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An attack method against CNN detectors, which minimizes the
distortion in the pixel domain, is proposed. By focusing on CNN models
developed for manipulation detection, our experiments show that, while
the small perturbations introduced by existing methods tend to be
cancelled out when the adversarial examples are rounded to pixels, thus
making the attack ineffective, the proposed approach can generate pixel-
domain adversarial images which succeed in inducing a wrong decision
with very small distortions.

Introduction: Recent works have shown that Convolutional Neural
Networks (CNNs) can provide a significant performance gain over
model-based and standard machine-learning approaches also for
multimedia forensic tasks, e.g., manipulation and forgery detection, and
camera model identification. As a consequence, the vulnerability of
deep learning to adversarial perturbations, highlighted by recent studies
in the general context of pattern recognition [1], also affects CNN-
based methods proposed in forensics [2]. Since in multimedia forensic
applications the presence of a possibly informed attacker cannot be
neglected [3], the analysis of such adversarial perturbations, and that of
the possible countermeasures, is of primary importance.

As shown in the general literature of deep learning, the adversarial
perturbations are often quasi-imperceptible, a very small perturbation of
the inputs being sufficient to lead to an incorrect decision. This results
in a poor robustness to image processing operations: in particular, the
operation of rounding to integers is sometimes already sufficient to make
an adversarial example ineffective. Passing to integer, however, is an
essential step in practice, during forgery creation, to get an adversarial
image that can be stored and transmitted.

In this letter we propose a gradient-inspired pixel domain attack
against CNN detectors, which extends the one developed in [4] against
SVMs. Differently from classical gradient-based attacks to CNN models,
which perturb the image based on the gradient of the loss function w.r.t.
the input, in the proposed attack, the gradient of the output score function
is approximated with respect to the pixel values. The attack can be
classifier as a black box attack since it does not need any knowledge of
the model, but only that the network can be queried as an oracle and the
output observed.

In the following, we first present the attack method, then we show its
performance against state-of-the-art CNN-based manipulation detectors,
distinguishing between pristine images (class 0) and processed images
(class 1). The performance are compared to those achieved by existing
methods for generating adversarial attacks, namely, the original box
constrained L-BFGS by Szegedy et al. [1] (L-BFGS for short), the Fast
Gradient Sign Method (FGSM) [5] and the Jacobian-based Saliency Map
attack (JSMA) [6].

A gradient-inspired pixel domain attack to CNN models: Given an input
image x, we let zl(x) denote the output score (logits) for class l, and
f l(x) the value of zl(x) after the softmax layer, i.e., the softmax score.
The objective of the attack is to find an image x∗ which satisfies

min
x′

d(x, x′) s.t. argmax
l

f l(x′) 6= y, (1)

where y is the ground truth label, or true class, d() is a distortion measure,
e.g. the L1 distortion, and x′ can only take integer values, in the range
[0:255]. Then, the attacker searches for the minimal feasible perturbation
such that the predicted class is wrong, where feasible means that, after
the attack, the predicted image must be in the pixel domain. Solving
(1) corresponds to search for the shortest path to the decision boundary.
For binary classification problems, which is the case we focus on in this
paper, this is equivalent to minimize fy(x′) by means of the steepest
descent method, until the predicted class is changed. Equivalently, by
looking at the loss function L(fy , y) (e.g., L(fy , y) =− log fy in the
case of cross-entropy loss) the attack has to maximize L(fy , y) in order
to solve (1). Note that such approach is effective also in the multi-class
case, although suboptimum (in that case, we should maximize f l(x′) for
the class l 6= y whose boundary is the closest to x).

To solve the optimization problem in (1), we extend to the case
of CNN models the suboptimum iterative attack method proposed in
[4] against binary SVM-based detectors. The approach presented in [4]
works for grayscale (or one-channel) images only. In order to apply the
attack to general networks trained on color images, we also generalize
it to the case of 3-channels. The algorithm works as detailed in the
following. At each iteration, first, it derives an approximation of the
gradient of the output score function with respect to the pixel image x,
then, the strength of the attack is adjusted by controlling the number of
modified pixels. More specifically, with reference to the CNN softmax
output fy for the true class y, by letting σ be the increment applied to a
pixel position, the approximated gradient in position (i, j, s) is given by

(∇fy)ijs =
fy(x+ δijs)− fy(x)

