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Y

ou fling this book on the floor, you would hurl it out of the win-
dow, even out of the closed window, through the slats of the Vene-
tian blinds; let them shred its incongruous quires, let sentences, words,

morphemes, phonemes gush forth, beyond recomposition into discourse; through
the panes, and if they are of unbreakable glass so much better, hurl the book and
reduce it to photons, undulatory vibrations, polarised spectra; through the wall,
let the book crumble into molecules and atoms passing between atom and atom
of the reinforced concrete, breaking up into electrons, neutrons, neutrinos, ele-
mentary particles more and more minute: through the telephone wires, let it be
reduced to electronic impulses, into flow of formation, shaken by redundancies
and noises, and let it be degraded into a swirling entropy. You would like to
throw it out of the house, out of the block, beyond the neighborhood, beyond
the city limits, beyond the state confines, beyond the regional administration,
beyond the national community, beyond the Common Market, beyond Western
culture, beyond the continental shelf, beyond the atmosphere, the biosphere,
the stratosphere, the field of gravity, the solar system, the galaxy, the cumulus
of galaxies, to succeed in hurling it beyond the point the galaxies have reached
in their expansion, where space-time has not yet arrived, where it would be
received by nonbeing, or, rather, the not-being which has never been and will
never be, to be lost in the most absolutely guaranteed undeniable negativity.
Merely what it deserves, neither more nor less.

If on a winter’s night a traveler
Italo Calvino





Chapter 1
Introduction

Begin at the beginning and go on
till you come to the end; then stop.

Alice in Wonderland
Lewis Carroll

A

FTER A first decade of studies, Digital Image Forensic is not any-
more just a promising field of research but rather a mature discipline
that can count on rigorous formalisations and on a very large selec-

tion of algorithms to gather information on the history of an image, i.e. on its
origin, the processing it has undergone and its authenticity. The need for such
tools is the natural consequence of the widespread diffusion of digital content,
which anyone can modify, manipulate and distribute almost effortlessly. It
is not surprising, then, that restoring the credibility of digital content has
become a task of paramount importance.

With this thesis we contribute to the above mission by addressing three
open issues in Image Forensics. In the sequel we briefly introduce the motiva-
tions that pushed us to tackle with such issues, to each of which we dedicate
a part of the thesis.

In the first part of the thesis, we devise a forensic tool to study the history
of large groups of images sharing the same visual content, with the objective
to determine their net of parent-child relationships. The idea underlying our
study originates from simple web searches of popular images depicting, for
example, famous paintings or events with a relevant social impact. Web en-
gines usually find several similar or apparently identical copies of the queried
image; even when the content is exactly the same, colors, brightness, contrast
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or image dimensions are different. Clearly, not all the images are original: it
is very unlikely that hundreds, if not thousands, of people photographed a
lonely bear near the North Pole! More likely, the original image was copied or
scanned, edited and redistributed multiple times. Our idea is to exploit foren-
sic algorithms, so far used on single images, to uncover these links between
images. Our studies brought to a rigorous formalisation of the problem (to
the best of our knowledge, the only one when our works were published the
first time) and its practical implementation, that we call Dependency Explorer
Framework, which served as an inspiration for recent works of other research
groups [Dias et al., 2012].

Several numerical results extensively reported in the thesis support the
trustworthiness of our method. However, we value as much as such results a
fact occurred during the writing of this thesis. Since the beginning of our re-
search, we struggled with the unavoidable major drawback behind its practical
application: because rarely image users report the source of the image they
(eventually) modified and published, we do not know the real relationships
linking the data we collect. More often, we know the author of the original
image (a famous painter or photographer, for example) but we do not possess
the archetype. As a consequence, it took us a lot of detective work to evaluate
by visual inspection the plausibility of our findings. While writing this thesis,
we extended the original results with an in-depth analysis of a large Web set
depicting a young polar bear in distress. The original picture photographed
by Arne Nævra played a key role in the awareness campaign against global
warming, thus explaining the widespread diffusion of its near-duplicates. Be-
cause we ignored the real relationships, we had to make a lot of assumptions
on the links between the images. Then, we tried to involve the photographer,
who was really interested in our studies. From his words we understood the
seriousness of problems such as copyright protection and near-duplicate trac-
ing from the point of view of a professional photographer; last but not least,
he provided us with the archetype. We included it in the set of images used
for our tests and we ran again all the algorithms; the results confirmed that
the majority of our conclusions were indeed correct and we were glad not to
have to rewrite the entire section!



3

Somehow dually, in the second part of the thesis we show how to use mul-
tiple forensic tools at the same time to study a single image. The objective is
to make possible to fuse the output of multiple tools by coping with incom-
patibilities and unreliability. The rationale behind our study is once again
inspired by the real-world experience of any image user: to create forgeries
of convincing quality, the counterfeiter must resort to any kind of processing
tools provided by imaging software. If that is the case, why resort to a single
forensic algorithm to detect a manipulation? We believe that detection ac-
curacy could greatly benefit from the fusion of the information coming from
multiple detectors. To some extent, forensic research has already attempted
to integrate different detectors by concatenating the features they provide be-
fore feeding them to a classifier. However, we try something yet unexplored
in the field of Image Forensics: we let each tool decide independently on the
authenticity of an image and then we reach a consensus among them. While
doing so, we have to tackle with the uncertainty afflicting the tools, which,
similarly to any other process, are subject to error or noise. We devise a gen-
eral framework based on Fuzzy Theory and we apply it to a typical image
forensic scenario of splicing detection. Experimental results confirm that our
framework, as well as its twin system developed by Fontani et al. [Fontani
et al., 2011, 2013], outperforms more traditional approaches.

In the third part of the thesis we join the enemy. We dedicate ourselves to
Counter-forensics, the art of misleading the forensic analysis by taking advan-
tage of its weaknesses. Despite the relative youth of the discipline, literature
already offers several interesting methods to remove relevant footprints like
the artefacts introduced by lossy compression, CFA interpolation or resam-
pling, thus making possible to impair source or forgery detection based on
such traces. However, we noticed that no one so far attempted to counter a
particular category of forensic algorithms, that is those based on robust salient
point detectors. We then investigate the weaknesses of the methods based on
the most popular of such detectors, the Scale Invariant Feature Transform
(SIFT). Even though challenging SIFT-based applications proved to be no
small feat, the results of our work are promising: apart from the thrill of as-
suming the role of the villain for a change, we were able to point out that it
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is possible to remove SIFT features without significantly impacting the qual-
ity of the forged image. Such a conclusion is quite alarming, considering the
popularity of SIFT-based application.

We have organised this part of the thesis like a duel of wits between a
forensic analyst and an adversary of equal knowledge. The former wants to
detect something (a forgery, the origin of an image, etc.) by relying on SIFT
features, the latter wants to evade such detection. We let the adversary move
first by devising a SIFT keypoint removal attack whose novelty resides on the
hypotheses that there exist multiple classes of keypoints and that each class
must be removed by means of specifically tailored attacks. Even though so far
literature has assumed the opposite (e.g. [Hsu et al., 2009; Do et al., 2010a]),
experimental results confirm the goodness of our intuition. As forensic ana-
lysts, we notice that removal attacks tend to leave peculiar footprints in the
form of textured regions suspiciously deprived of SIFT keypoints. Based on
such observation, we develop three novel keypoint removal detectors forcing
the adversary to limit the amount of removed keypoints to preserve the unde-
tectability of the forgery. We then provide the adversary with a new tool to
inject fake keypoints, which were not in the authentic image but are regularly
detected by SIFT following the manipulations. Such keypoints are meant to
hide the preceding keypoint removal without interfering on the results it at-
tained, thus preventing the detection by means of the removal detectors. It
turns out that two detectors out of three are quite robust to this latter attack,
thus proclaiming the (temporary?) victory of the analyst.

1.1 Overview

This thesis is subdivided in three parts. The first part focuses on the forensic
analysis of the history of groups of near-duplicate images. Before that, in
Chapter 2 we provide some introductory information on Digital Image Foren-
sics; a reader who is already familiar with such concepts can skip this chapter
and start reading from Chapter 3, where we define the problem of finding
dependencies within a set of images with similar content. A practical imple-
mentation of such principles, which we call Dependency Explorer Framework,
is introduced and experimentally validated in real Web scenarios in Chapter 4.
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The second part investigates the problem of merging heterogenous data
provided by forensic detectors while dealing with the incomplete, noisy or not
fully reliable information they may provide. This is a typical decision fusion
task, whose basic principles are briefly described in Chapter 5. In Chapter 6
we formalise our solution based on Fuzzy Theory, which we put in practice in
Chapter 7, by fusing the outputs of five popular forensic algorithms revealing
the presence of cut & paste forgeries based on JPEG artefacts.

The third part is dedicated to Counter-forensics. In particular, we propose
new techniques to impair SIFT-based detection and then we develop possible
countermeasures to restore the credibility of the forensic analysis. In Chapter 8
we introduce the counter-forensic problem. In Chapter 9 we analyse in detail
the SIFT algorithm, in order to fully understand the working principles of the
keypoint removal attack proposed in Chapter 10. In Chapter 11 we successfully
apply the removal attack to impairing a state-of-the-art SIFT-based copy-move
detector. In Chapter 12 we investigate the visibility of the removal attack;
in particular, we individuate two peculiar footprints on which we base three
novel detectors revealing keypoint removal. In Chapter 13 we study the dual
problem of keypoint removal, i.e. the injection of fake keypoints with the goal
to mask keypoint removal and we assess its impact on removal detection. We
consider again the SIFT-based copy-move detection scenario and we apply all
the tools developed so far, that is keypoint removal, keypoint injection and
keypoint removal detection. Chapter 14 concludes the thesis by outlining some
possible directions for future research.

1.2 Contributions

In the following we summarise the contributions of this thesis.

• A theoretical framework (Chapter 3) to analyse the relationships be-
tween large groups of near-duplicate images and a system putting the
framework in practice (Chapter 4). These studies led to publication 2

in the list of Sec. 1.4.

• A theoretical framework for the exploitation of multiple forensic tools by
means of the fusion of their decision scores (Chapter 6). Such framework
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allows to overcome several problems such as heterogenous, mutually ex-
clusive, incomplete or noisy outputs by relying on Fuzzy Theory. A
practical implementation (Chapter 7) is applied to a cut & paste forgery
detection scenario with results superior to those ensured by traditional
methods. These studies led to publications 3–6 of the list of Sec. 1.4.

• A new method to remove SIFT keypoints based on the hypothesis that
not all SIFT keypoints have the same properties (Chapter 10). Fol-
lowing the classification of its neighbourhood, each keypoint is removed
by means of a procedure specifically tailored to the class. This solution
outperforms state-of-the-art class-unaware keypoint removal attacks and
provides a good trade-off between removal effectiveness and the impact
on the counterfeited image’s quality.

• A practical counter-forensic application of the removal attack whereby a
state-of-the-art SIFT-based copy-move detector is successfully bypassed
(Chapter 11).

• Three forensic algorithms revealing both global or local, class-aware or
unaware keypoint removal attacks (Chapter 12). To the best of our
knowledge, before the introduction of our detectors the only existing
alternative was visual inspection, which is unreliable at best, given the
typical sparsity and quantity of SIFT keypoints in natural images.

• A set of new counter-forensic methods to introduce fake keypoints into
images (Chapter 13). This thesis represents the first systematic study
on keypoint injection, which so far has been often considered more like
a side effect of keypoint removal rather than a powerful tool to counter
SIFT matching-based applications and removal detectors. By resorting
to these attacks, it is possible to reduce the performance of the pro-
posed keypoint removal detectors. The above four contributions led to
publications 7–12 of the list of Sec. 1.4.

In order to ensure the reproducibility of our experimental results, we al-
ways provide detailed pointers to the software we used, the parameter settings
and the image data sets; furthermore, we also provide the pseudo-code of our
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algorithms wherever this feels necessary.

1.3 Activity within FET European projects

The activity of the thesis has been mainly carried out within the LivingKnowl-
edge and REWIND European projects, funded under the Future and Emerg-
ing Technologies Open scheme.1 The thesis represents part of the activity
conducted by CNIT2 (National Inter-university Consortium for Telecommuni-
cations), namely by the Research Unit of the University of Siena, led by Prof.
Mauro Barni, and within the informal VIPP (Visual Information Processing
and Protection) research group.3

The LivingKnowledge project4 (2009-2012) revolved around the concepts
of diversity and time, and their impact on the opinion-forming process on
the Web. The project envisaged a future where search and navigation en-
gines automatically classify opinions and bias (e.g. about social or political
matters), to produce more insightful, better organised, easier-to-understand
output. LivingKnowledge offered us the opportunity to address the image
forensic problem from an unusual perspective in which the rigorous data pro-
vided by the detectors were supported by higher level semantic information.
For example, the cooperation of splicing detectors and automatic text process-
ing tools allowed to understand whether a forged image was used to convey
a particular message. Moreover, contrast manipulation detectors were em-
ployed to understand whether Web images were brightened or darkened to
suggest a particular emotion. In accordance with the LivingKnowledge’s vi-
sion, the Dependency Explorer Framework presented in the first part of the
thesis was originally imagined as a way to exploit the relationships between
near-duplicates to understand the role of different websites (and the groups
behind them) in the formation of opinions on the Web; by doing so, one could
identify opinion leaders, common feelings about specific events and the pre-
ferred sources of information in a given temporal or geographical context. In

1Respectively under grants no. 231126 and no. 268478.
2http://www.cnit.it.
3http://clem.dii.unisi.it/~vipp/.
4http://livingknowledge.europarchive.org.

http://www.cnit.it
http://clem.dii.unisi.it/~vipp/
http://livingknowledge.europarchive.org


8 1. Introduction

addition, knowing how a few source images have evolved into a large set of
derived pictures, could allow to reconstruct how the usage of the information
contained in the original images has evolved in time and space; by doing so,
we can identify, for instance, how these images have been used by groups of
people with different opinions and cultures.

The REWIND (REVerse engineering of audio-VIdeo coNtent Data) project5

aims to develop a comprehensive set of new mathematical models and tech-
niques that address the forensic footprint detection problem independently of
the number of processing stages the data goes through and the media involved.
To this end, three main goals are pursued: the definition of an universal
footprints theory; the development and the composition of tools for reverse-
engineering the history of multimedia objects (audio, image, video); and the
study of attacker-aware detectors. This thesis contributes to the latter goal
by exposing the weaknesses of SIFT-based forensic detectors in such a way to
develop secure countermeasures that are aware of adversarial processing.

1.4 List of publications

The activity of the thesis resulted into the following publications.

