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Abstract—We study a variant of the source identification game
with training data in which part of the training data is corrupted
by an attacker. In the addressed scenario, the defender aims at
deciding whether a test sequence has been drawn according to a
discrete memoryless source X ∼ PX , whose statistics are known
to him through the observation of a training sequence generated
by X . In order to undermine the correct decision under the
alternative hypothesis that the test sequence has not been drawn
from X , the attacker can modify a sequence produced by a source
Y ∼ PY up to a certain distortion and corrupt the training
sequence either by adding some fake samples or by replacing
some samples with fake ones. We derive the unique rationalizable
equilibrium of the two versions of the game in the asymptotic
regime and by assuming that the defender makes his decision
by relying only on the first order statistics of the test and the
training sequences. By mimicking Stein’s lemma, we derive the
best achievable performance for the defender when the first type
error probability is required to tend to zero exponentially fast
with an arbitrarily small, yet positive, error exponent. We then
use such a result to analyze the ultimate distinguishability of
any two sources as a function of the allowed distortion and the
fraction of corrupted samples injected into the training sequence.

Index Terms—Hypothesis testing, adversarial signal process-
ing, cybersecurity, game theory, source identification, optimal
transportation theory, earth mover distance, adversarial learning,
Sanov’s theorem.

I. INTRODUCTION

ADVERSARIAL Signal Processing (AdvSP) is an emerg-
ing discipline aiming at modelling the interplay between

a defender wishing to carry out a certain processing task, and
an attacker aiming at impeding it [1]. Binary decision in an
adversarial setup is one of the most recurrent problems in
AdvSP, due to its importance in many application scenarios.
Among binary decision problems, source identification is one
of the most studied subjects, since it lies at the heart of
several security-oriented disciplines. In network monitoring,
for instance, the analyst is asked to decide if the observed
traffic has been generated under normal network conditions
or it provides enough evidence that an attack is ongoing.
In multimedia forensics, we may want to distinguish which
between two sources (e.g. two photo cameras) generated a
given image, in other situations, the security of a system relies
on the capability of distinguishing the behaviour of malevolent
and fair users.

The source identification game has been introduced in [2]
to allow the study of source identification under adversarial
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conditions on a rigorous basis. According to the setup consid-
ered in [2], the analyst (hereafter referred to as the defender)
is asked to decide whether an observed sequence vn has been
generated by a discrete memoryless source X with known
probability mass function PX or not. The attacker, on his
hand, takes a sequence generated by another source Y and
modifies it in the attempt to make the defender decide that
the modified sequence was generated by X . The attack must
satisfy a distortion constraint, setting the maximum amount
of distortion that can be introduced in the attacked sequence.
The structure of the game is defined by assuming that the
decision strategy adopted by the defender satisfies a constraint
on the false positive error probability (that is, the probability
of deciding that vn was not generated by X , when in fact it
was), while the payoff of the game is defined in terms of the
false negative error probability (that is, the probability that a
sequence generated by Y and modified by the attacker is said
to be generated by X). In [2], the asymptotic equilibrium point
of the game is derived by assuming that the length n of the
observed sequence tends to infinity.

According to the model put forward in [2], the defender
and the attacker have a perfect knowledge of the source X ,
i.e. they know PX . In [3], the analysis is pushed a step
forward by considering a scenario in which the source X is
known only through the observation of a training sequence
tn. This is an interesting extension of the setup studied in
[2]. The use of a training sequence to gather information
about the statistics of the sources, in fact, can be seen as a
simple learning mechanism, linking the results derived in [3]
to machine learning and adversarial machine learning [4] in
particular. The analysis carried out in [2] and [3] has been
further revised and extended in [5], with the introduction of the
notion of security margin, a synthetic parameter characterising
the ultimate distinguishability of two sources under adversarial
conditions.

In this paper, we extend the analysis further, by considering
a situation in which the attacker interferes with the learning
phase by corrupting part of the training sequence. From a
theoretical point of view, this represents a major deviation
from the analysis carried out in [2], [3], [5]. The first and
most important consequence of the possibility that the training
sequence has been corrupted by the attacker, is that, under the
new setup, the attack influences also the accuracy of the deci-
sion under the hypothesis that the sequence has been generated
by X . In other words, the action of the attacker has an impact
on both the false positive and false negative error probability.
This was not the case in the setup originally introduced in
[2] and inherited in [3], [5], where the false positive error
probability was independent of the strategy chosen by the
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attacker. As a result, the fulfilment of the constraint on the false
positive error probability requires that the possible actions of
the attackers are taken into account, by adopting a worst case
approach. Such a fundamental modification of the structure of
the game influences all the rest of the analysis, thus calling for
the adoption of more powerful tools, and leading to new results
that incorporate those derived in [2], [3], [5] as limit cases,
but substantially departs form them. From a practical point of
view, encompassing the case of a corrupted training sequence
permits to extend the applicability of the analysis to situations
in which the collection of the training data is not under the
full control of the analyst. This is the case in many modern
applications of machine learning wherein the data used in the
training phase is collected in a non-controlled environment,
e.g. by resorting to crowdsourcing or on-line learning with the
risk that part of the data is altered with the aim of facilitating
a subsequent attack [6].

A. Links with adversarial machine learning and sample ap-
plications

The analysis carried out in this paper is strongly related
to adversarial machine learning [7]. Adversarial learning is a
rather novel concept, which is receiving a growing attention
due to the ubiquitous use of machine learning techniques in
an ever increasing number of applications [4], [6], [8], [9].
Due to the natural vulnerability of machine learning systems,
in fact, the attacker may take an important advantage if no
countermeasures are adopted by the defender. Attacks against
a machine learning system can be classified according to
different perspectives. To start with, and by following the
taxonomy introduced in [7], we can distinguish the attacks
according to the moment when the attack is applied. According
to such a perspective, we can distinguish between causative
and exploratory attacks. In the former case, the attacker cor-
rupts the training process to cause a subsequent classification
error. In the latter situation, the attack is carried during the
classification phase, trying to build a test sample that causes a
classification error. Another possible taxonomy considers the
kind of error the attacker aims at: the aim of an in integrity
violation is to cause a false positive error, e.g. to avoid that
an anomalous situation is detected, or to allow the access to
a system or service to a non-allowed user. On the contrary,
attacks aiming at an availability violation try to induce a
false negative error, e.g., to deny the access to a service
to a legitimate user. According to the above taxonomy, the
scenario considered in this paper corresponds to a causative
attack, while prior works, noticeably [3], were focusing on
exploratory attacks only. With regard to the kind of errors
the attacker aims at, we are considering an integrity violation
attack (an example of a work considering also availability
violation is given in [10]).

Despite the mostly theoretical nature of our study, due to
the difficulties to model all the subtleties typical of real world
applications, the results derived in this work may guide a first
rough analysis in a wide range of application scenarios. As an
example, we may consider a network traffic monitoring system
aiming at discriminating normal traffic conditions from anoma-
lous situations possibly indicating the presence of a denial of

service, or any other kind of attack. Let us assume that the
system relies on inter-packet arrival time to make its decision
about the status of the network; due to the lack of a good
theoretical model describing the statistics of inter-arrival times,
the system observes the network under normal conditions to
learn a model of the observations in the absence of attacks. On
his hand, the hacker may shape the characteristics of the attack
so to evade the detection, however, if he can also corrupt at
least part of the data gathered during the learning phase, e.g.,
by injecting within it a certain percentage of false samples,
he will surely be able to mount a more powerful attack. A
similar situation may occur in spam-filtering applications. If
the filtering service is built by relying on a training phase in
which the system learns the statistics of legitimate e-mails,
the spammer may ease the subsequent construction of spam
samples capable of evading the filter control, by corrupting
the learning process, e.g., by introducing within the legitimate
e-mails observed during the learning phase some words that
he is going to use afterwards to pass the anti-spam check.

B. Contributions and main results
Following [2] and [3], we model the interplay between the

attacker and the defender by using a game theoretic approach
according to which each player knows only the possible
strategies available to his opponent, but does not know which
strategy he is actually going to use. The set of strategies
available to the defender corresponds to the possible detection
rules he can adopt, while the attacker must decide how to
corrupt the training data (up to his maximum capacity) and
the test data so to induce a decision error. As to the payoff,
we assume a zero-sum competitive game, where the attacker
aims at increasing the false negative error probability while
the defender aims at minimising it.

Given the above general framework, the main contributions
of this work can be summarised as follows:

1) We give a rigorous definition of the game, and we derive
the optimum choices for the defender and the attacker
in the form of equilibrium points of the game, when
the length of the training sequence and the observed
sequence tends to infinity. In doing so, we prove that
the game is a dominance solvable game, since a domi-
nant strategy exists for the defender which is optimum
regardless o the choice made by the attacker (Theorem
1 and following discussion in Section III).

2) Given the equilibrium point, we analyse the payoff
(namely the false negative error probability) at the equi-
librium. Given a source X , such an analysis permits to
determine the region (called indistinguishability region)
of the sources that can not be reliably distinguished from
X due to the attack (Theorems 2 and 3, Section III).

3) By mimicking, and considerably extending, the analysis
made in [5], for any two sources X and Y , we derive
the security margin and the blinding corruption level,
defined as the maximum distortion of the test sequence
and the maximum fraction of fake samples introduced
into the training set, still allowing the distinction of X
and Y while ensuring positive error exponents for the
two kinds of errors of the test (Section V).
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Throughout the paper, we consider two different scenarios
wherein the attacker is allowed respectively to add a certain
amount of fake samples to the training sequence and to
selectively replace a fraction of the samples of the training
sequences with fake samples. As we will see, the second case
is more favourable to the attacker, since a lower distortion and
a lower number of corrupted training samples are enough to
prevent a correct decision.

A further, methodological, contribution regards the tech-
niques used to prove the main results of the paper. As opposed
to previous works, such proofs rely on a generalised version
of Sanov’s theorem [11], [12], which is proven in Appendix
A. The use of such a generalised version of Sanov’s theorem,
in fact, permits to simplify considerably some of the proofs.

This work considerably extends the analysis presented in
[13], by providing a formal proof of the results anticipated in
[13]1 and by studying the more complex corruption scenario
in which the attacker has the freedom to replace a given
percentage of the training samples rather than simply adding
some fake samples to the original training sequence (which
was the only case considered in [13]).

The rest of this paper is organised as follows. Section II
summarises the notation used throughout the paper, gives some
definitions and introduces some basic concepts of Game theory
that will be used in the sequel. Section III gives a rigorous
definition of the source identification game with corrupted
training. In Section IV, we prove the main theorems of the
paper regarding the asymptotic equilibrium point of the game
and the payoff at the equilibrium. Section V leverages on the
results proven in Section IV to introduce the concepts of blind
corruption level and security margin. Section VI, introduces
and solves a version of the game in which the attacker can
selectively replace a percentage of training samples, by paying
attention to compare the results of the analysis with the results
proven in the previous sections. The paper ends in Section
VII, with a summary of the main results proven in the paper
and the description of possible directions for future work. In
order to avoid burdening the main body of the paper, the most
technical details of the proofs are gathered in the Appendix.

II. NOTATION AND DEFINITIONS

In this section, we introduce the notation and definitions
used throughout the paper. We will use capital letters to
indicate discrete memoryless sources (e.g. X). Sequences of
length n drawn from a source will be indicated with the
corresponding lowercase letters (e.g. xn); accordingly, xi will
denote the i-th element of a sequence xn. The alphabet of an
information source will be indicated by the corresponding cal-
ligraphic capital letter (e.g. X ). The probability mass function
(pmf) of a discrete memoryless source X will be denoted by

1We also give a more precise formulation of the problem, by correcting
some inaccuracies present in [13]. In particular, we reformulated the definition
of the space of strategies of the defender in a more general form, without
constraining the defender to base his decision on subsequences of the training
sequence (which, in principle, might not be the optimum strategy for the
defender and then should not be assumed a-priori). We also corrected a formal
inaccuracy in the definition of the game given in [13], regarding the space
wherein the acceptance region is defined.

PX . The calligraphic letter P will be used to indicate the class
of all the probability mass functions, namely, the probability
simplex in R|X |. The notation PX will be also used to indicate
the probability measure ruling the emission of sequences from
a source X , so we will use the expressions PX(a) and PX(xn)
to indicate, respectively, the probability of symbol a∈X and
the probability that the source X emits the sequence xn, the
exact meaning of PX being always clearly recoverable from
the context wherein it is used. We will use the notation PX(A)
to indicate the probability of A (be it a subset of X or X n)
under the probability measure PX . Finally, the probability of
a generic will be denoted by Pr{}.

Our analysis relies extensively on the concepts of type and
type class defined as follows (see [11] and [14] for more
details). Let xn be a sequence with elements belonging to
a finite alphabet X . The type Pxn of xn is the empiri-
cal pmf induced by the sequence xn, i.e. ∀a∈X ,Pxn(a)=
1
n

∑n
i=1δ(xi,a), where δ(xi,a)=1 if xi=a and zero otherwise.

