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a b s t r a c t 

We consider a simple, yet widely studied, set-up in which a Fusion Center (FC) is asked to make a binary 

decision about a sequence of system states by relying on the possibly corrupted decisions provided by 

byzantine nodes, i.e. nodes which deliberately alter the result of the local decision to induce an error 

at the fusion center. When independent states are considered, the optimum fusion rule over a batch of 

observations has already been derived, however its complexity prevents its use in conjunction with large 

observation windows. 

In this paper, we propose a near-optimal algorithm based on message passing that greatly reduces the 

computational burden of the optimum fusion rule. In addition, the proposed algorithm retains very good 

performance also in the case of dependent system states. By first focusing on the case of small observa- 

tion windows, we use numerical simulations to show that the proposed scheme introduces a negligible 

increase of the decision error probability compared to the optimum fusion rule. We then analyse the per- 

formance of the new scheme when the FC makes its decision by relying on long observation windows. 

We do so by considering both the case of independent and Markovian system states and show that the 

obtained performance are superior to those obtained with prior suboptimal schemes. As an additional 

result, we confirm the previous finding that, in some cases, it is preferable for the byzantine nodes to 

minimise the mutual information between the sequence system states and the reports submitted to the 

FC, rather than always flipping the local decision. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Decision fusion for distributed detection has received an in-

reasing attention for its importance in several applications, in-

luding wireless networks, cognitive radio, multimedia forensics

nd many others. One of the most common scenarios is the paral-

el distributed fusion model. According to this model, the n nodes

f a multi-sensor network gather information about a system and

ake a local decision about the system state. Then the nodes send

he local decisions to a Fusion Center (FC), which is in charge of

aking a final decision about the state of the system [1] . 

Here, we focus on an adversarial version of the above problem,

n which a number of malicious nodes, often referred to as Byzan-

ines [1] , aim at inducing a decision error at the FC [2] . This is a re-

urrent problem in many situations wherein the nodes may make

 profit from a decision error. As an example, consider a cognitive

adio system [3–6] in which secondary users cooperate in sensing

he frequency spectrum to decide about its occupancy and the pos-
∗ Corresponding author. 
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ibility to use the available spectrum to transmit their own data.

hile cooperation among secondary users allows to make a bet-

er decision, it is possible that one or more users deliberately alter

heir measurements to let the system think that the spectrum is

usy, when in fact it is not, in order to gain an exclusive opportu-

ity to use the spectrum. Online reputation systems offer another

xample [7] . In this scenario, a fusion center must make a final

ecision about the reputation of an item like a good or a service

y relying on users’ feedback. Even in this case, it is possible that

alevolent users provide a fake feedback to alter the reputation

f the item under inspection. Similar examples are found in many

ther applications, including wireless sensor networks [2,3] , dis-

ributed detection [8,9] , multimedia forensics [10] and adversarial

ignal processing [11] . 

In this paper we focus on a binary version of the fusion prob-

em, wherein the system can assume only two states. Specifically,

he nodes observe the system over m time instants and make a lo-

al decision about the sequence of system states. Local decisions

re not error-free and hence they may be wrong with a certain

rror probability. Honest nodes send their decision to the fusion

enter, while byzantine nodes try to induce a decision error and

ence flip the local decision with probability P before sending
mal 
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it to the FC. The fusion center knows that some of the nodes are

Byzantines with a certain probability distribution, but it does not

know their position. 

2. Prior work and contribution 

In a simplified version of the problem, the FC makes its deci-

sion on the state of the system at instant j by relying only on the

corresponding reports, and ignoring the node reports relative to

different instants. In this case, and in the absence of Byzantines,

the Bayesian optimal fusion rule has been derived in [12,13] and

it is known as Chair–Varshney rule. If local error probabilities are

symmetric and equal across the network, Chair–Varshney rule boils

down to simple majority-based decision. In the presence of Byzan-

tines, Chair–Varshney rule requires the knowledge of Byzantines’

positions along with the flipping probability P mal . Since this infor-

mation is rarely available, the FC may resort to a suboptimal fusion

strategy. 

In [8] , by adopting a Neyman–Pearson setup and assuming that

the byzantine nodes know the true state of the system, the asymp-

totic performance obtainable by the FC are analysed as a function

of the percentage of Byzantines in the network. By formalising the

attack problem as the minimisation of the Kullback–Leibler dis-

tance between the reports received by the FC under the two hy-

potheses, the blinding percentage, that is, the percentage of Byzan-

tines irremediably compromising the possibility of making a cor-

rect decision, is determined. 

In order to improve the estimation of the sequence of sys-

tem states, the FC can gather a number of reports provided by

the nodes before making a global decision (multiple observation

fusion). In cooperative spectrum sensing, for instance, this corre-

sponds to collectively decide about the white holes over a time

window, or, more realistically, at different frequency slots. The ad-

vantage of deciding over a sequence of states rather than on each

single state separately, is that in such a way it is possible for the

FC to understand which are the byzantine nodes and discard the

corresponding observations (such an operation is usually referred

to as Byzantine isolation). Such a scenario has also been studied

in [8] , showing that - at least asymptotically - the blinding per-

centage is always equal to 50%. In [14] , the analysis of [8] is ex-

tended to a situation in which the Byzantines do not know the

true state of the system. Byzantine isolation is achieved by count-

ing the mismatches between the reports received from each node

and the global decision made by the FC. The performance of the

proposed scheme are evaluated in a cognitive-radio scenario for fi-

nite values of n . In order to cope with the lack of knowledge about

the strategy adopted by the attacker, the decision fusion problem is

casted into a game-theoretic formulation, where each party makes

the best choice without knowing the strategy adopted by the other

party. 