σ
, (2)

where δijs is a 3-D matrix of the same size of x with all zeros except
for the entry (i, j, s), where it takes the value σ. As in [4], we let
σ= 1, which corresponds to the small possible increment on pixels.
Obviously, due to the integer values constraint, the approximation of the
real gradient can be very rough. The step size for the descent along the
direction specified by ∇fy , characterizing the strength of the attack, is
determined by choosing the percentage k of to-be-modified pixels. If the
decision boundary cannot be crossed, i.e., the predicted class cannot be
changed, by modifying at most a prescribed fraction kmax of pixels,
the modification is applied to the image with kmax and the process is
iterated. Then, at iteration j, the image x(j−1) is modified as follows:
x(j) = x(j−1) − bak · ∇fye, where ak is chosen in such a way that the
k percentage of the pixels with the larger gradient intensity are modified
(be denotes the rounding operation). Controlling the number of modified
pixels also permits to avoid that many neighbouring pixels are modified:
in fact, since the effects that single-pixel changes have on the output are
presumably not independent for pixels close to each other, the effect
of a joint modification of many neighbouring pixels may be difficult
to predict. The best k is searched iteratively and corresponds to the
minimum fraction for which the boundary can be crossed (see [4] for
more details regarding the search of k). Clearly, when the algorithm takes
more than one iteration, k is set to the maximum value (kmax) for all but
the last iteration of the algorithm.

We verified that, when applied to the softmax output of a CNN model,
the estimation in (2) sometimes returns a zero matrix, for some trained
networks (especially, for deeper models). This happens for large positive
and negative values of zy(x), where the softmax has a rather flat output.
To overcome this problem, instead of computing the softmax directly
on the values zy , we get the score function fy used in (2) by applying
the softmax to zl(x)/T , with l ∈ {0, 1}, where T is a scaling parameter,
known as temperature parameter of the softmax. The effect of considering
T > 1 is only increasing the sensitivity of the softmax output to a small
change in the input, the exact value of the output being not important in
this phase, where we only search for an estimate of the descent direction.

Experimental analysis and results: We first briefly introduce the state-
of-the-art approaches for generating adversarial examples that we
considered in our tests. L-BFGS [1] looks for an approximately optimum
solution of the problem of finding the minimal adversarial perturbation
that makes the prediction changes. FGSM [5] obtains an adversarial
perturbation in a computationally efficient way by computing the gradient
of the output with respect to the input image and considering its
sign multiplied by a strength ε. JSMA consists of a greedy iterative
procedure which relies on forward propagation to compute, at each
iteration, a saliency map, indicating the pixels that contribute most to
the classification. The pixels are then modified based on this map. The
procedure ends when the attacker succeeds or too many pixels are
modified. While L-BFGS looks for the minimal perturbation necessary
to cross the boundary, both FGSM and JSMA are suboptimal (but
more efficient) approaches which try to induce a misclassification while
keeping the distortion limited; in this way, they are expected to be more
robust against integer rounding.

The Foolbox toolbox [7] is used to implement the above attack
methods. For the FGSM attack, we considered the refined multi-step
variant, in order to avoid that a highly suboptimum perturbation is
generated (hence introducing a large distortion). The number of steps
is set to 10 (default) while the best ε is searched in the range [10−3 :

0.001 : 0.1]. The JSMA is applied with the default maximum number of
iterations 2000; the maximum number of times that a same pixel can be
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modified is set to 3. Regarding the L-BFGS method, we set a margin ν
on the final score, in order to force the attack to enter more inside the
targeted region (so to increase the robustness to rounding); specifically,
w.l.o.g., if 1 is the predicted class after a successful attack (then, 0 is the
true class), and f1a is the corresponding final score of the attacked image,
then, the attack is run again and a decision in favor of 1 is made only
when f1 ≥min{f1a + ν, 1}.

With regard to the proposed attack, the most computationally
demanding part of the algorithm is the computation of the approximated
gradient, hence the time needed for attacking one image depends on
the number of iterations required. Typically, the number of iterations
ranges from 1 to 3, and the image can be attacked in some seconds. The
temperature T of the softmax during the gradient estimation is set to 100.
As in [4], we set kmax = 0.2. We declare an attack failure if the image
cannot be attacked in more than 10 iterations (the number of iterations
being related to the maximum change per pixel).

The networks we considered are: a shallow one (3 convolutional
layers), trained for median filtering detection (ME-D) and resizing
detection (RES-D) [8] and a deeper one (9 convolutional layers) trained
for contrast adjustment detection (CA-D) [9]. Both ME-D and RES-D
were trained on grayscale patches of size 128× 128, while CA-D was
is trained on color patches of size 64× 64× 3, as in [9]. The details of
the network and the training information (e.g., architecture, optimization
solver, batch size, etc...) can be found in [8] and [9]. The TensorFlow
framework via the Keras API is used to train and test the CNNs, in
a machine equipped with an Asus GeForce GTX1080TI - 9GB DDR5
gpu. We carried out our experiments on camera-native images from the
RAISE dataset [10]. No compression is performed to them. The images
were processed with the OpenCV library for Python to produce the
manipulated images (class 1). The processing parameters are fixed as
follows. The window size for the median filtering is set to 5× 5, while
the scaling factor for the resizing is set to 3. For the adjustment of
the contrast, by following [9], the processing considered are a mixture,
in equal percentage, of adaptive histogram equalization (with clip-limit
parameter 5), gamma correction (both contrast expansion, with γ = 1.5,
and reduction, with γ = 0.7) and histogram stretching (5% of saturation).
The network accuracies in absence of attacks are 95% for ME-D, 97%
for RES-D and 90% for CA-D.