2010:

1. M. Barni, A. Costanzo, and L. Sabatini, Identification of cut & paste
tampering by means of double-JPEG detection and image segmentation.
In Proceedings of the IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1687–1690, IEEE, 2010.

2. A. De Rosa, F. Uccheddu, A. Costanzo, A. Piva, and M Barni, Ex-
ploring image dependencies: a new challenge in image forensics. In
IS&T/SPIE Electronic Imaging, pages 75410X–75410X, International
Society for Optics and Photonics, 2010.

5http://www.rewindproject.eu.

http://www.rewindproject.eu
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Part I

Digital Image Forensics of

near-duplicate images





D igital Image Forensics is a relatively new research field aiming at gath-
ering information on the history of an image in such a way that its

authenticity can be evaluated. Image Forensics is based on the observation
that any processing carried out during any stage of an image’s life cycle leaves
specific subtle traces, whose presence can be exploited to expose the correspond-
ing manipulation. By doing so, it is possible to verify the history of an image
blindly, i.e. without the help of the original image prior to the manipulations.

Though the current state of the art of Image Forensics permits to acquire
very interesting information, all the instruments developed so far focus on
the analysis of single images. In this part of the thesis we push the analysis
forward by proposing a new approach considering groups of images instead of
single images. The idea is to discover parent-child relationships among a group
of images representing similar or equal contents. Given the strong effect that
images posted on the Web have on opinions and bias in the networked age we
live in, such an analysis could be extremely useful for understanding the role
of pictures in the opinion forming process. Among more traditional applica-
tions, we mention copyright protection and image clustering. We formalise the
concept of image dependency and we describe a system, named Dependencies
Explorer Framework, putting it in practice.





Chapter 2
Introduction to Digital Image Forensics

“I’m not upset that you lied to me,
I’m upset that from now on I can’t believe you”

Friedrich Nietzsche

I

T’S ALL so easy with Photoshop. Nowadays, with imaging software so
widely available, the manipulation of digital images is not a matter for
experts only. It is a widespread belief that analog photos preceding the

advent of the digital era were trustworthy. This, however, is not true as they
were simply harder to counterfeit and required deep knowledge of the acquisi-
tion process and great expertise in the darkroom. In 1825, Nicéphore Niépce
made an image that is recognised as the first surviving photograph of History.
In 1822, a failed attempt of duplicating one of his previous experiments costed
him the loss of an even older photograph and three years of work to reproduce
it successfully. Not long after, in the decade 1860-1870, expert photographers
already learned how to create some of the oldest examples of forgeries the
world is aware of. The print of Fig. 2.1 (a) documents one of such convincing
forgeries: only the face of General Grant posing in front of his encampment
during the American Civil War is genuine; the man on the horse was another
person and even the background did not depict the real encampment.

Since those pioneering times photographic techniques evolved side by side
with the expertise in manipulating them. Recent History is full of similar
cases of forgeries as every leader, influential politician or dictator systemat-
ically added or removed from official photos collaborators raising or falling
into disgrace. Today, things are not different. Modern digital imaging allows
to create extremely convincing fakes on-the-go, even with devices with rel-
atively low computational power such as smartphones and tablets. Content
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can be easily faked in diverse contexts: a fitter fashion model, a different hour
of the day, a cheating companion, an army parading non-existent missiles, a
politician interacting with the wrong people.

While there is little harm besides gossip in retouching an unwanted belly
or an incipient baldness, the simplicity of counterfeiting is a serious issue when
it is exploited to convey social, political or military messages. What could be
the reaction of the opposite faction to a forged image exhibiting one missile
too much, if the image is believed to be authentic? What if a jury has to
decide on innocence or guilt of a defendant based on an image that could
be counterfeited or whose origin is uncertain? There is more. Images are
tampered with in academic papers to display better results to boost chances
of publication or funding (Fig. 2.1 (c)). Similarly, medical images can be
altered to hide or pretend a pathology for insurance purposes (Fig. 2.1 (b)).

To understand whether an image is authentic or not by carefully looking
at it is no more a viable option, as sometimes legitimate photos may appear as
fakes at first glance (and vice-versa).1 As a consequence, more sophisticated
methods to restore the credibility of digital images are needed.

Digital Image Forensics [Redi et al., 2011; Piva, 2013] is a relatively new
research field aiming at gathering information on the history of an image in
such a way that its veracity can be evaluated. In particular, this task is
fulfilled by providing an answer to questions like the following: was an image
acquired by the device it is claimed to be captured with? Is the scene that is
being depicted still the original one? One of the strengths of Digital Image
Forensics consists in its blind approach these kinds of verification, in the sense
that it is assumed that the original image prior to the manipulations is not
available for comparison. As a matter of fact, this is the case in the majority
of the real-world scenarios. Image Forensics is based on the observation that
any processing carried out during any stage of an image’s life cycle leaves
specific subtle traces whose presence can be exploited by forensic analysts to
expose the corresponding manipulation. It goes without saying that most of

1As a proof, consider the following challenges: Autodesk’s Fake or Foto, available at
http://area.autodesk.com/fakeorfoto/, on discriminating between natural and com-
puter generated images; Nova’s Fake or Real, available at http://www.pbs.org/wgbh/nova/
sciencenow/0301/03-fakeorreal.html, on distinguishing between authentic images and
photomontages.

http://area.autodesk.com/fakeorfoto/
http://www.pbs.org/wgbh/nova/sciencenow/0301/03-fakeorreal.html
http://www.pbs.org/wgbh/nova/sciencenow/0301/03-fakeorreal.html
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the times analysing the full history of an image is no small feat, especially if
one considers that every processing carried out in the image tends to weaken
the traces left by previous modifications.

(a)

(b) (c)

(d) (e) (f)

Figure 2.1: Examples of image tampering thoroughout History: (a) com-
posite (1865 ca); (b) forged pathology (right); (c) forged academic results
(right); (d)-(f) fake magazine covers (respectively: spliced face, cloned planes,
spliced hood and gun). For more examples check http://www.fourandsix.
com/photo-tampering-history.

http://www.fourandsix.com/photo-tampering-history
http://www.fourandsix.com/photo-tampering-history
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2.1 Digital Image Forensics in practice

Image Forensics inherits part of its challenges and methods from Digital Stega-
nography and Digital Watermarking. Both these sciences conceal information
in images in such a way to protect the rightful owner or to verify integrity and
authenticity.

Steganography is the science of communicating securely in a completely
undetectable manner [Chandramouli et al., 2004]. In practice, the message
that needs to be conveyed is imperceptibly embedded into an image (referred to
as carrier or cover) whose content is often not relevant. Digital watermarking
[Barni and Bartolini, 2004] is the science of embedding a watermark (i.e. a
kind of signature) revealing the owner or the integrity of the multimedia object.
A watermark can be robust or fragile: in the former case the watermark is
designed so that it survives to certain processing tools, while in the latter
case the watermark is destroyed as soon as the image is altered. Typical
applications are respectively copyright protection and integrity verification.

The main difference between Image Forensics and the two above sciences
is that the former does not require the original object nor additional infor-
mation about it or the acquisition device, thus carrying out a blind analysis.
Furthermore, such an analysis is also passive, in the sense that contrarily to
watermarking techniques no specific hardware (like trusted cameras) must be
used to make the techniques practically viable.
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2.1.1 The image generation process

Forensic techniques gather information on the history of an image by looking at
peculiar footprints left by different processing. According to the categorisation
in [Piva, 2013], there are various typologies of footprints, which are related to
the stages defining the life cycle of every image as shown in Fig. 2.2.

When a real-world scene is photographed, a combination of concave and
convex optical lenses conveys the light towards a set of optical filters allowing
only the visible part of the spectrum to pass and reducing the aliasing effect.
Upon filtering, the light is directed towards the imaging sensor, that is a ma-
trix of photodiode elements (pixels). Each pixel converts the light entering it
into a voltage that is proportional to the intensity of the light. At this point,
the produced digital signal does not convey color information, because sensors
react exclusively to brightness. Therefore, a filter named Color Filter Array
(CFA) is placed in front of the sensor in order to capture the color. CFA filters
are designed in such a way that only a particular color (red, green or blue)
rather than all three is captured by each pixel. This design does not depend
on technological limitations but rather on the necessity of reducing manufac-
turing costs. The effect of CFA is to create a single mosaic channel of red,
green and blue pixels that needs to be converted to the three-channel output
by estimating the missing pixel values based on their sensed neighbours (de-
mosaicing). Once the RGB is generated, commercial cameras usually perform
a number of processing to enhance its quality and to reduce its size for storage
purposes, commonly by means of JPEG compression [Battiato et al., 2010].
The stored image can then undergo additional processing aimed at further
improving its quality or at manipulating its semantic meaning.

By following the above process, the footprints that can be analysed with
forensic techniques are divided into acquisition, coding and processing. De-
pending on the purpose of each technique, each category of features can be
used to perform the two main tasks of Image Forensics, that is source device
identification and forgery detection. Although a comprehensive survey on the
state-of-the-art of forensic algorithms is not the aim of this chapter, some ex-
amples of each category are provided in the next sections without going into
the details.
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Figure 2.2: Life cycle of a digital image as depicted in [Piva, 2013].

2.1.2 Acquisition footprints

Every stage of the acquisition process leaves traces in a digital image. Even
though the pipeline in Fig. 2.2 is common to the majority of cameras, the
in-camera hardware and software generally vary from manufacturer to man-
ufacturer. As a consequence, it is possible to discriminate between the kind
of device (e.g. camera, mobile, tablet), the brand and the model by exploit-
ing acquisition footprints. This task can be seen as a classification problem
whereby an image is assigned to a certain class identified by the acquisition
features. Moreover, it is also possible to detect forgeries by looking for in-
consistencies between acquisition features in different regions within the same
image. In this way one can reveal, for example, splicing of content originated
by different camera models.

The first footprint introduced into an image by any camera is due to the
aberration of lenses, i.e. a distortion depending on the striking light and
on the geometry of lenses. There exist multiple aberrations, each of which
has distinctive features; for example, chromatic aberration is responsible for
colored edges along boundaries separating dark and bright parts of the image.
Several techniques leverage on such artefacts for source identification [San Choi
et al., 2006; Van et al., 2007; Dirik et al., 2008] and for tampering detection
[Johnson and Farid, 2006; Yerushalmy and Hel-Or, 2011].

The subsequent stage in which the sensor captures the light and converts
it into digital values also leaves peculiar cues, the most important of which are



2.1. Digital Image Forensics in practice 21

related to the Photo Response Non Uniformity (PRNU) of the sensor and to
CFA’s pattern and interpolation. The PRNU is a noise pattern generated by
the variation in pixel response over the CCD under illumination. Since PRNU
is caused by the physical properties of the sensor itself, it is almost impossible
to eliminate it completely and is usually considered to be a normal character-
istic of the sensor. As a consequence, PRNU can be used to identify different
cameras according to the technical imperfections of their sensors [Lukas et al.,
2006; Chen et al., 2008; Li, 2010].

Both the CFA pattern and the interpolation algorithm converting the
sensed matrix into the three-channel image are proprietary to the manufactur-
ers and allow to gather information on the acquisition device [Bayram et al.,
2005; Popescu and Farid, 2005; Celiktutan et al., 2006].

Before concluding this section, it is worth noting that it is also possible to
detect two other sources for digital images: scanners and computer-graphics
(CG). In the former case, even though the pipeline generating the image is
obviously different from the one in Fig. 2.2, acquisition fingerprints are still
present; for example, scanner’s sensor noise can be exploited similarly to the
PRNU [Gloe et al., 2007a; Gou et al., 2007; Khanna et al., 2007b].

CG images are not acquired but generated by processing functions, there-
fore there is no underlying noise and this fact can be exploited for investigation
[Dehnie et al., 2006]. Moreover, the fact that computer graphics tools simplify
the complexity of real-world scenes by approximating geometry, surfaces and
lightning sources permits to identify features characterising CG images [Ng
et al., 2005; Chen et al., 2007].

2.1.3 Coding footprints

Most of digital cameras compress the images with high quality JPEG for
efficient storage purposes. Due to the widespread diffusion of the format,
a big effort has been dedicated by the research community to the study of
the compression history of an image. JPEG, in fact, leaves a number of traces
including blocking artefacts caused by the underlying block-wise approach and
quantisation artefacts, with which one can estimate compression parameters
like quality factor [Fan and de Queiroz, 2000] or quantisation tables [Luo
et al., 2010]. Since manufacturers and imaging software developers generally
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set different compression parameters for their products, quantisation tables
can be also used for source and forgery detection [Farid, 2008].

It is also possible to understand whether an image has been compressed
multiple times. When an image is recompressed, the new 8 ˆ 8 JPEG grid
is superposed to the already existing one in such a way that they are ei-
ther aligned or misaligned; forensic algorithms have then been devised for the
aligned case [Farid, 2009a; Lin et al., 2009; Bianchi et al., 2011] and for the
misaligned case [Luo et al., 2007; Bianchi and Piva, 2011]. These techniques
can also be employed for forgery detection by searching for local inconsistencies
in the JPEG grid of an image.

2.1.4 Editing footprints

Following the acquisition and the in-camera enhancement stages, an image
can still undergo a number of diverse modifications. In general, an editing
tool can be used in a legitimate way to enhance the quality of an image or in
an illegitimate way to alter its semantic content. The tools serving the former
purpose are discussed in this section, while those serving the latter are outlined
in the next section. Unfortunately, the above distinction is not always neat,
as processing often considered harmless can be used with malicious intents;
for example, filtering or resampling can hide traces of a previous tampering,
or color manipulations can convey a different message with respect to that of
the authentic image, as in the famous case of a water puddle recolored so that
it resembled blood following a terrorist attack in Luxor, Egypt.2

One of the most common editing operators is resampling, which is per-
formed when geometric transformations like rotation and resizing are applied
to an image. Following resampling, certain pixel values are a linear combi-
nation of their neighbours and the correlation between them in the resam-
pled image manifests itself with periodical artefacts [Popescu and Farid, 2005;
Kirchner, 2008; Mahdian and Saic, 2008].

Contrast enhancement is a very common manipulation to increase the
perceived quality of images. Usually, such enhancement is carried out by
means of histogram equalisation, whereby the intensity values of pixels in

2http://www.fourandsix.com/photo-tampering-history/
after-58-tourists-were-killed-in-a-terrorist-attack-at-the.html.

http://www.fourandsix.com/photo-tampering-history/after-58-tourists-were-killed-in-a-terrorist-attack-at-the.html
http://www.fourandsix.com/photo-tampering-history/after-58-tourists-were-killed-in-a-terrorist-attack-at-the.html
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the input image are remapped in such a way that the output image has an
uniform distribution of intensities. Contrast enhancement can be also used to
change the semantics of an image; for example, an image can be darkened to
convey a sensation of menace or discomfort. Global contrast enhancement can
be detected by means of the technique presented in [Stamm and Liu, 2008];
such algorithm is based on the observation that altering contrast causes the
introduction into an image’s histogram of artefacts (peaks and gaps) that are
not found in unaltered images.

