of the attacker is to transform yn into a sequence zn belonging
to the acceptance region chosen by D while respecting a
distortion constraint. Likewise the defender, all the information
that the attacker has about X is a K -long training sequence t K

A .
By adopting the same formalism used in the previous section,
the set of strategies of the attacker consists of all the possible
ways of choosing an admissible transportation map to trans-
form yn into zn . We consider a simple version of the game
for which K = N and t N

A = t N
D � t N . We also assume N to

be a linear function of n, i.e. N = cn.
The payoff still corresponds to the false negative error

probability.
The results in [10] which are most relevant for the present

analysis can be summarized as follows. Let �n
tr be the accep-

tance region of the test. Let hc denote the generalized log-
likelihood ratio function defined as in [26] and [27] extended
to general pmf’s in P ; explicitly, given P, Q ∈ P :

hc(P, Q) = D(P||U) + cD(Q||U);
U = 1

1 + c
P + c

1 + c
Q. (22)
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Let

�tr (Q, λ, Lmax ) = {P ∈ P : ∃R ∈ �∗
tr (Q, λ)

s.t. EMD(P, R) ≤ Lmax }, (23)

where

�∗
tr (Q, λ) = {P ∈ P : hc(P, Q) ≤ λ}, (24)

For the SItr game with equal training sequences, the error
exponent of the false negative error probability at the equilib-
rium is given by:

εtr(λ) = min
R

[

c · D(R||PX ) + min
P∈�tr (R,λ,Lmax )

D(P||PY )

]

.

(25)

It follows that εtr(λ) = 0 if PY ∈ �tr (PX , λ, Lmax ),
εtr(λ) 	= 0 otherwise; then, the sources that cannot be distin-
guished from X are those inside �tr (PX , λ, Lmax ). The only
difference with respect to the case of known sources consists in
the asymptotic acceptance region �∗

tr (PX , λ), which is proven
to be strictly larger than �∗(PX , λ), given that the hc function
is always lower than D. As a consequence, it is straightforward
to argue that �tr (PX , λ, Lmax ) ⊃ �(PX , λ, Lmax ).

B. Security Margin for the SItr Game

To study the behavior of the SItr game when λ → 0, we
observe that both D(P||Q) and hc(P, Q) are convex functions
and are equal to zero if and only if P = Q. This permits to
extend Property 1 to �tr yielding:

Property 2: For any R and any two values λ1 and λ2 such
that λ2 < λ1, �tr (R, λ2, Lmax) ⊆ �tr (R, λ1, Lmax ).

In a similar way, Lemma 1 can be extended to the set
�tr (R, λ, Lmax ) (Appendix A).

We are now ready to prove the counterpart of Theorem 3
for the SItr game.

Theorem 4: Given two sources X and Y and a maxi-
mum allowable average per-letter distortion Lmax (defined
according to an additive distortion measure), the maximum
achievable false negative error exponent for the SItr game is

lim
λ→0

εtr (λ) = min
R

[
c · D(R||PX ) + min

P∈�(R,Lmax)
D(P||PY )

]
,

(26)

where �(R, Lmax ) is by replacing PX with R in (14).2

Proof: The proof goes along the same line of the proof
of Theorem 3. From Property 2, we see immediately that
ε(λ) is non-increasing when λ decreases, since the innermost
minimization in equation (25) is taken over a smaller set when
λ decreases. By the same token, we have:

εtr (λ) ≤ min
R

(
cD(R||PX ) + min

P∈�(R,Lmax)
D(P||PY )

)
. (27)

This implies that limλ→0 ε(λ) exists and is finite. Given that
Lemma 1 still holds for the set �tr (R, λ, Lmax ) ∀R, we can
reason as in the proof of Theorem 3 to conclude that:

min
P∈�tr (R,λ,Lmax )

D(P||PY ) ≥ min
P∈�(R,Lmax)

D(P||PY ) − δ(τ ),

(28)

2Note that when λ tends to 0, we do not need anymore to differentiate
between the S Iks and S Itr games in the definition of �(R, Lmax ).

where δ(τ ) can be made arbitrarily small by decreasing λ.
By adding the term cD(R||PX ) to both sides of (28) and
considering that the relation holds for any R ∈ P , we have:

εtr (λ) = min
R

[
cD(R||PX ) + min

P∈�tr (R,λ,Lmax )
D(P||PY )

]

≥ min
R

[
cD(R||PX ) + min

P∈�(R,Lmax)
D(P||PY )

] − δ(τ ),

(29)

which concludes the proof due to the arbitrariness of δ(τ ).
A consequence of Theorem 4 is that limλ→0 ε(λ) = 0

if and only if PY ∈ �(PX , Lmax ), which then can be seen
as the smallest indistinguishability region for the SItr game.
We conclude that the smallest indistinguishability regions for
the two cases are equal implying that the security margin for
the SItr setting, say SMtr , is the same of the SIks game, that
is SMtr (PX , PY ) = EMD(PX , PY ).

We remark that, for any allowed distortion Lmax <
EMD(PX , PY ), the minimum value of λ which allows D to
make a reliable decision in the SItr setting is lower than that
in the SIks setting. However, the difference between the two
settings regards the decay rate of the error probabilities, not
the ultimate distinguishability of the sources.

