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Abstract

We propose a new statistic to improve the pooled version of the triangle test used to combat the fingerprint-copy

counter-forensic attack against PRNU-based camera identification [1]. As opposed to the original version of the test,

the new statistic exploits the one-tail nature of the test, weighting differently positive and negative deviations from

the expected value of the correlation between the image under analysis and the candidate images, i.e., those image

suspected to have been used during the attack. The experimental results confirm the superior performance of the new

test, especially when the conditions of the test are challenging ones, that is when the number of images used for the

fingerprint-copy attack is large and the size of the image under test is small.
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An Improved Statistic for the Pooled Triangle

Test against PRNU-Copy Attack

I. INTRODUCTION

Photo-Response Non Uniformity (PRNU) noise [2] has been successfully used for forensic camera identification

[3] and image forgery detection [4], [5]. Techniques based on PRNU are prone to the so-called fingerprint-copy (or

PRNU-copy) attack [6], according to which, a forger, usually referred to as Eve, estimates the PRNU from a set of

publicly available images acquired by the camera of a victim, say Alice, and implant the estimated PRNU into an

image shot by a different camera. An effective countermeasure against the fingerprint-copy attack is the triangle

test proposed in [1]. The test exploits the fact that an image forged with the fingerprint-copy attack shares with the

images used by Eve to estimate the PRNU other noise components in addition to the PRNU, hence resulting in an

unnaturally high correlation between the forged image and the images used to create the forgery. In its simplest

version, the triangle test allows Alice to understand which images, in a set of publicly available images acquired

by her camera, have been used to produce the forgery. In other cases, Alice’s goal is just to prove that the image

under analysis has been forged by means of a fingerprint-copy attack, without the need to identify the exact subset

of images used to produce the forgery. To do so, Alice can resort to the pooled version of the test [1]. The pooled

test is generally very powerful and the effectiveness of the counter-forensic methods proposed so far against the

single-image triangle test, e.g. [7], [8], [9], is dramatically reduced when the pooled triangle test is considered.

In this paper, we propose a refined statistic for the pooled triangle test, that allows to improve the performance

of the test with particular reference to those situations where the test is less reliable, namely when the number of

images Eve has access to is large and when the size of the analysed image is small. The improved statistic relies

on the observation that the original pooled test treats in the same way both images exhibiting an unnaturally high

correlation with the image under test and those for which this correlation is lower than expected. In this way, the

analysis somewhat neglects the one-tail nature of the test1 according to which the images used for the PRNU-copy

attack are expected to exhibit a larger correlation with respect to those that have not been used to create the forgery.

The new statistic, on the contrary, accumulates the deviations from the expected correlation by considering their

sign. The resulting test, then, decides that the image under analysis has been subject to a PRNU-copy attack only

in the presence of positive deviations. The superior performance of the proposed statistic are assessed in a wide

variety of cases, by varying the parameters that impact most on the performance of the test, that is, the number N

of images used by Eve to estimate the PRNU, the overall number Nc of public images available, and the size of

the images.

1We remark that such an observation does not apply to the single-image version of the test (see eq. (16) in [1]).
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The paper is organized as follows. In Section II, we review the PRNU-copy attack and the pooled triangle test.

The proposed improved statistic is described in Section III. The results of the experimental validation are presented

and thoroughly discussed in Section IV. Eventually, we draw our conclusions and present some directions for future

work in Section V.

II. PRNU-COPY ATTACK AND POOLED TRIANGLE TEST

Let us denote with C1,pub a public dataset of Nc images acquired by Alice’s camera C1. Eve’s goal is to take an

image J coming from another camera C2 and modify it in such a way that it looks like as if it was generated by

C1. To do so, Eve estimates the PRNU of C1 from a subset of N images, Ii, i = 1, .., N , belonging to C1,pub, as

follows:

K̂E =

∑N
i=1WIiIi∑N

i=1 I
2
i

, (1)

where K̂E is the PRNU estimate obtained by Eve, WIi = Ii−F (Ii) is the noise residual of Ii, and F is a denoising

filter, e.g. the one in [10]. The noise residual has the form WIi = IiK + θ, where K is the true PRNU of C1 and

θ collects the non-PRNU noise components of the residual [2]. Then, Eve superimposes the estimated PRNU onto

J , obtaining the forged image

J ′ = [J(1 + αK̂E)], (2)

where [·] indicates rounding to integers and α is the fingerprint strength. The value of α must be sufficiently large

to pass the threshold-based correlation test (see below), but, at the same time, as small as possible to make the

forgery undetectable.