A slightly different approach is adopted in [15] . By assuming

that the FC is able to derive the statistics of the reports submit-

ted by honest nodes, Byzantine isolation is carried out whenever

the reports received from a node deviate from the expected statis-

tics. In this way, a correct decision can be made also when the

percentage of Byzantines exceeds 50%. The limit of the approach

proposed in [15] , is that it does not work when the reports sent

by the Byzantines have the same statistics of those transmitted

by the honest nodes. This is the case, for instance, in a perfectly

symmetric setup with equiprobable system states, symmetric local

error probabilities, and an attack strategy consisting of simple de-

cision flipping. Another approach to separate nodes with diverse

behaviours into different clusters is proposed in [19] . In this work,

the authors propose a K-Means fault tolerant clustering algorithm

(Epidemic K-Means) which does not require a central FC and can

approximate the performance of centralized solution in separat-
ng the nodes into clusters which, in this case, can be applied to

eparate Byzantines from honest nodes. A soft isolation scheme is

roposed in [16] , where the reports from suspect byzantine nodes

re given a lower importance rather being immediately discarded.

ven in [16] , the lack of knowledge at the FC about the strategy

dopted by the attacker (and viceversa) is coped with by adopt-

ng a game-theoretic formulation. A rather different approach is

dopted in [17] , where a tolerant scheme that mitigates the impact

f Byzantines on the global decision is used rather that removing

he reports submitted by suspect nodes from the fusion procedure.

When the value of P mal and the probability that a node is

yzantine are known, the optimum fusion rule under multiple ob-

ervation can be derived [18] . Since P mal is usually not known to

he FC, in [18] the value of P mal used to define the optimum fu-

ion rule and the value actually used by the Byzantines are strate-

ically chosen in a game-theoretic context. Different priors about

he distribution of Byzantines in the network are considered rang-

ng from an extreme case in which the exact number of Byzantines

n the network is known to a maximum entropy case. One of the

ain results in [18] is that the best option for the Byzantines is

ot to always flip the local decision (corresponding to P mal = 1 ),

ince this would ease the isolation of malicious nodes. In fact, for

ertain combinations of the distribution of Byzantines within the

etwork and the length of the observation window, it is better for

he Byzantines to minimise the mutual information between the

eports submitted to the FC and the system states. 

.1. Contribution 

The main problem of the optimum decision fusion scheme pro-

osed in [18] is its computational complexity, which grows expo-

entially with the length of the observation window. Such a com-

lexity prevents the adoption of the optimum decision fusion rule

n many practical situations. Also the results regarding the opti-

um strategies of the Byzantines and the FC derived in [18] refer

nly to the case of small observation windows. 

In the attempt to diminish the computational complexity while

inimising the loss of performance with respect to the optimum

usion rule, we propose a new, nearly-optimum, fusion scheme

ased on message passing and factor graphs. Message passing algo-

ithms, based on the so called Generalised Distributive Law (GDL,

20,21] ), have been widely applied to solve a large range of opti-

isation problems, including decoding of Low Density Parity Check

LDPC) codes [22] and BCJR codes [20] , dynamic programming [23] ,

olution of probabilistic inference problems on Bayesian networks

24] (in this case message passing algorithms are known as belief

ropagation ). Here we use message passing to introduce a near-

ptimal solution of the decision fusion problem with multiple ob-

ervation whose complexity grows only linearly with the size of

he observation window, thus marking a dramatic improvement

ith respect to the exponential complexity of the optimal scheme

roposed in [18] . 

Using numerical simulations and by first focusing on the case

f small observation windows, for which the optimum solution

an still be applied, we prove that the new scheme gives near-

ptimal performance at a much lower complexity than the opti-

um scheme. We then use numerical simulations to evaluate the

erformance of the proposed method for long observation win-

ows. As a result, we show that, even in this case, the proposed

olution maintains the performance improvement over the simple

ajority rule, the hard isolation scheme in [14] and the soft isola-

ion scheme in [16] . 

As opposed to previous works, we do not limit our analysis

o the case of independent system states, but we extend it to

 more realistic scenario where the sequence of states obey a

arkovian distribution [25] as depicted in Fig. 2 . The Markovian
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Fig. 1. Sketch of the adversarial decision fusion scheme. 

Fig. 2. Markovian model for system states. When ρ = 0 . 5 subsequent states are in- 

dependent. 
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odel is rather common in the case of cognitive radio networks

26–28] where the primary user occupancy of the spectrum is of-

en modelled as a Hidden Markov Model (HMM). The Markovian

ase is found to be more favourable for the FC with respect to the

ase of independent states, due the additional a-priori information

vailable to the FC in this case. 

Last but not the least, we confirm that the dual optimum be-

aviour of the Byzantines observed in [18] is also present in the

ase of large observation windows, even if in the Markovian case,

he Byzantines may continue using the maximum attack power

 P mal = 1 ) for larger observation windows. 

The rest of this paper is organised as follows. In Section 3 , we

ntroduce the notation used in the paper and give a precise formu-

ation of the addressed problem. In Section 4 , we describe the new

essage passing decision rule based on factor graph. In Section 5 ,

e first discuss the complexity of the proposed solution compared

o the optimal solution. Then, by considering both independent

nd Markovian system states, we compare the performance of the

essage passing algorithm to the majority rule, the hard isolation

cheme [14] , the soft isolation scheme described in [16] and the

ptimal fusion rule. In addition, we discuss the impact that the

ength of the observation window has on the optimal behaviour

f the Byzantines. We conclude the paper in Section 6 with some

nal remarks. 

. Notation and problem formulation 

A schematic representation of the problem faced with in this

aper is given in Fig. 1 . We let s = { s 1 , s 2 , . . . , s m 

} with s i ∈ {0, 1}

ndicate the sequence of system states over an observation win-

ow of length m . The nodes collect information about the system

hrough the vectors x 1 , x 2 . . . x n , with x j indicating the observations

vailable at node j . Based on such observations, a node j makes a

ocal decision u i, j about system state s i . We assume that the lo-

al error probability, hereafter indicated as ε, does not depend on

ither i or j . The state of the nodes in the network is given by

he vector h = { h 1 , h 2 , . . . , h n } with h j = 1 / 0 indicating that node j
s honest or Byzantine, respectively. Finally, the matrix R = 

{
r i, j 

}
,

 = 1 , . . . , m, j = 1 , . . . , n contains all the reports received by the

C. Specifically, r i, j is the report sent by node j relative to s i . As

tated before, for honest nodes we have u i, j = r i, j while, for Byzan-

ines we have p(u i, j � = r i, j ) = P mal . The Byzantines corrupt the local

ecisions independently of each other. One may argue that allow-

ng cooperation among nodes would result in a further advantage

or the Byzantines. In fact, one could envisage a scenario where the

yzantines coordinate their attacks, thus generating a more sophis-

icated and harmful attacking strategy. Such a coordination, how-

ver, complicates the attack that in this case would require some

orm of cooperation and hence communication among the byzan-

ine nodes. This is a very interesting research direction that we are

oing to pursue in a subsequent work. 