We conclude this section by briefly discussing the SItr

game with different training sequences (t N
D 	= t K

A ). It is known
from [10] that, as long as the length of both sequences grows
linearly with n, the indistinguishability region is equal to that
of the game with equal training sequences. By relying on
this result, it is not difficult to prove that the security margin
remains the same even for such a version of the game.

VI. SECURITY MARGIN COMPUTATION

In this section we focus on the actual computation of the
security margin. We first consider the case of discrete sources,
then we extend the analysis to continuous sources.

Given two discrete sources X ∼ PX and Y ∼ PY ,
the computation of the security margin requires the eval-
uation of EMD(PX , PY ). A closed form solution can be
found only in some simple cases. More generally, the
EMD between two sources can be computed by resorting
to numerical analysis, and in fact, due to its wide use
as a similarity measure in computer vision applications,
several efficient algorithms have been proposed (see [28]
for example). In the following, we describe a fast iterative
algorithm for the computation of the EMD between any
two sources assuming that the distortion (or cost) function
has the general form d(i, j) = |i − j |p, with p ≥ 1.
A case of great interest is p = 1 and p = 2, according to
which the distortion between yn and the attacked sequence zn

corresponds, respectively, to the L1 and L2
2 distance.

A. Hoffman’s Greedy Algorithm for Computing SM
The transportation problem we have to solve for computing

SM(PY , PX ), i.e. EMD(PY , PX ), is known in modern litera-
ture as Hitchcock transportation problem [29], which, in turn,
can be formulated as a linear programming problem in the
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Fig. 3. Graphical representation of the NWC rule. PX and PY are two
generic earth piles (source and sink) X and Y , while SNWC

XY (i, j) denotes the
amount of earth moved from location i to j .

following way:

EMD(PX , PY ) = min
SXY

∑

i, j

d(i, j)SXY (i, j), (30)

where SXY must satisfy the linear constraints:
∑

j

SXY (i, j) = PX (i) ∀i ∈ X
∑

i

SXY (i, j) = PY ( j) ∀ j ∈ Y

SXY (i, j) ≥ 0 ∀i, j, (31)

and where, by referring to the original Monge formula-
tion [30], SXY (i, j) denotes the quantity of soil shipped from
location (source) i to location (sink) j and d(i, j) is the cost
for shipping a unitary amount of soil from i to j .

A Transportation Problem (TP) like the one defined by
equations (30) and (31) is a particular minimum cost flow
problem [31] which, being linear, can be solved through
the simplex method [32]. In general, the solution of TP
depends on the cost function d(·, ·), however there are some
classes of cost functions for which the solution can be found
through a simple greedy algorithm. Specifically, the algorithm
proposed by A.J. Hoffman in 1963 [33], allows to solve the
transportation problem whenever d(·, ·) satisfies the so called
Monge property [34], that is when:

d(i, j) + d(r, s) ≤ d(i, s) + d(r, j), (32)

∀(i, j, r, s) such that 1 ≤ i < r ≤ |X | and 1 ≤ j < s ≤ |Y|.
It is easy to verify that Monge property is satisfied by any

cost function of the form d(i, j) = |i − j |p, and, more in
general, by any convex function of the quantity |i − j |. The
iterative procedure proposed by Hoffman to solve the optimal
transport problem is known as North-West Corner (NWC)
rule [33] and works as follows: take the bin of X with
the smallest value and start moving its elements into the
bin with the smallest value in Y . When the smallest bin
of Y is filled, go on with the second smallest bin in Y .
Similarly, when the smallest bin in X is emptied, go on
with the second smallest bin in X . The procedure is iterated
until all the bins in X have been moved into those of Y .
The above procedure is described graphically in Figure 3.
In the figure, we chose two distributions with disjoint supports
for sake of clarity, however the procedure is valid regardless
of how the two distributions are spread along the real line.
Interestingly, the NWC rule does not depend explicitly on
the cost matrix, so the transportation map obtained through
it is the same regardless of the Monge cost. According to
Hoffman’s algorithm, when the cost function satisfies Monge’s

property, the EMD can be computed in linear running time:
the number of elementary operations, in fact, is at most equal
to |X | + |Y|. This represents a dramatic simplification with
respect to the complexity required to solve a general Hitchcock
transportation problem [35].

B. Security Margin for Continuous Sources

The analysis carried out in the previous sections is limited to
discrete sources. When continuous sources are considered, we
can quantize the probability density functions of the sources
and apply the analysis for discrete sources. By letting the
quantization step tend to zero, the EMD between PX and PY

can still be regarded as the security margin between the two
sources. In this case, a general expression for the SM can
be derived by considering the continuous transportation prob-
lem (CTP), known as Monge-Kantorovic formulation of the
mass transportation problem, [22]. If the continuous cost func-
tion c(x, y), c : X × Y → R, satisfies the continuous Monge
property [34], that is if c(x, y)+c(x ′, y ′) ≤ c(x ′, y)+c(x, y ′),
∀x ≤ x ′, y ≤ y ′, the optimum cumulative transportation map
corresponds to the Hoeffding distribution [24], defined as:

C∗
XY (x, y) = min{CX (x), CY (y)}, ∀(x, y) ∈ R2, (33)

where CX (x) and CY (y) are the cumulative distributions of
X and Y respectively. The continuous map in (33) generalizes
the NWC rule. Therefore, one can compute SM(PY , PX ) by
evaluating the mean value EXY [c(x, y)] over the continuous
distribution C∗

XY (x, y). In general, however, finding a closed
form expression is not an easy task.