Median filtering has several applications in image enhancement, including
denoising and smoothing but it can also be used to conceal traces of a prece-
dent processing. Currently there are three algorithms detecting median filter-
ing based on the following observations: the probability of two adjacent pixels
being equal is greatly increased by median filtering [Kirchner and Fridrich,
2010]; the difference between two adjacent pixels is exactly zero [Cao et al.,
2010b]; and median filtering’s block-wise approach introduces correlation be-
tween blocks [Yuan, 2011].

Finally, JPEG re-compression following the above manipulations is a pow-
erful instrument when it comes to hiding their traces, as quantisation may
reduce the distinctiveness of certain features without raising suspicion and
without significantly degrading the perceptual quality of the image.

2.1.5 Tampering detection

The two most common ways to manipulate the semantic content of an image
are splicing (or cut & paste) and cloning (or copy-move) [Farid, 2009b]. The
purpose of both such forgeries can either be that of hiding authentic content or
introducing fake content into the image. The difference between cut & paste
and copy-move is that the former requires a second image other than the one
being tampered with, as described in the sequel.

Cut & paste forgery

A cut & paste forgery is carried out by taking a region from a source image
and pasting it into a target image, thus producing a fake image. Such a pro-
cedure is very likely to introduce inconsistencies between the characteristics
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of the pasted region and of the rest of the image. There exist multiple meth-
ods to reveal cut & paste, some of which have been hinted throughout the
previous sections. Given the widespread diffusion of the format, JPEG-based
techniques like those in Sec. 2.1.3 are very popular. If the tampered image is
compressed with JPEG, then grid (mis)alignment between the region and the
rest of the image can be exploited to detect the tampering [Barni et al., 2010].
Similarly, differences in the estimated parameters of lens aberration, PRNU
or CFA interpolation can reveal portions of an image that have been acquired
by means of a different device. Moreover, when a cut & paste is carried out
most likely the pasted objects are framed at different scales with respect to
the target image; hence resampling is necessary to render the forgery visually
convincing. Therefore, traces of resampling within the suspicious regions can
be used to reveal the forgery [Popescu and Farid, 2005].

The problem with all these detection techniques is the lack of robustness to
common processing such as resampling or compression, which erase the traces
that the forensic algorithms are looking for. To overcome these limitations,
novel approaches based on the study of geometrical and physical inconsisten-
cies have been recently proposed. All these approaches rely on the observation
that it is very difficult to create a forgery whereby the geometry, lights and
shadows of the fake content are coherent. Among the most popular algorithms
we mention those in [Johnson and Farid, 2008; Conotter et al., 2010; Yao et al.,
2012] for geometrical inconsistencies and those in [Johnson and Farid, 2005,
2007; Zhang et al., 2009] for physical inconsistencies.

Copy-move forgery

A copy-move forgery is obtained by copying and pasting a portion of an image
once or more times elsewhere into the same image. The duplicated region can
be manipulated with an arbitrary number of processing tools to seamlessly
blend the forged and the original contents. Several forensic techniques re-
vealing such kind of forgery by looking for very similar (or identical) portions
of the image have been proposed: fifteen among the most popular are thor-
oughly discussed and compared in [Christlein et al., 2012]. Earlier techniques
were based on an exhaustive block-wise analysis followed by a similarity or-
dering of the features extracted by each block and a final matching [Fridrich
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et al., 2003a; Popescu and Farid, 2004]. The major drawback of block-wise
approaches is computational complexity, which rapidly renders the problem
intractable as the image size grows; additionally, such methods are usually
not robust against geometric manipulations and compression, as observed in
[Nguyen and Katzenbeisser, 2011]. For these reasons, most recent methods
rely on the matching of robust local descriptors (e.g. SIFT, SURF), which are
computationally light and robust (or invariant) to affine transformations [Pan
and Lyu, 2010; Amerini et al., 2011]. For a detailed analysis of SIFT-based
copy-move detection we refer to Chapter 11.

Other forgeries

Seam carving is a recently proposed method to modify the size of an image in
such a way that its content is preserved [Avidan and Shamir, 2007]. Because
this goal is achieved by altering only the least noticeable portions of the image,
the technique is often referred to as content-aware resizing. The algorithm
relies on the computation of seams, that is paths of pixels traversing the image
from left to right or from top to bottom. Each path is composed by one pixel
per column (or row) chosen by minimising an energy functional in such a way
that pixels belong to irrelevant content. Resizing can be obtained either by
deleting a seam (downscaling) or by adding a seam (upscaling). Seam carving
can also be used to remove a specific image region by iteratively deleting all
the seams traversing it. Currently, two algorithms reveal this kind of forgery
[Sarkar et al., 2009; Fillion and Sharma, 2010] by means of a seam/non seam
classification based on peculiar traces introduced by seam carving.

Digital image inpainting is a technique allowing the reconstruction of lost
or deteriorated parts of images (e.g. scratches in a scanned photograph or un-
desired text overlays) or removing unpleasant objects from a scene [Bertalmio
et al., 2000; Shih and Chang, 2005]. Since inpainting is capable of remov-
ing large objects with acceptable quality degradation, it can be used to alter
the semantics of an image. A detector localising regions inpainted with the
method in [Criminisi et al., 2003] has been presented in [Wu et al., 2009].
Such algorithm leverages on the filling scheme of the inpainting method, that
introduces similar blocks whose difference is very low or null in the suspicious
areas. The algorithm has been applied in [Das et al., 2012] to detect inpainting
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in videos treated as sequences of still images.

2.2 Digital Image Counter-forensics

So far, little or no importance has been given until recently to the study of
countermeasures specifically devised to bypass the analysis of the forensic algo-
rithms. Anyone with such a purpose is commonly referred to as an adversary,
i.e. a party who has the same knowledge on signal processing as the forensic
analyst and some reasons to mislead a specific image forensic investigation. A
goal like this can be pursued, for example, by hiding, removing or falsifying
traces of an illicit processing or manipulation, so that the altered image ap-
pears authentic. In other words, the adversary does not limit herself anymore
to manipulate an image but also wants that manipulation to be undetectable.
All the solutions in this sense fall into a discipline called Counter-forensics
(alternatively anti-forensics) [Böhme and Kirchner, 2012]. Most of the times,
similarly to the algorithms they aim to fool, counter-forensic techniques are
not perfect and leave traces on their own, which can be exploited by the foren-
sic analyst to detect the adversary’s misdoing. Studying the interplay between
these two parties can help exposing the limitations of current forensic tools
and push towards devising improved or new tools. Nowadays, by relying on
the available counter-forensic techniques, we can hide traces of JPEG compres-
sion [Stamm et al., 2010a], resampling [Kirchner and Bohme, 2008], filtering
[Fontani and Barni, 2012] and histogram manipulations [Barni et al., 2012].
For a possible formalisation of the problem and a brief survey of the state-of-
the-art the reader is referred to Chapter 8.



Chapter 3
The image dependency problem

T

HOUGH THE current state-of-the-art of Image Forensics permits to
gather very interesting information about the history of an image, the
majority of instruments developed so far focus on the analysis of single

images. In several applications, however, the investigation of image dependen-
cies, i.e. the relationships between a group of images, may be of similar or
even greater importance. For instance, knowing how a set of images are re-
lated one to each other could allow the clustering of images originating from
the same root; in this way, it could be possible to discover that several images
regarding a particular event have been actually produced from a limited set
of source images. Such an information could then be used to understand the
role of different web sites (and the groups behind them) in the formation of
opinions on the web, permitting to identify opinion leaders, common feelings
about specific events, and the preferred sources of information in a given tem-
poral or geographical context. In other situations, knowing how a few source
images have evolved into a large set of derived pictures, could allow to re-
construct how the usage of the information contained in the original images
has evolved in time and space, thus permitting to identify, for instance, how



28 3. The image dependency problem

these images have been used by groups of people with different opinions and
cultures. Other applications include detection of copyright infringement (ille-
gal copies derived from a copyrighted image) and image retrieval applications
(improving clustering accuracy or reducing information redundancy).

In general, Web users do not interact with the original archetype of an
image but rather with a version that has been derived from it following an
unknown number of modifications carried out by other users. By starting
from such image, users create new similar versions by means of a typically
limited set of manipulations like resizing, cropping or recoloring. These images
are then made available to other users who employ them as basis for newly
manipulated versions, thus feeding the process leading to large sets of similar
images. Iconic moments in recent History and facts of relevant social impact,
such as those collected in Fig. 3.1, exemplify very well the above concepts.
The three images have something in common: they have not been captured

Figure 3.1: Iconic photos with large sets of similar images.

by several different people. The polar bear was photographed by Arne Nævra
in 2005 in Svalbard Island (East of Edgeøya, Norway); the Afghan woman was
photographed by Steve McCurry of The National Geographic in 1984; finally,
it is fair to assume that only a few selected members of the international press
were invited to attend the meeting of the three leaders in Washington in 1993.
How comes, then, that the Internet is literally flooded with duplicates of these
images? Clearly they descend from a limited set of original photos or in some
cases, given their age, from high quality scans.

Photographs of famous paintings are another example of the large diffu-
sion of duplicated images. Paintings are accessible to millions of people, their



29

scenes do not evolve over time and they are practically always photographed
approximately from the same distance and perspective and under the same
lightning conditions. Despite this, the Web provides countless examples of
painting photos whose content is the same but whose characteristics are sur-
prisingly different (e.g. color, size, detail). Consider the most famous of all
paintings: the Mona Lisa. Every day 26, 600 visitors enter the Louvre mu-
seum1 and the majority of them photograph the Mona Lisa. Even though not
all the visitors distribute their personal photos over the Internet, some of these
pictures are uploaded to websites, blogs and social networks, downloaded by
other users, possibly edited (and even tampered with) and uploaded again
elsewhere. Other images could be produced by scanning art books. Moreover,
as reported by OverstockArt.com,2 a leading enterprise in handmade oil paint-
ing reproductions, the Mona Lisa was the most required reproduction of 2010
for both private and public uses (newsstands, commercials, television shows,
motion pictures). If some of such imitations are photographed or printed and
scanned, several offsprings may be generated, thus complicating the situation
even more. In Fig. 3.2 we provide a glimpse of what we mean by displaying
just a small subset of the pictures coming from a simple Web search.

It is interesting, then, to understand what kind of relationships exist within
such large, ever expanding groups of images. The most challenging aspect of
this topic, besides devising a sound formalisation for the problem underlying
it, is that in most of the cases we do not known the true relationships within
a set of images. Rarely authors share information on their photos or users
acknowledge the source of their manipulations. Therefore, often we must
combine data gathered automatically and information interpreted with human
reasoning to understand whether certain relationships are plausible.

In this chapter we formalise the above scenario. Sec. 3.1 briefly reviews
the state-of-the-art techniques for analysing a group of similar images; Sec. 3.2
defines the meaning of finding dependencies, so that a sound and rigorous
framework can be devised; Sec. 3.3 completes the discussion by introducing
some basic assumptions on the way images are commonly duplicated, so that
the analysis of their relationships is viable in practice.

1Source: www.louvre.fr annual reports.
2Source: http://tinyurl.com/yaxrjx5.

www.louvre.fr
http://tinyurl.com/yaxrjx5
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Figure 3.2: Real-world example of dependencies: 20 pictures of Leonardo Da
Vinci’s “La Gioconda” (1503-1514 circa).

3.1 Pointers to near-duplicates analysis

Literature on image retrieval provides several techniques for finding duplicated
images. Researchers typically identify two instances of the problem, namely
Image Exact Duplicate (IED) detection and Image Near Duplicate (IND) de-
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tection: techniques belonging to the former category identify exact copies of
a reference image, while those belonging to the latter identify near-duplicates,
i.e. variants with similar content generated by means of diverse processing.
According to [Jaimes, 2003], the modifications producing near-duplicates can
be categorised as follows: i) Scene, e.g. change of background, occlusions,
movement; ii) Camera, e.g. change of perspective, zoom, tilting; iii) Photo-
metric, e.g. change of lightning conditions or exposure; and iv) Digitisation,
e.g. compression, recoloring, resizing, crop.

Regardless of the various categorisations, IED and IND detection methods
usually work with large data sets of images with tight time constraints and thus
require efficient data management. For this reason, images are represented
in a compact form by means of distinctive and robust descriptors such as
those provided by the Scale Invariant Feature Transform [Lowe, 2004] (see
Chapter 9), which has been employed for example in [Ke et al., 2004; Foo
et al., 2007a; Zhu et al., 2008]. In some cases, the combination of descriptors
coming from more than one method ensures a higher accuracy with respect to
the traditional single-descriptor paradigm, as it has been recently showed in
[Battiato et al., 2013]. Other solutions rely on color and texture features [Foo
et al., 2007b], hashing [Chum et al., 2007] and stochastic models [Zhang and
Chang, 2004].

Given a large collection of images, the above techniques allow to sepa-
rate similar images into different clusters. However, they are not capable
of extracting information on the relationships between the members of each
cluster. A first attempt in this sense is the so called image archaeology in
[Kennedy and Chang, 2008], which analyses the connections between a set
of near-duplicates by means of two categories of binary detectors: context
free (scaling and grayscale conversion) and context-dependent (crop, overlay
and composition). Given a pair of images pIA, IBq, each detector evaluates
whether IA could generate IB or vice-versa according to simple rules (e.g. low
resolution images cannot generate higher resolution images). If all detectors
agree, then the pair is linked and their parent-child relationship is defined
according to the direction of the link. The results are organised in a graph
called Visual Migration Map. Despite the promising experimental results, the
system in [Kennedy and Chang, 2008] suffers from some drawbacks such as:
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the absence of a rigorous theoretical framework; the assumption to work with
data sets not containing exact duplicates, which is not the case in real-world
scenarios; the absence of a confidence score describing the plausibility of the
relationships; the absence of an estimation of the parameters describing the
parent-child relationship; the incapability of taking into account common pro-
cessing like compression or rotation; the usage of several empirical thresholds
for the consistency checks.