By assuming that the transmission between nodes and fusion

enter takes place over error-free channels, the report is equal to

he local decision with probability 1 for honest nodes and with

robability 1 − P mal for Byzantines. Such an assumption does not

iminish the generality of our analysis. In fact, the errors induced

y local decisions and those introduced by the Byzantines can be

odelled as the cascade of two binary symmetric channels (BSC).

f we model the errors introduced by the transmission of the local

ecisions to the FC as the cascading of an additional BSC, the effect

n our analysis would be only an increase of the overall cross-over

robability of the resulting channel. For this reason, in the follow-

ng, we will assume error free transmission without affecting the

enerality of our results. 

According to the above setup, the probabilities of the reports

ent by the honest nodes is given by: 

p 
(
r i, j | s i , h j = 1 

)
= (1 − ε) δ(r i, j − s i ) + ε(1 − δ(r i, j − s i )) , (1)

here δ( a ) is defined as: 

(a ) = 

{
1 , if a = 0 

0 , otherwise . 
(2) 

On the other hand, by letting η = ε(1 − P mal ) + (1 − ε) P mal be

he probability that the fusion center receives a wrong report from

 byzantine node, we have: 

p 
(
r i, j | s i , h j = 0 

)
= (1 − η) δ(r i, j − s i ) + η(1 − δ(r i, j − s i )) . (3)

As for the number of Byzantines, we consider a situation in

hich the states of the nodes are independent of each other and

he state of each node is described by a Bernoulli random vari-

ble with parameter α, that is p(h j = 0) = α, ∀ j. In this way, the

umber of byzantine nodes in the network is a random variable

ollowing a binomial distribution, corresponding to the maximum

ntropy case [18] with p ( h ) = 

∏ 

j p(h j ) , where p(h j ) = α(1 − h j ) +
(1 − α) h j . 

Regarding the sequence of states s , we assume a Markov model

s shown in Fig. 2 , i.e., p ( s ) = 

∏ 

i p(s i | s i −1 ) . The transition proba-

ilities are given by p(s i | s i −1 ) = 1 − ρ if s i = s i −1 and p(s i | s i −1 ) = ρ
hen s i � = s i −1 , whereas for i = 1 we have p(s 1 | s 0 ) = p(s 1 ) = 0 . 5 . 

In this paper we look for the bitwise Maximum A Posteriori

robability (MAP) estimation of the system states { s i }, which reads

s follows: 

ˆ 
 i = arg max 

s i ∈{ 0 , 1 } 
p ( s i | R ) 

= arg max 
s i ∈{ 0 , 1 } 

∑ 

{ s , h }\ s i 
p ( s , h | R ) (law of total probability) 

= arg max 
s i ∈{ 0 , 1 } 

∑ 

{ s , h }\ s i 
p ( R | s , h ) p(s ) p(h ) (Bayes) 

= arg max 
s i ∈{ 0 , 1 } 

∑ 

{ s , h }\ s i 

∏ 

i, j 

p 
(
r i, j | s i , h j 

)∏ 

i 

p(s i | s i −1 ) 
∏ 

j 

p(h j ) (4) 
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Fig. 3. Node-to-factor message passing. 

Fig. 4. Factor-to-node message passing. 
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where the notation 

∑ 

\ 
denotes a summation over all the possible

combinations of values that the variables contained in the expres-

sion within the summation may assume by keeping the parame-

ter listed after the operator \ fixed. For a given h , the matrix of

the observations R at the FC follows a HMM [29] . The optimisa-

tion problem in (4) has been solved in [18] for the case of inde-

pendent system states. Even in such a simple case, however, the

complexity of the optimum decision rule is exceedingly large, thus

limiting the use of the optimum decision only in the case of small

observation windows (typically m not larger than 10). In the next

section we introduce a sub-optimum solution of (4) based on mes-

sage passing, which greatly reduces the computational complexity

at the price of a negligible loss of accuracy. 

4. A decision fusion algorithm based on message passing 

4.1. Introduction to sum-product message passing 

In this section, we provide a brief introduction to the

message passing (MP) algorithm for marginalization of sum-

product problems. Let us start by considering N binary variables

z = { z 1 , z 2 , . . . , z N } , z i ∈ {0, 1}. Then, consider the function f ( z ) with

factorization: 

f ( z ) = 

∏ 

k 

f k ( Z k ) (5)

where f k , k = 1 , . . . , M are functions of a subset Z k of the whole

set of variables. We are interested in computing the marginal of f

with respect to a general variable z i , defined as the sum of f over

all possible values of z , i.e.: 

μ(z i ) = 

∑ 

z \ z i 

∏ 

k 

f k ( Z k ) (6)

where notation 

∑ 

z \ z i 
denotes a sum over all possible combinations

of values of the variables in z by keeping z i fixed. Marginalization

problems occur when we want to compute any arbitrary probabil-

ity from joint probabilities by summing out variables that we are

not interested in. In this general setting, determining the marginals

by exhaustive search requires 2 N operations. However, in many sit-

uations it is possible to exploit the distributive law of multiplica-

tion to get a substantial reduction in complexity. 

To elaborate, let associate with problem (6) a bipartite factor

graph , in which for each variable we draw a variable node (circle)

and for each function we draw a factor node (square). A variable

node is connected to a factor node k by an edge if and only if

the corresponding variable belongs to Z k . This means that the set

of vertices is partitioned into two groups (the set of nodes corre-

sponding to variables and the set of nodes corresponding to fac-

tors) and that an edge always connects a variable node to a factor

node. 

When the factor graph is a single tree, i.e., a graph in which any

two nodes are connected by exactly one path, it is straightforward

to derive an algorithm which allows to solve the marginalization

problem with reduced complexity. The algorithm is the MP algo-

rithm, which has been broadly used in the last years in channel

coding applications [30,31] . 