A particularly simple and insightful formula can be obtained
when the cost function corresponds to the squared Euclidean
distance. Let us assume, then, that c(x, y) = (x − y)2,
and let X and Y be two continuous sources with means
μX and μY , variances σX and σY and covariance cov XY .
As shown in [36] (decomposition theorem), the expectation
in (12) can be rewritten as follows:

EXY [(X − Y )2] = (μX − μY )2 + (σX − σY )2

+ 2[σXσY − cov XY ], (34)

where the three terms express, respectively, the difference in
location, spread and shape between X and Y . Interestingly,
cov XY is the only term depending on the joint pdf of X and Y .
Then, in order to compute SM, we only have to compute the
maximum covariance over all the possible joint pdf’s:

SML2
2
(PX , PY ) = (μX − μY )2 + (σX − σY )2

+ 2[σXσY − max
PXY :

∑
y PXY =PX∑
x PXY =PY

cov XY ]. (35)

Since 0 ≤ cov XY ≤ σX σY , the security margin can be
bounded as follows:

(μX − μY )2 + (σX − σY )2 ≤ SML2
2
(PX , PY )

≤ (μX − μY )2 + σ 2
X + σ 2

Y . (36)

Accordingly, whenever the distortion introduced by the
attacker is less than the quantity on the left-hand side of (36),
X and Y are asymptotically distinguishable, regardless of their
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specific distribution. Instead, if the distortion is above this
value, the distinguishability of the two sources depends on
their specific probability distributions. Finally, for distortions
greater than the quantity on the right-hand side of (36), there
is no way to distinguish X and Y . When PX and PY have the
same form, for instance when the random variables X and Y
are both distributed according to a Gaussian distribution, the
security margin takes the minimum value and the lower bound
in (36) holds with equality. In this case, in fact, it is possible
to turn PX into PY by imposing a deterministic relationship
between X and Y , namely Y = σY

σX
X + (μY − σY

σX
μX );

in this way, the covariance term is equal to σX σY , and
hence the contribution of the shape term in the security
margin vanishes. This is a remarkable result stating that the
distinguishability of two sources belonging to the same class
depends only on their means and variances.

VII. THE SECURITY MARGIN WITH L∞ DISTANCE

In this section, we extend the definition of SM to the case
in which the distortion measure constraining the attacker is
expressed in terms of the maximum absolute distance between
the samples of yn and zn , that is to the case in which the
distortion is measured by relying on the L∞ norm. In many
cases, in fact, the distortion constraint must be satisfied locally,
thus requiring that the maximum absolute distance between the
elements of yn and zn is limited rather than its average. This
is the case, for instance, in biomedical and remote sensing
image compression, for which the maximum error introduced
at each pixel location must be strictly controlled, thus calling
for the adoption of near-lossless image coding schemes [37].
Another example in which the use of the L∞ distance is
recommended, is when it must be ensured that two versions
of the same image, an original and a processed one, are
visually indistinguishable. In such a case, it is necessary that
the absolute difference between the two images is lower than
the just noticeable distortion at each pixel location.

In our analysis, we will refer to the case of known sources,
the extension to the SItr game being immediate.

A. The SIks Game With L∞ Distance

We start by observing that the adoption of the L∞ distance
requires that the SIks game is, partly, redefined due to the
non-additive nature of the distortion constraint. In this case,
in fact, it does not make any sense to define the distortion
constraint in terms of average per-letter distortion and let the
overall allowed distortion to increase with n.

Similarly to the previous cases, it is possible to express
the distortion constraint by limiting the set of transportation
maps the attacker can choose from. Specifically, the maximum
distance between yn and zn can be rewritten as follows:

dL∞(yn, zn) = max
j

|z j − y j | = max
(i, j ):Sn

Y Z (i, j ) 	=0
|i − j |. (37)

By using the above formula in the definition of the set of
admissible maps (i.e. in the second line of (2)), we can
still define the set of strategies of the attacker as the set
of rules associating an admissible map to the to-be-attacked
sequence, as in (3). In the following, we will refer to the set

of admissible maps resulting from the use of the L∞ distance
as An

L∞(Lmax , Pyn ).