The method proposed in [De Rosa et al., 2010], which represents the main
contribution of this part of the thesis, allows to overcome the above limita-
tions. A framework for exploring image relationships, called here dependen-
cies, is rigorously formalised and practically implemented. Similarly to the
work of Kennedy et al., such framework is based on the pairwise comparison
of near-duplicates. More specifically, De Rosa et al. assume that an image
can be divided into two independent contributions, the image content and a
random “noise” which behaves like a fingerprint and bears information about
the acquisition process. The authors measure the strength of the relationship
between a pair of images pIA, IBq by correlating the corresponding random fin-
gerprints. [De Rosa et al., 2010] introduced several novel aspects, besides the
theoretical formalisation, with respect to the method in [Kennedy and Chang,
2008]. Among them we mention a significant extension of the set of possi-
ble geometric transformations and the capability of dealing with compressed
images and with exact duplicates.

Following the study of De Rosa et al., a similar system was proposed in
[Dias et al., 2012]. In analogy with biological systems, the authors use the term
image phylogeny to indicate the analysis of the relationships between near or
exact duplicates. Dias et al. compute a dissimilarity measure between pairs of
images by addressing the same subset of processing as [De Rosa et al., 2010].
The procedure, however, is carried out on the whole image rather than on
the noise component. Concerning the construction of the dependency graph,
called Image Phylogeny Tree by the authors, the main difference with the
method of De Rosa et al. resides in the interpretation of the similarity scores.
Dias et al., in fact, favour a more theoretical approach based on minimum
spanning trees, while the dependency graph of De Rosa et al. is the result of
heuristic criteria ruling out implausible relationships.
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3.2 Theoretical background

3.2.1 The rationale behind finding dependencies

Consider an event occurring in the real world. Even though an event could be
temporally and spatially extended, suppose that the event occurs at a fixed
time and it is seen from a particular viewpoint (for example, one of the events
of Fig. 3.1). Let the event be called the real scene. Suppose that a set of
images representing the same real scene is available. The problem is to find
the dependencies among such images in order to construct a sort of graph
helping to understand how these images have been generated and how the
information about the real scene has evolved in time and space.

The first question requiring an answer is: what does finding the dependen-
cies between images mean exactly? Among all the possible meanings that can
be given to the term image dependency, here we aim at understanding whether
a digital image has been produced by starting from another image represent-
ing the same real scene. Note that, since by definition the images correspond
to the same content, the investigated relationship should not be related to the
content itself, because from that point of view all the images representing the
same scene would be judged as dependent. To better clarify this concept, con-
sider the example of two artists working on two different paintings; if they are
free to paint any possible subject, then the possibility that the two painters
draw the same topic is extremely low. In this case, a similar content could be
taken as an evidence that some form of communication (or some dependency)
between the painters occurred. On the contrary, if the subject of the paintings
was imposed to the artists beforehand, then the fact that their paintings rep-
resent the same scene could not be taken as a demonstration that the artists
communicated between them or that one of them copied the work of the other.
But if they painted the same content by using exactly the same colors and the
same pictorial metaphors, then it could be concluded that the painters had
some kind of contact or that one artist copied the other. This chapter focuses
exactly on this situation by considering a form of dependency that does not
rely on the semantic content of the images.

More precisely, we will assume that any image can be described as the
composition of two parts: a part conveying the semantic information related
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to the real scene and a content-independent part representing the peculiarities
of the process that produced the images. We will consider two images as
dependent if some form of similarity exists between their content-independent
components. We now give a rigorous formalisation of the above concept.

3.2.2 Preliminary notions

Consider a set of color images I , where an image I P I is a N ˆ M ˆ 3 matrix
whose entries are integer values in r0, 255s.

Definition 1. The function � f characterised by a set of parameters }� f is
called fundamental image processing function (f-IPF):

� f p¨q : I ˆ }� f Ñ I .

The domain D� f of � f is the set of input images on which the f-IPF can work,
the codomain C� f is the set of output images:

C� f “ tI P I | DI˚ P I , Dp˚ P }� f s.t. I “ � f pI˚
, p˚qu.

For example, if � f were the image resize function, }� f would include the
scale factors along width and height and the interpolation method. Note that
even when no processing is carried out (e.g. when an image is duplicated),
Definition 1 remains valid: in this case, the identity �Kp¨q : I ˆ tHu Ñ I is
applied. From now on the set of all f-IPFs will be indicated with � f .

Two fundamental image processing functions can be composed with each
other as follows.

Definition 2. Let �
1

: X Ñ Y and �
2

: V Ñ Z be two f-IPFs and let
I P I be an image; the function �

3

“ �
2

p�
1

pIqq is called composite image
processing function (c-IPF) and is indicated with �

3

“ �
2

˝�
1

: X Ñ Z.

In other words, �
1

and �
2

can be composed by firstly applying �
1

to an
argument I and then applying �

2

to the result. Note that the codomain of �
1

must be included in the domain of �
2

: Y Ñ V. The above composition can be
generalised to an arbitrary number r of f-IPFs as follows.
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Definition 3. Let �
1

,�
2

, . . . ,�r be r f-IPFs; then �c is the set of all
possible compositions of r f-IPFs P � f , where r is the order of the composition.

For example, the set �c of order 2 defined by functions �
1

= JPEG com-
pression with parameters } jpeg and �

2

= rotation with parameters }rot is
�c “ t JPEG(rotation(I,}�rot),}� jpeg) , rotation(JPEG(I,}� jpeg),}�rot) u.

In general, according to the application scenario the analysis can be limited
to a possibly small subset of image processing functions, namely � Ä � f Y�c.
To conclude, it is also useful to introduce the concept of compatibility between
a given image and the subset �.

Definition 4. Given an image I P I and an image processing function
� P �, I is compatible with � if I P C�.

3.2.3 Dependency test

Consider a set of images I representing the same scene; the main interest is
to investigate the pairwise dependency between such images. To do so, we
hypothesise that any image I P I can be univocally described as the composi-
tion of two separable and independent parts, i.e. rIsC describing the content of
the real scene and rIsR representing the content-independent characteristics
of the image, a sort of random part of the image:

I Ø “ rIsC , rIsR
‰ @I P I . (3.1)

In the sequel we will refer to r¨sR as randomness. We can verify the de-
pendency between two images IA and IB, hereafter considered as two random
information sources, by means of their mutual information

IpIA; IBq “ HpIAq ´ HpIA|IBq, (3.2)

where HpIAq is the entropy of the source IA and HpIA|IBq is the conditional
entropy of the source IA conditioned to IB. By representing the images through
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the independent components introduced before, we rewrite Eq. (3.2) as:

IpIA; IBq “ H
`“rIAsC , rIAsR

‰˘ ´ H
`“rIAsC , rIAsR

‰ | “rIBsC , rIBsR
‰˘

(3.3)

“ H prIAsCq ` H prIAsRq ´ H
`rIAsC | rIBsC , rIBsR

˘

´ H
`rIAsR | rIBsC , rIBsR, rIAsC

˘
(3.4)

“ H
`rIAsC

˘ ` H
`rIAsR

˘ ´ H
`rIAsC | rIBsC

˘ ´ H
`rIAsR | rIBsR

˘
(3.5)

“ I

`rIAsC ; rIBsC
˘ ` I

`rIAsR; rIBsR
˘
. (3.6)

The first term of Eq. (3.4) is obtained by exploiting the chain rule3 and
the independence4 between rIAsC and rIAsR; the second term is obtained by
exploiting again the chain rule.5 Eq. (3.5) is obtained by exploiting the inde-
pendence between rIAsC and rIBsR and between rIAsR, rIAsC and rIBsC . The
mutual information between the images can thus be expressed as the sum of
the mutual information between the C components and the R components.
The analysis can be limited to the second term (the content-independent one),
since the first term will never be null, due to the intrinsic dependency between
the C components (since they refer to the same real scene).

We can now cast the problem of determining the dependency between IA
and IB as a hypothesis testing problem as follows:

H
0

“ t rIAsR and rIBsR are independent u
H

1

“ t rIAsR and rIBsR are dependent u.

(3.7)

Equivalently, we can verify whether I prIAsR; rIBsRq “ 0. The design of an op-
timal criterion for such a test would require the availability of a good statistical
model to describe rIAsR and rIBsR and their possible relationship through the
functions contained in �. Modeling such a relationship is very complicated,
hence we will adopt a simplified strategy.

More precisely, by considering a set of image processing functions �, we
make the following assumption: if there is some relationship between two

3Let X, Y be two random variables; then HpX, Yq “ HpXq ` HpY|Xq (see [Cover and
Thomas, 2006], Chapter 2).

4In general HpX|Yq § HpXq. If X, Y are independent, then HpX|Yq “ HpXq.
5According to the following corollary of the chain rule: HpX, Y|Zq “ HpX|Zq ` HpY|X, Zq.
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images IA, IB P I , then one of the two images can be obtained at least approx-
imately by applying a � j P � to the other. A possibility, then, would be to
compute the correlation coefficient ⇢ j between rIBsR and r� jpIAqsR, for each
� j P �, and use as decision statistic the maximum in this set of correlations:

⇢max “ max

� jP�
⇢prIBsR, r� jpIAqsRq. (3.8)

In Eq. (3.8) the maximisation over the parameters in }� j has been omitted
for simplicity. Note that the previous statistic is voluntarily asymmetric, i.e.
it tests the dependency of IB on IA and not the other way round. Looking for
all possible � P � requires a huge computational effort, all the more that for
each function all the parameters in }� should be considered. In addition, the
probability of detecting a false dependency would increase with the number
of functions and with the size of the parameter space. In order to overcome
the above problems, we devise a different strategy, i.e. we try to “guess” the
function �˚ P � that has been used to pass from IA to IB by relying on the
content part of the images. Suppose, for instance, that the set � contains only
the rotation f-FIP, i.e. a function that rotates the input image by a certain
angle. Instead of computing the correlation coefficient between the random
part of IB and the random part of all the rotated versions of IA, we estimate
the most likely rotation angle by relying on rIAsC and rIBsC . Then, we compute
the correlation coefficient between the random part of IB and the random part
of IA rotated by the estimated angle and we use such coefficient as decision
statistic. Assuming the existence of an efficient way to estimate the rotation
angle, this approach is much faster than searching exhaustively for ⇢max as
in Eq. (3.8). To finally accept or reject the hypothesis of independence, we
compare the correlation coefficient ⇢˚ between rIBsR and r�˚pIAqsR with a
suitable threshold T⇢:

#
⇢˚ † T⇢ IB does not depend on IA
⇢˚ • T⇢ IB depends on IA.

(3.9)

T⇢ should be set rigorously by studying the statistical characteristics of ⇢˚ and
by fixing a value for the false positive probability. Alternatively an empirical
analysis may be carried out and T⇢ determined experimentally.
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3.2.4 Dependency graph

The final aim of the analysis consists in representing the collection of |I |
images by means the so called dependency graph, i.e. an oriented weighted
graph G “ pV, Eq whereby the nodes V “ t1, . . . , |I |u correspond to the
images in I and E “ tepi, jq : i, j P Vu correspond to the relationships between
pairs pi, jq of images. The orientation of each edge describes the parent-child
relationship between the images and the weight wpi, jq quantifies the strength of
their relationship. Edges are also labelled with the composite image processing
function � P � that was used to pass from i to j.

To construct the actual graph, we collect the dependency test values for
each pair of images in I , either by computing ⇢max or ⇢˚, and we build a
first version of the dependency graph by keeping only those oriented links
for which the correlation is above the threshold T⇢. By giving the graph a
semantic nature, we can infer other relationships between images by means of
additional sets of rules that we call ontology . Such relationships can enrich the
information provided by Eq. (3.9) and modify the graph to resolve ambiguous
situations that could not be disambiguated by a pairwise analysis. We can
imagine several examples of ontology rules, including the following.

• When two nodes are connected by two edges oriented in opposite direc-
tions, the weakest link is removed. A similar strategy can be applied to
avoid the presence of loops in the graph.

• Assuming that no image splicing is considered (i.e. only one parent for
each image), if there are multiple links leading to the same node, then
the one with the highest correlation is kept.

• If it is possible to understand whether an image of the pair is a crop of
the other, then the link connecting the former to the latter is suppressed.

• If the two files storing the images under analysis are exact copies, e.g.
according to checksum, then the two nodes can either be fused together
or file information (for example the date of creation) can be used to
establish the correct link.

• Assuming that inpainting is less probable than text overlay, if two images
have exactly the same content and the second contains text overlays
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while the first does not (techniques such as those in [Chen et al., 2004]
and [Wu et al., 2009] can reveal these processing), the link from the
latter to the former is suppressed.

Furthermore, information provided by image forensic tools could be also ex-
ploited. For example, source detection algorithms could help pruning links
between images generated by incompatible categories of devices. Similar ben-
efits could be brought by forgery detection, which would also allow to abandon
the assumption that an image can not have more than one parent.

3.3 Definition of � and parameter estimation

As explained in the previous section, given a set of image processing functions
�, if there is some relationship between two images IA, IB P I , then we can
obtain one of the two images by applying a certain number of � j P � to the
other. The computational effort required by looking for all possible � P � over
all parameters }� j prevents the use of an exhaustive approach to the problem.
Therefore, the idea is to choose a subset �˚ whose functions allow to estimate
the best transformation between IA and IB. Then, IA is transformed according
to such functions and the similarity between the resulting image I1

B and IB (or
more precisely, between their random components) is evaluated.

We choose the functions in �˚ according to the following rationale. Ex-
cluding forgeries for the sake of simplicity, users typically want to improve
the quality of an image. To do so, a limited set of tools is usually employed:
commonly colors are changed if they look wrong or unpleasant; similarly, con-
trast and brightness can be increased or reduced; the image can be adjusted
if the original framing was not oriented correctly, or can be cropped, zoomed
and so on; finally, most of the times the image is stored or redistributed in a
compressed format (e.g. JPEG).

By following this rationale, we assume that the best transformation �˚

leading from an image IA to an image IB can be obtained as a composition of
the following three functions:

� “ t �color,�geometry,�compression u. (3.10)
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In case one of these operations is not carried out, then the respective image
processing function will coincide with the identity �K.

3.3.1 Color transformation

We find the optimal transformation �˚
color mapping the colors of an image IA

to another image IB by means of the so called color transfer [Reinhard et al.,
2001; Welsh et al., 2002; Tai et al., 2005]. As the name suggests, this is the
process of borrowing the color characteristics from a source image and passing
it to the target image. Following the transfer, the colors of the target image
are similar to those of the source image. In Fig. 3.3 an example obtained with
the method in [Reinhard et al., 2001] is provided. Following color transfer,
the approximation I1

B of IB generated by starting from IA corresponds to:

I1
B “ �˚

colorpIA,}�color q. (3.11)

Figure 3.3: Example of color transfer with the technique of [Reinhard et al.,
2001]. Left: source; middle: target; right: result.