Table 1 shows the performance of the various attacks against the three
CNN-based detectors. For each method, the attack is carried out on 300
test images (150 per class) correctly classified by the network. Results
are reported for the attacked images produced by each method (Adv-I)
and for those obtained after rounding and truncation to pixels (bAdv-
Ie). Obviously, there is no difference between bAdv-Ie and Adv-I for the
proposed method. In the table, err indicates the percentage of attacked
images misclassified by the network, i.e., those for which the attack is
successful; d1 and d∞ denote, respectively, the average (normalized)
L1 and L∞ distance between original and attacked images; finally, mod
indicates the average percentage of modified pixels in the attacked image.
The averages are computed over the successfully attacked samples, i.e.,
only on the err percentage of images.

We see that, in all the cases, the proposed attack succeeds in inducing a
decision error with a small distortion, both in terms of d1 and, especially,
of d∞ (the maximum distortion is in fact the measure that the proposed
method tends to minimize). The err percentage does not reach 100 due
to the presence of a few images which require more than 10 iterations to
be attacked. Also, we notice that in all the cases our attack is effective by
modifying only a few percentage of the pixels.

The results in the table also confirm that the effectiveness of the
existing attacks is significantly reduced after the integer rounding. As
expected, L-BFGS (for ν = 0) is the one that suffers more and the
perturbation introduced by this method is cancelled out by the rounding
more than 80% of the time in all the cases. Setting ν > 0 permits to raise
err after the rounding, at the price of a larger distortion. For each detector,
the table reports the results when ν is set to the value ν∗ for which the
attack reaches the largest err after the rounding (above this value, the
adversarial examples can not be found in some cases, then err decreases).
We observe that, when a sufficiently high success rate can be reached
after the rounding, as for the cases of ME-D and RES-D in particular,
the distortion introduced is much larger than with our method. The table
also shows that, as expected, FGSM gets a larger err with respect to L-
BFGS on bAdv-Ie; however, the improvement in robustness is slight. By
considering a stronger perturbation, which can be done by setting a larger
ε parameter, the robustness of FGSM to rounding improves a bit, but at

the cost of increased distortion. We see from the table that, for the case
of CA-D, where err after rounding is around 50%, the average distortion
with FGSM is already much larger than with the proposed method, both
in terms of d1 and d∞. With regard to JSMA, we observe that this
method is pretty robust to rounding, especially when it is run against the
two shallow models ME-D and RES-D. In these cases, in fact, once the
attacked images are rounded to integer, the success rate for the attack is
93.9% and 99% respectively, while it is 84% for CA-D. Regarding the
distortion introduced by this attack, JSMA tends to keep d1 very low at
the expense of a large d∞. Compared to the proposed method, JSMA can
achieve a better d1, however at the cost of a much larger d∞.

Table 1: Performance of the attack methods against the three manipulation
detectors.

Adv-I bAdv-Ie
err d1 d∞ mod err d1 d∞ mod

ME-D

L-BFGS (ν = 0) 100 0.19 1.34 98.77 18.67 0.32 2.93 99.9
L-BFGS (ν∗) 100 0.33 2.42 99.0 98.7 0.23 2.43 99.0
FGSM 100 0.42 0.48 98.7 38.7 0.85 1.01 98.9
JSMA 94.7 0.07 7.37 97.4 93.9 0.08 7.70 97.3
Pixel-based [prop] 98.7 0.16 1.43 13.0 98.7 0.16 1.43 13.0

RES-D

L-BFGS (ν = 0) 100 0.14 1.10 98.2 5.0 0.29 3.50 99.7
L-BFGS (ν∗) 100 0.32 2.60 98.8 98.6 0.22 2.60 98.8
FGSM 100 0.35 0.37 99.2 35.0 0.88 1.01 99.9
JSMA 99.3 0.06 7.50 97.2 99.3 0.06 7.40 97.1
Pixel-based [prop] 99.0 0.12 1.20 12.0 99.0 0.12 1.20 12.0

CA-D

L-BFGS (ν = 0) 100 0.10 1.99 95.2 17.3 0.12 3.60 9.5
L-BFGS (ν∗) 100 0.18 3.45 96.5 71.0 0.14 3.91 10.5
FGSM 89.4 0.78 1.60 95.3 49.6 1.31 2.83 54.5
JSMA 92.3 0.06 7.10 92.1 84.0 0.06 7.44 3.0
Pixel-based [prop] 99.0 0.13 1.80 15.3 99.0 0.13 1.80 15.3

Conclusion: By focusing on deep learning applications for forensics, this
letter presents a method for generating adversarial perturbations against
CNNs, by minimizing the distortion in the pixel domain. Future work
will focus on the extension of the attack to other, more general, quantized
domains, e.g. the JPEG domain.
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