Passing to the analysis of the indistinguishability region,
it is easy to see that relation (7) continues to hold by replacing
An(Lmax , Pyn ) with An

L∞(Lmax , Pyn ). In fact, the dominant
strategy for the defender does not depend on the set of
strategies available to the attacker. The asymptotic version of
�n

L∞(PX , λ, Lmax ) can also be defined as in (8), namely:

�L∞(PX , λ, Lmax )

= {P ∈ P : ∃ SY Z ∈ AL∞(Lmax , P) s.t. SZ ∈ �∗(PX , λ)},
(38)

where AL∞(Lmax , P) is the asymptotic counterpart of
An

L∞(Lmax , P). The next step requires the extension of
Theorem 2 to the SIks game with L∞ distance, that is we
need to prove that the set in (38) contains all the sources
that can not be distinguished from X because of the attack,
even when the length of the observed sequence tends to
infinity. This is a critical step since such theorem was proved
in [11] by assuming an additive distortion measure, which
is not the case when the L∞ distance is adopted. Roughly
speaking, we need to prove that when n → ∞ the elements
of �n

L∞(PX , λ, Lmax ) are dense in �L∞(PX , λ, Lmax ) (in
which case Theorem 2 can be proven in a way similar to
Sanov’s Theorem [11]). More formally, we need to prove
that for any PY ∈ �L∞(PX , λ, Lmax ) and any δ > 0, a pmf
Qn ∈ �n

L∞(PX , λ, Lmax ) exists such that the distance between
PY and Qn is smaller than δ. The proof requires only some
minor modifications with respect to the proof of [8, Th. 2] and
is omitted for sake of brevity.

B. Security Margin for the SIks Game With L∞ Distance

As a next step, we must study the behavior of the indis-
tinguishability region when λ → 0. As we will see, even if
the adoption of a distance based on the L∞ norm prevents
a direct formulation of the problem in terms of EMD, the
distinguishability of X and Y is still closely related to the
optimal transportation map between PX and PY . Such a
connection is rooted in the following property.

Property 3: Given two distributions P and Q, the trans-
portation map SNWC

P Q obtained by applying the NWC rule to
P and Q is a solution of the problem

min
SY Z :SY =P,SZ=Q

(

max
(i, j )∈SY Z (i, j ) 	=0

|i − j |
)

. (39)

Proof: Let S∗ 	= SNWC
P Q be a generic transformation

mapping P into Q. Given that S∗ 	= SNWC
P Q there exists at

least one quadruple of bins (t, r, v, s), with t < r and v < s,
for which, S∗(t, s) > 0 and S∗(r, v) > 0. Let us assume,
without loss of generality, that S∗(t, s) ≤ S∗(r, v). We now
define a new map S′ which is obtained from S∗ by letting:

S′(t, v) = S∗(t, v) + S∗(t, s)

S′(t, s) = 0

S′(r, v) = S∗(r, v) − S∗(t, s)

S′(r, s) = S∗(r, s) + S∗(t, s). (40)
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Since max{|t−s|, |r −v|} > max{|t−v|, |r −s|}, the maximum
distortion introduced by S′ is lower than or equal to that
introduced by S∗, that is:

max
(i, j )∈S∗(i, j ) 	=0

|i − j | ≥ max
(i, j )∈S ′(i, j ) 	=0

|i − j |. (41)

We now inspect S′, if there is another quadruple of bins
(t ′, r ′, v ′, s′) satisfying the same properties of (t, r, v, s), we
let S∗ = S′ and iterate the above procedure. The process ends
when no quadruple of bins with the required properties exists
and hence when S′ = SNWC

P Q . Since at each step the distortion
introduced by the new map does not increase, the above
procedure proves that SNWC

P Q introduces a distortion lower than
or equal to that introduced by any other S∗ mapping P into Q,
thus proving that SNWC

P Q achieves the minimum in (39).
Thanks to Property 3, the set �L∞(PX , λ, Lmax ) in (38) can

be rewritten as follows:

�L∞(PX , λ, Lmax ) = {P ∈ P : ∃ Q ∈ �∗(PX , λ) s.t

max
(i, j ):SNWC

P Q (i, j ) 	=0
|i − j | ≤ Lmax}. (42)

By letting λ tend to 0, we obtain the smallest indistinguisha-
bility region, thus extending Theorem 3 to the SIks game with
L∞ distance.

Theorem 5: Given two sources X ∼ PX and Y ∼ PY and
a maximum allowable per-letter distortion Lmax , and given:

�(PX , Lmax) = {P ∈ P : max
(i, j )∈SNWC

P PX

|i − j | ≤ Lmax}, (43)

the maximum achievable false negative error exponent ε for
the SIks game with L∞ distance is

lim
λ→0

lim
n→∞ − 1

n
log Pf n = min

P∈�L∞ (PX ,Lmax )
D(P||PY ). (44)

Proof: The proof relies on the extension of Property 1
and Lemma 1 to the L∞ case. The extension of Property 1
is immediate since, once again, the indistinguishability region
depends on λ only through �∗(PX , λ), whose form does not
depend on the particular norm adopted to express the distortion
constraint. The extension of Lemma 1 requires some more care
and is proven in Appendix B. For the rest, the theorem can
be proven by reasoning as in the proof of Theorem 3.

As a consequence of Theorem 5, the distinguishability of
two sources depends again on the optimum transportation map
between the pmf’s of the sources. Specifically, the defender is
able to distinguish between X and Y if and only if

max
(i, j )∈SNWC

PY PX

|i − j | > Lmax . (45)

Condition (45) can be used to determine the maximum attack-
ing distortion for which D is able to distinguish X and Y , i.e.
SM(PX , PY ).