3.3.2 Geometrical transformation

The most common geometric transformations belong to a rather small sub-
set: translation, rotation, resampling, shearing, zoom, sometimes warping.
All these processing can be effectively estimated in a single step by means
of image registration, i.e. the process allowing to find corresponding points
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between two images and to spatially align them in such a way that a certain
distance measure between them is minimised. Registration has been used in
several computer vision applications including medical imagining, image fu-
sion, object detection and recognition, motion analysis and change detection.
Although several different approaches to registration have been proposed [Zi-
tová and Flusser, 2003], their working principle is similar: firstly, robust and
highly descriptive features are extracted from both the source image and the
target image; secondly, the features are matched across the two images; fi-
nally, the mapping functions and their parameters are estimated and applied
to align the target and the source. The parameters can be applied to the image
globally (rigid and affine transformations) or locally (elastic transformation).
An example of the registration procedure is shown in Fig. 3.4.

For the dependency problem, let IA and IB be respectively the source and
the target image; then, the approximation I1

B of IB for the geometry estimation
stage corresponds to:

I1
B “ �˚

geometrypIA,}�geometry q. (3.12)

3.3.3 Compression transformation

From now on we will assume that the images whose dependencies are under
analysis are JPEG compressed. This hypothesis does not undermine the gen-
erality of the framework mainly for three reasons: i) although not limited to it,
the application scenario is the Internet, where around 70% of the total images
on the top 10 million websites are in JPEG format,6 as shown in Fig. 3.5; ii)
the conclusions drawn here naturally adapt to other kinds of compression; iii)
if the images are not compressed, then �compression “ �K.

In practice, if IA and IB are two JPEG images, the best transformation
�˚

compression leading from IA to IB should be obtained by computing all the
possible versions of compressed IA over the set of parameters }� and compare
each version with IB. Even though this task would not represent a huge com-
putational burden, we adopted a different strategy. It is possible to gather

6Source: http://w3techs.com/technologies/overview/image_format/all. Statistics
are computed on the top 10 million websites according to the Amazon.com company (July
2013).

http://w3techs.com/technologies/overview/image_format/all
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.

Figure 3.4: Example of registration with the technique of [Arganda-Carreras
et al., 2006]. From top left to bottom right: source image, target image, regis-
tered image and deformation field mapping the transformation.

information about DCT coefficients, quantisation tables, Huffman coding ta-
bles and color space directly from the JPEG file. From these data we can
estimate the compression quality factors QFA and QFB. Consequently, from
the perspective of the sole JPEG compression, the approximation I1

B of IB

corresponds to:
I1
B “ �˚

compressionpIA, QFBq. (3.13)

3.3.4 Composition of �color, �geometry and �compression

According to Sec. 3.2.3, we should carry out the dependency test not only over
all the parameters }� of each � P �˚ but also on all possible combinations of
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Figure 3.5: Usage of image formats in websites (updated July 2013). Note
that a website may use more than one format.

the functions. The current case of a limited number of functions should not
be too computationally taxing and nothing forbids to maximise ⇢ over all the
combinations. However, here we choose to replicate the typical behaviour of an
image user by chaining color, geometry and compression of Eqs. (3.11)–(3.13):

I1
B “ �˚

compressionp �˚
geometryp �˚

colorpIA,}�color q,}�geometry q,}�compression q. (3.14)

One observation is in order. While it is safe to assume that �˚
color and �˚

geometry
are approximatively commutative due to the fact that color transfer does not
take into account geometry and vice-versa, the same is not true for compres-
sion. As a consequence, �˚

compression should always close the chain of process-
ing.7 We verify the hypothesis of dependence by computing ⇢˚ between rIBsR
and rI1

BsR.

3.4 Concluding remarks

In this chapter we investigated the problem of finding relationships within a set
of near-duplicate images. Although there exist a number of forensic algorithms

7The possible intermediate cases in which partial results are stored in JPEG format are
not considered here because when multiple compressions occur, only the quality factor of
the last one can be estimated accurately.
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permitting to gather information about the history of an image, the majority
of instruments developed so far focus on the analysis of single images. In
several applications, however, the investigation of the relationships between
a group of images, may be of similar importance. This chapter discussed a
possible formalisation of the problem, which will be validated in a practical
scenario in the next chapter.



Chapter 4
The Dependency Explorer Framework

W

E NOW put in practice the framework formalised in Chapter 3
in realistic scenarios of growing complexity. The chapter proceeds
according to the following outline. We describe the system going

by the name of Dependency Explorer Framework in Sec. 4.1, where we detail its
building blocks and the tools implementing them. Sec. 4.3 introduces the case
studies consisting of simulated sets of near-duplicates whose relationships are
known and of real-world sets whose images have been gathered from the Web.
Secs. 4.4–4.6 assess the performance of the proposed system in reconstructing
the dependency graph. Sec. 4.7 outlines some possible directions for future
research.
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4.1 Architecture of the system

To be compliant with the simplified formalisation of Sec. 3.3, the instantiation
of the set � includes the concatenation of 3 elementary functions: color trans-
formation or histogram equalisation �˚

color, JPEG compression �˚
compression and

geometric transformation �˚
geometry. For the sake of brevity, we will refer to

such functions as �c, � j and �g; moreover, we will omit their parameter sets
}�c , }� j and }�g whenever they are not necessary.

Furthermore, we assume that all the images have been processed by the
consecutive application of �c, �g and � j. We handle the case in which one or
more of these functions have not been applied by adjusting the parameters of
the missing function(s), so that its (their) effect is null.

We work only with JPEG images, that is after any processing step the
manipulated image is JPEG compressed with arbitrary quality factor.

4.1.1 Overview of the Dependency Explorer Framework

The Dependency Explorer Framework is based on a pairwise comparison of
all the images belonging to the set under analysis. For each pair pIA, IBq P I ,
the goal is to understand whether IB could have been generated from IA.

We have already observed that such an analysis should be carried out on
the random component of the images. Therefore, we decompose each image
as in Eq. (3.1) by means of image denoising, whereby the denoised image
corresponds to rIsC and the noise to rIsR.

Fig. 4.1 sketches the architecture of the implemented system. For every
pair pIA, IBq the system works as explained in the sequel.

1. Color Matching Block. The image IA is modified so that its colors
correspond to the colors of IB. According to our notation, the output of
color matching is indicated with �cpIAq.

2. JPEG Matching Block. The quality factor of IB is estimated and used
to compress the color-matched version of IA, thus producing the image
� jp�cpIAqq, whose content r� jp�cpIAqqsC and randomness r� jp�cpIAqqsR
are separated by means of image denoising.
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Figure 4.1: Scheme of the Dependency Explorer Framework.

3. Geometrical Matching Block. The parameters }�g of the geomet-
ric transformation leading from IA to IB are estimated by relying only
on the content of the two images for two reasons: i) the information
brought by visually significant content guarantees more accurate results
with respect to using randomnesses; and ii) to avoid that the correla-
tion between the random parts is artificially increased as a consequence
of the registration.1 The parameters in }�g are then used to align the
randomness produced by the previous stage, i.e. r� jp�cpIAqqsR to rIBsR,
thus leading to the registered randomness r�gp� jp�cpIAqq,}�g qsR.

4. Dependency test. The correlation coefficient ⇢˚ between random-
nesses r�gp� jp�cpIAqq,}�g qsR and rIBsR is computed. To accept or re-
ject the hypothesis of dependence, ⇢˚ is compared with a threshold T⇢.

In practice, we repeat the above procedure for all the pairs pIA, IBq P I and
we store the un-thresholded values of ⇢˚ into the |I | ˆ |I | correlation matrix

1Registration maximises the similarity between the source and the target. The registered
image is then highly correlated to the target image. This is good for the content, since
the transformation can be estimated more accurately; the original values of the source
randomness, however, may be altered to be more similar to those of the target, thus leading
to false relationships.
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C, where |I | is the number of images in the set. Obviously, we do not carry
out the comparison between an image and itself. By relying on C we compute
a preliminary version of the dependency graph and we further refine it with
the following ontology rules:

• No pairwise loops. If two nodes are connected by two links with
opposite orientations, then only the one with highest ⇢˚ is kept.

• Only one parent. If a node has more than one predecessor, i.e. an
image with more than one parent, then only the one with by the highest
⇢˚ is kept.

4.1.2 Employed tools

(A) Image denoising

The decomposition of the images into the content rIsC and the randomness
rIsR is carried out by means of denoising. The chosen algorithm is the one
in [Mihçak et al., 1999], which relies on a spatially adaptive statistical model
for the Discrete Wavelet Transform (DWT) image coefficients. The method
assumes that noisy coefficients Ypkq can be modeled as the addition of the
image without noise Xpkq (i.i.d. with zero mean) and a white Gaussian noise
npkq with known variance �2

n . The denoised image is predicted in the Wavelet
domain by means of the Minimum Mean Squared error (MMSE) estimation
as follows:

pXpkq “ �2

x pkq
�2

x pkq `�2

n
Gpkq, (4.1)

where �2

x pkq and �2

n are respectively the variance of Xpkq and npkq. Since the
true signal and thus �2

x pkq are unknown, the estimation p�2

x achieved by means
of a MAP (Maximum A-posteriori Probability) approach on noisy wavelet
coefficients is used instead.

We perform an additional step before leaving the DWT domain: to better
discriminate the noise from the high frequency scene content surviving Mi-
hçak et al.’s filtering, a second filter called PRNU enhancer is borrowed from
[Caldelli et al., 2010]. This function exalts weak components of n in the DWT
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domain by weighting them more than the others:

rIsR “

$
’’’’’’&

’’’’’’%

0 if npkq † ´�

´ cos

´
npkq⇡

2�

¯
if ´� § npkq † 0

` cos

´
npkq⇡

2�

¯
if 0 § npkq † �

0 if npkq • �.

(4.2)

The parameter � can be used to control the cut-off value between the noise
components and the scene details.

(B) Color matching

The chosen method for the color matching stage relies on the algorithm de-
scribed in [Reinhard et al., 2001]. In a nutshell, it works as follows. First of
all, the image is converted into the L↵� color space to avoid the very strong
correlation existing between RGB channels. In this space, mean and standard
deviation of the three axes of the target’s color distribution are passed to the
source image as in Eq. (4.3):

L˚ “ Ls ´ Ls ,

ˆL “ p�L
t {�L

s q ¨ L˚ ` Lt

↵˚ “ ↵s ´↵s , ↵̂ “ p�↵
t {�↵

s q ¨↵˚ ` ↵t

�˚ “ �s ´�s ,

ˆ� “ p��
t {��

s q ¨�˚ ` �t.

(4.3)

In practice, Eq. (4.3) summarises three steps: i) the mean is subtracted from
each channel of the source image; ii) the source channels are scaled by factors
corresponding to the ratio of target and source standard deviations; iii) mean
values of the target image channels are added to the scaled source. Finally,
the resulting color matched image is converted to RGB.

The source image IA and the color-transformed image �cpIAq can be com-
pared by means of the color difference �E, i.e. a metric based on Human
Visual System describing the perceptual distance between the channels of the
two images in a convenient color space [Wyszecki and Stiles, 1982]. The higher
is �E, the more distinguishable are the colors of the two images. If pIA, IBq are
dependent, then �E can be effectively used as an indication of the intensity
of the original color transformation. In this thesis we compute the color dif-
ference by means of the method described in [Rajeev Ramanath et al., 2002],
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which is based on the observation that the human eye is more sensitive to dif-
ferences along edges than in uniform regions. Consequently, edge information
is incorporated into the distance metric as follows:

�E2 “ “p1 `↵q�L2 ` p1 `�q�C2 ` p1 `�q�H2

‰
. (4.4)

�L, �C and �H are the channel by channel differences of the two images under
analysis computed in the CIELAB color space.2 The parameter ↵ weights the
luminance pixels sitting on edges as follows:

↵ “ 1 ´ e ´ r2 L{⌘L
, (4.5)

where r2L is the image gradient and ⌘L a constant normalising the exponent
in r0, 1s fixed according to the maximum value of the gradient image. Pa-
rameters � and � are computed in the same way for the remaining channels.
The final metric �E is obtained as the average of �E. It has been observed
experimentally that the value �E “ 2.3 acts as the just noticeable thresh-
old above which color changes can be clearly perceived by a human observer
[Mahy et al., 1994].

(C) Compression matching

The information that is exploited to estimate the quality factor of the images
is obtained by means of the JPEG Toolbox by Phil Sallee.3

(D) Image registration

For the geometrical matching stage we have chosen the registration technique
in [Sorzano et al., 2005]. This algorithm for elastic registration tries to esti-
mate a function, called deformation field and modeled by means of a linear
combination of weighted and shifted B-splines [De Boor, 1978], transforming
the coordinates of the source image into the coordinates of the target image.

2In the original formula used in [Rajeev Ramanath et al., 2002], �E2 is multiplied by
a constant ⇣ describing the impact of large field of views on perceived color. Similarly to
Rajeev et al., we set ⇣ “ 1.

3The software is freely available for download at http://dde.binghamton.edu/
download/jpeg_toolbox.zip.

http://dde.binghamton.edu/download/jpeg_toolbox.zip
http://dde.binghamton.edu/download/jpeg_toolbox.zip


4.2. Threshold determination 51

The weights of such function are estimated through a minimisation problem
including three terms: the energy Fimg of the pixel-wise difference between
the intensities of source and target; the error Fµ in mapping the automatic or
manual landmarks (if provided) anchoring the deformation at some specific
locations; a regularisation term ensuring the smoothness of the deformation
by controlling the divergence and the curl of the field (see [Sorzano et al.,
2005]). The minimised energy function F is a linear combination of the above
terms:

F “ wi ¨ Fimg ` wµ ¨ Fµ ` pwd ¨ Fdiv ` wr ¨ Frotq, (4.6)

where each component is controlled by a specific weight w, whose value will
be discussed in the experimental validation of Sec. 4.5.

4.2 Threshold determination

In Sec. 3.2.3 we explained that to accept or reject the hypothesis of indepen-
dence among two images A and B we must compare the correlation coefficient
⇢˚ between rIBsR and r�˚pIAqsR with a suitable threshold T⇢. To determine
such a value, we relied on 20 independent images, to which we will refer to as
the archetypes. Each archetype has 45 children that have been generated by
means of a combination of cropping, color transfer and JPEG compression.
More precisely, we varied the JPEG quality factor in t80, 85, 90, 95, 100u and
the number of cropped columns in t0, 40, 80u and we used 3 external images
for color transfer.