On the analyst side, camera attribution is carried out by relying on a threshold-based correlation test, that is

by computing ρ = corr(WI , IK̂A), where I is the image under test, and K̂A is Alice’s estimation of the PRNU

fingerprint of C1, which can be reliably obtained from a limited number of flat-field images. Image I is attributed

to C1, if ρ is above a threshold, set by fixing the false alarm probability. The forged image J ′ can easily pass the

correlation test [6], thus being wrongly attributed to C1.

As a countermeasure, Alice can apply the triangle test [1] to the images attributed to C1, to determine if they

are genuine images shot by C1, or they are the result of a PRNU-copy attack. The idea behind the triangle test is

the following: each image Ii used by Eve to estimate K, shares with the forged image J ′ not only the PRNU term

(as it happens for a genuine - non forged - image), but also the other terms of the noise residual WIi ; then, the

correlation of the residual of J ′ with the one of Ii, namely cIi,J′ = corr(WIi ,WJ′), is typically larger when J ′ is

a forgery and image Ii has been used to estimate the fingerprint implanted in J ′.

By following [1], given a non-forged image J and an image I from C1, it is possible to compute the expected

value of cI,J , named ĉI,J . The dependence between the real value of cI,J and ĉI,J when I has not been used by

Eve to forge J , is well fit by a straight line, hereafter referred to as inference line, cI,J = λĉI,J + η, for some

slope λ and intercept η. On the contrary, if I has been used by Eve to forge J ′, the correlation cI,J′ takes much
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Fig. 1: True correlation cI,J′ as a function of the estimated correlation ĉI,J′ for an image J ′ forged by Eve with

N = 100 (Nc = 300).

larger values. Figure 1 illustrates a typical plot of cI,J′ as a function of ĉI,J′ for a forged image J ′ for N = 100,

when Nc = 300.

For notational simplicity, in the following, given a test image J and a candidate image Ii, we let dJ,i =

cIi,J − λĉIi,J − η. In [1] it is shown that the distribution of dJ,i is approximately constant with Ii (and ĉIi,J ), so

we can write:

Pr{dJ,i = x|ĉIi,J} ≈ fJ(x), (3)

for some fJ , independent of Ii and ĉI,J . Let, µJ and σJ denote the mean and variance of dJ,i when Ii is not

used by Eve to create the forgery J2 (expectedly, µJ is very close to 0). In [1], it is argued that fJ is often close

to a Gaussian distribution, that is fJ ∼ N (µJ , σJ), even if for some images a Student’s t-distribution may be a

more conservative choice. For sake of brevity, in the following, we stick to the Gaussian model, the difference with

respect to the Student’s t-model being very small based on our experiments.

A. The pooled triangle test

Let J be the to-be-tested image and let H0 be the hypothesis that J has not been forged, or, equivalently in our

scenario, that no image in C1,pub has been used by Eve to forge J . Let H1 be the opposite hypothesis that some

of the images in C1,pub have been used to forge J . Let k be the number of candidate images considered by Alice

to carry out the test (we have k = Nc when the entire public set is used for the test). We denote with Ck1,pub the

corresponding subset. The pooled triangle test described in [1] uses the following statistic to decide if some of the

2This may either correspond to a situation in which J is a forgery but Ii has not been used to create it, or to a case in which J is not a

forgery.
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images in Ck1,pub have been used to forge J :

LJ
k =

∑
i∈Ck1,pub

log (fJ(dJ,i)) . (4)

When fJ is a Gaussian, testing LJ
k is very similar in spirit to base the test on the sum of the squared distances. In

fact, in such a case, we have

LJ
k = −k log(

√
2πσ2)−

∑
i∈Ck1,pub

(
dJ,i − µJ√

2σJ

)2

. (5)

By observing that LJ
k corresponds to the log-likelyhood of the deviations dJ,i under H0, the image J is said to be

a forgery if LJ
k < T , where T is set by fixing the false alarm probability.

III. AN IMPROVED STATISTIC FOR THE POOLED TEST

A limit of a test based on LJ
k is that such a statistic considers (the log of) the probability of observing the

deviations dJ,i’s under H0 without exploiting the knowledge we have about the distribution of dJ,i under H1. In

fact, even if the exact distribution of dJ,i under H1 is not known, we know that when the image Ii has been used to

forge J , the measured correlation cI,J tends to be larger than expected, hence resulting in a larger, positive, value

of dJ,i. More precisely, by assuming (w.l.o.g.) that µJ is 0, we know that (see also Figure 1):

Pr{dJ,i < 0| Ii used to forge J} < Pr{dJ,i < 0| Ii not used}. (6)

This is the typical example of one-tailed statistical test, for which the sign of the deviation from the expected value

should be taken into account in addition to the magnitude of the deviation. Such one-tailed nature of the test is

discarded with the statistic in (5), which, by looking at the quadratic distances dJ,i, implicitly assumes that a large

positive and a large negative value of dJ,i are equally probable when Ii is used by Eve for the PRNU-copy attack.