Definition 2 (Security Margin for the L∞ Case): Let X
and Y be two discrete memoryless sources. The maximum dis-
tortion for which the two sources can be reliably distinguished
in the SIks setting with L∞ distance is given by

SML∞(PY , PX ) = max
(i, j ):SNWC

PY PX
(i, j ) 	=0

|i − j |, (46)

where SNWC
PY PX

is obtained by applying the NWC rule to map PY

into PX .
Even if we proved Theorem 5 for the case of known sources,

it is possible to extend it to the SItr game. The proof goes
along the same lines of the SIks case and is omitted.

VIII. USE OF SM IN PRACTICAL APPLICATIONS

The Security Margin is a powerful concept which permits
to summarize into a single quantity the asymptotic behavior of
the game between the attacker and the defender. Its practical
application, however, poses a number of problems due to the
assumptions behind the definition of SM. In this section
we first discuss the impact of these assumptions in real
applications, then we present the possible use of SM within
a multimedia forensics scenario.

A. Impacts of Theoretical Assumptions in Practical Setups

The two main assumptions behind our analysis are that the
sources X and Y are memoryless, and that the defender relies
only on first order statistics to make his decision. We stress
that by first order statistics we mean all the statistics that
can be derived from the analysis of the relative occurrences
of the symbols within the observed sequence, including high
order moments like, for instance, the empirical skewness
and the kurtosis of the sequence. On the other hand, they
do not include joint statistics among samples, like transition
probabilities and co-occurrence matrices [38].

As as a first observation, we note that while the use of first
order statistics may seem to be fully justified by the DMS
assumption for X and Y , this is not necessarily the case,
and we must explicitly set it as a working condition. The
use of first order statistics to distinguish between two discrete
memoryless sources, in fact, is optimum only when no attack is
present [11]. In general, the attacker could introduce memory
within zn, thus making the use of first order statistics sub-
optimum. As an alternative path, we could have imposed that
the attack corresponds to a memoryless channel, since in this
case first order statistics would represent a set of sufficient
statistics for the source identification test. By proceeding in
this way, however, we would simply move the first order
constraint from the defender to the attacker.3

From a practical point of view, the main problem with the
memoryless assumption, is that it may not be met in real-world
applications. Real signals, like images, for instance, can not
be assimilated to memoryless sources and consequently, the
defender could decide to go beyond first order statistics to
make his decision. In some cases, the memoryless assumption
can be justified because the defender operates in a transformed
domain, e.g the DCT domain, or in a random projections
domain [39]. In any event, the use of first order detectors
is quite common in real applications even when dealing with
correlated sources. In the case of image forensics, for instance,
several techniques rely only on the analysis of the image
histogram or a subset of features derived from it. Since even in

3By adopting the defender’s point of view, avoiding to impose any additional
constraint on the action of the attacker may be interpreted as a worst case
assumption.
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the case of sources with memory by the law of large numbers
the sources will end up generating sequences with a type
arbitrarily close to the marginal pmf, we conjecture that the
definition and the meaning of the security margin remains
the same, as long as the defender decides to rely only on
the empirical marginal distributions for his analysis.

Another assumption underlying the theoretical analysis
which may not be valid in practice is that X and Y are
stationary sources. Time varying sources are encountered in
many practical applications. In PRNU-based camera identi-
fication [40], for instance, images produced by a specific
camera are detected due to the presence of a distinctive time
varying signature, the Photo Response Non-Uniformity noise,
introduced by the camera during image acquisition. Another
example is given by the camera model identification scheme
presented in [41], where the time varying nature of the images
prevent the use of a stationary noise model. Other examples
can be drawn from biometric recognition, where the biometric
templates used for identity verification can not be assimilated
to stationary signals [3], and steganalysis, where the cover
image is sometimes modelled as a sequence of independent
Gaussian variable with different variance [42]. Yet, even when
dealing with time varying signals, the use of first order
statistics obtained by a global analysis of the analyzed signal
is common practice. This is the case, for instance, of the
detection of histogram-based image enhancement which, due
to the time varying nature of the underlying image, can
not be described by a memoryless model, but is usually
faced with by resorting to first order detectors [43]. Even in
biometrics, first order statistics are sometimes used instead of
more powerful joint statistics, like in [44], where the adoption
of the arbitrarily varying sources (AVS) model [45] permits to
account for a (slightly) time-varying behavior of the sources
and justifies the resort to a memoryless formulation of the
problem. Even in the case of time-varying sources, then, the
use of the security margin concept is not totally unrealistic.

B. SM in Data-Driven Image Forensics

Source identification is one of the most common prob-
lems in image and multimedia forensics. In fact, gathering
information about the device that was used to produce a
certain image plays a crucial role in many investigations.
In a similar way, the analyst may be interested to decide if
a certain processing operator has been applied to a given
image, that is to distinguish between the class of images
that underwent a certain processing and those which did not.
When a statistical model for the two classes of images is
available, the SM between the two classes can be calculated
as detailed in the previous sections. In most cases, though,
such model does not exist. In these cases, the forensic analyst
may adopt a data-driven approach, usually based on machine
learning techniques, wherein the characteristics of the image
classes are derived from a number of examples. Let, then,
K1 and K2 be two classes of images, for instance images
acquired by a scanner and images produced by a camera.
Given a test image I , the goal of the defender is to accept
or reject the hypothesis that I belongs to K1. To make his

decision, the defender can rely on two sets of sample images
(often referred to as training sets) belonging to K1 and K2,
let us call such sets T1 and T2. Moreover, let us assume that
the defender relies only on the first order statistics of I , that
is the image histogram hI . The goal of the attacker is to take
an image J belonging to K2 and modify it in such a way
that the defender classifies it as belonging to K1. Even if the
theoretical formulation leading to the definition of SM can
not be directly applied, we can argue that in some sense the
security margin between J and T1 (which is the only available
representation of K1) is the minimum EMD between h J and
the histograms of the images in T1, namely