The goal of the experiment is to create two large sets: one of real father-
child examples and one of images having same or similar content but no direct
dependency. The examples belong to the following categories of correlations.

• Correlation among archetypes and their children. For each of
the archetypes Ai, i “ 1, . . . , 20, we calculated the correlation with all
its children ⇢˚pAi, Ci, jq, j “ 1, . . . , 45. By doing so, we simulated father-
child relationships. This procedure led to 900 scores corresponding to
positive (or true) examples of dependency.

• Autocorrelation of the archetypes. For each of the archetypes Ai,
i “ 1, . . . , 20, we calculated the autocorrelation ⇢˚pAi, Aiq. By doing
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so, we simulated exact duplicates. This procedure led to 20 scores also
corresponding to positive (or true) examples of dependency.

• Correlation among children of the same archetype. For each
archetype Ai, i “ 1, . . . , 20, we calculated the correlation ⇢˚pCi, j, Ci,kq,
j, k “ 1, . . . , 45, j ‰ k. By doing so, we simulated correlations among
siblings that are not linked by a father-child relationship. We randomly
selected 900 scores (45 from each archetype) corresponding to negative
(or false) examples of dependency.

• Correlation among archetypes. For each of the archetypes Ai, we
calculated the correlation ⇢˚pAi, Akq, i, k “ 1, . . . , 20, i ‰ k. By doing
so, we simulated correlations among images that are independent and
do not share the same content. We randomly selected 90 scores also
corresponding to negative (or false) examples of dependency.

We visualised all the above scores in the scattergram of Fig. 4.2. The
magenta triangles in the upper left corner correspond to the autocorrelations
of archetypes; the green diamonds sitting on the x-axis correspond to the
correlations among independent archetypes. The red circles and the blue
squares, corresponding respectively to correlations among siblings and cor-
relations among fathers and children, form two distinguishable clusters, which
are close to each other because the majority of the images share exactly the
same visual content.

To understand whether the clusters can be effectively separated, we varied
the threshold T⇢ in r0, 1s to obtain the Receiver Operating Characteristics
(ROC) curve in Fig. 4.3 (left). We also computed the F

1

-score as a function
of T⇢ in Fig. 4.3 (right), that is the harmonic mean of precision p and recall r:

p “ Tp
Tp ` Fp

, r “ Tp
Tp ` Fn

, F
1

“ 2

p ¨ r
p ` r

. (4.7)

Tp is the number of true dependencies that are correctly identified; Fp is
the number of false dependencies erroneously identified as true; Fn is the
number of true dependencies not identified correctly. Hence, precision is the
fraction of true dependencies among all those claimed as true and recall is the
probability of identifying true dependencies. The closer is the F

1

-score to 1,
the more accurately we can separate the two classes of dependencies.
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Figure 4.2: Scattergram for the correlation computed among: archetypes and
their children (squares); independent archetypes (diamonds); exact duplicates
(triangles) and children of the same archetype (circles).

Despite their proximity, the clusters can be separated with satisfactory
accuracy. Based on the two curves of Fig. 4.3, we let T⇢ “ 0.5; for such a
value, in fact, the F

1

-score reaches a maximum of 0.974 and the corresponding
point in the ROC ensures true positive rate 0.967 and false positive rate 0.03.
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Figure 4.3: Dependency threshold determination. Left: ROC obtained by
varying the dependency threshold; and right: F

1

-score as a function of T⇢.
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4.3 Construction of case studies

We considered four case studies corresponding to different image data sets:
two synthetic ones simulating a set of near-duplicates and two realistic ones
consisting on images actually collected from the Web. The various cases are
characterised by a growing difficulty as follows.

For the synthetic case studies the difficulty is related to the change of
perspective of the two independent images used to create the graph: in the
former case, a slight change makes the analysis somewhat easier because the
difference of content increases the discriminative power of the system; con-
versely, the latter case is harder since the two root images share exactly the
same visual content.

The difficulty of the real-world case studies derives from the size of the
data sets (20 and 55 images respectively) and from the fact that ground truth
for dependencies is not available. Very rarely, in fact, the source of an image
is referenced in websites and consequently the validity of the results needs
to be verified by visual inspecting the graph. Moreover, the subject of the
images also contributes to the complexity of the study: the former case tests
the system on pictures of a painting, which is available every day to many
tourists potentially producing several independent images with few relation-
ships between each other. In the latter case only one person photographed the
real scene and made it available. Therefore, it is more probable that several
dependent images have been generated and more complex links between the
nodes of the dependency graph should be expected. The experimental results
of the next section prove the validity of this assumption.

(A) Synthetic case studies

In the first two case studies the set I consists of 10 color images of size
2048 ˆ 1536 pixels. The data sets are created in the same way for both cases
by starting from two independent natural images, namely I

1

and I
2

, taken
by a digital camera with its native JPEG compression not considered as a
processing. Fig. 4.4 shows I

1

and I
2

for the two case studies.
The remaining 8 dependent images (I

3

to I
10

) have been obtained by post-
processing I

1

and I
2

through the operators reported in Tab. 4.1. The original
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Figure 4.4: Archetypes of the synthetic case studies. First two images: I
1

and I
2

for first case study; third and fourth: I
1

and I
2

for second case study.

dependency graph (the same for both cases) is shown in Fig. 4.5.
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Figure 4.5: Dependency graph for the synthetic case studies (ground truth).

Processing and parameters

Image Parent �
1

}�
1

�
2

}�
2

�
3

}�
3

I
3

I
1

JPEG 50 – – – –

I
4

I
2

histogram stretch – JPEG 70 – –

I
5

I
3

rotation `3 JPEG 100 – –

I
6

I
3

scaling 1.1 JPEG 100 – –

I
7

I
2

histogram stretch – scaling 1.2 JPEG 90

I
8

I
7

JPEG 60 – – – –

I
9

I
3

rotation ´2 JPEG 100 – –

I
10

I
4

scaling 0.9 JPEG 100 – –

Table 4.1: Fundamental-IPFs and their parameters for synthetic case studies.
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(B) Real-world case studies

The first data set, called Girl, consists of the 20 near-duplicates of Fig. 4.6
representing the famous painting The Girl with a Pearl Earring by Johannes
Vermeer (1665 circa). Note that the set also includes some outliers, namely
an amateur reproduction of the painting and 3 photos of Scarlet Johansson,
the actress who played the role of the Girl in the movie (2003) inspired by the
events behind the creation of the painting. All the images are compressed with
JPEG quality factors roughly varying from to 70 to 100. Image dimensions
vary in the range from 300 ˆ 400 to 800 ˆ 1000 pixels.

The second data set, called Bear, consists of 55 images representing one
of the iconic symbols of the awareness raising campaign on global warming.
Some of these images are gathered in Fig. 4.7. The estimated JPEG quality
factors vary from 75 to 100, while image dimensions vary from 300 ˆ 300 to
500 ˆ 700 pixels. In this very particular case it was possible to obtain the
original high resolution picture from the photographer4 who took it in 2005.

4.4 Experimental setup

We implemented the core of the system in Matlab environment with the reg-
istration task delegated to the Java-based image processing software ImageJ.5

This software is designed with an open architecture that is extensible via cus-
tom plugins: the one implementing the method in [Arganda-Carreras et al.,
2006] is called bUnwarpJ.6 The registration is supported by a plugin comput-
ing SIFT features7 [Lowe, 2004], which ensure higher accuracy.

Although the system features a large number of configuration parameters,
there is not a strong dependence upon most of them, with the exception of a
small subset that drastically modifies the behaviour of the system. Here, the
values of such parameters are simply listed; for a more in-depth analysis we

4The author would like to thank Arne Nævra for providing the original version.
5The software is freely available for download at http://rsbweb.nih.gov/ij/
6The software is freely available for download at http://biocomp.cnb.csic.es/

~iarganda/bUnwarpJ/.
7The software is freely available for download at http://fiji.sc/wiki/index.php/

Feature_Extraction.

http://rsbweb.nih.gov/ij/
http://biocomp.cnb.csic.es/~iarganda/bUnwarpJ/
http://biocomp.cnb.csic.es/~iarganda/bUnwarpJ/
http://fiji.sc/wiki/index.php/Feature_Extraction
http://fiji.sc/wiki/index.php/Feature_Extraction
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Figure 4.6: Images composing the Girl case study.

refer to the original papers [Reinhard et al., 2001; Arganda-Carreras et al.,
2006; Lowe, 2004].

We performed color transfer in the L↵� space with two differences with re-
spect to [Reinhard et al., 2001]: i) we elaborated linear rather than logarithmic
values; and ii) we kept the luminance channel L out of the processing.

The registration tool is the one that required the heaviest testing efforts,
because it takes into account not only rigid body operations but also affine
transformations and local warping. Given that the application scenario mainly



58 4. The Dependency Explorer Framework

Figure 4.7: Selection of images composing the Bear case study.

deals with rigid deformations, the parameters of the algorithm have been tuned
so to prefer rigid transformations. The used software allows also to perform bi-
directional registration to evaluate the consistency between direct and inverse
transformations: such feature is not used in this implementation. Tab. 4.2
gathers the values assigned to the various parameters.

Weight Parameter explaination Value

w

div

Controls the divergence of the deformation field 30

w

curl

Controls the curl of the deformation field 30

w

land

Controls the error related to SIFT features 1.0

w

img

Controls the MSE between image pixels 0.4

w

cons

Controls how strictly one deformation is the in-
verse of the other

0

Table 4.2: Parameter settings of the image registration tool.

Finally, the parameters initial deformation and final deformation
determine the level of detail of deformations and refer to the type of grid
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used by the algorithm. The choice of their values depends on how misaligned
are the images to be registered. In the present implementation we adopted
the medium misalignment configuration (very coarse and fine). Finally, we
kept the parameters of SIFT supporting registration to their default values in
accordance with [Lowe, 2004].

4.5 Results and discussion

For the synthetic case studies we set the correlation threshold to T⇢ “ 0.5

as explained in Sec. 4.2. Unfortunately, this value did not seem to lead to
equally accurate results for the real-world case studies. The scattergrams
corresponding to these cases, in general, show lower values caused by the fact
that the processing undergone by Web images is arguably more intense than
that we simulated. Being the ground truth unknown, we can not approach
the problem as in Sec. 4.2; consequently, we empirically lower T⇢ to 0.4 based
on the visual investigation of the results.

4.5.1 Synthetic case studies

The dependency graph of Fig. 4.8 is the same for both the synthetic case
studies. Even though the system found all the original relationships between
the sets of images, one of them is not correct (dashed edge in Fig. 4.8): while
I
7

is declared parent of I
2

, it is actually the opposite that is true. Nevertheless,
this result is not totally wrong because the system was still able to find that
the two images are directly linked to each other. Indeed after applying the
threshold, both the links from I

2

to I
7

and from I
7

to I
2

survive, however the
latter (wrong) link is stronger than the true one, thus resulting in the reported
error. The cause could be the intense processing that I

7

has undergone, since
it is the only image originated by the combination of three operators.

4.5.2 The Girl case study

It is worth remembering that the ground truth for the dependency graph of
real-world case studies is generally unknown. As a consequence, we must
evaluate the plausibility of the results by visual inspection. The 20 images
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Figure 4.8: Output dependency graph for synthetic case studies: solid edge:
correct link; dashed edge: incorrect link.

cluster into different groups corresponding to disjoint subgraphs. In Figs. 4.9–
4.10, the clusters composed by at least two images are shown.

Consider the most complex cluster, i.e. cluster (A). From a visual inspec-
tion we can not say whether I

12

could have generated I
1

and I
3

. However, it is
evident that I

12

’s colors are rather different than those of the original paint-
ing, hence manipulations to correct them are highly probable, thus making
the link found by the system plausible. Moreover, I

2

appears to be the result
of a brightness correction of I

3

. Finally, images I
5

, I
14

and I
15

indeed form a
cluster (though the link with I

1

is a bit doubtful): these three images are the
only that show a white frame around the painting and some illegible text.

In cluster (B) of Fig. 4.10 (left) there are 3 images, i.e. I
7

, I
8

and I
10

, that
are not pictures of the original painting but photos of the movie actress; the
system clustered correctly these images and found out that I

7

is the “original”:
as a matter of fact, I

7

’s resolution is the highest of the cluster.
As for cluster (C) of Fig. 4.10 (right), it is plausible that I

17

generated I
16

:
they show exactly the same content and colors but I

17

has a higher resolution.
Finally, it is worth noting that outliers such as the amateur oil reproduction
of I

9

(see Fig. 4.6) have not been linked to any image.

4.5.3 The Bear case study

We now thoroughly examine the second real-world case study. As we already
observed, this data set also contains the archetype (i.e. I

50

) shown in Fig. 4.12,
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Figure 4.9: Cluster (A) of the Girl case study.
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Figure 4.10: Clusters (B) and (C) of the Girl case study.
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provided directly by the photographer who took it. This represents an unique
case allowing to draw very interesting conclusions. As a matter of fact, even
though we can not use the archetype to assess the veracity of all the links
within the data set, it represents the reference for information such as the
true image resolution, compression and colors.

Figure 4.11: The original Bear image (courtesy of Arne Nævra).

We already observed that for case studies like the one we are examining
the ground truth is unknown. Therefore, we came up with the following
solution to support the soundness of our results: we created five images (I

51

to I
55

) from the archetype as described in Tab. 4.3 and we included them into
the set. The idea is to use this cluster of images as an indicator (hence the
name “Litmus paper cluster ”) of the overall performance of the Dependency
Explorer Framework. Although this does not imply that all the links found
by the system are valid, if the ground truth images are correctly clustered
by the system, then we trust it more willingly. The five images are shown in
Fig. 4.13.

The Dependency Explorer Framework found relationships between 44 out
of 55 images, defining the 8 clusters of at least two members that are shown
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Processing and parameters

Image Parent �
1

}�
1

�
2

}�
2

�
3

}�
3

I
51

I
50

crop – JPEG 85 – –

I
52

I
50

scaling 0.7 JPEG 65 – –

I
53

I
51

crop – JPEG 90 – –

I
54

I
51

rotation 20 JPEG 90 – –

I
55

I
52

color transfer – JPEG 100 – –

Table 4.3: IPFs and parameters for the Bear’s litmus paper cluster.

in Fig. 4.12 with different colors and labels. The discussion proceeds as fol-
lows: firstly, we study the accuracy of the system on the Litmus paper cluster;
secondly, we examine the relationships of all the images with the archetype
to highlight the closest descendants; then, we examine in depth the remaining
clusters labelled from (A) to (G). Even though the majority of the analysed
data can be extracted and processed automatically, we also exploit some in-
formation that the system is not yet able to retrieve, like presence of text
overlays or tampering, to assess the soundness of the results.