Note that, even if we exemplified this problem by assuming a Gaussian distribution for dJ,i, the above observations

are generally true for any distribution fJ . Based on the above observation, we propose to replace LJ
k with a new

statistic that takes into account the sign of the deviation dJ,i, with the understanding that only positive values

contribute to form the evidence that J has been forged by Eve. Specifically, we suggest to replace LJ
k with the

following:

V J
k =

∑
i∈Ck1,pub

sign(dJ,i − µJ)

(
dJ,i − µJ

σJ

)2

, (7)

where, as before, µJ and σJ are the mean and variance of dJ,i under the hypothesis that Ii has not been used by Eve

to forge J3. With reference to (5), it is evident that the main difference between LJ
k and V J

k is the dependence of V J
k

on the sign of dJ,i−µJ . In this way, V J
k exploits the knowledge that Pr{dJ,i < µJ |H0} > Pr{dJ,i < µJ |H1}, thus

resulting in a more accurate test. An additional advantage of directly considering the distances from the inference

line rather than the probability values, is that we do not need to make any assumption on the distribution of

3Following [1], the pooled test is implemented by replacing µJ and σJ with their sample estimates.
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dJ,i for the images not used by Eve (fJ ). In general, other n-powers could be considered for the distance term

(dJ,i−µJ)/σJ in (7). For instance, we run some experiments by accumulating linear rather than quadratic distances

obtaining similar results. In this paper, we chose the square distances to ease the comparison with the statistic LJ
k ,

which in fact results in the accumulation of quadratic distances when fJ is a Gaussian (see (5)).

Eventually, the test decides in favour of H1 if V J
k > T ′, where the threshold T ′ is fixed by imposing a constraint

on the false alarm probability. On this regard, we observe that, as for LJ
k , there are two sources of randomness

in V J
k , namely J and Ck1,pub4. Then, the false alarm probability can be evaluated by varying either Ck1,pub or J .

In the former case (which is the approach followed in [1] to test the performance of LJ
k ), J is fixed, and the

distribution of V J
k under H0 can be theoretically approximated to a Gaussian. The terms of the sum in (7), in

fact, are independent under H0, although they are not identically distributed because of the presence of the sign.

The central limit theorem can then be applied (the Lindeberg condition [11] is satisfied), and V J
k assumed to be

normally distributed, thus allowing to set the threshold T ′ theoretically.

IV. EXPERIMENTS

We run our tests by considering the Nikon D7000 camera (C1) and the Nikon D90 camera (C2) in the RAISE

dataset [12]. We split the images from C1 as follows: a total number of 1000 images were used to build the public

set C1,pub (in some experiments only a subset of 600 images was used as C1,pub); 300 images were used to build

the private set C(1)1,priv, used by Alice to estimate the parameters of the triangle test, that is, to estimate λ and η

and build the inference line; another set C(2)1,priv of 300 images was used to establish the decision threshold of the

correlation detector (with a true positive rate set to 0.9). Other 300 images, passing the correlation test, formed

a third set C(3)1,priv used in the experiments to simulate H0. Eventually, all the 100 flat-field images available in

the RAISE dataset for the camera C1 were used to estimate the PRNU. A number of 300 images coming from

a camera Nikon D90 were used to build Eve’s set C2. The original sizes of the images from Eve’s and Alice’s

cameras C1 and C2 are different. In our experiments, we considered image sizes of 1936×1296 (medium size) and

1024× 1024 (small size) pixels, obtained by cropping the central parts of the images from C1 and C2. With regard

to the fingerprint-copy attack performed by Eve, for simplicity, we considered the minimum strength α resulting in

a positive identification in the correlation test. This is a worst case assumption for Alice, since in practice Eve can

not reproduce exactly Alice’s test, and then she will apply an α which is larger than such a minimum value to be

sure to pass the test.

We run our experiments by considering two slightly different versions of the pooled test, corresponding to two

different interpretations of the error probability and, in particular, the false alarm probability. The two resulting

settings correspond to the following testing conditions:

a) Given a test image J , the error probabilities are computed by varying the subset of k images used to compute

4Strictly speaking, L and V depend on the set Ck
1,pub. With a slight abuse of notation, we simply denote such a dependence with the letter

k in the pedex.
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V J
k (res. LJ

k ). In this setting, the false alarm probability corresponds to the probability that, given J , k images

at random taken from C1,pub result in a value of V J
k (res. LJ

k ) larger (res. lower), than the detection threshold;

b) Given k images in C1,pub, the error probabilities are computed by varying the to-be-tested image J . In particular,

the false alarm probability corresponds to the probability that C1 produces an image for which V J
k (res. LJ

k )

is larger (res. lower), than the detection threshold.