In the following, we indicate with Pn the set of types with
denominator n, i.e. the set of types induced by sequences of
length n. Given P∈Pn, we indicate with T (P ) the type class
of P , i.e. the set of all the sequences in X n having type P .
We denote by D(P ||Q) the Kullback-Leibler (KL) divergence
between two distributions P and Q, defined on the same finite
alphabet X [11]:

D(P ||Q)=
∑

a∈X
P (a)log2

P (a)

Q(a)
. (1)

Most of our results are expressed in terms of the generalised
log-likelihood ratio function h (see [3], [15], [16]), which for
any two given sequences xn and tm is defined as:

h(Pxn ,Ptm)=D(Pxn ||Prn+m)+
m

n
D(Ptm ||Prn+m), (2)

where Prn+m denotes the type of the sequence rn+m, obtained
by concatenating xn and tm, i.e. rn+m=xn‖tm. The intuitive
meaning behind the above definition is that Prn+m is the pmf
which maximises the probability that a memoryless source
generates two independent sequences belonging to T (Pxn) and
T (Ptm), and that such a probability is equal to 2−nh(Pxn ,Ptm )

at the first order in the exponent (see [16] or Lemma 1 in [3]).
Throughout the paper, we will need to compute limits and

distances in P . We can do so by choosing one of the many
available distances defined over R|X | and for which P is a
bounded set, for instance the Lp distance for which we have:

dLp(P,Q)=

(∑

a∈X
|P (a)−Q(a)|p

)1/p

. (3)

Without loss of generality, we will prove all our results by
adopting the L1 distance, the generalisation to different Lp
metrics being straightforward. In the sequel, distances between
pmf’s in P will be simply indicated as d(·,·) as a shorthand
for dL1

(·,·)2.
We also need to introduce the Hausdorff distance as a way

to measure distances between subsets of a metric space [17].

2Throughout the paper, we will use the symbol d(·,·) to indicate both the
distortion between two sequences in Xn and the L1 distance between two
pmf’s in P , the exact meaning being always clear from the context,
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Let S be a generic space and d a distance measure defined
over S. For any point x∈S and any non-empty subset A⊆S,
the distance of x from the subset A is defined as:

d(x,A) = inf
a∈A

d(a,x). (4)

Given the above definition, the Hausdorff distance between
any two subsets of S is defined as follows.

Definition 1. For any two subsets A and B of S, let us de-
fine δB(A)=supb∈Bd(b,A). The Hausdorff distance δH(A,B)
between A and B is given by:

δH(A,B) = max{δA(B),δB(A)}. (5)

If the sets A and B are bounded with respect to d, then the
Hausdorff distance always takes a finite value. The Hausdorff
distance does not define a true metric, but only a pseudometric,
since δH(A,B)=0 implies that the closures of the sets A and B
coincide, namely cl(A)=cl(B), but not necessarily that A=B.
For this reason, in order for δH to be a metric, we need to
restrict its definition to closed subsets3. Let then L(S) denote
the space of non-empty closed and limited subsets of S and
let δH :L(S)×L(S)→[0,∞). Then, the space L(S) endowed
with the Hausdorff distance is a metric space [18] and we can
give the following definition:

Definition 2. Let {Kn} be a sequence of closed and limited
subsets of S, i.e., Kn∈L(S) ∀n. We use the notation Kn

H→ K
to indicate that the sequence has limit in (L(S),δH) and the
limiting set is K.

A. Basic notions of Game Theory

In this section, we introduce some basic notions and defi-
nitions of Game Theory.

A 2-player game is defined as a quadruple (S1,S2,u1,u2),
where S1={s1,1...s1,n1} and S2={s2,1...s2,n2} are the set of
strategies the first and the second player can choose from,
and ul(s1,i,s2,j),l=1,2, is the payoff for player l, when the
first player chooses the strategy s1,i and the second chooses
s2,j . A pair of strategies (s1,i,s2,j) is called a profile. When
u1(ss1,i,s2,j)=−u2(s1,i,s2,j), the win of a player is equal to
the loss of the other and the game is said to be a zero-sum
game. For such games, the payoff of the game u(ss1,i,s2,j)
is defined by adopting the perspective of one of the two
players (that is, u(ss1,i,s2,j)=u1(ss1,i,s2,j)=−u2(s1,i,s2,j)
if the defender’s perspective is adopted or viceversa). The
sets S1, S2 and the payoff functions are assumed to be
known to both players. Throughout the paper we consider
strategic games, i.e., games in which the players choose their
strategies beforehand without knowing the strategy chosen by
the opponent player.

The final goal of game theory is to determine the existence
of equilibrium points, i.e. profiles that in some sense represent
the best choice for both players [19]. The most famous notion
of equilibrium is due to Nash. A profile is said to be a
Nash equilibrium if no player can improve its payoff by

3Note that in this case the inf and sup operations involved in the definition
of the Hausdorff distance can be replaced with min and max, respectively.

changing its strategy unilaterally. Despite its popularity, the
practical meaning of Nash equilibrium is often unclear, since
there is no guarantee that the players will end up playing
at the equilibrium. A particular kind of games for which
stronger forms of equilibrium exist are the so called dominance
solvable games [19]. To be specific, a strategy is said to
be strictly dominant for one player if it is the best strategy
for the player, i.e., the strategy which corresponds to the
largest payoff, no matter how the other player decides to play.
When one such strategy exists for one of the players, he will
surely adopt it. In a similar way, we say that a strategy sl,i
is strictly dominated by strategy sl,j , if the payoff achieved
by player l choosing sl,i is always lower than that obtained
by playing sl,j regardless of the choice made by the other
player. The recursive elimination of dominated strategies is
a common technique for solving games. In the first step, all
the dominated strategies are removed from the set of available
strategies, since no rational player would ever play them. In
this way, a new, smaller game is obtained. At this point, some
strategies, that were not dominated before, may be dominated
in the remaining game, and hence are eliminated. The process
goes on until no dominated strategy exists for any player. A
rationalizable equilibrium is any profile which survives the
iterated elimination of dominated strategies [20], [21]. If at
the end of the process only one profile is left, the remaining
profile is said to be the only rationalizable equilibrium of the
game. The corresponding strategies are the only rational choice
for the two players and the game is said dominance solvable.

III. SOURCE IDENTIFICATION GAME WITH ADDITION OF
CORRUPTED TRAINING SAMPLES (SIac-tr)

In this section, we give a rigorous definition of the Source
Identification game with addition of corrupted training sam-
ples.

Given a discrete and memoryless source X∼PX and a test
sequence vn, the goal of the defender (D) is to decide whether
vn has been drawn from X (hypothesis H0) or not (alternative
hypothesis H1). By adopting a Neyman-Pearson perspective,
we assume that D must ensure that the false positive error
probability (Pfp), i.e., the probability of rejecting H0 when
H0 holds (type I error) is lower than a given threshold.
Similarly to the previous versions of the game studied in [2]
and [3], we assume that D relies only on first order statistics
to make a decision. For mathematical tractability, like earlier
papers, we study the asymptotic version of the game when
n→∞, by requiring that Pfp decays exponentially fast when
n increases, with an error exponent at least equal to λ, i.e.
Pfp≤2−nλ. On his side, the attacker (A ) aims at increasing
the false negative error probability (Pfn), i.e., the probability
of accepting H0 when H1 holds (type II error). Specifically,
A takes a sequence yn drawn from a source Y∼PY and
modifies it in such a way that D decides that the modified
sequence zn has been generated by X . In doing so, A must
respect a distortion constraint requiring that the average per-
letter distortion between yn and zn is lower than L.

Players A and D know the statistics of X through a
training sequence, however the training sequence can be partly
corrupted by A . Depending on how the training sequence
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is modified by the attacker, we can define different versions
of the game. In this paper, we focus on two possible cases:
in the first case, hereafter referred to as source identification
game with addition of corrupted samples SIac-tr, the attacker
can add some fake samples to the original training sequence.
In the second case, analysed in Section VI, the attacker can
replace some of the training samples with fake values (source
identification game with replacement of training samples -
SIrc-tr). It is worth stressing that, even if the goal of the
attacker is to increase the false negative error probability, the
training sequence is corrupted regardless of whether H0 or H1

holds, hence, in general, this part of the attack also affects the
false positive error probability. As it will be clear later on, this
forces the defender to adopt a worst case perspective to ensure
that Pfp is surely lower than 2−λn.

As to Y , we assume that the attacker knows PY exactly. For
a proper definition of the payoff of the game, we also assume
that D knows PY . This may seem a too strong assumption.
However, we will show later on that the optimum strategy
of D does not depend on PY , thus allowing us to relax the
assumption that D knows PY .

With the above ideas in mind, we are now ready to give a
formal definition of the SIac-tr game.

A. Structure of the SIac-tr game

A schematic representation of the SIac-tr game is given in
Figure 1.

Let τm1 be a sequence drawn from X . We assume that
τm1 is accessible to A , who corrupts it by concatenating to
it a sequence of fake samples τm2 . Then A reorders the
overall sequence in a random way so to hide the position
of the fake samples. Note that reordering does not alter
the statistics of the training sequence since the sequence is
supposed to be generated from a memoryless source. In the
following, we denote by m the final length of the training
sequence (m=m1+m2), and by α= m2

m1+m2
the portion of fake

samples within it. The corrupted training sequence observed
by D is indicated by tm. Eventually, we hypothesize a linear
relationship between the lengths of the test and the corrupted
training sequence, i.e. m=cn, for some constant value c4.

The goal of D is to decide if an observed sequence vn has
been drawn from the same source that generated tm (H0) or
not (H1). We assume that D knows that a certain percentage of
samples in the training sequence are corrupted, but he has no
clue about the position of the corrupted samples. The attacker
can also modify the sequence generated by Y so to induce a
decision error. The corrupted sequence is indicated by zn. With
regard to the two phases of the attack, we assume that A first
corrupts the training sequence, then he modifies the sequence
yn. This means that, in general, zn will depend both on yn

4In this paper, we are interested in studying the equilibrium point of the
source identification game when the length of the test and training sequences
tend to infinity. Strictly speaking, we should ensure that when n grows, all
the quantities m, m1 and m2 are integer numbers for the given c and α.
In practice, we will neglect such an issue, since when n grows the ratios
m/n and m1/(m1+m2) can approximate any real values c and α. More
rigorously, we could consider only rational values of c and α, and focus
on subsequences of n including only those values for which m/n=c and
m1/(m1+m2)=α.

A

X

Y
yn

xn

τm1

zn (d(zn, yn) < nL)

D
H0/H1

vn

A
tm = σ(τm1||τm2)

Fig. 1. Schematic representation of the SIac-tr game. Both training and test
sequences are corrupted by the attacker. Symbol || denotes concatenation of
sequences and σ() is a random permutation of sequence samples.

and tm, while tm (noticeably τm2 ) does not depend on yn.
Stated in another way, the corruption of the training sequence
can be seen as a preparatory part of the attack, whose goal is
to ease the subsequent camouflage of yn.

For a formal definition of the SIac-tr game, we must define
the set of strategies available to D and A (respectively SD

and SA ) and the corresponding payoffs.

B. Defender’s strategies

The basic assumption behind the definition of the space
of strategies available to D is that to make his decision
D relies only on the first order statistics of vn and tm.
This assumption is equivalent to requiring that the acceptance
region for hypothesis H0, hereafter referred to as Λn×m, is a
union of pairs of type classes5, or equivalently, pairs of types
(P,R), where P∈Pn and R∈Pm. To define Λn×m, D follows
a Neyman-Pearson approach, requiring that the false positive
error probability is lower than a certain threshold. Specifically,
we require that the false positive error probability tends to zero
exponentially fast with a decay rate at least equal to λ. Given
that the pmf PX ruling the emission of sequences under H0

is not known and given that the corruption of the training
sequence is going to impair D’s decision under H0, we adopt
a worst case approach and require that the constraint on the
false positive error probability holds for all possible PX and
for all the possible strategies available to the attacker. Given
the above setting, the space of strategies available to D is
defined as follows:

SD={Λn×m⊂Pn×Pm: max
PX∈P

max
s∈SA

Pfp ≤ 2−λn}, (6)

where the inner maximization is performed over all the strate-
gies available to the attacker. We will refine this definition at
the end of the next section, after the exact definition of the
space of strategies of the attacker.

C. Attacker’s strategies

With regard to A , the attack consists of two parts. Given
a sequence yn drawn from PY , and the original training
sequence τm1 , the attacker first generates a sequence of fake
samples τm2 and mixes them up with those in τm1 producing
the training sequence tm observed by D . Then he transforms
yn into zn, eventually trying to generate a pair of sequences

5We use the superscript n×m to indicate explicitly that Λn×m refers to
n-long test sequences and (m=cn)-long training sequences.
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(zn,tm)6 whose types belong to Λn×m. In doing so, he must
ensure that d(yn,zn)≤nL for some distortion function d.

Let us consider the corruption of the training sequence first.
Given that the defender bases his decision only on the type of
tm, we are only interested in the effect that the addition of the
fake samples has on Ptm . By considering the different length
of τm1 and τm2 , we have:

Ptm=αPτm2 +(1−α)Pτm1 , (7)

where Ptm∈Pm, Pτm1∈Pm1 and Pτm2∈Pm2 . The first part
of the attack, then, is equivalent to choosing a pmf in Pm2 and
mixing it up with Pτm1 . By the same token, it is reasonable
to assume that the choice of the attacker depends only on
Pτm1 rather than on the single sequence τm1 . Arguably, the
best choice of the pmf in Pm2 will depend on PY , since the
corruption of the training sequence is instrumental in letting
the defender think that a sequence generated by Y has been
drawn by the same source that generated tm.