SM(J,T1) = min
I∈T1

EMD(h J , hI ). (47)

In fact, if the distortion allowed to the attacker is larger than
SM(J,T1), A can modify J in such a way that its histogram
is equal to the histogram of one of the images in T1, thus
making a reliable distinction impossible. In the same way, we
could define the SM between two classes of images as the
average minimum EMD between the histograms of the images
in one class and those of the images in the other class:

SM(T2,T1) = 1

|T2|
∑

J∈T2

min
I∈T1

EMD(h J , hI ). (48)

A similar analysis can be applied when the distinction between
the classes K1 and K2 is carried out in a transformed domain,
e.g. the block DCT domain.

In the next paragraph, we exemplify the above ideas by
applying them to a well-known problem in image forensics.

1) Histogram-Based Detection of Contrast Enhancement:
Detection of the traces left within an image by contrast-
enhancement operators is an active research topic in image
forensics. In fact, knowing that an image, or part of it, has
been subject to a contrast enhancement operator may help
understanding the history of the image, and whether some
parts of the image have been cut-and-pasted from another
image which underwent a different processing history. In some
cases, the analysis must be carried out by taking into account
the possibility that an adversary has modified the contrast-
enhanced image so to hinder the analysis. Given that most
contrast enhancement operators work directly on the image
histogram, forensic tools for contrast-enhancement detection
usually rely on the analysis of the image histogram and hence
fit well the theoretical setup adopted in this paper [43], [46].
In this framework, estimating the SM between the classes of
original and contrast-enhanced images as specified in equa-
tions (47) and (48), may help to understand how difficult is
for the adversary to completely delete the traces left by the
enhancement operator.

To exemplify the above ideas we considered the images
contained in the MIRFLICKR dataset [47]. These are 25,000
original, never processed images of size 333 × 500. We ran-
domly split the images in two sets T1 containing 24,000 images
and T2 with 1,000 images. Then we contrast-enhanced the
images in T2 by applying a gamma correction operator with
various γ [48]. Eventually, we used equation (47) to compute
the SM between the images in T2 and T1. The results we
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TABLE I

AVERAGE SM BETWEEN T1 AND T2 FOR VARIOUS VALUES OF γ

Fig. 4. Distribution of the SM across the images in T2 for the case of L∞
(above) and L2

2 (below) distance. The strength of the enhancement operator
is γ = 0.8.

obtained are reported in Fig. 4 where we show the distribution
of the SM across all the images in T2 for both the cases
of squared Euclidean distance and maximum distance. The
SM ranges from a minimum of 1.6 to a maximum of 195.3
for the square Euclidean distance, and from 5 to 85 for the
L∞ case. In Table I, we show the average SM, computed
as stated in (48), for different values of γ . The values in the
table suggest that for a perfect concealment of the traces left
by the γ correction operator, the attacker must introduce an
average square distortion in the order of 25 and a maximum
(non-squared) distortion in the order of 13-15 grey levels.

We conclude this section by observing that the values given
Fig. 4 and Table I must be interpreted with care. First of all,
they ensure the success of the attack asymptotically and in the
presence of an optimum detector. Deceiving practical forensic
operators may be significantly easier, and hence may require
a considerably lower distortion. Secondly, the visual impact
of the attack can not be measured only in terms of L2

2 or
even L∞ distance, since it also depends on how the attack
is implemented in the pixel domain, that is on which specific
pixels are chosen to realise the mapping defined by the NWC
rule (readers may refer to [49] for an example of the visual
impact that a practical implementation of histogram remapping
has in the pixel domain).

IX. CONCLUSIONS

By interpreting the attacker’s optimum strategy in the SIks

(and SItr ) game as the solution of an optimum transport
problem, we have introduced the concept of security margin,
a single measure summarising the distinguishability of two
sources under adversarial conditions. We also described an
efficient algorithm to compute the security margin between
several classes of sources. By relying on the security margin
concept, we can understand who between the attacker and the
defender is going to asymptotically win the source identifica-
tion game.

The analysis carried out in this paper can be extended in
several directions, with different difficulty levels. As a first
extension, we mention a scenario in which the system under
analysis is observed through a noisy (memoryless) channel.
If the attacker acts after the channel, then SM can be
calculated both at the input and the output of the channel,
to measure the security loss caused by the channel. In case
the attacker acts before the channel, the situation is slightly
more involved, since the attacker must take into account the
presence of the channel when devising the optimum attack.
To calculate the security margin, then, we must consider the
backward channel having at the input the sequence observed
by the defender and at the output the attacked sequence
(a similar approach is used in [50] for biometric identification).
As an alternative setup we could consider the effect that
the maximum transmission rate allowed by the channel has
on source distinguishability, linking the security margin to
the degradation introduced by the channel in a typical rate
distortion setup.