To describe how the MP algorithm works, let us assume that

the graph is a tree. The main idea behind MP is to consider the

variable whose marginal evaluation we are interested in as the root

of the tree. Hence, the algorithm starts form leaf nodes and prop-

agate the computation up to the root. At each intermediate step,

a node evaluate a partial marginalization and passes the value to

the parent node in the form of a message. On the other hand, each

variable node in the graph can be seen as the root of the tree, and,
ence, the algorithm can be parallelized with the aim of comput-

ng the marginal of all variables at the same time. In essence, when

 node receives messages from all the connected nodes expect one,

his one is considered the parent node and a message is delivered

o it. Stated in another way, the message delivered towards a node

s evaluated from the messages received from all the other nodes.

o be more specific, let us define messages as 2-dimensional vec-

ors, denoted by m = { m (0) , m (1) } . Such messages are exchanged

etween variable nodes and function nodes and viceversa, accord-

ng to the following rules. Let us first consider variable-to-function

essages ( m vf ), and take the portion of factor graph depicted in

ig. 3 as an illustrative example. In this graph, the variable node z i 
s connected to L factor nodes, namely f 1 , f 2 , . . . , f L . For the MP

lgorithm to work properly, node z i must deliver the messages

 

(l) 
v f , l = 1 , . . . , L to all its adjacent nodes. Without loss of gener-

lity, let us focus on message m 

(1) 
v f . Such a message can be evalu-

ted and delivered upon receiving messages m 

(l) 
f v , l = 2 , . . . , L, i.e.,

pon receiving messages from all function nodes except f 1 . In par-

icular, m 

(1) 
v f may be straightforwardly evaluated by calculating the

lement-wise product of the incoming messages, i.e.: 

 

(1) 
v f (q ) = 

L ∏ 

j=2 

m 

( j) 
f v (q ) (7)

or q = 0 , 1 . 

Let us now consider factor-to-variable messages, and refer to

he factor graph of Fig. 4 where P variable nodes are connected

o the factor node f k , i.e., according to the previous notation, Z k =
 z 1 , . . . , z P } . In this case, the node f k must deliver the messages

 

(l) 
f v , l = 1 , . . . , P to all its adjacent nodes. Let us consider again

 

(1) 
f v : upon receiving the messages m 

(l) 
v f , l = 2 , . . . , P, f k may evalu-

te the message m 

(1) 
f v as: 

 

(1) 
f v (q ) = 

∑ 

z 2 , ... ,z P 

[ 

f k ( q, z 2 , . . . , z P ) 

P ∏ 

p=2 

m 

(p) 
v f (z p ) 

] 

(8)

or q = 0 , 1 . 

Given the message passing rules at each node, it is now pos-

ible to derive the MP algorithm which allows to compute the

arginals in (6) . The process starts at the leaf nodes, i.e., those

odes which have only one connecting edge. In particular, each
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Fig. 5. End of message passing for node z i . 
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ariable leaf node passes an all-ones message to its adjacent fac-

or node, whilst each factor leaf node, say f k ( z i ) passes the mes-

age m 

(k ) 
f v (q ) = f k (z i = q ) to its adjacent node z i . After initialization

t leaf nodes, for every edge we can compute the outgoing mes-

age as soon as all incoming messages from all other edges con-

ected to the same node are received (according to the message

assing rules (7) and (8) ). When a message has been sent in both

irections along every edge the algorithm stops. This situation is

epicted in Fig. 5 : upon receiving messages from all its adjacent

actor nodes, node z i can evaluate the exact marginal as: 

(z i ) = 

∏ 

k =1 , ... ,L 

m 

(k ) 
f v (z i ) . (9)

In the following we illustrate the machinery of MP through a

oy example. Consider N = 5 and f ( z ) = f 1 (z 1 , z 2 , z 5 ) f 2 (z 3 , z 4 , z 5 ) .

uppose we are interested in the marginal of f with respect to z 5 ,

.e.: μ(z 5 ) = 

∑ 

z 1 ,z 2 ,z 3 ,z 4 

f 1 (z 1 , z 2 , z 5 ) f 2 (z 3 , z 4 , z 5 ) . To this aim, we can con-

ider the variables z 1 , z 2 , z 3 , and z 4 as the leaf nodes of a tree, i.e.,

hey start the process by sending all ones messages to the parent

actor nodes f 1 and f 2 . Upon receiving such messages, the two fac-

or nodes evaluate the messages to be delivered towards variable

ode z 5 according to (8) , i.e.: 

 

(5) 
f 1 v 

(0) = 

∑ 

z 1 ,z 2 

f 1 ( z 1 , z 2 , 0 ) × 1 (10) 

 

(5) 
f 1 v 

(1) = 

∑ 

z 1 ,z 2 

f 1 ( z 1 , z 2 , 1 ) × 1 

m 

(5) 
f 2 v 

(0) = 

∑ 

z 3 ,z 4 

f 1 ( z 3 , z 4 , 0 ) × 1 (11) 

 

(5) 
f 2 v 

(1) = 

∑ 

z 3 ,z 4 

f 1 ( z 3 , z 4 , 1 ) × 1 . 

he variable node z 5 is now able to evaluate the required

arginals as: 

μ5 (0) = m 

(5) 
f 1 v 

(0) m 

(5) 
f 2 v 

(0) (12) 

5 (1) = m 

(5) 
f 1 v 

(1) m 

(5) 
f 2 v 

(1) . 