To describe the part of the attack applied to the test
sequence, we follow the approach used in [5] based on trans-
portation theory [22]. Let us indicate by n(i,j) the number
of times that the i-th symbol of the alphabet is transformed
into the j-th one as a consequence of the attack. Similarly, let
SnY Z(i,j)=n(i,j)/n be the relative frequency with which such
a transformation occurs. In the following, we refer to SnY Z as
transportation map. For any additive distortion measure, the
distortion introduced by the attack can be expressed in terms
of n(i,j) and SnY Z . In fact, we have:

d(yn,zn) =
∑

i,j

n(i,j)d(i,j), (8)

d(yn,zn)

n
=
∑

i,j

SnY Z(i,j)d(i,j). (9)

where d(i,j) is the distortion introduced when symbol i is
transformed into symbol j.

The map SnY Z also determines the type of the attacked
sequence. In fact, by indicating with Pzn(j) the relative
frequency of symbol j into zn, we have:

Pzn(j) =
∑

i

SnY Z(i,j) , SnZ(j). (10)

Finally, we observe that the attacker can not change more
symbols than there are in the sequence yn; as a conse-
quence a map SnY Z can be applied to a sequence yn only if
SnY (i),

∑
jS

n
Y Z(i,j)=Pyn(i). Sometimes, we find convenient

to explicitly denote the dependence of the map chosen by the
attacker on the type of tm and yn, and hence we will also
adopt the notation SnY Z(Ptm ,Pyn).

By remembering that Λn×m depends on vn only through its
type, and given that the type of the attacked sequence depends
on SnY only through SnY Z , we can define the second phase of

6While reordering is essential to hide the position of fake samples to D , it
does not have any impact on the position of (zn,tm) with respect to Λn×m,
since we assumed that the defender bases his decision only on the first order
statistic of the observed sequences. For this reason, we omit to indicate the
reordering operator σ in the attacking procedure.

the attack as the choice of a transportation map among all
admissible maps, a map being admissible if:

SnY = Pyn (11)∑

i,j

SnY Z(i,j)d(i,j) ≤ L.

Hereafter, we will refer to the set of admissible maps as
An(L,Pyn).

With the above ideas in mind, the set of strategies of the
attacker can be defined as follows:

SA = SA ,T×SA ,O, (12)

where SA ,T and SA ,O indicate, respectively, the part of
the attack affecting the training sequence and the observed
sequence, and are defined as:

SA ,T =

{
Q(Pτm1 ): Pm1→Pm2

}
, (13)

SA ,O =

{
SnY Z(Pyn ,Ptm): Pn×Pm→An(L,Pyn)

}
. (14)

Note that the first part of the attack (SA ,T ) is applied regard-
less of whether H0 or H1 holds, while the second part (SA ,O)
is applied only under H1. We also stress that the choice of
Q(Pτm1 ) depends only on the training sequence τm1 , while
the transportation map used in the second phase of the attack
is a function of both on yn and τm1 (through tm). Finally,
we observe that with these definitions, the set of strategies
of the defender can be redefined by explicitly indicating that
the constraint on the false positive error probability must be
verified for all possible choices of Q(·)∈SA ,T , since this is
the only part of the attack affecting Pfp. Specifically, we can
rewrite (6) as

SD={Λn×m⊂Pn×Pm: max
PX

max
Q(·)∈SA ,T

Pfp ≤ 2−λn}. (15)

D. Payoff

The payoff of the game is defined in terms of the false
negative error probability, namely:

u(Λn×m,(Q(·), SnY Z(·,·))) = −Pfn, (16)

where the defender’s perspective is adopted; then, D aims at
maximising u while A wants to minimise it.

In Section IV-B, we will show that the game defined above
is dominance solvable and we will derive the rationalizable
equilibrium (see discussion in Section II-A), indicated by
(Λn×m,∗,(Q∗(·), Sn,∗Y Z(·,·))).

E. The SIac-tr game with targeted corruption (SIa,tc-tr game)

The SIac-tr game is difficult to solve directly, because of the
2-step attacking strategy. We will work around this difficulty
by tackling first with a slightly different version of the game,
namely the source identification game with targeted corruption
of the training sequence, SIa,tc-tr, depicted in Fig. 2 (this
corresponds to a targeted attack according to the taxonomy
introduced in [7]).
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A

X

Y
yn

xn

τm1 zn (d(zn, yn) < nL)

tm = σ(τm1||τm2)

D
H0/H1

vn

Fig. 2. SIac-tr game with targeted corruption of the training sequence
(SIa,tc-tr game).

Whereas the strategies available to the defender remain the
same, for the attacker, the choice of Q(·) is targeted to the
counterfeiting of a given sequence yn. In other words, we will
assume that the attacker corrupts the training sequence τm1 to
ease the counterfeiting of a specific sequence yn rather than
to increase the probability that the second part of the attack
succeeds. This means that the part of the attack aiming at
corrupting the training sequence also depend on yn, that is:

SA ,T =

{
Q(Pτm1 ,Pyn): Pm1×Pn→Pm2

}
. (17)

Even if this setup is not very realistic and is more favourable
to the attacker, who can exploit the exact knowledge of yn

(rather than its statistical properties) also for the corruption of
the training sequence, in the next section we will show that,
for large n, the SIa,tc-tr game is equivalent to the non-targeted
version of the game we are interested in.

With the above ideas in mind, the SIa,tc-tr game is formally
defined as follows.

1) Defender’s strategies:

SD={Λn×m⊂Pn×Pm: max
PX

max
Q(·,·)∈SA ,T

Pfp≤2−λn}. (18)

2) Attacker’s strategies:

SA = SA ,T×SA ,O (19)

with SA ,T and SA ,O defined as in (17) and (14) respectively.
It is worth observing that SD is always non empty, since it
contains at least the degenerate strategy that always accepts
H0. For such a strategy, Pfp is identically equal to zero, hence
it satisfies the constraint on the false positive error probability
regardless of the values of λ and α. In fact, it is easy to realise
that when α=1 this is the only possible choice available to the
defender. Such a strategy obviously results in a false negative
error probability equal to 1, hence determining the win of the
adversary.

Another observation regards the assumption that D knows
α, that is the (maximum) percentage of training samples that
A may corrupt. This is an implicit and necessary assumption
in the definition of the game, since for a proper definition it
is necessary that the players know the space of strategies of
the other players. Assuming that the value of α is not known
to the defender would require that we redefine the game as a
game with incomplete information, namely a Bayesian game,
possibly looking for Bayesian equilibria [23]. As a matter of
fact, coping with attacks often implies making decisions under
uncertainty; hence, the interaction between the defender and
the attacker has already been modelled as a Bayesian game in
other security-oriented works, e.g. [24], [25], [26], [27], for

intrusion detection applications, or [28], for image forensics.
In our problem, the Bayesian formulation of the game would
dramatically complicate the analysis of the problem, so we
decided to stick to a classical definition and interpret the value
of α as a kind of worst case estimate that the defender has on
the capability of A to corrupt the training data. As a matter of
fact, in the Neyman-Pearson setup adopted in this paper (and
in prior works), some estimate on the maximum percentage
of samples corrupted by the attacker is necessary, since in
the absence of such an estimate the constraint on the false
positive error probability could not be satisfied, given that the
possibility that all the training samples have been corrupted
could not be ruled out.

3) Payoff: The payoff of the game is still equal to the false
negative error probability:

u(Λn×m,(Q(·,·), SnY Z(·,·))) = −Pfn. (20)

IV. ASYMPTOTIC EQUILIBRIUM AND PAYOFF OF THE
SIa,tc-tr AND SIac-tr GAMES

In this section, we focus on the behavior of the game
when the length of the test and training sequences tends to
infinity; we first derive the equilibrium of the SIa,tc-tr and the
SIac-tr games and then evaluate the payoff at the equilibrium.

A. Optimum defender’s strategy

We start by deriving the asymptotically optimum strategy
for D . As we will see, a dominant and universal strategy
with respect to PY exists for D . In other words, the optimum
choice of D depends on neither the strategy chosen by the
attacker nor PY . In addition, since the constraint on the false
positive probability must be satisfied for all attackers’ strategy,
the optimum strategy for the defender is the same for both the
targeted and non-targeted versions of the game.

As a first thing, we look for an explicit expression of the
false positive error probability. Such a probability depends on
PX and on the strategy used by A to corrupt the training
sequence. In fact, the mapping of yn into zn does not have any
impact on D’s decision under H0. We carry out our derivations
by focusing on the game with targeted corruption. It will be
clear from our analysis that the dependence on yn has no
impact on Pfp, and hence the same results hold for the game
with non-targeted corruption.

For a given PX and Q(·,·), Pfp is equal to the probabil-
ity that Y generates a sequence yn and X generates two
sequences xn and τm1 , such that the pair of type classes
(Pxn ,αQ(Pτm1 ,Pyn)+(1−α)Pτm1 ) falls outside Λn×m. Such
a probability can be expressed as:

Pfp = Pr{(Pxn ,αQ(Pτm1 ,Pyn)+(1−α)Pτm1 )∈Λ̄n×m}
=

∑

Pyn∈Pn
PY (T (Pyn))· (21)

∑

(Pxn ,Ptm )∈Λ̄n×m

PX(T (Pxn))·
∑

Pτm1∈Pm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 )),

where Λ̄n×m is the complement of Λn×m, and where we have
exploited the fact that under H0 the training sequence τm1 and
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the test sequence xn are generated independently by X . Given
the above formulation, the set of strategies available to D can
be rewritten as:

SD=

{
Λn×m: max

PX
max
Q(·,·)

∑

Pyn∈Pn
PY (T (Pyn))· (22)

∑

(Pxn ,Ptm )∈Λ̄n×m

PX(T (Pxn))·
∑

Pτm1∈Pm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))≤2−λn
}
.

We are now ready to prove the following lemma, which
describes the asymptotically optimum strategy for the defender
for both versions of the game.

Lemma 1. Let Λn×m,∗ be defined as follows:

Λn×m,∗=

{
(Pvn ,Ptm): min

Q∈Pm2
h

(
Pvn ,

Ptm−αQ
1−α

)
≤ λ−δn

}

(23)
with

δn=|X | log(n+1)((1−α)nc+1)

n
, (24)

where |X | is the cardinality of the source alphabet, c=m
n , and

where the minimisation over Q is limited to all the Q’s such
that Ptm−αQ is nonnegative for all the symbols in X .
Then:

1) max
PX

max
s∈SA

Pfp ≤ 2−n(λ−νn), with lim
n→∞

νn=0,

2) ∀Λn×m ∈ SD , we have Λ̄n×m⊆Λ̄n×m,∗.

where νn is an arbitrary sequence approaching 0 when n
tends to infinity.

Proof. To prove the first part of the lemma, we see that from
the expression of the false positive error probability given by
(21), we can write:

max
PX

max
Q(·,·)

Pfp ≤ (25)

max
PX

∑

Pyn∈Pn
PY (T (Pyn))·

∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

PX(T (Pxn))·

max
Q(·,·)

∑

Pτm1∈Pm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 )). (26)

Let us consider the term within the inner summation. For each
Pτm1 such that αQ(Pτm1 ,Pyn)+(1−α)Pτm1 =Ptm , we have7:

PX(T (Pτm1 )) ≤ max
Q∈Pm2

PX

(
T

(
Ptm−αQ

1−α

))
, (27)

with the understanding that the maximisation is carried out
only over the Q’s such that Ptm−αQ is nonnegative for all
the symbols in X .

7It is easy to see that the bound (27) holds also for the non-targeted game,
when Q depends on the training sequence only (Q(Pτm1 )).

Thanks to the above observation, we can upper bound the
false positive error probability as follows:

max
PX

max
Q(·,·)

Pfp ≤ (28)

max
PX

∑

Pyn∈Pn
PY (T (Pyn))·

∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

PX(T (Pxn))·|Pm1 |· max
Q∈Pm2

PX

(
T

(
Ptm−αQ

1−α

))

(a)
= max

PX

∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

PX(T (Pxn))|Pm1 | max
Q∈Pm2

PX

(
T

(
Ptm−αQ

1−α

))

≤|Pm1 |
∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

max
Q∈Pm2

max
PX

PX(T (Pxn))PX

(
T

(
Ptm−αQ

1−α

))

where in (a) we exploited the fact that the rest of the
expression no longer depends on Pyn . From this point, the
proof goes along the same line of the proof of Lemma 2 in [3],
by observing that maxPXPX(T (Pxn))PX

(
T
(
Ptm−αQ

1−α

))
is

upper bounded by 2−nh(Pxn ,
Ptm−αQ

1−α ), and that for each pair
of types in Λ̄n×m,∗, h(Pxn ,

Ptm−αQ
1−α ) is larger than λ−δn for

every Q by the very definition of Λn×m,∗.
We now pass to the second part of the lemma. Let Λn×m

be a strategy in SD , and let (Pxn ,Ptm) be a pair of types con-
tained in Λ̄n×m. Given that Λn×m is an admissible decision
region (see (18)), the probability that X emits a test sequence
belonging to T (Pxn) and a training sequence τm1 such that
after the attack (τm1 ||τm2)∈T (Ptm) must be lower than 2−λn

for all PX and all possible attacking strategies, that is:

2−λn > max
PX

max
Q(·,·)

∑

Pyn∈Pn
PY (T (Pyn))· (29)

[
PX(T (Pxn)) ·

∑

Pτm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))
]

(a)
= max

PX

∑

Pyn∈Pn
PY (T (Pyn))·

[
PX(T (Pxn))· max

Q(·,Pyn )

∑

Pτm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))
]

(b)

≥ max
PX

∑

Pyn∈Pn
PY (T (Pyn))·

[
PX(T (Pxn))·

max
Q(Pτm1 ,Pyn )

PX

(
T

(
Ptm−αQ(Pτm1 ,Pyn)

1−α

))]

(c)
= max

PX
PX(T (Pxn)) max

Q∈Pm2
PX

(
T

(
Ptm−αQ

1−α

))
,

where (a) is obtained by replacing the maximisation over all
possible strategies Q(·,·), with a maximisation over Q(·,Pyn)
for each specific Pyn , and (b) is obtained by considering
only one term Pτm1 of the inner summation and optimising
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Q(Pτm1 ,Pyn) for that term. Finally, (c) follows by observing
that the optimum Q(·,Pyn) is the same for any Pyn . As usual,
the maximization over Q in the last expression is restricted to
the Q’s for which Ptm−αQ ≥ 0 for all the symbols in X 8

By lower bounding the probability that a memoryless source
X generates a sequence belonging to a certain type class
(see [11], chapter 12), we can continue the above chain of
inequalities as follows

2−λn >

max
PX

max
Q∈Pm2

2−n
[
D(Pxn ||PX)+

m1
n D
(
Ptm−αQ

1−α ||PX
)]

(n+1)|X |(m1+1)|X |
(30)

≥ 2
−n min

Q∈Pm2
min
PX

[
D(Pxn ||PX)+

m1
n D
(
Ptm−αQ

1−α ||PX
)]

(n+1)|X |(m1+1)|X |

(a)
=

2
−n min

Q∈Pm2
h
(
Pxn ,

Ptm−αQ
1−α

)

(n+1)|X |(m1+1)|X |
,

where (a) derives from the minimisation properties of the
generalised log-likelihood ratio function h() (see Lemma 1,
in [3]). By taking the log of both terms we have:

min
Q∈Pm2

h

(
Pxn ,

Ptm−αQ
1−α

)
> λ−δn, (31)

thus completing the proof of the lemma.