Verification of veracity: the “Litmus paper” cluster

The system correctly identified all the relationships between the five images
composing the Litmus paper cluster (Fig. 4.13).

Relationships between the archetype and the rest of the data set

The following analysis does not take into account the “Litmus paper” images as
they were artificially created from the archetype for performance evaluation.
According to the dependency graph of Fig. 4.12, there are no relationships
between the archetype I

50

and the rest of the images when T⇢ “ 0.4. Given
that it is impossible to collect all possible versions of the image on the Web, the
reason could be twofold: the links between the archetype have been severed
by an excessive amount of processing; or some images representing the missing
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Figure 4.12: Dependency graph for the Bear case study.

links are not present in the data set. This result, however, is not surprising
since it is very likely that Web images are scans which should not be linked to
the archetype. Nevertheless, it is still interesting to find out which images are
closest to the archetype. In Fig. 4.14, the correlation coefficient ⇢˚ between I

50

and the rest of the data set is plotted; by lowering T⇢ to 0.3, it comes out that
I
3

, I
26

, and I
38

are the three closest images to the archetype. In particular,
⇢˚pI

50

, I
38

q “ 0.3967 is only slightly below the threshold of 0.4. The above
images are shown in Fig. 4.15.

The first interesting fact is that image I
3

has a text overlay acknowledging
the bear’s photographer. By checking the website from which I

3

has been
downloaded, it comes out that it belongs to the Natural History Museum of
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Figure 4.13: Litmus paper cluster of the Bear case study.
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Figure 4.14: Correlation between I
50

and the rest of the data set.

London, which is also selling high quality print-outs. Therefore, it is indeed
plausible that I

3

is very close to the original picture. The link with I
38

is also
plausible, as the image appears to be a crop originated from the archetype.
Conversely, it is not possible to verify the link with I

26

by visual inspection,
considering the slight difference in colors.

Finally, to highlight the proliferation of several different variants of the
original colors, we show the color difference �E of Eqs. (4.4)–(4.5) in Fig. 4.16.
We will discuss this phenomenon case by case in the following.
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Figure 4.15: Bear data set images closest to the original (leftmost picture).
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Figure 4.16: Color difference between the original image I
50

and the rest of
the data set. The red dashed line represents the just-noticeable threshold.

Analysis of cluster (A)

The root of cluster (A) in Fig. 4.17 is image I
3

, which has already been observed
to be very close to the archetype. Images I

13

and I
33

have the same colors
but have been cropped to remove copyright information and to capture only
the relevant content into an almost squared region around the bear. This last
processing is common also for many images of other subgraphs. Moreover, I

33

has also been tampered with (see the fake necklace wore by the bear). The link
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with I
38

, on the other hand, is dubious, considering that ⇢˚pI
50

, I
38

q “ 0.397

and ⇢˚pI
50

, I
3

q “ 0.310. Since it is not possible to generate I
3

from I
38

because
the latter is a crop, the two images are probably siblings.

I
3

I
13

I
33

I
38

Figure 4.17: Cluster (A) of the Bear case study.

Analysis of cluster (B)

The three images composing cluster (B) in Fig. 4.18 are characterised by
brighter colors with respect to cluster (A). I

24

is a cropped version of I
26

where the melting ice below the bear has been removed and has the same
JPEG quality factor of its parent (85); I

31

is generated by scaling I
26

by 0.9

and by recompressing it with a higher quality factor (90).

I
26

I
24

I
31

Figure 4.18: Cluster (B) of the Bear case study.
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Analysis of clusters (C) and (D)

Both clusters (C) and (D) in Fig. 4.19 are characterised by darker colors than
those of the archetype: the average color difference for each cluster from I

50

is respectively 9.2 and 10.2. Concerning cluster (C), I
7

contains two text
overlays, i.e. an ironic phrase and the website hosting the image, while its
child I

14

has been cropped enough to remove both. Following the crop, I
14

has been stored with a higher quality factor (85 instead of 75). Concerning
cluster (D), I

34

is another almost squared crop, in this case of I
8

, recompressed
with higher quality factor (95 instead of 75).

I
7

I
14

I
8

I
34

Figure 4.19: First and second image: cluster (C) of the Bear case study;
third and fourth image: clusters (D).

Analysis of cluster (E)

The two images in cluster (E) in Fig. 4.20 are actually the same image. The
most interesting aspect of this cluster is that although I

44

and I
32

descend
without any doubt from I

3

(by means of scaling by 0.71 and recompression),
the system was not able to find any connections. The reason could be the
quality of the two members of cluster (E), which is rather poor with respect to
their alleged predecessor, as a closer inspection of the JPEG ringing artefacts
around the text can confirm (see the rightmost image of Fig. 4.20). The colors
of the cluster are consistent with those of the archetype, as the average color
difference with I

50

is equal to 0.82.
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text overlay

Figure 4.20: Cluster (E) of the Bear case study. Rightmost image: compar-
ison between text overlay of I

44

(top), I
32

(middle) and I
3

(bottom).

Analysis of cluster (F)

The four images composing cluster (F) in Fig. 4.21 are characterised by yet
another set of colors that appear to be the result of an intense processing
including brightness correction; the average color difference between such im-
ages and the archetype is equal to 12.1. The quality factor of the root image
I
42

is rather low (75) and the blocking artefacts are visible in its descendants
I
41

, I
48

and I
49

despite their higher factors (respectively 100, 95 and 85).

I
41

I
42

I
48

I
49

Figure 4.21: Cluster (F) of the Bear case study.

Analysis of cluster (G)

Cluster (G) is surprisingly complex and consists of 21 images linked by several
edges with high correlation values. The first thing that comes out is that
according to the system all images descend from I

6

. As a matter of fact, I
6
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is the largest image of the cluster (445 ˆ 640 pixels) and has JPEG quality
factor 100. Among all of I

6

’s descendants, I
4

, I
5

, I
12

, I
28

, I
29

and I
36

have the
same size of the root image but quality factors varying between 60 and 95.
Furthermore, all the images have similar colors corresponding to the darker
version of the picture already observed for clusters (C) and (D).

For the sake of clarity, the graph is subdivided in three parts discussed
separately. The first subgraph is depicted in Fig. 4.22. Images I

4

and I
5

have
the same size of I

6

but are both compressed with a lower quality factor (60

and 85 respectively); I
29

is basically I
5

with a text overlay; given the high
correlation between them, probably I

5

and I
36

are the same image; from I
36

to I
16

there is the usual crop of the sea content above the bear; I
20

can be
obtained by scaling I

36

’s size by 0.95 and recompressing it with factor 90;
similarly, I

15

derives from I
16

following scaling by 0.85 and compression with
same quality factor; I

15

and I
23

are exactly the same image (same dimensions,
quality factor and file size).

According to the second subgraph of Fig. 4.23, I
21

can be obtained by
scaling I

6

by 0.67 and image I
1

derives from I
21

following the usual crop.
Moreover, I

1

and its children I
10

and I
30

have the same size of 316 ˆ 293

pixels. The correlation of I
10

and I
30

with I
1

is very high but not maximum
because they have been recompressed with lower quality factors (85 and 75

with respect to 100 of the parent). Finally, I
19

has been generated from I
1

by adding a yellow frame, which caused the peak in color difference with the
archetype in the plot of Fig. 4.16.

The third and last subgraph is shown in Fig. 4.24. As already said, I
21

is
a downscaled copy of I

6

; I
28

is the recompression of I
6

with quality factor 85;
I
12

and I
27

are both crops of I
6

; I
18

is obtained by scaling I
21

by 0.93; I
18

and
I
17

are exactly the same image; I
37

and I
39

can be obtained by scaling I
17

by
0.8 and 0.75 respectively.

Tab. 4.4 concludes the analysis by summarising the processing chain that
led to each image. For each image the parent is reported, followed by the
parameters of the f-IPFs � j, �g and �c. In particular, when scaling or rotation
occurred, a number is reported in the column �g (followed by the symbol
˝ in the second case). Furthermore, color difference �E is considered as a
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Figure 4.22: First subgraph of cluster (G) of the Bear case study.

parameter of �c hinting the cost of the transformation: very low but not
null values, which are not noticeable by the human eye, are probably due
to approximations in color conversions rather than to color modifications.
Independent images are identified by the symbol ´, while any transformation
that did not occur (e.g. unaltered geometry from parent to child) is identified
by the symbol K. The data in bold font correspond to the ground truth images
artificially created to assess the performance of the system.
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Figure 4.23: Second subgraph of cluster (G) of the Bear case study.

4.6 Observations on time complexity

The pairwise checks required by the Dependency Explorer Framework to build
the dependency graph grow quadratically with the number of images. Each
pairwise check consists of a number of stages, the most important of which
are color, geometry and compression matching, whose complexity primarily
depends on the image size. Therefore, to give a rough idea about the time
complexity of the system, we created three sets of 10 images each by applying
the same processing used for the synthetic data sets of Sec. 4.3 (see Tab. 4.1).
All the images of each set have a size that is respectively in the order of
1600 ˆ 1200, 800 ˆ 600 and 400 ˆ 300.

We ran the 100 comparisons of each set and we clocked the average time
spent on each comparison, which clearly depends on the image size as shown
in Fig. 4.25 (left). A comparison between fairly large images (topmost bar)
requires about 60 seconds, that is a quite manageable time even when the
number of images grows, although the real-time application of the framework
becomes rapidly unfeasible. However, even though this is not always the case,
according to our experience Web case studies tend be composed of smaller
images, thus allowing to dramatically reduce the overall time complexity.
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Figure 4.24: Third subgraph of cluster (G) of the Bear case study.

Finally, Fig. 4.25 (right) sheds a light on how the execution time is subdi-
vided among the system’s various tasks. Expectedly, the process of geometrical
matching is very taxing due to the underlying image registration and requires
92% of the total time. More precisely, 43% of such time is spent on estimating
the parameters of the geometric transformation leading from source to target
image and 49% on actually applying the transformation to the randomnesses
of the three image channels. The impact of the remaining tasks including color
and compression matching is negligible and amounts to 8% of the total time.

4.7 Concluding remarks

The use of image forensic tools to discover the relationships between groups of
images with the same or similar content may find interesting applications in
diverse fields, including tracing the illegal distribution of copyrighted images
on the Web and understanding how images contribute to the formation and
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Figure 4.25: Time complexity of the Dependency Explorer Framework for a
single pairwise comparison. Left: average time depending on image size; right:
percentage of execution time depending on task.

evolution of opinions over the Internet. In particular, the latter application
opens a new frontier in image forensic research for the difficult challenges it
poses both from an image processing and a cognitive point of view. This
chapter and the previous one focused on the image processing aspects of the
problem by proposing a rigorous formalisation of the problem and by validating
it in a simple but realistic scenario. It goes without saying that many difficult
challenges are still ahead, including: the development of a theoretically sound
formulation of the hypothesis testing problem lying at the heart of the system,
going beyond the heuristic aspects of the proposed approach; the definition
of an ontology capable of inferring higher order relationships starting from
a pairwise analysis; the integration of forensic tools for source and forgery
detection to further explore the relationships between images.
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Table 4.4: Estimated f-IPFs for Bear case study: ´ denotes independent
images, K absence of processing; when a number is reported for }�g , the trans-
formation corresponds to scaling or rotation (if degrees are specified, e.g. 20

˝).
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I mage forensic research has mainly focused on the detection of artefacts
introduced by a single processing tool. In tamper detection applications,

however, the kind of artefacts the forensic analyst should look for is not known
beforehand, hence making it necessary that several tools developed for different
scenarios are applied. Two problems arise in such a scenario: i) devising a
sound strategy to elaborate the information provided by the different tools into
a single output, and ii) dealing with the uncertainty introduced by error-prone
tools. This is a typical task of information fusion, i.e. the process of inte-
grating multiple sources of data representing the same real-world object into
a consistent, accurate and useful representation. In this part of the thesis
we propose a possible solution to both these problems by introducing a fusion
framework based on Fuzzy Theory. Fuzzy systems, in fact, proved to be useful
in those applications where reasoning needs to be robust against noise, approx-
imation or imprecise inputs. We describe a practical implementation of the
proposed framework putting the theoretical principles in practice. To validate
our method, we carried out some experiments addressing a simple realistic sce-
nario in which five forensic tools exploit JPEG artefacts to detect cut & paste
tampering within a specified region of an image. The results are encouraging,
especially when compared with those obtained with traditional approaches.





Chapter 5
Decision fusion in Digital Image Forensics

I

NFORMATION FUSION, that is the process of integrating multiple
sources of data and knowledge representing the same real-world object
into a consistent, accurate and useful representation, has been widely

used in several scientific fields and Image Forensics is no exception. Generally,
each forensic technique deals with the detection of a typical footprint left by
a single processing tool under specific settings. Forensic techniques, however,
like any other realistic process or system, are never perfect and their measure-
ments are usually affected by uncertainty, ambiguity or impreciseness. A noisy
or unreliable response may have many causes, such as: wrong tool settings;
particular characteristics of the analysed images (e.g. color space or type of
compression); partial presence (or absence) of the feature(s) the tool is looking
for; deviation from the working assumptions of the applied technique.

Another obstacle to overcome when judging the integrity of a given image is
that most of the times a tampered image is not the result of the application of
a single processing tool. On the contrary, even unexperienced users can create
very convincing forgeries by resorting to several tools provided by any imaging
software. Since rarely we know beforehand the kind of manipulation the image
has undergone, the application of a single footprint detection technique may
not be enough, thus requiring the parallel use of more than one technique.
A problem with the use of several tools looking for different footprints is
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that each tool provides an output describing the degree of presence of the
specific footprint it is looking for. Even when using more than one tool, we are
interested in obtaining a single global answer allowing to decide whether the
image under analysis is authentic or not. Obtaining such a global answer is not
a trivial task, as outputs may not only be inaccurate but also heterogeneous;
for example, one tool may provide a binary output, another tool a scalar
value to be compared with a threshold, while a third tool may output the
probability that the image has undergone a certain processing. Moreover,
depending on the input image, forensic tools may have technical limitations,
be prone to errors or be in disagreement with each other, thus introducing
another form of uncertainty. In all these cases traditional techniques such as
simple majority voting (an image is tampered if the majority of tools say that
the image is tampered) or binary OR (an image is considered tampered if at
least one tool says so) may not lead to satisfactory results. This is usually
the typical problem one would tackle with by means of Machine Learning
approaches like Neural Networks (NN) and Support Vector Machines (SVM),
which may provide satisfactory results with two caveats: the complexity of
the learning process grows with the number of tools and training needs to be
repeated whenever a new tool is added to the set. Since for these methods it is
but a short step from computationally challenging to practically unfeasible, it
becomes necessary to develop new efficient solutions to keep the uncertainty of
different outputs under control while merging them into a single final decision.