ith regards to complexity, the MP algorithm requires 18 opera-

ions instead of 32 as it would be required by a brute-force ex-

austive approach. In general, factors to variables message pass-

ng can be accomplished with 2 P operations, P being the number

f variables in f k . On the other hand, variables to nodes message

assing’s complexity can be neglected, and, hence, the MP algo-

ithm allows to noticeably reduce the complexity of the problem

rovided that the numerosity of Z k is much lower than N . With

egard to the optimization, Eq. (9) evaluates the marginal for both

 i = 0 and z i = 1 , which represent the approximated computation

f the sum-product for both hypotheses. Hence, the optimization

s obtained by choosing the value of z which maximizes it. 
i 
When the graph is not a tree, i.e., it contains cycles, the MP al-

orithm does not provide an exact calculation. However, although

t was originally designed for acyclic graphical models, it was

ound that the MP algorithm can be used for general graphs, e.g.,

n channel decoding problems [32] . In general, when the marginal-

zation problem is associated to a loopy graph, the implementa-

ion of MP requires to establish a scheduling policy to initiate the

rocedure, so that variable nodes may receive messages from all

he connected factors, thus evaluating the marginals. In this case,

 single run of the MP algorithm may not be sufficient to achieve a

ood approximation of the exact marginals, and progressive refine-

ents must be obtained through successive iterations. However,

n the presence of loopy graphs, there is no guarantee of either

onvergence or optimality of the final solution. In many cases, the

erformance of the message-passing algorithms is closely related

o the structure of the graph, in general, and its cycles, in partic-

lar. Many previous works in the field of channel coding, e.g., see

33] , reached the conclusion that, for good performance, the factor

raph should not contain short cycles. 

.2. Nearly-optimal data fusion by means of message passing 

The objective function of the optimal fusion rule expressed in

4) can be seen as a marginalization of a sum product of functions

f binary variables, and, as such, it falls within the MP framework

escribed in the previous Section. More specifically, in our prob-

em, the variables are the system states s i and the status of the

odes h j , while the functions are the probabilities of the reports

hown in Eqs. (1) and (3) , the conditional probabilities p(s i | s i −1 ) ,

nd the a-priori probabilities p ( h j ). The resulting bipartite graph is

hown in Fig. 6 . 

It is worth noting that the graph is a loopy graph, i.e., it con-

ains cycles, and as such it is not a tree. In our case, it is possi-

le to see from Fig. 6 that the shortest cycles have order 6, i.e.,

 message before returning to the sender must cross at least six

ifferent nodes. We speculate that such a minimum cycles length

s sufficient to provide good performance for the problem at hand.

e will prove through simulations that this is indeed the case. 

To elaborate further, based on the graph of Fig. 6 and on the

eneral MP rules reported in the previous Section, we are now

apable of deriving the messages for the scenario at hand. In

ig. 7 , we display all the exchanged messages for the graph in

ig. 6 that are exchanged to estimate in parallel each of the states

 i , i ∈ {0, 1} in the vector s = { s 1 , s 2 , . . . , s m 

} . Specifically, we

ave: 

τ (l) 
i 

(s i ) = ϕ 

(l) 
i 

(s i ) 
n ∏ 

j=1 

ν(u ) 
i, j 

(s i ) i = 1 , . . . , m 

τ (r) 
i 

(s i ) = ϕ 

(r) 
i 

(s i ) 
n ∏ 

j=1 

ν(u ) 
i, j 

(s i ) i = 1 , . . . , m 

ϕ 

(l) 
i 

(s i ) = 

∑ 

s i +1 =0 , 1 

p ( s i +1 | s i ) τ (l) 
i +1 

(s i +1 ) i = 1 , . . . , m − 1 

ϕ 

(r) 
i 

(s i ) = 

∑ 

s i −1 =0 , 1 

p ( s i | s i −1 ) τ
(r) 
i −1 

(s i −1 ) i = 2 , . . . , m 

ϕ 

(r) 
1 

(s 1 ) = p(s 1 ) 

ν(u ) 
i, j 

(s i ) = 

∑ 

h j =0 , 1 

p 
(
r i, j 

∣∣s i , h j 

)
λ(u ) 

j,i 
(h j ) i = 1 , . . . , m, j = 1 , . . . , n

ν(d) 
i, j 

(s i ) = ϕ 

(r) 
i 

(s i ) ϕ 

(l) 
i 

(s i ) 
n ∏ 

k =1 
k � = j 

ν(u ) 
i,k 

(s i ) i = 1 , . . . , m − 1 , j = 1 , . . . , n 
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Fig. 6. Factor graph for the problem at hand. 

Fig. 7. Factor graph for the problem at hand with the illustration of all the exchanged messages. 

ω

 

 

t  

o  

s  
ν(d) 
m, j 

(s m 

) = ϕ 

(r) 
i 

(s m 

) 
n ∏ 

k =1 
k � = j 

ν(u ) 
m,k 

(s m 

) j = 1 , . . . , n 

λ(d) 
j,i 

(h j ) = 

∑ 

s i =0 , 1 

p 
(
r i, j 

∣∣s i , h j 

)
ν(d) 

i, j 
(s i ) i = 1 , . . . , m, j = 1 , . . . , n 

λ(u ) 
j,i 

(h j ) = ω 

(u ) 
j 

(h j ) 
m ∏ 

q =1 
q � = i 

λ(d) 
j,q 

(h j ) i = 1 , . . . , m, j = 1 , . . . , n 
e  
 

(d) 
j 

(h j ) = 

m ∏ 

i =1 

λ(d) 
j,i 

(h j ) j = 1 , . . . , n 

ω 

(u ) 
j 

(h j ) = p(h j ) j = 1 , . . . , n (13)

It is worth noting that the above messages derive directly from

he general MP rule shown in (7) and (8) and from the factor graph

f the problem at hand depicted in Fig. 7 . As an example, mes-

ages τ (l) 
i 

(s i ) in (13) take the general variable-to-factor message

xpression shown in (7) , while messages ϕ 

(l) 
i 

(s i ) take the general
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b  
actor-to-variable message expression shown in (8) . Similar consid-

rations can be drawn for all the messages shown in (13) . 

As for the scheduling policy, we initiate the MP procedure by

ending the messages λ(u ) 
j,i 

(h j ) = ω 

(u ) 
j 

(h j ) to all p ( r i, j | s i , h j .) factor

odes, and by sending the message p ( s 1 ) to the variable node s 1 .

ence, the MP proceeds according to the general message pass-

ng rules, until all variable nodes are able to compute the respec-

ive marginals. When this happens, the first iteration is concluded.

hen, successive iterations are carried out by starting from leaf

odes and by taking into account the messages received at the

revious iteration for the evaluation of new messages. Hence, the

lgorithm is stopped upon achieving convergence of messages, or

fter a maximum number of iterations. 