Lemma 1 shows that the strategy Λn×m,∗ is asymptotically
admissible (point 1) and optimal (point 2), regardless of the
attack. From a game-theoretic perspective, this means that
such a strategy is a dominant strategy for D and implies that
the game is dominance solvable [20]. Similarly, the optimum
strategy is a semi-universal one, since it depends on PX but
it does not depend on PY . At first sight, the minimisation
required by the optimum defender’s strategy seems to be
computationally prohibitive, however this is not the case since
the minimisation can be carried out efficiently by exploiting
the convexity of the h function. More specifically, since the
minimisation is limited to the Q’s such that Ptm−αQ is
nonnegative for all the symbols in X , the log-sum inequal-
ity [11] can be applied to show that h

(
Pxn ,

Ptm−αQ
1−α

)
is

a convex function with respect to those Q, that is within
the set {Q∈Pm2 :Ptm−αQ1−α ∈Pm1}. Being this set linear in
Q and limited (corresponding to a subset of the probability
simplex in R|X |), the optimisation problem in (23) is a convex
mixed integer nonlinear problem, namely, convex MINLP [29],
for which a global optimum solution exists. For this kind
of problems, there are several efficient solvers yielding the
optimum solution [30]. The number of optimisation variables,
which determines the computational complexity, corresponds
to the cardinality of the alphabet, i.e |X |, and hence the
minimisation is viable in many practical scenarios.

It is clear from the proof of Lemma 1 that the same optimum
strategy holds for the targeted and non-targeted versions of
the game. The situation is rather different with regard to the

8It is easy to see that the same lower bound can be derived also for the
non targeted case, as the optimum Q in the second to last expression does
not depend on Pyn .

optimum strategy for the attacker. Despite the existence of a
dominant strategy for the defender, in fact, the identification of
the optimum attacker’s strategy for the SIac-tr game is not easy
due to the 2-step nature of the attack. For this reason, in the
following sections, we will focus on the targeted version of the
game, which is easier to study. We will then use the results
obtained for the SIa,tc-tr game to derive the best achievable
performance for the case of non-targeted attack.

B. The SIa,tc-tr game: optimum attacker’s strategy and equilib-
rium point

Given the dominant strategy of D , for any given τm1 and
yn, the optimum attacker’s strategy for the SIa,tc-tr game boils
down to the following double minimisation:

(Q∗(Pτm1 ,Pyn), Sn,∗Y Z(Pyn ,Ptm)) = (32)

arg min
Q∈Pm2

SnY Z∈An(L,Pyn )

(
min
Q′

h

(
Pzn ,

(1−α)Pτm1 +αQ−αQ′
1−α

))
,

where Pzn is obtained by applying the transformation map
SnY Z to Pyn , and where Ptm=(1−α)Pτm1 +αQ. As usual, the
minimisation over Q′ is limited to the Q′ such that all the
entries of the resulting pmf are nonnegative.

As a remark, for L=0 (corruption of the training sequence
only), we get:

Q∗(Pτm1 ,Pyn) =

arg min
Q∈Pm2

[
min
Q′

h

(
Pyn , Pτm1 +

α

1−α (Q−Q′)
)]
, (33)

while, for α=0 (classical setup, without corruption of the
training sequence) we have:

Sn,∗Y Z(Pyn ,Ptm)= argmin
SnY Z∈An(L,Pyn )

h(Pzn ,Ptm), (34)

falling back to the known case of source identification with un-
corrupted training, already studied in [3]. Having determined
the optimum strategies of both players, it is immediate to state
the following:

Theorem 1. The SIa,tc-tr game is a dominance solvable game,
whose only rationalizable equilibrium corresponds to the
profile (Λn×m,∗,(Q∗(·,·), Sn,∗Y Z(·,·)) given by equations (23)
and (32).

Proof. The theorem is a direct consequence of the fact that
Λn×m,∗ is a dominant strategy for D .

C. The SIa,tc-tr game: payoff at the equilibrium

In this section, we derive the asymptotic value of the payoff
at the equilibrium, to see who and under which conditions is
going to win the game.

To start with, we identify the set of pairs (Pyn ,Pτm1 ) for
which, as a consequence of A ’s action, D accepts H0:

Γn(λ,α,L) = {(Pyn ,Pτm1 ): ∃ (Pzn ,Ptm)∈Λn×m,∗ (35)
s.t. Ptm=(1−α)Pτm1 +αQ and Pzn=SnZ

for some Q∈Pm2 and SnY Z∈A(L,Pyn)}.
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If we fix the type of the non-corrupted training sequence
(Pτm1 ), we obtain:

Γn(Pτm1 ,λ,α,L)={Pyn : ∃ Pzn∈Λn,∗((1−α)Pτm1 +αQ)
(36)

s.t. Pzn=SnZ

for some Q∈Pm2 and SnY Z∈A(L,Pyn)},

where Λn,∗(P ) denotes the acceptance region for a fixed type
of the training sequence in Pm. It is interesting to notice that,
since in the current setting A has two degrees of freedom,
the attack has a twofold effect: the sequence yn is modified
in order to bring it inside the acceptance region Λn,∗(Ptm)
and the acceptance region itself is modified so to facilitate the
former action.
To go on, we find it convenient to rewrite the set
Γn(Pτm1 ,λ,α,L) as follows:

Γn(Pτm1 ,λ,α,L) = (37)
{Pyn : ∃SnPV ∈ A(L,Pyn) s.t. SnV ∈ Γn0 (Pτm1 ,λ,α)},

where

Γn0 (Pτm1 ,λ,α)= (38)
{Pyn : ∃Q ∈ Pm2 s.t. Pyn∈Λn,∗((1−α)Pτm1 +αQ)},

is the set containing all the test sequences (or, equivalently,
test types) for which it is possible to corrupt the training set
in such a way that they fall within the acceptance region. As
the subscript 0 suggests, this set corresponds to the set in (36)
when A cannot modify the sequence drawn from Y (i.e. L=0)
and then tries to hamper the decision by corrupting the training
sequence only.

By considering the expression of the acceptance region, the
set Γn0 (Pτm1 ,λ,α) can be expressed in a more explicit form
as follows:

Γn0 (Pτm1 ,λ,α) =
{
Pyn : ∃Q,Q′ ∈ Pm2 s.t. (39)

h

(
Pyn ,Pτm1 +

α

(1−α)
(Q−Q′)

)
≤ λ−δn

}
,

where the second argument of h() denotes a type in Pm1 ob-
tained from the original training sequence τm1 by first adding
m2 samples and later removing (in a possibly different way)
the same number of samples. Note that in this formulation
Q accounts for the fake samples introduced by the attacker
and Q′ for the worst case guess made by the defender of the
position of the corrupted samples. We also observe that since
we are treating the SIa,tc-tr game, in general Q will depend on
Pyn . As usual, we implicitly assume that Q and Q′ are chosen
in such a way that Pτm1 + α

(1−α) (Q−Q′) is nonnegative and
smaller than or equal to 1 for all the alphabet symbols.

We are now ready to derive the asymptotic payoff of the
game by following a path similar to that used in [2], [3]. First
of all we generalise the definition of the sets Λn×m,∗, Γn and
Γn0 so that they can be evaluated for a generic pmf in P (that
is, without requiring that the pmf’s are induced by sequences
of finite length). This step passes through the generalization of

the h function. Specifically, given any pair of pmf’s (P,P ′)∈
P×P , we define:

hc(P,P
′) = D(P ||U) + cD(P ′||U); (40)

U =
1

1+c
P +

c

1+c
P ′,

where c∈[0,1]. Note that when (P,P ′)∈Pn×Pn, hc(P,P ′)=
h(P,P ′). The asymptotic version of Λn×m,∗ is:

Λ∗=

{
(P,R) : min

Q
hc

(
P,

R−αQ
1−α

)
≤ λ

}
. (41)

In a similar way, we can derive the asymptotic versions of
Γn and Γn0 in (37) and (38)-(39). To do so, we first observe
that, the transportation map SnY Z depends on the sources only
through the pmfs. By denoting with SnPV a transportation map
from a pmf P∈Pn to another pmf V ∈Pn and rewriting the set
Γn accordingly, we can easily derive the asymptotic version
of the set as follows:

Γ(R,λ,α,L) = {P∈P : ∃SPV ∈A(L,P ) s.t. V ∈Γ0(R,λ,α)},
(42)

with

Γ0(R,λ,α) = (43)
{P∈P : ∃Q∈P s.t. P∈Λ∗((1−α)R+αQ)} ={
P∈P : ∃Q,Q′∈P s.t. hc

(
P, R+

α

(1−α)
(Q−Q′)

)
≤ λ

}
,

where the definitions of SPV and A(L,P ) derive from those of
SnPV and An(L,P ) by relaxing the requirement that the terms
SPV (i,j) and P (i) are rational numbers with denominator n.
We now have all the necessary tools to prove the following
theorem.

Theorem 2 (Asymptotic payoff of the SIa,tc-tr game). For
the SIa,tc-tr game, the false negative error exponent at the
equilibrium is given by

ε = min
R

[(1−α)cD(R||PX)+ min
P∈Γ(R,λ,α,L)

D(P ||PY )]. (44)

Accordingly,
1) if PY ∈ Γ(PX ,λ,α,L) then ε = 0;
2) if PY /∈ Γ(PX ,λ,α,L) then ε > 0.

Proof. The theorem could be proven going along the same
lines of the proof of Theorem 4 in [3]. We instead provide a
proof based on the extension of Sanov’s theorem provided in
the Appendix (see Theorem 6). In fact, Theorem 2, as well
as Theorem 4 in [3], can be seen as an application of such a
generalized version of Sanov’s theorem.

Let us consider

Pfn =
∑

(Pyn ,Pτm1 )∈Γn(λ,α,L)

PX(T (Pτm1 ))PY (T (Pyn)) (45)

=
∑

R∈Pm1

PX(T (R))
∑

P∈Γn(R,λ,α,L)

PY (T (P ))

=
∑

R∈Pm1

PX(T (R))PY (Γn(R,λ,α,L)).
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We start by deriving an upper-bound of the false negative error
probability. We can write:

Pfn ≤
∑

R∈Pm1

PX(T (R))
∑

P∈Γn(R,λ,α,L)

2−nD(P ||PY )

≤
∑

R∈Pm1

PX(T (R))(n+1)|X |2
−n min

P∈Γn(R,λ,α,L)
D(P ||PY )

≤
∑

R∈Pm1

PX(T (R))(n+1)|X |2
−n min

P∈Γ(R,λ,α,L)
D(P ||PY )

≤ (n+1)|X |(m1+1)|X |

·2
−n min

R∈Pm1
[
m1
n D(R||PX)+ min

P∈Γ(R,λ,α,L)
D(P ||PY )]

≤ (n+1)|X |(m1+1)|X |

·2
−nmin

R∈P
[(1−α)cD(R||PX)+ min

P∈Γ(R,λ,α,L)
D(P ||PY )]

, (46)

where the use of the minimum instead of the infimum is
justified by the fact that Γn(R,λ,α,L) and Γ(R,λ,α,L) are
compact sets. By taking the log and dividing by n we find:

− logPfn
n

≥
min
R∈P

[
(1−α)cD(R||PX)+ min

P∈Γ(R,λ,α,L)
D(P ||PY )

]
−βn,

(47)

where βn=|X | log(n+1)((1−α)nc+1)
n tends to 0 when n tends to

infinity.
We now turn to the analysis of a lower bound for Pfn. Let

R∗ be the pmf achieving the minimum in the outer minimi-
sation of (44). Due to the density of rational numbers within
real numbers, we can find a sequence of pmfs’ Rm1∈Pm1

(m1=(1−α)nc) that tends to R∗ when n (and hence m1) tends
to infinity. We can write:

Pfn=
∑

R∈Pm1

PX(T (R))PY (Γn(R,λ,α,L))

≥ PX(T (Rm1))PY (Γn(Rm1 ,λ,α,L)),

≥ 2−m1D(Rm1
||PX)

(m1+1)|X |
PY (Γn(Rm1

,λ,α,L)), (48)

where in the first inequality we have replaced the sum with
the single element of the subsequence Rm1

defined previously,
and where the second inequality derives from the well known
lower bound on the probability of a type class [11]. From (48),
by taking the log and dividing by n, we obtain:

− logPfn
n

≤

(1−α)cD(Rm1
||PX)− 1

n
logPY (Γn(Rm1

,λ,α,L))+β′n,

(49)

where β′n=|X | log(m1+1)
n tends to 0 when n tends to infinity.