Another possible extension (already mentioned in
Section VIII), regards the generalization of the security
margin concept to the case of Markov sources of finite order.
The method of types, in fact, still holds in this case [51],
hence making it possible to reformulate our main theorems
for such sources.

A more far reaching extension regards the case of multiple
source identification, or classification. Though non-trivial,
such an extension could be applied to a large number of prac-
tical applications, including biometric identification, multiple-
camera identification, multiple JPEG compression and
so on.

APPENDIX

A. Behavior of the Sets � and �tr for λ → 0

We start by showing that for small values of λ,
�(PX , λ, Lmax ) approaches �(PX , Lmax ) smoothly. As a first
step, we prove the following property.

Property 4: EMD(P, Q) is a continuous and convex
function of P and Q.

Proof: Property 4 follows immediately if we look at the
EMD as the solution of a Linear Programming (LP) problem
(see Section VI-A), wherein P and Q are the known terms of
the linear constraints. In fact, it is a known result in operations
research that the minimum of the objective function of an
LP problem is a continuous and convex function of the known
terms of the linear constraints [52].
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Fig. 5. Graphical representation of the set �τ (PX , Lmax ).

By exploiting the continuity of the divergence and the
continuity and convexity of the EMD, we now show that when
λ tends to 0, �(PX , λ, Lmax ) tends to �(PX , Lmax) regularly.

Lemma 1: Let X ∼ PX be an information source and Lmax

the maximum allowable average per-letter distortion in the
SIks game. The set �(PX , λ, Lmax ), defined in (13), satisfies
the following property:

∀τ > 0, ∃λ > 0 s.t. ∀P ∈ �(PX , λ, Lmax )

∃P ′ ∈ �(PX , Lmax) s.t. P ∈ B(P ′, τ ), (A1)

where �(PX , Lmax) is defined as in (14) and B(P ′, τ ) is a
ball centered in P ′ with radius τ .

Proof: Throughout the proof we will refer to Figure 5
where all the sets and quantities involved in the proof are
sketched. For any τ > 0, we consider the set:

�τ (PX , Lmax)

= {P : ∃P ′ ∈ �(PX , Lmax) s.t. P ∈ B(P ′, τ )}. (A2)

With such a definition, we can rephrase (A1) as follows:

∀τ > 0, ∃λ > 0 s.t. �(PX , λ, Lmax ) ⊆ �τ (PX , Lmax ). (A3)

For sake of simplicity, we will prove a slightly stronger
version of the lemma by means of the following two-step
proof. First, we will show that a subset of �τ (PX , Lmax) exists
having the following form:

�sub
τ (PX , Lmax) = {P : EMD(P, PX ) ≤ Lmax + δ(τ )},

(A4)

for some δ(τ ) > 0. Then, we will prove that for
small enough λ, any P ∈ �(PX , λ, Lmax ) belongs to
�sub

τ (PX , Lmax ).
To start with, let P ′ be any point in B(�(PX , Lmax )), the

boundary of �(PX , Lmax). Among all the the points belonging
to the boundary of the ball of radius τ and centered in P ′,
consider the one, name it P ′′, lying along the direction given
by the line joining PX and P ′ and falling outside �(PX , Lmax)
(see Figure 5). By the convexity of the EMD (Property 4)
and since EMD = 0 if and only if P = PX , we conclude
that EMD(P ′′, PX ) > EMD(P ′, PX ). Since P ′ lies on the
boundary of �(PX , Lmax ), we know that EMD(P ′′, PX ) =
Lmax + μ, where μ = μ(P ′, τ ) is a strictly positive quantity.
We now show that the first part the proof holds by letting
δ(τ ) = minP ′∈B(�(PX ,Lmax )) μ(P ′, τ ). To this purpose, let
P be any point in �sub

τ (PX , Lmax) for the above choice
of δ(τ ). If P ∈ �(PX , Lmax ), then, by definition, P also
belongs to �τ (PX , Lmax). On the other hand, if P lies outside
�(PX , Lmax), let us denote by P∗ the point lying on the

boundary of the set �(PX , Lmax ) along the line joining P
and PX , and let P∗∗ be the point where the same line crosses
the ball B(P∗, τ ) outside �(PX , Lmax). Now, EMD(P, PX ) ≤
Lmax + δ(τ ) ≤ EMD(P∗∗, PX ) by construction. Because of
the convexity of EMD, then P ∈ B(P∗, τ ) as required.

Let us now pass to the second part of the proof. First,
we observe that the set �(PX , λ, Lmax ) depends on λ only
through the acceptance region �∗(PX , λ). If λ is small, due
to the continuity of the divergence, for any Q ∈ �∗(PX , λ)
we have Q ∈ B(PX , κ(λ)) for some κ(λ) such that κ(λ) → 0
when λ → 0. Let, then, P be a pmf in �(PX , λ, Lmax ).
By definition, a Q ∈ �∗(PX , λ) exists s.t. EMD(P, Q) ≤
Lmax . If λ is small, due to the proximity of Q to PX and
the continuity of the EMD we have that EMD(P, PX ) <
EMD(P, Q) + η(λ) ≤ Lmax + η(λ) with η(λ) approaching 0
when λ → 0. In particular, if λ is small enough η(λ) < δ(τ)
and hence P ∈ �sub

τ (PX , Lmax) which in turn is entirely
contained in �τ (PX , Lmax) thus completing the proof.