The MP scheme described above can be simplified by observ-

ng that messages can be normalized without affecting the nor-

alized marginals. Henceforward, let us consider as normalization

actors the sum of the elements of the messages, i.e., if we consider

or example τ (l) 
i 

(s i ) , the normalization factor is τ (l) 
i 

(0) + τ (l) 
i 

(1) .

n this case, the normalized messages, say τ̄ (l) 
i 

(s i ) can be conve-

iently represented as scalar terms in the interval (0, 1), e.g., we

an consider τ̄ (l) 
i 

(0) only since τ̄ (l) 
i 

(1) = 1 − τ̄ (l) 
i 

(0) . Accordingly,

he normalized messages can be evaluated as: 

τ̄ (l) 
i 

= 

ϕ̄ 

(l) 
i 

n ∏ 

j=1 

ν̄ (u ) 
i, j 

ϕ̄ 

(l) 
i 

n ∏ 

j=1 

ν̄ (u ) 
i, j 

+ (1 − ϕ̄ 

(l) 
i 

) 
n ∏ 

j=1 

(1 − ν̄ (u ) 
i, j 

) 

i = 1 , . . . , m 

τ̄ (r) 
i 

= 

ϕ̄ 

(r) 
i 

n ∏ 

j=1 

ν̄ (u ) 
i, j 

ϕ̄ 

(r) 
i 

n ∏ 

j=1 

ν̄ (u ) 
i, j 

+ (1 − ϕ̄ 

(r) 
i 

) 
n ∏ 

j=1 

(1 − ν̄ (u ) 
i, j 

) 

i = 1 , . . . , m 

ϕ̄ 

(l) 
i 

= ρτ̄ (l) 
i +1 

+ (1 − ρ)(1 − τ̄ (l) 
i +1 

) 

i = 1 , . . . , m − 1 

ϕ̄ 

(r) 
i 

= ρτ̄ (r) 
i −1 

+ (1 − ρ)(1 − τ̄ (r) 
i −1 

) 

i = 2 , . . . , m 

ϕ̄ 

(r) 
1 

= p(s 1 = 0) 

ν̄ (u ) 
i, j 

= 

p 
(
r i, j | 0 , 0 

)
λ̄(u ) 

j,i 
+ p 

(
r i, j | 0 , 1 

)
(1 − λ̄(u ) 

j,i 
) 

κ1 + κ2 

where, κ1 = p 
(
r i, j | 0 , 0 

)
λ̄(u ) 

j,i 
+ p 

(
r i, j | 0 , 1 

)
(1 − λ̄(u ) 

j,i 
) 

and κ2 = p 
(
r i, j | 1 , 0 

)
λ̄(u ) 

j,i 
+ p 

(
r i, j | 1 , 1 

)
(1 − λ̄(u ) 

j,i 
) 

j = 1 , . . . , m, i = 1 , . . . , n 

ν̄ (d) 
i, j 

= 

ϕ̄ 

(r) 
i 

ϕ̄ 

(l) 
i 

n ∏ 

k =1 
k � = j 

ν̄ (u ) 
i,k 

ϕ̄ 

(r) 
i 

ϕ̄ 

(l) 
i 

n ∏ 

k =1 
k � = j 

ν̄ (u ) 
i,k 

+ (1 − ϕ̄ 

(r) 
i 

)(1 − ϕ̄ 

(l) 
i 

) 
n ∏ 

k =1 
k � = j 

(1 − ν̄ (u ) 
i,k 

) 

i = 1 , . . . , m − 1 , j = 1 , . . . , n 

ν̄ (d) 
m, j 

= 

ϕ̄ 

(r) 
m 

n ∏ 

k =1 
k � = j 

ν̄ (u ) 
m,k 

ϕ̄ 

(r) 
m 

n ∏ 

k =1 
k � = j 

ν̄ (u ) 
m,k 

+ (1 − ϕ̄ 

(r) 
m 

) 
n ∏ 

k =1 
k � = j 

(1 − ν̄ (u ) 
m,k 

) 

j = 1 , . . . , n 
λ̄(d) 
j,i 

= 

p 
(
r i, j | 0 , 0 

)
ν̄ (d) 

i, j 
+ p 

(
r i, j | 1 , 0 

)
(1 − ν̄ (d) 

i, j 
) 

τ1 + τ2 

where, τ1 = p 
(
r i, j | 0 , 0 

)
ν̄ (d) 

i, j 
+ p 

(
r i, j | 1 , 0 

)
(1 − ν̄ (d) 

i, j 
) 

and τ2 = p 
(
r i, j | 0 , 1 

)
ν̄ (d) 

i, j 
+ p 

(
r i, j | 1 , 1 

)
(1 − ν̄ (d) 

i, j 
) 

j = 1 , . . . , m, i = 1 , . . . , n 

λ̄(u ) 
j,i 

= 

ω̄ 

(u ) 
j 

m ∏ 

q =1 
q � = i 

λ̄(d) 
j,q 

ω̄ 

(u ) 
j 

m ∏ 

q =1 
q � = i 

λ̄(d) 
j,q 

+ (1 − ω̄ 

(u ) 
j 

) 
m ∏ 

q =1 
q � = i 

(1 − λ̄(d) 
j,q 

) 

i = 1 , . . . , m, j = 1 , . . . , n 

¯  (d) 
j 

= 

m ∏ 

i =1 

λ̄(d) 
j,i 

m ∏ 

i =1 

λ̄(d) 
j,i 

+ 

m ∏ 

i =1 

(1 − λ̄(d) 
j,i 

) 

j = 1 , . . . , n 

¯  (u ) 
j 

= p(h j = 0) 

j = 1 , . . . , n (14) 

. Simulation results and discussions 

In this section, we analyze the performance of the MP decision

usion algorithm. We first consider the computational complexity,

hen we pass to evaluate the performance in terms of error proba-

ility. In particular, we compare the performance of the MP-based

cheme to those of the optimum fusion rule [18] (whenever pos-

ible), the soft isolation scheme presented in [16] , the hard isola-

ion scheme described in [14] and the simple majority rule. In our

omparison, we consider both independent and Markovian system

tates, for both small and large observation window m . 