In order to compute the probability PY (Γn(Rm1
,λ,α,L)), we

resort to Corollary 1 of the the generalised version of Sanov’s
Theorem given in Appendix A.
To apply the corollary, we must show that Γn(Rm1 ,λ,α,L)

H→
Γ(R∗,λ,α,L).

First of all, we observe that by exploiting the continuity of
the hc function and the density of rational numbers into the

real ones, it is easy to prove that Γn0 (Rm1
,λ,α)

H→Γ0(R∗,λ,α).
Then the Hausdorff convergence of Γn(Rm1 ,λ,α,L) to
Γ(R∗,λ,α,L) follows from the regularity properties of the set
of transportation maps stated in Appendix B. To see how,
we observe that any transformation SPV ∈A(L,P ) mapping
P into V can be applied in inverse order through the transfor-
mation SV P (i,j)=SPV (j,i). It is also immediate to see that
SV P introduces the same distortion introduced by SPV , that
is SV P∈A(L,V ). Let now P be a point in Γ(R∗,λ,α,L).
By definition we can find a map SPV ∈A(L,P ) such that
V ∈Γ0(R∗,λ,α). Since Γn0 (Rm1

,λ,α)
H→Γ0(R∗,λ,α), for large

enough n, we can find a point V ′∈Γn0 (Rm1
,λ,α) which is

arbitrarily close to V . Thanks to the second part of Theorem
7 in Appendix B, we know that a map SV ′P ′∈An(L,V ′) exists
such that P ′ is arbitrarily close to P and P ′∈Pn. By applying
the inverse map SP ′V ′ to P ′, we see that P ′∈Γn(Rm1

,λ,α,L),
thus permitting us to conclude that, when n increases,
δΓ(R∗,λ,α,L)(Γ

n(Rm1
,λ,α,L))→0. In a similar way, we can

prove that δΓn(Rm1
,λ,α,L)(Γ(R∗,λ,α,L))→0, hence permitting

us to conclude that Γn(Rm1
,λ,α,L)

H→Γ(R∗,λ,α,L).
We can now apply the generalised version of Sanov Theo-

rem as expressed in Corollary 1 of Appendix A to conclude
that:

− lim
n→∞

1

n
logPY (Γn(Rm1

,λ,α,L)) = min
P∈Γ(R∗,λ,α,L)

D(P ||PY ).

(50)
Going back to (49), and by exploiting the continuity of the

divergence function, we can say that for large n we have:

− logPfn
n
≤(1−α)cD(R∗||PX) + min

P∈Γ(R∗,λ,α,L)
D(P ||PY )+νn,

(51)

where the sequence νn tends to zero when n tends to infinity.
By coupling equations (47) and (51) and by letting n→∞, we
eventually obtain:

− lim
n→∞

logPfn
n

=

min
R

[(1−α)c·D(R||PX)+ min
P∈Γ(R,λ,α,L)

D(P ||PY )],

(52)

thus proving the theorem.

As an immediate consequence of Theorem 2, the set
Γ(PX ,λ,α,L) defines the indistinguishability region of the test,
that is the set of all the sources for which A induces D to
decide in favour of H0 even if H1 holds.

D. Analysis of the SIac-tr game

We now focus on the SIac-tr game. For a given choice of
Q(Pτm1 )∈SA ,T (and hence tm), given a sequence yn, the
optimum choice of the second part of the attack derives quite
easily from the definition of Λn×m,∗, namely

Sn,∗Y Z(Pyn ,Ptm)= (53)

arg min
SnY Z∈An(L,Pyn )

(
min

Q∈Pm2
h

(
Pzn ,

Ptm−αQ
1−α

))
.
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Now the point is to determine the strategy Q(Pτm1 ) which
maximises the probability that the attack in (53) succeeds.
To this purpose, of course, the attacker must exploit the
knowledge of PY . Since solving such a maximisation problem
is not an easy task, we will proceed in a different way. We
first introduce a simple (and possibly suboptimum) strategy,
then we argue that such a strategy is asymptotically optimum,
in that the set of the sources that cannot be distinguished from
X with this choice is the same set that we have obtained for
the SIa,tc-tr setup, which is known to be more favourable to the
attacker. More specifically, we consider the following two-part
attack. In the first part, A does not know yn, hence he trusts
the law of large numbers and optimises Q(Pτm1 ) by using PY
as a proxy for Pyn . To do so, he applies (32), by replacing
Pyn with PY . Specifically, by indicating with Q†, the resulting
strategy for the first part of the attack, we have

Q†(Pτm1 ) = arg min
Q∈Pm2

(54)

min
Q′∈Pm2

SY Z∈A(L,PY )

hc

(
PZ ,Pτm1 +

α

1−α (Q−Q′)
)
. (55)

As a by-product of the above minimisation, the attacker also
finds the map Sn,†Y Z representing the optimum attack when
Pyn=PY . Let us indicate the result of the application of such
a map to PY by P †Z .

In the second part of the attack, A tries to move Pyn as
close as possible to P †Z , that is:

Sn,†Y Z(Pyn ,P
†
tm) = arg min

SnY Z∈An(L,Pyn )
d(SnZ ,P

†
Z), (56)

where Sn,†Y Z(Pyn ,P
†
tm) depends upon the corrupted training

sequence obtained after the application of the first part of the
attack, namely P †tm=(1−α)Pτm1 +αQ†(Pτm1 ), through P †Z .

The asymptotic optimality of the strategy (Q†(Pτm1 ),
Sn,†Y Z(Pyn ,P

†
tm)) derives from the following theorem

Theorem 3 (Indistinguishability region of the SIac-tr game).
The indistinguishability region of SIac-tr game is equal to that
of the SIa,tc-tr game (see (42)) and is asymptotically achieved
by the attacking strategy (Q†(Pτm1 ), Sn,†Y Z(Pyn ,P

†
tm)).

Proof (sketch). The theorem derives from the observation that
due to the law of large numbers, when n grows, Pyn tends
to PY ; hence, for large enough n, optimising the first part
of the attack by replacing Pyn with PY does not introduce a
significant performance loss. The rigorous proof goes along
similar lines to those used to prove Theorem 2 and ultimately
relies on the continuity of the hc function and the regularity
properties of the set An(L,Pyn). The details of the proof are
omitted for sake of brevity.

Given the asymptotic equivalence of the SIac-tr and the
SIa,tc-tr games, in the rest of the paper, we will generally refer
to the SIac-tr game without specifying if we are considering
the targeted or non-targeted case.

V. SOURCE DISTINGUISHABILITY FOR THE SIac-tr GAME

In this section, we study the behaviour of the SIac-tr game
when we vary the decay rate of the false positive error

probability λ. It is clear, in fact, that D can improve his
payoff at the equilibrium (linked to the false negative error
probability), by relaxing the constraint on the false positive
error exponent, i.e. by decreasing λ. By letting λ tend to
zero, then, we can derive the best achievable performance of
the defender when we require only that Pfp tends to zero
exponentially fast with an arbitrarily low - yet strictly positive
- error exponent. This corresponds to extending the Chernoff-
Stein lemma [11] to the adversarial setup considered in this
paper. Eventually, we use such a result to derive the conditions
under which the reliable distinction between two sources is
possible in terms of the number of corrupted training samples
α and maximum allowed distortion L.

A. Ultimate achievable performance of the game

As we said, the goal of this section is to study the limit of
the indistinguishability region when λ→0. This limit, in fact,
determines all the pmf’s PY that can not be distinguished from
PX ensuring that the two types of error probabilities tend to
zero exponentially fast (with vanishingly small, yet positive,
error exponents).

We start by exploiting optimal transport theory to rewrite
the indistinguishability region as:

Γ(PX ,λ,α,L) = {P : ∃V ∈Γ0(PX ,λ,α) s.t. EMD(P,V )≤L},
(57)

where EMD (Earth Mover Distance) is the term used in
computer vision to denote the minimum transportation cost
[22], [31], that is

EMD(P,V ) = min
SPV :SP=P,SV =V

∑

i,j

SPV (i,j)d(i,j). (58)

With this definition, the main result of this section is stated
by the following theorem.

Theorem 4. Given two sources X and Y , a maximum allowed
average per-letter distortion L and a fraction α of training
samples provided by the attacker, the maximum achievable
false negative error exponent ε for the SIac-tr game is:

lim
λ→0

lim
n→∞

− 1

n
log Pfn =

min
R

[(1−α)cD(R||PX) + min
P∈Γ(R,α,L)

D(P ||PY )],

(59)

where Γ(R,α,L)=Γ(R,λ=0,α,L). Accordingly, the ultimate
indistinguishability region is given by:

Γ(PX ,α,L)={P : ∃V ∈Γ0(PX ,α) s.t. EMD(P,V )≤L}, (60)

where Γ0(PX ,α)=Γ0(PX ,λ=0,α). Moreover, Γ(PX ,α,L) can
be rewritten as:

Γ(PX ,α,L)=

{
P : min

V :EMD(P,V )≤L

∑

i

[V (i)–PX(i)]
+≤ α

(1−α)

}

=

{
P : min

V :EMD(P,V )≤L
dL1(V,PX) ≤ 2α

(1−α)

}
.

(61)

with [a]+=max{a,0}.
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Proof. The proof of the first part goes along the same steps
used in the proof of Theorems 3 and 4 in [5] and is not
repeated here. We show, instead, that Γ(PX ,α,L) can be
rewritten as in (61).

By observing that hc(P,Q)=0 if and only if P=Q, it
is immediate to see that the set Γ0(PX ,λ=0,α) takes the
following expression:

Γ0(PX ,α)={P : ∃Q,Q′∈P s.t. P = PX+
α

(1−α)
(Q−Q′)}.

(62)
Expression (62) can be rewritten by avoiding the introduction
of the auxiliary pmf’s Q and Q′. To do so, we observe that
Q(i) must be larger than Q′(i) for all the bins i for which
P (i)>PX(i) (and viceversa). In addition, Q and Q′ must be
valid pmf’s, hence we have

∑
i[Q(i)−Q′(i)]+=

∑
i[Q
′(i)−

Q(i)]+≤1. Then, it is easy to see that (62) is equivalent to the
following definition:

Γ0(PX ,α)=

{
P :
∑

i

[P (i)−PX(i)]
+≤ α

(1−α)

}
(63)

=

{
P : dL1(P,PX)≤ 2α

(1−α)

}
,

where the second equality follows by observing that
dL1(P,PX)=

∑
i[P (i)−PX(i)]++

∑
i[PX(i)−P (i)]+. Even-

tually, (61) derives immediately from the expression of
Γ0(PX ,α) given in (63).

According to Theorem 4, Γ(PX ,α,L) provides the ultimate
indistinguishability region of the test, that is the set of all the
pmf’s for which A wins the game.

Before going on, we pose to discuss the geometrical mean-
ing of the set Γ0(PX ,α) in (62). To do so, we introduce the
set Λ∗0, obtained from Λ∗ by letting λ→∞:

Λ∗0=

{
(P,P ′): ∃Q s.t. P ′ =

P−αQ
(1−α)

}
. (64)

As usual, we can fix the pmf P and define:

Λ∗0(P )=

{
P ′: ∃Q s.t. P ′ =

P−αQ
(1−α)

}
. (65)

By referring to Figure 3 (left part), we can geometrically
interpret Λ∗0(P ) as the set of the pmf’s P ′ such that P is
a convex combination (with coefficient α) of P ′ with a point
Q of the probability simplex. Starting from (43), we can then
rewrite Γ0(PX ,α) as follows:

Γ0(PX ,α)={P : ∃Q∈P s.t. P∈Λ∗0((1−α)PX+αQ)}. (66)

Accordingly, Γ0(PX ,α) is geometrically obtained as the union
of the acceptance regions built from the points which can be
written as a convex combination of PX with some point Q in
the simplex. As shown in the right part of Figure 3, such a
region corresponds to a hexagon centred in PX , which, in the
probability simplex, is equivalent to the set of points whose
L1 distance from PX is smaller than or equal to 2α/(1−α)
(as stated in (63)). Of course, only the points of the hexagon
that lie inside the simplex are valid pmf’s and then must be
accounted for.

A pictorial representation of the set Γ(PX ,α,L) is given in
Figure 4.

Λ∗0(P )

P

Q′

P ′

P ′

Q′

Λ∗
0((1 − α)PX + αQ)

Q

PX

Γ0(PX , α)

(1 − α)PX + αQ

Fig. 3. Geometrical interpretation of Λ∗
0(P ) (left) and geometrical construc-

tion of Γ0(PX ,α) (right). The size of the sets are exaggerated for graphical
purposes.

PX

Γ0(PX , α)

P

V

EMD(P, V ) < L

Γ(PX , α, L)

Fig. 4. Geometrical interpretation of Γ(PX ,α,L) as stated in Theorem 4.