In the same way, we can prove that Lemma 1 holds also
when �(PX , λ, Lmax ) is replaced by �tr (R, λ, Lmax ) and
�(PX , Lmax) by �(R, Lmax ) with a generic R instead of PX .
To be convinced about that, it is sufficient to note that the only
difference between � and �tr is the test function which defines
the acceptance region, respectively the divergence and the hc

function. Since hc is still a continuous and convex function
and, likewise D, is equal to zero if and only if its arguments
are identical, the proof that we used for Lemma 1 still holds.

B. Behavior of �L∞(PX , λ, Lmax ) for λ → 0

We prove that when λ → 0, �L∞(PX , λ, Lmax ) approaches
�L∞(PX , Lmax ) regularly, as stated by the following lemma.

Lemma 2 (Extension of Lemma 1 to the L∞ Case): Let
X ∼ PX be an information source and Lmax the maximum
per-sample distortion allowed to the attacker. The set
�L∞(PX , λ, Lmax ), defined in Section VII, satisfies the
following property:

∀τ > 0, ∃λ > 0 s.t., ∀P ∈ �L∞(PX , λ, Lmax )

∃P ′ ∈ �L∞(PX , Lmax) s.t. P ∈ B(P ′, τ ), (A5)

where B(P ′, τ ) is a ball centered in P ′ with radius τ .
Proof: We will prove the lemma by assuming that

the distance defining the ball B(P ′, τ ) is the L1 distance,
extending the proof to other distances being straightforward.

For a fixed τ > 0, let P be a pmf in �L∞(PX , λ, Lmax )
for some λ. This means that at least one pmf Q ∈ �∗(PX , λ)
exists, such that P can be mapped into Q with maximum ship-
ment distance lower than or equal to Lmax . From equation (9)
and by exploiting the continuity of the divergence function,
we argue that Q ∈ B(PX , γ (λ)) for some positive γ (λ), and
where γ (λ) → 0 as λ → 0. Accordingly, PX can be written
as PX ( j) = Q( j) + γ ( j), ∀ j , where

∑
j∈X |γ ( j)| < γ (λ).

Note that, by construction,
∑

j γ ( j) = 0 and γ ( j) → 0
when λ → 0. Let SP Q be an admissible map bringing P
into Q (such a map surely exists by construction). We prove
the lemma by explicitly building a pmf P ′ and a new
admissible transportation map S′, such that, P ′ is arbitrarily
close to P (for a small enough λ) and S′ maps P ′ into PX .
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Fig. 6. Geometric interpretation of γ +, γ − and D( j).

We first introduce two new quantities, namely γ +( j), defined
as follows:

γ +( j) = γ ( j) if PX ( j) − Q( j) ≥ 0

γ +( j) = 0 if PX ( j) − Q( j) < 0, (A6)

and γ −( j) defined as

γ −( j) = −γ ( j) if PX ( j) − Q( j) < 0

γ −( j) = 0 if PX ( j) − Q( j) ≥ 0. (A7)

A graphical interpretation of γ + and γ − is given in Figure 6.
Clearly,

∑
j γ −( j) = ∑

j γ +( j). With the above definitions,
we can look at the demand distribution Q as consisting
of two amounts: the mass distribution D, with D( j) =
min{PX ( j), Q( j)}, and γ −. According to the superposition
principle, the map SP Q can then be split into two sub-maps:
one which satisfies the demand of D (let us call it SD

P Q ), and
one that satisfies the demand of γ − (let us call it Sγ

P Q ). The
same distinction can be made in the source distribution:

P(i) =
∑

j

SD
P Q (i, j) +

∑

j

Sγ
P Q(i, j) = PD(i) + Pγ (i),

(A8)

where PD and Pγ are the masses in the source distribution
which are used to satisfy the mass demand pertaining to D
and γ − according to the mapping SP Q . Then,

∑
i PD(i) = D

and
∑

i Pγ (i) = γ −. In order to construct the pmf P ′ we are
looking for, we simply remove from P the amount of mass Pγ

used to fill γ − and redistribute it according to γ +. Specifically,
we have

P ′(i) = PD(i) + γ +(i) (A9)

S′(i, j) = SD
P Q (i, j) + γ +( j)δ(i, j), (A10)

where δ(i, j) is equal to 1 if i = j and 0 otherwise. It is
easy to see that applying the transportation map S′(i, j) to P ′
yields PX . Besides, from the procedure adopted to build S′, it
is evident that

max
(i, j ):S ′(i, j ) 	=0

|i − j | ≤ max
(i, j ):SP Q(i, j ) 	=0

|i − j | ≤ Lmax , (A11)

(the only new shipments introduced are from a bin to itself).
In addition, the distance between P ′ and P is, by con-
struction, lower than γ (λ), which can be made arbitrarily
small by decreasing λ, thus completing the proof of the
lemma.
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