.1. Complexity discussion 

In order to evaluate the complexity of the message passing al-

orithm and compare it to that of the optimum fusion scheme, we

onsider both the number of operations and the running time. By

umber of operations we mean the number of additions, substrac-

ions, multiplications and divisions performed by the algorithm to

stimate the vector of system states s . 

By looking at expressions in Eq. (14) , we see that running the

essage passing algorithm requires the following number of oper-

tions: 

• 3 n + 5 operations for each of τ̄ (l) 
i 

and τ̄ (r) 
i 

. 

• 3 operations for each of ϕ̄ 

(l) 
i 

and ϕ̄ 

(r) 
i 

. 

• 11 operations for ν̄ (u ) 
i, j 

. 

• 3 n + 5 operations for ν̄ (d) 
i, j 

. 

• 3 n + 2 operations for ν̄ (d) 
m, j 

. 

• 11 operations for λ̄(d) 
j,i 

. 

• 3 m + 2 operations for each of λ̄(u ) 
j,i 

and ω̄ 

(d) 
j 

. 

umming up to 12 n + 6 m + 49 operations for each iteration over

he factor graph. On the other hand, in the case of independent

ode states, the optimal scheme in [18] requires 2 m (m + n ) oper-

tions. Therefore, the MP algorithm is much less computationally

xpensive since it passes from an exponential to a linear complex-

ty in m . An example of the difference in computational complexity

etween the optimum and the MP algorithms is depicted in Fig. 8 .
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Fig. 8. Number of operations required for different n , m = 10 and 5 message pass- 

ing local iterations for message passing and optimal schemes. 

Table 1 

Running time (in seconds) for the optimal and the 

message passing algorithms for: m = 10 , ε = 0 . 15 , 

Number of trials = 10 5 and Message passing iterations = 5 . 

Setting/Scheme Message Passing Optimal 

n = 20 , α = 0 . 45 943.807114 1.6561e + 04 

n = 100 , α = 0 . 49 4 888.8214 97 2.0817e + 04 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Error probability as a function of α for the following setting: n = 20 , inde- 

pendent Sequence of States ρ = 0 . 5 , ε = 0 . 15 , m = 10 and P mal = 1 . 0 . 

Fig. 10. Error probability as a function of α for the following setting: n = 20 , 

Markovian Sequence of States ρ = 0 . 95 , ε = 0 . 15 , m = 10 and P mal = 1 . 0 . 

Fig. 11. Error probability as a function of α for the following setting: n = 100 , in- 

dependent Sequence of States ρ = 0 . 5 , ε = 0 . 15 , m = 10 and P mal = 1 . 0 . Note that, 

only one value is reported for the optimal scheme since it achieves P e = 0 for other 

values of α. 
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With regard to time complexity, Table 1 reports the running

time of the MP and the optimal schemes. For n = 20 , the optimal

scheme running time is 17.547 times larger than that of the mes-

sage passing algorithm. On the other hand, for the case of n = 100 ,

the optimal scheme needs around 4.258 times more than the mes-

sage passing scheme. The tests have been conducted using Mat-

lab 2014b running on a machine with 64-bit windows 7 OS with

16,0GB of installed RAM and Intel Core i7-2600 CPU @ 3.40 GHz. 

5.2. Performance evaluation 

In this section, we use numerical simulations to evaluate the

performance of the message passing algorithm and compare them

to the state of the art schemes. The results are divided into four

parts. The first two parts consider, respectively, simulations per-

formed with small and large observation windows m . Then, in the

third part, we investigate the optimum behaviour of the Byzantines

over a range of observation windows size. Finally, in the last part,

we compare the case of independent and Markovian system states.

The simulations were carried out according to the following

setup. We considered a network with n = 20 , 100 nodes, ε = 0 . 15 ,

ρ = { 0 . 95 , 0 . 5 } corresponding to Markovian and independent se-

quence of system states, respectively. The probability α that a node

is Byzantine is in the range [0, 0.45] corresponding to a number of

Byzantines between 0 and 9. As to P mal we set it to either 0.5 or

1. 1 The number of message passing iterations is 5. For each setting,

we estimated the error probability over 10 5 trials. 

5.2.1. Small m 

To start with, we considered a small observation window,

namely m = 10 . With such a small value of m , in fact, it is possible

to compare the performance of the message passing algorithm to

that of the optimum decision fusion rule. The results we obtained

are reported in Fig. 9 . Upon inspection of the figure, the superior

performance of the message passing algorithm over the Majority,

Soft and Hard isolation schemes is confirmed. More interestingly,
1 It is know from [18] that for the Byzantines the optimum choice of P mal is either 

0.5 or 1 depending on the considered setup. 

5

 

s  

p  
he message passing algorithm gives nearly optimal performance,

ith only a negligible performance loss with respect to the opti-

um scheme. 

Fig. 10 confirms the results shown in Fig. 9 for Markovian sys-

em states ( ρ = 0 . 95 ). These results are confirmed in Figs. 11 and

2 for a larger network size ( n = 100 ), with a significant perfor-

ance improvement since a larger network conveys more infor-

ation at the FC. 

.2.2. Large m 

Having shown the near optimality of the message passing

cheme for small values of m ; we now leverage on the small com-

utational complexity of such a scheme to evaluate its perfor-
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Fig. 12. Error probability as a function of α for the following setting: n = 100 , 

Markovian Sequence of States ρ = 0 . 95 , ε = 0 . 15 , m = 10 and P mal = 1 . 0 . Note that, 

only one value is reported for the optimal scheme since it achieves P e = 0 for other 

values of α. 

Fig. 13. Error probability as a function of α for the following setting: n = 20 , 

Markovian Sequence of States ρ = 0 . 95 , ε = 0 . 15 , m = 30 and P mal = 1 . 0 . 
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c  
ance for large values of m ( m = 30 ). As shown in Fig. 13 , by in-

reasing the observation window all the schemes give better per-

ormance, with the message passing algorithm always providing

he best performance. Interestingly, in this case, when the attacker

ses P mal = 1 . 0 , the message passing algorithm permits to almost

ullify the attack of the Byzantines for all the values of α. Concern-

ng the residual error probability, it is due to the fact that, even

hen there are no Byzantines in the network ( α = 0 ), there is still

n error floor caused by the local errors at the nodes ε. For the

ase of independent states, such an error floor is around 10 −4 . In

igs. 13 and 14 , this error floor decreases to about 10 −5 because of

he additional a-priori information available in the Markovian case.

imilar results, with lower error probabilities, are obtained for the

ase of n = 100 , as it can be seen in Fig. 15 . 