B. Security margin and blinding corruption level (αb)

By a closer inspection of the ultimate indistinguishability
region Γ(PX ,α,L), we can derive some interesting param-
eters characterising the distinguishability of two sources in
adversarial setting. Let X∼PX and Y∼PY be two sources.
Let us focus first on the case in which the attacker can
not modify the test sequence (L=0). In this situation, the
ultimate indistinguishability region boils down to Γ0(PX ,α).
Then we conclude that D can tell the two sources apart if
dL1

(PY ,PX)> 2α
(1−α) . On the contrary, if dL1

(PY ,PX)≤ 2α
(1−α) ,

A is able to make the sources indistinguishable by corrupting
the training sequence. Clearly, the larger the α the easier is
for A to win the game. We can define the blinding corruption
level αb, as the minimum value of α for which two sources
X and Y can not be distinguished. Specifically, we have:

αb(PX ,PY ) =
dL1

(PY ,PX)

2+dL1(PY ,PX)
=

∑
i[PY (i)−PX(i)]

+

1+
∑
i[PY (i)−PX(i)]

+ .

(67)

From (67) it is easy to see that αb is always lower than
1/2, with the limit case αb=1/2 corresponding to a situation
in which PX and PY have completely disjoint supports9. It
is interesting to notice that αb is symmetric with respect to
the two sources. Since the attacker is allowed only to add
samples to the training sequence without removing existing
samples, this might seem a counterintuitive result. Actually,
the symmetry of αb is a consequence of the worst case
approach adopted by the defender. In fact, D himself discards

9We remind that for any pair of pmf’s (P,Q), dL1
(P,Q) ≤ 2.
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PX

Γ0(PX , α) =


P : dL1

(P, PX) ≤ 2α
(1−α)





PY

{V :EMD(PY , V ) ≤ L∗α}

L∗α

Fig. 5. Geometrical interpretation of the Security Margin between two sources
X and Y .

a subset of samples from the training sequence in such a way to
maximise the probability that the remaining part of the training
sequence and the test sequence have been drawn from the same
source.

Let us now consider the more general case in which L6=
0. For a given α<αb, we look for the maximum distortion
allowed to A for which it is possible to reliably distinguish
between the two sources. From equation (61), we see that the
attack does not succeed if:

min
V :EMD(PY ,V )≤L

dL1(V,PX) >
2α

(1−α)
. (68)

This leads to the following definition, which extends the
concept of security margin, introduced in [5], to the more
general setup considered in this paper.

Definition 3 (Security Margin in the SIac-tr setup). Let
X∼PX and Y∼PY be two discrete memoryless sources. The
maximum distortion allowed to the attacker for which the two
sources can be reliably distinguished in the SIac-tr setup with
a fraction α of possibly corrupted samples, is called Security
Margin and is given by

SMα(PX ,PY ) = L∗α, (69)

where L∗α=0 if PY ∈Γ0(PX ,α), while, if PY /∈Γ0(PX ,α), L∗α
is the quantity which satisfies

min
V :EMD(PY ,V )≤L∗α

dL1
(V,PX) =

2α

(1−α)
. (70)

A geometric interpretation of L∗α is given in Figure 5. By
focusing on the case PY /∈Γ0(PX ,α), and by observing that

min
V :EMD(PY ,V )≤L

dL1(V,PX) (71)

is a monotonic non-increasing function of L, the security
margin can be expressed in explicit form as

SMα(PX ,PY )=argmin
L′

min
V :EMD(PY ,V )≤L′

∣∣∣∣dL1(V,PX)− 2α

(1−α)

∣∣∣∣.
(72)

When L>SMα(PX ,PY ), it is not possible for D to distin-
guish between the two sources with positive error exponents
of the two kinds.

By looking at the behavior of the security margin as
a function of α, we see that SMαb(PX ,PY )=0, meaning
that, whenever the fraction of corrupted samples reaches the
critical value, the sources can not be distinguished even if the
attacker does not introduce any distortion. On the contrary,
setting α=0 corresponds to studying the distinguishability of
the sources with uncorrupted training; in this case we have
SM0(PX ,PY )=EMD(PX ,PY ), in agreement with [5]. With
reference to Figure 5, it is easy to see that when α=0 the
hexagon representing Γ0(PX ,α) collapses into the single point
PX and the security margin corresponds to the Earth Mover
Distance between Y and X . Eventually, we notice that, for
α>0, the value of the security margin in (72) is less than
EMD(PX ,PY ). This is also an expected behaviour since the
general setting considered in this paper is more favourable to
the attacker than the setting in [5].

By looking at (72), we can argue that the Security Margin
is symmetric with respect to the two sources X and Y , that
is, SMα(PY ,PX)=SMα(PX ,PY ).

To show that this is the case, we observe that the pmf
V ′ associated with the minimum L, for which we have
EMD(PY ,V

′)=SMα(PX ,PY ), can be obtained through the
application of a map SPY V that works as follows: it does
not modify a portion α/(1−α) of PY and moves the re-
maining mass into an equal amount of PX in a con-
venient way (i.e., in such a way to minimise the over-
all distance between the masses). The inverse map can
be applied to bring the same quantity of mass from PX
to PY , while leaving as is the remaining mass, thus ob-
taining a V ′′ which satisfies EMD(PX ,V

′′)=EMD(PY ,V
′)

(because of the symmetry of the per-symbol distortion d)
and dL1

(V ′′,PY )=dL1
(V ′,PX)=2α/(1−α). Arguably, V ′′ is

the pmf for which EMD(PX ,V
′′)=SMα(PY ,PX); hence,

SMα(PY ,PX)=SMα(PX ,PY ).
1) Bernoulli sources: In order to get some insights on

the practical meaning of αb and SMα, we consider the
simple case of two Bernoulli sources with parameter q=PX(1)
and p=PY (1). Assuming that no distortion is allowed to the
attacker, the minimum fraction of samples that A must add
to induce a decision error is, according to (67), αb=

|p−q|
1+|p−q| .

For instance, and rather obviously, when |p−q|=1, to win the
game A must introduce a number of fake samples equal to
the number of samples of the correct training sequence, i.e.
α=0.5. With regard to SM, we have:

SMα(p,q)=

{ |q−p|− α
1−α α < αb

0 α ≥ αb
. (73)

Figure 6 illustrates the behavior of SMα(p,q) as a function
of α when p=0.3 and q=0.7. The blinding corruption value
is αb=0.286.

VI. SOURCE IDENTIFICATION GAME WITH REPLACEMENT
OF TRAINING SAMPLES

In this section, we study a variant of the game with
corrupted training, in which A observes the training sequence
and can replace a selected fraction of samples. Let τm indicate
the original m-sample long training sequence drawn from X
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Fig. 6. Security margin as a function of α for Bernoulli sources with
parameters p=0.3 and q=0.7 (αb=0.286).

A

X

Y
yn

xn

τm zn (d(zn, yn) < nL)

tm = σm(τm1
M̄ ||τm2)

D
H0/H1

vn

Fig. 7. Block diagram of the SIrc-tr game (targeted corruption). Given the
original training sequence τm, the adversary has the possibility to replace a
selected subset of m2 training samples with fake ones.

and let M be a subset of m2 = αm indexes in [1,2...m].
The attacker can choose the index set M and replace the
corresponding samples with m2 fake samples. More formally,
given the original training sequence τm, the training sequence
seen by the defender is tm=σ(τm1

M̄ ||τm2), where M̄ is the
complement of M in [1,2...m], τm1

M̄ is the set of original
(non-attacked) samples, and τm2 is the sequence with the fake
samples introduced by the attacker.

Figure 7 illustrates the adversarial setup considered in
this section for the case of a targeted attack. Arguably, this
scenario is more favourable to the attacker with respect to the
SIac-tr game.

A. Formal definition of the SIrc-tr game

In the sequel, we formally define the source identifica-
tion game with replacement of selected samples, namely the
SIrc-tr game. As anticipated, we focus on a version of the game
in which the corruption of the training samples depends on the
to-be-attacked sequence yn (targeted attack), the extension to
the case of non-target attack, in fact, can be easily obtained
by following the same approach used in Section IV-D.

1) Defender’s strategies: As in the SIac-tr game, in order
to be sure that the false positive error probability is lower than
2−nλ, the defender adopts a worst case strategy and considers
the maximum of the false positive error probability over all the
possible PX and over all the possible attacks that the training
sequence may have undergone, yielding:

SD={Λn×m⊂Pn×Pm: max
PX∈P

max
s∈SA ,T

Pfp ≤ 2−λn}. (74)

While the above expression is formally equal to that of the
SIac-tr game (see (15)), the maximisation over SA ,T is now
more cumbersome, due to the additional degree of freedom
available to the attacker, who can selectively remove the
samples of the original training sequence. In fact, even if D
knew the position of the corrupted samples, simply throwing

them away would not guarantee that the remaining part of
the sequence would follow the same statistics of X , since the
attacker might have deliberately altered them by selectively
choosing the samples to replace.

2) Attacker’s strategies: With regard to the attacker, the part
of the attack working on the test sequence yn is the same as
for the SIac-tr case, while the part regarding the corruption of
the training sequence must be redefined. To this purpose, we
observe that the corrupted training sequence may be any se-
quence tm for which dH(tm,τm)≤αm, where dH denotes the
Hamming distance. Given that the defender bases his decision
on the type of tm, it is convenient to rewrite the constraint on
the Hamming distance between sequences as a constraint on
the L1 distance between the corresponding types. In fact, by
looking at the empirical distribution of the corrupted sequence,
searching for a sequence tm s.t. dH(tm,τm)≤αm is equivalent
to searching for a pmf Ptm∈Pm for which dL1

(Ptm ,Pτm)≤2α
(see the proof of Lemma 2 in [2]). Therefore, the set of
strategies of the attacker is defined by SA =SA ,T×SA ,O,
where

SA ,T = {Q(Pτm ,Pyn): Pm×Pn→Pm
such that dL1

(Q(Pτm ,Pyn),Pτm) ≤ 2α}, (75)
SA ,O = {SnY Z(Pyn ,Ptm): Pn×Pm→An(L,Pyn)}. (76)

Note that, in this case, the function Q(·,·) gives the type
of the whole training sequence observed by D (not only
the fake subpart, as it was in the SIac-tr game), that is,
Ptm=Q(Pτm ,Pyn).

In the following, we will find convenient to express the
attacking strategies in SA ,T in an alternative way. Since the
attacker replaces the samples of a subpart of the training
sequence, the corruption strategy is equivalent to first remov-
ing a subpart of the training sequence and then adding a
fake subsequence of the same length. Then, the sequence is
reordered to hide the position of the fake samples. By focusing
on the type of the observed training sequence, we can write:

Ptm = Pτm−αQR(Pτm ,Pyn)+αQA(Pτm ,Pyn). (77)

where QR(Pτm ,Pyn) and QA(Pτm ,Pyn) (both belonging to
Pm2 ) are the types of the removed and injected subsequences
respectively. In order to simplify the notation, in the fol-
lowing we will avoid to indicate explicitly the dependence
of QR(Pτm ,Pyn) and QA(Pτm ,Pyn) on Pτm , Pyn , and will
indicate them as QR() and QA(). Furthermore, we will use
notation QR and QA whenever the dependence from the
arguments is not relevant. By varying QR and QA, we obtain
all the pmf’s that can be produced from Pτm by first removing
and later adding m2 samples. Of course not all pairs (QR, QA)
are admissible since the Ptm resulting from (77) must be a
valid pmf, i.e. it must be nonnegative for all the symbols of
the alphabet X .

3) Payoff: As usual, the payoff function is defined as

u(Λn×m,(Q(·,·),SnY Z(·,·))) = −Pfn. (78)

In the following section, we will show that a rationalizable
equilibrium (Λn×m,∗,(Q∗(·,·), Sn,∗Y Z(·,·))) exists also for the
SIrc-tr game.
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B. Equilibrium point and payoff at the equilibrium

In order to ensure that Pfp is always lower than 2−λn,
it is convenient to use the attack formulation given in (77).
For a given PX , QR and QA, Pfp is the probability that X
generates two sequences xn and τm, such that the pair of
type classes (Pxn ,Pτm−α(QR()−QA())) falls outside Λn×m.
Accordingly, the set of strategies available to D can be
rewritten as:

SD=

{
Λn×m: max

PX∈P
max

QR(),QA()

∑

Pyn∈Pn
PY (T (Pyn))· (79)

∑

(Pxn ,Ptm )∈Λ̄n×m

PX(T (Pxn)) ·
∑

Pτm∈Pm:
Pτm−α(QR()−QA())=Ptm

PX(T (Pτm)) ≤ 2−λn
}
.

By proceeding as in the proof of Lemma 1, it is easy
to prove that the asymptotically optimum strategy for the
defender corresponds to the following:

Λn×m,∗ =
{

(Pxn ,Ptm):

min
QR,QA∈Pm2

h(Pxn ,Ptm+α(QR−QA))≤ λ−δn
}
,

(80)

where δn tends to 0 as n→∞ and the minimisation is limited
to QR and QA in Pm2 such that Ptm+α(QR−QA) is a valid
pmf. Consequently, the optimum attacking strategy is given
by:

(Q∗(Pτm ,Pyn), Sn,∗Y Z(Pyn ,Ptm)) =

argmin
Ptm s.t. dL1

(Ptm ,Pτm )≤2α

SnY Z∈An(L,Pyn )

[
min
QR,QA

h(Pzn ,Ptm+α(QR−QA))

]
,

(81)

hence resulting in the following theorem.