Two considerations are in order. The setup a) is equal to the one used in [1]. As we have already noticed, in this

case both V J
k and LJ

k can be assumed to be normally distributed, hence the detection threshold can be determined

theoretically by fixing the false alarm probability and estimating the mean and variance of the test statistic by

resorting to bootstrapping (as in [1]). With regard to b), the distribution of the statistics V J
k and LJ

k under H0 is

not known, so it is not possible to set the detection threshold theoretically by fixing the false alarm probability. In

this case, then, we evaluated the performance of the test by plotting the ROC curve of the test any evaluating the

missed detection probability for a given false alarm probability set by choosing a suitable operating point on the

ROC curve.

A. Performance of the test for the setup a)

To test the performance in this case, we fixed the forged image J , obtained by taking an image in C2 and applying

the attack in (2). Then, we picked a random set of k images out of the Nc images in C1,pub, and we computed the

statistics V J
k and LJ

k . We repeated this procedure by changing the random selection of the k images, thus getting

a number of observations for both statistics under H1. Finally, we measured the correct detection probability Pd,

for a fixed theoretical target Pfa. Specifically, we computed the p-value corresponding to the observed statistics

and the image J is said to be forged if the p-value of the observation is lower than Pfa. From the discussion in

the previous section, the p-value is computed by considering the Gaussian model for V J
k (res. LJ

k ) under H0. As

in [1], we let k = 60, then we evaluated Pd by bootstrapping, i.e., by repeating the process 30000 times, each

time changing the random selection of k images in C1,pub. Figure 2 shows the results of the tests carried out on

2 randomly chosen images in C2. The tests were run for various values of N , with Nc = 600, and Pfa = 10−3.

For each N , the to-be-implanted PRNU K̂E is estimated from N randomly chosen images in the candidate set.

The size of the images is 1936 × 1296. We can see that the use of the improved statistic V J
k brings a significant

advantage when N/Nc > 0.5, while for small values of the ratio N/Nc, the new and the old statistics behave

similarly. A similar behaviour is observed for different values of Nc. In general, the difference between V J
k and

LJ
k can be better appreciated when Nc is large (say Nc > 300), since when Nc is small the pooled test is very

powerful and both statistics works very well.

B. Performance of the test for the setup b)

In this case, we fixed Ck1,pub and run the pooled test by varying the test image J . We computed the statistics

V J
k and LJ

k by forging the images in C2, whereas the values under H0 were obtained by considering the images

in C31,priv. Throughout these these experiments we let k = Nc. This is a reasonable assumption that corresponds to

assuming that Alice knows the entire public set available to Eve.
May 9, 2018 DRAFT
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Fig. 2: Pd as a function of N for 2 images in C2; Pfa = 10−3, Nc = 600. The minimum N considered is 4.

The values of Pd obtained from the ROC curve by fixing the false alarm probability to 0.03 are reported in Figure

3 for various values of N (Nc = 600), for both small and medium size images. The advantage of the improved

statistic increases with N . Expectedly, with small images the performance of the pooled test are lower and the

difference between the two statistics is more evident. We observe that the test achieves perfect results also when

N/Nc is very low. This is a consequence of the fact that k = Nc (or, more in general, that k is comparable to Nc),

since with this choice the pooled test is very reliable especially when N/Nc is small. A similar behaviour holds

for other values of Nc. Figure 4 shows the results we have got with Nc = 1000 in the least favorable case of small

size images. We see that the test with V J
k is still reliable with such a large Nc: in particular, at N = 1000, we get

Pd = 0.95 , while, for the test with LJ
k , Pd is 0.0767. We verified that for the case of medium size images we still

get very close-to-ideal performance with Nc = 1000 (in the most difficult case with N = 1000, we get Pd = 0.99

with V J
k , and Pd = 0.15 with LJ

k ).

V. CONCLUSIONS

We have proposed a new statistic for the pooled triangle test originally introduced in [1]. The improved statistic

is based on the observation that the statistic proposed in [1] somewhat neglects the one-tailed nature of the test.

Experiments show that the proposed statistic achieves better results, especially in the most challenging case when

the number of images N used by Eve for the fingerprint-copy attack is large (and comparable to Nc). Further tests

could be carried out to investigate the limit values of N (and Nc) for which the test based on the new statistic

is still reliable. As a further work, we plan to evaluate the performance of the pooled test based on the improved

statistic in the presence of targeted attacks like those introduced in [7], [9].
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Fig. 3: Pd values obtained from the ROC curve by letting Pfa = 0.03, Nc = 600. Image size: 1936× 1296 (left)

and 1024× 1024 (right). The minimum N considered is N = 4.

Fig. 4: Pd values obtained from the ROC curve by letting Pfa = 0.03, Nc = 1000. Image size: 1024× 1024.
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