.2.3. Optimal choice of P mal for the Byzantines 

One of the main results proven in [18] , is that setting P mal = 1

s not necessarily the optimal choice for the Byzantines. In fact,

hen the FC manages to identify which are the malicious nodes,

t can exploit the fact the malicious nodes always flip the result of

he local decision to get useful information about the system state.

n such cases, it is preferable for the Byzantines to use P mal = 0 . 5

ince in this way the reports sent to the FC does not convey any

nformation about the status of the system. However, in [18] , it

as not possible to derive exactly the limits determining the two

ifferent behaviours for the Byzantines due to the impossibility of

pplying the optimum algorithm in conjunction with large obser-

ation windows. By exploiting the low complexity of the message

assing scheme, we are now able to overcome the limits of the

nalysis carried out in [18] . 
Specifically, we carried out an additional set of experiments by

xing α = 0 . 45 and varying the observation window in the inter-

al [5,20]. The results we obtained confirm the general behaviour

bserved in [18] . For instance, in Fig. 16 , P mal = 1 . 0 remains the

yzantines’ optimal choice up to m = 13 , while for m > 13, it is

referable for them to use P mal = 0 . 5 . Similar results are obtained

or independent system states as shown in Fig. 17 . 

.2.4. Comparison between independent and Markovian system states

In this subsection, we provide a comparison between the cases

f Markovian and independent system states. 

By looking at Figs. 16 and 17 , we see that the Byzantines switch

heir strategy from P mal = 1 to P mal = 0 . 5 for a smaller observation

indow ( m = 10 ) in the case of independent states (the switching

alue for the Markovian case is m = 13 ). We can explain this be-

aviour by observing that in the case of Markovian states, using

 mal = 0 . 5 results in a strong deviation from the Markovianity as-

umption of the reports sent to the FC thus making it easier the

solation of byzantine nodes. This is not the case with P mal = 1 ,

ince, due to the symmetry of the adopted Markov model, such

 value does not alter the expected statistics of the reports. 

As a last result, in Fig. 18 , we compare the error probability for

he case of independent and Markov sources. Since we are inter-

sted in comparing the achievable performance for the two cases,

e consider only the performance obtained by the optimum and

he message passing algorithms. Upon inspection of the figure, it

urns out that the case of independent states is more favourable

o the Byzantines than the Markov case. The reason is that the

C may exploit the additional a-priori information available in the

arkov case to identify the Byzantines and hence make a better

ecision. Such effect disappears when α approaches 0.5, since in

his case the Byzantines tend to dominate the network. In that

ase, the Byzantines’ reports prevail the pool of reports at the FC

nd hence, the FC becomes nearly blind so that even the additional

-priori information about the Markov model does not offer a great

elp. 

. Conclusions 

In this paper, we proposed a near-optimal message passing al-

orithm based on factor graph for decision fusion in multi-sensor

etworks in the presence of Byzantines. The effectiveness of the

roposed scheme is evaluated by means of extensive numerical

imulations both for the case of independent and Markov sequence

f states. Experiments showed that, when compared to the op-

imum fusion scheme, the proposed scheme permits to achieve

ear-optimal performance at a much lower computational cost:

pecifically, by adopting the new algorithm based on message

assing we were able to reduce the complexity from exponential to

inear. Such reduction of the complexity permits to deal with large

bservation windows, thus further improving the performance of

he decision. Results on large observation windows confirmed the

ual behavior in the attacking strategy of the Byzantines, looking

or a trade-off between pushing the FC to make a wrong decision

n one hand and reducing the mutual information between the

eports and the system state on the other hand. In addition, the

xperiments showed that the case of independent states is more

avorable to Byzantines than the Markovian case, due to the ad-

itional a-priori information available at the FC in the Markovian

ase. 

As future work, we plan to focus on a scenario more favorable

o the Byzantines, by giving them the possibility to access the ob-

ervation vectors. In this way, they can focus their attack on the

ost profitable cases and avoid to flip the local decision when it

s very likely that their action will have no effect on the FC de-

ision. Considering the case where the nodes can send to the FC
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Fig. 14. Error probability as a function of α for the following setting: n = 20 , Markovian Sequence of States ρ = 0 . 95 , ε = 0 . 15 , m = 30 and P mal = 0 . 5 . 

Fig. 15. Error probability as a function of α for the following setting: n = 100 , 

Markovian Sequence of States ρ = 0 . 95 , ε = 0 . 15 , m = 30 and P mal = 1 . 0 . Note that, 

only one value is reported for the message passing scheme since it achieves P e = 0 

for other values of α. 

Fig. 16. Error probability as a function of m for the following settings: n = 20 , 

Markovian Sequence of States ρ = 0 . 95 , ε = 0 . 15 and α = 0 . 45 . 

 

 

 

 

 

 

 

 

Fig. 17. Error probability as a function of m for the following settings: n = 20 , in- 

dependent Sequence of States ρ = 0 . 5 , ε = 0 . 15 and α = 0 . 45 . 

Fig. 18. Comparison between the case of independent and Markovian system states 

( n = 20 , ρ = { 0 . 5 , 0 . 95 } , ε = 0 . 15 , m = 10 , P mal = 1 . 0 ). 
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more extensive reports (multi-bit case) [34] is another interesting

extension. As we have already mentioned, another interesting ex-

tension, is obtained by allowing the Byzantines to coordinate their

attacks. For instance, we could consider a synchronized attack, in

which the Byzantines use the same pseudo-random generator with

a common seed, to decide whether to flip the result of the local

decision or not. Implementing the proposed message passing algo-

rithm on real devices, i.e. test-bed, is also an interesting direction

that will be the subject of our future work. 
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