Theorem 5. The SIrc-tr game with targeted corruption is
a dominance solvable game, whose only rationalizable equi-
librium corresponds to the profile (Λn×m,∗,(Q∗(), Sn,∗Y Z()))
given by equations (80) and (81).

In order to study the asymptotic payoff of the SIrc-tr game
at the equilibrium, we parallel the analysis carried out in Sec.
IV-C. By considering the case L=0, the set of pairs of types
for which D will accept H0 as a consequence of the attack to
the training sequence is given by

Γn0 (λ,α) = {(Pyn ,Pτm):

∃Ptm s.t. dL1
(Ptm ,Pτm) ≤ 2α

and (Pyn ,Ptm) ∈ Λn×m,∗}. (82)

If we fix the type of the original training sequence, we get:

Γn0 (Pτm ,λ,α) = {Pyn : ∃Ptm s.t. dL1
(Ptm ,Pτm) ≤ 2α

and Pyn∈Λn,∗(Ptm)}
= {Pyn : ∃Ptm , ∃Q,Q′∈Pm2 , s.t. (83)

dL1
(Ptm ,Pτm)≤2α

and h(Pxn ,Ptm−αQ′+αQ)≤λ−δn}.

By letting n go to infinity, we obtain the asymptotic counter-
part of the above set, which, for a generic R∈P , takes the
following expression:

Γ0(R,λ,α) =
{
P : ∃P ′,Q,Q′, s.t. dL1

(P ′,R) ≤ 2α

and hc(P,P ′−αQ′+αQ) ≤ λ
}
. (84)

When L6=0, we obtain:

Γ(R,λ,α,L) = {P : ∃V ∈Γ0(R,λ,α) s.t. EMD(P,V ) ≤ L}.
(85)

With the above definitions, it is straightforward to extend
Theorem 2 to the SIrc-tr case, thus proving that the set in
(85) evaluated in R = PX represents the indistinguishability
region of the SIrc-tr game.

C. Security margin and blinding corruption level

As a last contribution, we are interested in studying the
ultimate distinguishability of two sources X and Y in the
SIrc-tr setting and compare it with the result we have obtained
for the SIac-tr case. To do so, we consider the behaviour of
the indistinguishability region when λ tends to 0. We have:

Γ(PX ,α,L) = {P : ∃V ∈Γ0(PX ,α) s.t. EMD(P,V ) ≤ L},
(86)

where

Γ0(PX ,α) =
{
P : ∃P ′,Q,Q′ s.t. dL1

(P ′,PX) ≤ 2α

and P = P ′+α(Q−Q′)
}

=
{
P : ∃P ′ s.t. dL1(P ′,PX) ≤ 2α

and dL1
(P,P ′) ≤ 2α

}
. (87)

The set in (87) can be equivalently rewritten as

Γ0(PX ,α) =
{
P : dL1(P,PX) ≤ 4α

}
. (88)

To see why, we first notice that set (87) is contained in (88).
Indeed, from the triangular inequality we have that, for any
P ′, d(P,PX) ≤ dL1

(P,P ′)+dL1
(P ′,PX). Then, if P belongs

to Γ0(PX ,α) in (87), it also belongs to the set in (88). To see
that the two sets are indeed equivalent, it is sufficient to show
that the reverse implication also holds. To this purpose, we
observe that, whenever dL1

(P,PX) ≤ 4α, a type P ∗ can be
found such that its distance from both P and PX is less or at
most equal to 2α. In fact, by letting P ∗ = P+PX

2 , we have

dL1
(P,P ∗) = dL1

(P ∗,PX) =
∑

i

∣∣∣∣
P (i)−PX(i)

2

∣∣∣∣

dL1(P,PX) =
∑

i

∣∣∣∣PX(i)−P (i)

∣∣∣∣ = 2dL1(P,P ∗). (89)

If dL1
(P,PX) ≤ 4α, then, dL1

(P,P ∗) = dL1
(P ∗,PX)

= dL1(P,PX)/2 ≤ 2α, permitting us to conclude that the
sets in (87) and (88) are equivalent.

Upon inspection of (88), we can conclude that, as expected,
the indistinguishability region for L=0 (and hence, also for
the case L6=0) is larger than that of the SIac-tr game (see
(63)), thus confirming that the game with sample replacement
is more favourable to the attacker (a graphical comparison
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PX

Γ0(PX , α) =


P : dL1

(P, PX) ≤ 2α
(1−α)





Γ0,c(PX , α) = {P : dL1
(P, PX) ≤ 4α}

Fig. 8. Comparison of the indistinguishability regions for the SIac-tr and
SIrc-tr games with L=0.

between the indistinguishability regions for the two setups is
shown in Figure 8). As a matter of fact, for the attacker, the
advantage of the SIrc-tr game with respect to the SIac-tr game
depends on α. For small α and for α close to 1/2, the
indistinguishability regions of the two games are very similar,
while for intermediate values of α the indistinguishability
region of the SIrc-tr game is considerably larger than that
of the SIac-tr game (the maximum difference between the
two regions is obtained for α≈0.3). When α=1/2 the attacker
always wins, since he is able to bring any pmf inside the
acceptance region regardless of the game version, while for
α=0, we fall back into the source identification game without
corruption of the training sequence, thus making the two
versions of the game equivalent.

Given two sources X and Y , the blinding corruption level
value takes the expression:

αb =
dL1(PY ,PX)

4
. (90)

Since dL1
(PY ,PX)≤2 for any couple (PY ,PX) (the maximum

value 2 is taken when the two distribution have disjoint
support), the blinding value for the SIrc-tr game is lower than
the blinding value of SIac-tr game. The two expressions are
identical when the two sources have disjoint support, in which
case αb=1/2.

When the attacker can also corrupt the test sequence, the
ultimate indistinguishability region of the SIrc-trgame is:

Γ(PX ,α,L) =
{
P : min

V :EMD(P,V )≤L
dL1(V,PX) ≤ 4α

}
. (91)

Starting from (91) we can define the security margin in the
SIrc-tr setup.

Definition 4 (Security Margin in the SIrc-tr setup). Let
X∼PX and Y∼PY be two discrete memoryless sources. The
maximum distortion for which the two sources can be reliably
distinguished in the SIrc-tr setup is called Security Margin
and is given by

SMα(PX ,PY )=L∗α, (92)

where L∗α is the quantity which satisfies the following relation

min
V :EMD(PY ,V )≤L∗α

dL1(V,PX) = 4α, (93)

if PY /∈Γ0(PX ,α), and L∗α=0 otherwise.
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Fig. 9. Security margin as a function of α for Bernoulli sources with
parameters p=0.3 and q=0.7 (αb=0.1).

Considering again the case of two Bernoulli sources and
by adopting the same notation of Section V-B1, we have that
αb=|p−q|/4, while the security margin is

SMα(p,q)=

{
|q−p|−2α α < αb
0 α ≥ αb

. (94)

Figure 6 plots SMα as a function of α when p=0.3 and
q=0.7. The blinding value is αb=0.1 which, as expected, is
lower than the value we found for the SIac-tr setup.

VII. CONCLUSIONS AND FINAL REMARKS

We studied the distinguishability of two sources in an adver-
sarial setup when the sources are known through training data,
part of which can be corrupted by the attacker himself. We
considered two different scenarios. In the first one, the attacker
simply adds fake samples to the original training sequence,
while in the second one, the attacker replaces a selected subset
of training samples with fake ones. We formalised both cases
in a game-theoretic setup, then we derived the equilibrium
point of the games and analysed the (asymptotic) payoff at
the equilibrium. The result of the game can be summarised
in a compact and elegant way by introducing two parameters,
namely the Security Margin under corruption of the training
sequence, and the blinding corruption level αb, defined as the
portion of fake samples the attacker must introduce to make
impossible any reliable distinction between the sources. Based
on these two parameters, the performance of the two games
with corruption of the training data can be easily compared.

Though rather theoretical, our findings can guide more
practical researches in several fields belonging to the emerging
areas of adversarial signal processing [1] and secure machine
learning [8]. In many cases, in fact, the defender must take
into account the possibility that the data he is using to tune
the system he is working at, or during the learning phase,
is corrupted by the attacker. Of course, the extent to which
the results proven in this paper can be applied to practical
scenarios depends much on each specific application and
the degree to which the assumptions under the theory are
satisfied. In several image forensics applications, for instance,
the forensic analysis relies on image histogram [32], [33]
or on the histogram of DCT coefficients [34], [35], thus
justifying the assumption that the defender relies only on the
first order statistics of the observed sequence. In other cases,
the restrictions imposed by the theory can be interpreted as
a worst case assumption of the defender. This is again the
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case of the first order statistics assumption. If the performance
achieved in this setup are good enough, the defender can be
sure that in practical applications, when the analysis is not
limited to first order statistics, the results will be even more
favourable.

The dependence of the optimum strategy of the defender
on α (see (23)) is another critical point for the application to
the real scenarios. When it is not reasonable to assume that
the percentage of corrupted training samples is know to the
defender, we can interpret the value of α used by D as a worst
case estimate of the capabilities of the attacker. If the actual
value of α used by the attacker is larger than the estimate,
then D fails to even satisfy the false positive constraint hence
resulting in a complete failure of the Neyman-Pearson setup.
If instead the value used by the attacker is smaller, then the
constraint on the false positive is surely satisfied, and the
payoff of the game will be better than that predicted by theory
(from the point of view of the defender), hence justifying the
interpretation on α as a worst case estimate made by D .

From the point of view of the attacker, the optimum strate-
gies derived in Sections IV and VI can be the starting point
for the development of theoretically-sound attacks capable of
defeating any detector relying on a certain class of statistics
(namely first order statistics). Such a path has already been
followed in the case of source identification with uncorrupted
training data, whose results have been applied to devise a
universal attack against image forensics techniques based on
image histogram [36]. We expect that a similar exploitation of
the theoretical analysis be possible also in the case of training
with corrupted samples.

The analysis carried out in this paper can be extended in
several ways, for instance by considering continuous sources,
or by assuming that the sources X and Y are not memoryless,
but still amenable to be studied by using the method of types
[37]. Following the analysis in [38], we could also consider
a more general setup in which the attacker is active under
both H0 and H1. An interesting generalisation consists in
studying a symmetric setup in which the training and the
test sequences can be corrupted by applying the same kinds
of processing. For instance, the attacker could be allowed to
replace samples in both the training and the set sequences, or
he could be allowed to modify the training sequence up to a
certain distortion. Other kinds of attacks to the training data
could also be considered, like sample removal with no addition
of fake samples. As a matter of fact, the kind of attack strongly
depends on the application scenario, and it is arguable that the
availability of a large variety of theoretical models would help
bridging the gap between theory and practice.
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APPENDIX

A. Generalized Sanov’s theorem
Let us consider a sequence of n i.i.d. discrete random

variables taking values in a finite alphabet X and distributed
according to a pmf P . We denote with Pn the empirical pmf
of the sequence. Let E⊆P be a set of pmf’s. Sanov’s theorem
[11], [39], [12] states that

inf
Q∈E
D(Q||P ) ≤ −lim sup

n→∞

1

n
logP (Pn∈E)

≤ −lim inf
n→∞

1

n
logP (Pn∈E)

≤ inf
Q∈int E

D(Q||P ), (A1)

where int S denote the interior part of the set S.
When cl(E) = cl(int(E))10, or, E ⊆ cl(int(E)), the left and

right-hand side of (A1) coincide and we get the exact rate:

− lim
n→∞

1

n
logP (Pn∈E) = inf

Q∈E
D(Q||P ). (A2)

If we define the set En=E∩Pn, we have: P (Pn∈E)=P (Pn∈
En) and we can rewrite Sanov’s theorem as:

inf
Q∈E
D(Q||P ) ≤ −lim sup

n→∞

1

n
logP (Pn∈En)

≤ −lim inf
n→∞

1

n
logP (Pn∈En)

≤ inf
Q∈int E

D(Q||P ), (A3)

Note that, by construction, we have cl(E) = cl(∪nEn).
In the following, we extend the formulation of Sanov’s

theorem given in (A3) to more general sequences of sets En
for which it does not necessary hold that En=E∩Pn for some
set E.

We start by introducing the notion of convergence for
sequences of subsets due to Kuratowsky, which is a more
general notion of convergence with respect to the one based
on Hausdorff distance. Let (S,d) be a metric space. We first
provide the definition of lower closed limit or Kuratowski limit
inferior [40].

Definition 5. A point p belongs to the lower limit Li
n→∞

Kn (or
simply LiKn) of a sequence of sets Kn, if every neighborhood
of p intersects all the Kn’s from a sufficiently great index n
onward.

Given the above definition, the expression p ∈ Li
n→∞

Kn is
equivalent to the existence of a sequence of points {pn} such
that:

p = lim
n→∞

pn, pn∈Kn. (A4)

Stated in another way, LiKn is the set of the accumulation
points of sequences in Kn. As an alternative, equivalent,
definition we can let:

Li
n→∞

Kn = {p ∈ X s.t. lim sup
n→∞

d(x,Kn) = 0}. (A5)

10cl(E) denotes the closure of E. Clearly, cl(E) ≡ E if E is a closed set.
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Similarly, we have the following definition of upper closed
limit or Kuratowski limit superior [40].

Definition 6. A point p belongs to the upper limit Ls
n→∞

Kn (or
simply LsKn) of a sequence of sets Kn, if every neighborhood
of p intersects an infinite number of terms in Kn.

The expression p ∈ Lsn→∞Kn is equivalent to the existence
of a subsequence of points {pkn} such that

k1<k2<..., p = lim
n→∞

pkn , pkn∈ Kkn .

As an alternative, equivalent, definition we can let:

Ls
n→∞

Kn = {p ∈ X s.t. lim inf
n→∞

d(x,Kn) = 0}. (A6)

It can be proven that the Kuratowski limit inferior and
superior are always closed set (see [40]).

Given the above, we can state the following:

Definition 7. The sequence of sets {Kn} is said to be
convergent to K in the sense of Kuratowski, that is Kn

K→ K,
if LiKn=K=LsKn, in which case we write K=LimKn.

We observe that Kuratowski convergence is weaker than
convergence in Hausdorff metric; in fact, given a sequence
of closed sets {Kn}, Kn

H→ K implies Kn
K→ K [41]. For

compact metric spaces, the reverse implication also holds and
the two kinds of convergence coincide.

In this work, we are interested in the space P of probability
mass functions defined over a finite alphabet X , i.e., the
probability simplex in R|X |, equipped with the L1 metric.
Being P a closed subset of R|X |, P is a complete set.
In addition, with the L1 metric, P∈L(R|X |), that is, P
is bounded. The space (P ,dL1), then, is a compact metric
space and then, for our purposes, Kuratowski and Hausdorff
convergence are equivalent.

We are now ready to prove the following generalisation of
Sanov’s theorem:

Theorem 6 (Generalized Sanov’s theorem). Let {E(n)} be a
sequence of sets in P , such that Li(E(n)∩Pn) 6= ∅. Then:

min
Q∈ LsE(n)

D(Q||P ) ≤ −limsup
n→∞

1

n
logP (Pn∈E(n))

≤ −liminf
n→∞

1

n
logP (Pn∈E(n))

≤ min
Q∈ Li (E(n)∩Pn)

D(Q||P ), (A7)

If, in addition, LsE(n)=Li(E(n)∩Pn), the generalized
Sanov’s limit exists as follows:

− lim
n→∞

1

n
logP (Pn∈E(n)) = min

Q∈LimE(n)

D(Q||P ). (A8)

Proof. We first prove the expression for the lower bound. Let
En = E(n)∩Pn. We have:

P (E(n)) =
∑

Q∈En

PX(T (Q))

≤ (n+1)|X |2−nminQ∈EnD(Q||P )

≤ (n+1)|X |2−ninfQ∈E(n)
D(Q||P )

= (n+1)|X |2
−nminQ∈cl(E(n))D(Q||P )

. (A9)

In the last inequality we exploited the fact that, being each
E(n) a bounded set of P , and D lower bounded in P , the
infimum over E(n) corresponds to the minimum over its
closure. By taking the logarithm of each side and dividing
by n, we get:

1

n
logP (E(n)) ≤ − min

Q∈cl(E(n))
D(Q||P )+

log(n+1)|X |

n
, (A10)

We now prove that, for any δ and for sufficiently large n,
we have

min
Q∈cl(E(n))

D(Q||P ) ≥ min
Q∈LsE(n)

D(Q||P ) − δ. (A11)

First, according to the properties of the limit superior,
LsE(n)=Ls(cl(E(n))) [40], hence proving (A11) is equivalent
to showing that:

min
Q∈cl(E(n))

D(Q||P ) ≥ min
Q∈Ls(cl(E(n)))

D(Q||P ) − δ. (A12)

Let Qn be the sequence of points achieving the minimum of
the left-hand side of (A12) (for simplicity we assume that
the minimum is unique, the extension to a more general case
being straightforward). Let Qn(j) be a subsequence of Qn
formed only by the elements of Qn that do not belong to
Ls(cl(E(n)))

11. If the number of elements in Qn(j) is finite,
then for n large enough Qn ∈ Ls(cl(E(n))) and eq. (A12)
is verified with δ=0. If the number of elements in Qn(j) is
infinite, then, due to the boundedness of P , the elements of
Qn(j) must have at least one accumulation point (Bolzano-
Weierstrass theorem). Let Ai’s be the accumulation points of
Qn(j). By definition of Ls, all Ai’s belong to Ls(cl(E(n))). In
addition, for any radius ρ, from a certain j on, all the points in
Qn(j) belong to R=

⋃
iB(Ai,ρ)12. For large enough n, then

we have:

min
Q∈cl(E(n))

D(Q||P ) ≥ min
Q∈Ls(cl(E(n)))∪R

D(Q||P ) (A13)

≥ min
Q∈Ls(cl(E(n)))

D(Q||P ) − δ,

where the second inequality derives from the continuity of the
D function and the arbitrariness of ρ.

By inserting (A11) in (A10), we have that, for large n,

1

n
logP (E(n))≤− min

Q∈LsE(n)

D(Q||P )+
log(n+1)|X |

n
+δ, (A14)

and hence, by the arbitrariness of δ,

−limsup
n→∞

1

n
logP (E(n)) ≥ min

Q∈LsE(n)

D(Q||P ). (A15)

We now pass to the upper bound. Let Q∗ be a point
achieving the minimum of the divergence over the set LiEn.
By definition of limit inferior, there exists a sequence of
points {Qn}, Qn∈En such that Qn→Q∗ as n→∞. Then, by
exploiting the continuity of D, it follows that:

D(Qn||P ) ≤ D(Q∗||P ) + γ, (A16)

11n(i) > n(j),∀i > j
12B(Ai,ρ) is a ball with radius ρ centred in Ai.
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where γ can be made arbitrarily small for large n. We can
then write:

P (E(n)) =
∑

Q∈En

P (T (Q))

≥ P (T (Qn)) ≥ 2−nD(Qn||P )

(n+1)|X |
. (A17)

Hence, we get

1

n
logP (E(n)) ≥ −D(Qn||P ) − |X | log(n+1)

n
,

≥ −D(Q∗||P ) − γ − |X | log(n+1)

n
,

≥ − min
Q∈LiEn

D(Q||P ) − γ − |X | log(n+1)

n
,

(A18)

and then, by the arbitrariness of γ,

− liminf
n→∞

1

n
logP (E(n)) ≤ min

Q∈LiEn
D(Q||P ), (A19)

which concludes the proof of the first part (relation (A7)).
For the proof of the second part, we observe that,

when LsE(n)=Li(E(n)∩Pn), the two bounds in (A7) co-
incides. Moreover, the following chain of inclusions holds,
LiE(n) ⊆ LsE(n) = Li(E(n)∩Pn) ⊆ LiE(n), and then
LiE(n) = LsE(n) = LimE(n), yielding (A8).

We observe that, in general, the Kuratowski convergence
of E(n) is a necessary condition for the existence of the
generalized Sanov limit in (A8), but it is not sufficient. In
fact, we could have LiE(n) ⊇ Li(E(n)∩Pn), in which case
the lower and upper bound in (A7) do not coincide. It is also
interesting to notice that when E(n) ∈ Pn is a sequence of
sets in Pn, then Sanov’s limit holds whenever E(n)

K→E for
some set E, or, by exploiting the compactness of P , E(n)

H→E.
Based on the above observation, we can state the following
corollary:

Corollary 1. Let E(n) be a sequence of sets in Pn, such that

E(n)
H→E. Then:

− lim
n→∞

1

n
log P (Pn∈E(n)) = min

Q∈E
D(Q||P ). (A20)

B. Regularity properties of the set of admissible maps
To prove the theorems on the asymptotic behaviour of

the payoff in the two versions of the source identification
game studied in this paper, we need to prove some regularity
theorems on the set of admissible maps.

To start with, we need to define a distance between trans-
portation maps, that is a function ds: R|X |×|X |×R|X |×|X |→
R+. In accordance with the rest of the paper, let us choose
the L1 distance, that is, given two maps (SPV ,SQR), we define
ds(SPV ,SQR)=

∑
i,j |SPV (i,j)−SQR(i,j)|.

Our first result regards the regularity of A(L,P ) as a
function of P .

Lemma 2. Let P∈P and let P ′ be any pmf in the neighbour-
hood of P of radius τ , i.e., P ′∈B(P,τ). Then

δH(A(L,P ), A(L,P ′)) ≤ τ

and hence lim
τ→0

δH(A(L,P ),A(L,P ′)) = 0, uniformly in P .

Moreover, if we insist that P ′∈Pn, the following result holds:
∀ε>0, ∃τ∗ and n∗ such that ∀τ<τ∗ and n>n∗,

δH(A(L,P ), An(L,P ′)) ≤ ε ∀P ′∈B(P,τ)∩Pn, ∀P∈P .

Proof. From a general perspective, the lemma follows from
the fact that An(L,Pyn) (and A(L,P )) is built by imposing a
number of linear constraints on the admissible transportation
maps (see (11)), i.e. A(L,P ) is a convex polytope [42], [43].
By considering a P ′ close to P , we are perturbing the vector
of the known terms of the linear constraints which defines
the admissibility set. Instead of invoking the above general
principle, in the following we give an explicit proof of the
lemma.

Given P∈P and P ′∈B(P,τ), let τ(i)=P (i)−P ′(i) be the
excess (or defect) of mass of P with respect to P ′ in bin
i. For any map in A(L,P ), we can choose a map SP ′V ′

that works as follows: for the bins i such that τ(i)≤0,
let SP ′V ′(i,j)=SPV (i,j) for j 6=i, while for j=i, we let
SP ′V ′(i,j)=SPV (i,j)+|τ(i)|. For the bins i for which τ(i)>0,
we first sort the index set {j:SPV (i,j)6=0} in decreasing
order with respect to the amount of distortion introduced per
unit of mass delivered from i to j (d(i,j)). Then, starting
from the first index in the ordered list, we let SP ′V ′(i,j)=
max(0, SPV (i,j)−τ(i)). If SP ′V ′(i,j)=0, we update τ(i) to
a new value τ ′(i)=τ(i)−SPV (i,j), and iterate the previous
procedure by subtracting the updated value of τ ′(i) from the
second SPV (i,j) in the list. This procedure goes on until the
subtraction gives SP ′V ′(i,j) 6=0, that is when we have removed
all the excess mass from the i-th row of SPV (i,j).

It is easy to see that the map built in this way sat-
isfies the distortion constraint, in fact, by construction
the distortion associated to SP ′V ′ is less than that in-
troduced by SPV . Then, SP ′V ′∈A(L,P ′). In addition, by
construction,

∑
j |SP ′V ′(i,j)−SPV (i,j)|≤|τ(i)|, and hence∑

ij |SP ′V ′(i,j)−SPV (i,j)|≤τ . Accordingly, we have:

δA(L,P )(A(L,P ′))= (A21)
max

SPV ∈A(L,P )
min

SP ′V ′∈A(L,P ′)
ds(SPV ,SP ′V ′) ≤ τ

since, as we have shown with the preceding construction,
the inner minimum is always lower or equal than τ . By
repeating the same argument exchanging the role of A(L,P )
and A(L,P ′), we find that δH(A(L,P ′),A(L,P ))≤τ , thus
concluding the first part of the proof.

In the second part of the lemma, we require that P ′∈Pn and
that the map produces a sequence in Pn. The proof is easily
achieved by exploiting the first part of the lemma according
to which for any map SPV in A(L,P ), we can find a map
SP ′V ′ in A(L,P ′) which is arbitrarily close to SPV , and
then approximating SP ′V ′ with a map SnP ′V ′∈An(L,P ′). Due
to the density of rational numbers in real numbers, such an
approximation can be made arbitrarily accurate by increasing
n, thus completing the proof.

Given a transformation SPV mapping P into V , Lemma 2
states that, for any pmf P ′ close to P , we can find a map
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SP ′V ′ close to SPV . The following theorem extends such a
result to the pmf resulting from the application of the mapping.

Theorem 7. Let P∈P , and let P ′ be any pmf in the
neighbourhood of P of radius τ , i.e., P ′∈B(P,τ). Let SPV ∈
A(L,P ). Then, we can always find a map SP ′V ′∈A(L,P ′)
such that V ′∈B(V,τ).

Similarly, for any ε>0, there exist τ∗ and n∗ such that ∀
τ<τ∗ and n>n∗, given a P∈P , a map SPV ∈A(L,P ) and
P ′∈Pn∩B(P,τ), we can find a map SnP ′V ′ in An(L,P ′) such
that V ′n∈B(V,ε)∩Pn.

Proof. For any two maps SPV and SP ′V ′ , we have:

V ′(j) =
∑

i

SP ′V ′(i,j)

=
∑

i

(SPV (i,j)+(SP ′V ′(i,j)−SPV (i,j)))

≤ V (j)+
∑

i

|SP ′V ′(i,j)−SPV (i,j)|, (A22)

and

V ′(j) =
∑

i

SP ′V ′(i,j)

=
∑

i

(SPV (i,j)+(SP ′V ′(i,j)−SPV (i,j)))

≥ V (j)−
∑

i

|SP ′V ′(i,j)−SPV (i,j)|, (A23)

yielding:

|V ′(j)−V (j)| ≤
∑

i

|SP ′V ′(i,j)−SPV (i,j)|. (A24)

By summing over j and exploiting Lemma 2, we can choose
SP ′V ′ so that:

∑

j

|V ′(j)−V (j)| ≤
∑

i,j

|SP ′V ′(i,j)−SPV (i,j)|

≤ δH(A(L,P ′), A(L,P )) ≤ τ, (A25)

and hence V ′∈B(V,|τ).
Similarly to the second part of Lemma 2, the second part of

the theorem follows immediately from the density of rational
numbers in the real line.
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