So far, very few techniques have been devised in this sense and the fusion
framework based on Fuzzy Theory that will be introduced later in this chapter
represents one of the first contributions. The chapter is organised as follows.
Sec. 5.1 formally introduces the problem of information fusion and reviews a
sound categorisation of related approaches that is also valid for Image Foren-
sics. Sec. 5.2 focuses on the techniques developed to address image forensic
scenarios. Among such solutions there is the fuzzy-based fusion framework
that will be analysed in depth in Chapters 6 and 7. For this reason, the chap-
ter is concluded by the short detour of Sec. 5.3 into the basics of Fuzzy Theory
and Logic.
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5.1 General pointers to information fusion

In this section we only provide general pointers to the topic of information
fusion and we refer to [Kuncheva, 2007] for a detailed discussion. Information
fusion (or decision fusion, knowledge integration, expert conciliation, decision
combination) is the process of integrating multiple sources of data and knowl-
edge representing the same real-world object into a consistent, accurate and
useful representation. This process has been employed in several engineer-
ing fields dealing with multiple diverse measurements coming from different
instruments. Among these fields there are remote sensing, satellite imaging,
biometry and voice/speaker recognition. Consider, for example, biometric
applications: to improve authentication accuracy, several data such as finger-
prints, iris, gait or voice are normally fused with each other. The interest
on information fusion stemmed from the necessity to improve the accuracy in
classification problems by merging the results of different classifiers. A great
deal of studies were carried out in this direction [Kuncheva, 2007]. Inspired
by the work in [Xu et al., 1992], a general categorisation of possible fusion ap-
proaches was defined in [Jain et al., 2005] for biometry. Such schematisation
is valid also for Image Steganalysis [Kharrazi et al., 2006] and Image Forensics
[Barni and Costanzo, 2012b; Fontani et al., 2013]. The classification in [Jain
et al., 2005] is sketched in Fig. 5.1, where the dotted rectangles identify those
approaches that are not applicable to Image Forensics and that we will not
discuss in the following.

Each tool used to gather information on a certain real-world object usually
proceeds as follows: firstly, it extracts some descriptive features from the
object; secondly, it uses such features to compute a score according to some
criteria; and finally, depending on the score, it assigns the object to a certain
class. The information coming from multiple tools working on the same object
can be fused during either of the previous stages. Therefore, in [Jain et al.,
2005], fusion approaches are categorised into feature level, measurement level
and abstract level. Note that a wider, higher level categorisation can be made
according to whether the fusion is carried out before or after classification.
Each category is briefly discussed in the sequel.
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Information fusion 

Pre-classification Post-classification

Sensor level Feature level Classifier fusion Classifier selection

Rank level Abstract levelMeasurement level

Classification Combination

Figure 5.1: Categorisation of information fusion techniques according to
[Jain et al., 2005]. Dotted rectangles denote approaches not applicable to Image
Forensics.

(A) Fusion at feature level

This is potentially the more meaningful integration, since it directly deals with
richer, highly distinctive and unprocessed information. The method consists in
aggregating the features provided by the various tools before feeding them to
a single classifier. The idea underlying it is that a higher discriminative power
can be achieved by joining different features. More specifically, consider a set
of K tools, each of which extracts a feature vector fk. If all such vectors are
homogeneous and their length is the same, their fusion can be carried out by
simply combining them, e.g. with the weighted summation f ˚ “ ∞K

k“1

wk fk,
where

∞K
k“1

wk “ 1. Conversely, if the various vectors are not consistent with
each other, they can be concatenated, i.e. f ˚ “ r f

1

, f
2

, . . . fKs. In both cases
the classification is carried out on f ˚. Typical problems that may arise at this
level include conflictual, redundant or high dimensional features requiring an
additional and computationally heavy stage of feature selection, whereby the
less discriminative elements of f ˚ are discarded before the vector is fed to the
classifier.

(B) Fusion at measurement level

Fusion at measurement level consists in combining the scores computed inde-
pendently by each tool by relying only on its own features. It can be formalised
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as follows. Given a feature vector x, each classifier Di produces a c-dimensional
vector rdi,1 . . . di,cs, where di, j represents the support for the hypothesis that x

belongs to class j. Fusion at measurement level obtains a single final score by
relying on all the partial vectors.1

This kind of fusion is generally less demanding than operating at the fea-
ture level, due to the smaller amount of data to deal with but, on the other
hand and for the same reason, it is more sensitive to noise and uncertainty.
Methods belonging to this category proceed either by means of classification
or combination. Classification techniques build a vector with partial scores
and feed it to a binary classifier (e.g. accept or reject, stego or cover image,
authentic or forged image). Among such methods there are SVM,2 neural
networks and decision trees. The fact that information does not need any
processing before being fed to the classifier represents the main advantage of
these approaches. On the other hand, they are affected by the so called “curse
of dimensionality”, i.e. the rapidly increasing complexity of the learning pro-
cess occurring when the number of tools grows. The above problem afflicts
even more the fusion at the feature level.

Combination techniques aggregate the partial scores into a single score
based on which a final decision is made usually by means of thresholding.
Scores can be aggregated with linear combinations [Jain et al., 2005], min,
max, mean, median or product rules [Kittler et al., 1998], Bayesian models
[Domingos and Pazzani, 1997] and non-traditional approaches such as Fuzzy
Theory [Chatzis et al., 1999] and Dempster-Schafer Theory of Evidence [Lu,
1996]. Regardless of the chosen approach, the problem with this kind of fusion
is that all the partial scores must be represented in a consistent format, thus
requiring a preliminary stage of transformation into a common domain.

1For instance, in an image forensic scenario each classifier i could produce vectors
rdi,0, di,1s, where classes C

0

and C
1

indicate authentic and forged images. In this case all the
vectors would be merged into a final score rd˚

0

, d˚
1

s.
2In the case of SVM an additional, nested fusion can be carried out, namely kernel fusion:

the score vectors are classified by means of different kernels, the best of which are used to
create a hybrid kernel for the final classification.
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(C) Fusion at abstract level

Fusion at abstract level is carried out by first letting each classifier Di inde-
pendently assign a class label `i to the feature vector x and then by taking a
decision on the final class based on all the assigned labels. Since by definition
any classifier is capable of assigning a label, contrarily to other categories the
fusion at abstract level is universal. However, the information available at this
point is limited and does not reflect the uncertainty on the predicted labels.
Usually the task is carried out by thresholding the single decision values (or
any measure acting as them) and then by aggregating the so obtained binary
outputs by means of majority voting (i.e. giving power to the classifiers agree-
ing with each other), weighted voting (i.e. giving power to the most competent
classifiers) [Lam and Suen, 1997] or AND/OR rules.

5.2 Information fusion in Image Forensics

We observed in Chapter 2 that image forensic tasks like source identification or
forgery detection can be cast as classification problems. As a consequence, the
outputs provided by the detectors can be fused either at feature, measurement
or abstract level.

(A) Fusion at feature level

Without any doubt, the most common fusion is the one at feature level, which
is generally used to improve the accuracy of source detection. A few techniques
are listed in the following [Sencar and Memon, 2013], even though it is not
the aim of this section to explain their working principles.

• Camera model identification. In [Celiktutan et al., 2008] similar-
ity measures, image quality metrics and Wavelet coefficients statistics
are fused to identify mobile phone camera models. Similarly, the three
techniques in [Xu et al., 2009], [Kharrazi et al., 2004] and [Gloe et al.,
2009] discriminate between different camera brands and models. The
first technique merges 390 statistical moments characterising the image
spatial representation, JPEG representation, and pixel co-occurrences;
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both the second and third techniques fuse features including color infor-
mation, quality metrics and wavelet statistics.

• Scanner model identification. In [Gou et al., 2007], 60 noise statistics
features coming from different denoising algorithms are used to discrim-
inate between different scanner brands and models; the same task is
fulfilled in [Khanna and Delp, 2010] on images containing text by fusing
gray-level co-occurrences and difference histograms.

• Device class identification. In [McKay et al., 2008] the fusion of
noise statistics and color interpolation coefficients allows to discriminate
between various image sources; different noise statistics are also fused in
[Fang et al., 2009] and [Khanna et al., 2007a] with the same goal.

• Forgery detection. [Chetty and Singh, 2010] investigates the problem
of detecting copy-move forgeries carried out on frames of compressed,
low quality video sequences streamed from the Web. In practice, the
technique fuses the features computed by two copy-move detectors in
the hypothesis of double JPEG quantisation altering the natural corre-
lation existing between forged image pixels. Such features correspond to
noise [Hsu et al., 2008] and quantisation residues [Fridrich et al., 2003a].
Firstly, all the features are independently extracted from 32 ˆ 32 pixel
blocks belonging to each intra-frame of the analysed video; then, only
those features whose significance is relevant are selected by means of
various methods, including Independent Component Analysis (ICA) and
normalised. At this point, the two feature vectors are fused by means of
the Sugeno’s fuzzy integral [Sugeno, 1974], which produces a crisp mea-
sure qualifying the frame under analysis as authentic or copy-moved. In
their experiments, the authors demonstrate the superiority of the fusion
of the two detectors with respect to the separate usage of each of them.

(B) Fusion at decision level

To the best of our knowledge, so far only two works address information fu-
sion at measurement level: the one in [Barni and Costanzo, 2012b] based
on Fuzzy Theory [Zadeh, 1965]; and the one in [Fontani et al., 2013] based
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on Dempster-Schafer Theory of Evidence [Shafer, 1976]. The similarities in
the formalisation of the two approaches are explained by the fact that both
have been developed within the same research group; both approaches, in fact,
propose a general fusion framework addressing the scenario in which heteroge-
neous tools detect image splicing. The process of fusing the outputs provided
by the algorithms is carried out by combining the partial scores by means of
two different extensions of traditional logic whose rationale is hinted in the se-
quel. Since the fuzzy-based framework represents the principal contribution of
this part of the thesis, it will be thoroughly explained and validated in Chap-
ters 6 and 7. Dempster-Shafer’s (DS) Theory of Evidence is a framework for
reasoning under uncertainty that allows the representation of ignorance and
available information in a more flexible way with respect to Bayesian theory.
The Bayesian framework often urges to apply insufficient reasoning to assign
a-priori probabilities, thus introducing extraneous assumptions. Dempster-
Shafer’s theory, instead, abandons the classical probability frame and allows
to reason without a-priori probabilities through a new formalism. Specifically,
it allows to combine evidences coming from different sources, interpreting them
as “belief” on propositions, and provides a formalism for turning logical oper-
ations on propositions into operations among sets.

Despite their common background, a direct comparison between the tech-
niques in [Barni and Costanzo, 2012b] and [Chetty and Singh, 2010] is pre-
cluded by the fact that they work at incompatible levels (respectively decision
and feature level). On the contrary, a comparison between earlier versions
of the methods in [Barni and Costanzo, 2012b] and [Fontani et al., 2013] has
been presented in [Fontani et al., 2012]. It came out that fuzzy decision fu-
sion slightly outperforms Dempster-Shafer fusion for low probabilities of false
alarm; moreover, both methods perform better than a learning method relying
on SVM (see Sec. 7.3.4 for more on this topic).

(C) Fusion at measurement level

Recently, [Cozzolino et al., 2013] extended the fusion of digital image forensic
outputs to the abstract level. The approach adopted by the authors is very
similar to those in [Barni and Costanzo, 2012b] and [Fontani et al., 2013]. Five
tools, three of which already considered in the latter two works, are used to
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detect cut & paste forgeries; then, their outputs are fused at abstract level by
means of weighted majority voting, Behaviour Knowledge Space and Naive
Bayes and at measurement level by means of product, sum and Dempster-
Shafer rules. The experimental results obtained by the authors confirm that
the fusion process ensures a significant improvement in performance with re-
spect to using each tool separately.

5.3 Foundations of Fuzzy Theory

We now briefly introduce the most important concepts behind Fuzzy Theory
and Logic allowing the reader to fully understand the working principles of the
fuzzy-based decision fusion framework of the next chapters. It is not the aim
of this section to provide an exhaustive overview of all the aspects of Fuzzy
Theory, for which we refer to [Zadeh, 1965; Sugeno, 1985; Terano et al., 1992].

Fuzzy sets theory was conceived in 1965 by Lotfi Zadeh as an extension of
classic set theory [Zadeh, 1965]. From this initial concept, a multi-value fuzzy
logic has been derived in subsequent years as an extension of Boolean logic.
According to Zadeh, the main rationale behind fuzzy logic is the observation
that despite people do not require precise, numerical information input for
their reasoning, they are capable of highly adaptive control. If such capability
could somehow be transferred to systems, they would perhaps be more effective
and easier to implement. Moreover, he also claimed that “as the complexity
of a system increases, our ability to make precise and yet significant state-
ments about its behaviour diminishes until a threshold is reached beyond which
precision and significance become almost mutually exclusive characteristics”
[Zadeh, 1973]. Fuzzy logic was designed to deal with imperfect information,
which in the real world is more often the norm than the exception. Zadeh
defined computing with words the methodology of dealing with incomplete,
unreliable or partially true information.

In order to understand the way fuzzy logic works, three concepts must be
introduced: fuzzy sets, fuzzy operators and if-then rules. In the following each
of such concepts is briefly described.
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5.3.1 Fuzzy sets

Let X be the universe set and C Ñ X be a set contained in X ; then C can be
represented by its characteristic function:

µCpxq “
#

1 if x P C
0 otherwise.

(5.1)

Sets characterised as in Eq. (5.1) are also called crisp sets. Fuzzy set theory
extends this concept. A fuzzy set F Ñ X is defined through the following
generalised characteristic function:

µF pxq : X Ñ r0, 1s. (5.2)

The values of such a function are continuous in r0, 1s rather than limited to
t0, 1u. The function µF pxq is called membership function and associates to
each element x P X a grade of membership, that is a real number in the
interval r0, 1s.

In Zadeh’s framework, an element x can belong (or not belong) to a given
fuzzy set F with a certain grade of membership. Let, for instance, X be the
space of all temperatures. In classical set theory a temperature x is either
hot or not hot. In fuzzy theory, x can be at same time hot and not hot with
degrees µhotpxq and µhotpxq. A value of µhotpxq near 1 indicates a high degree
of membership of x in the fuzzy set hot, a value near 0 a high degree of
membership in hot.

Similarly to classic sets, Zadeh has defined operations like intersection,
union and complement to be applied to fuzzy sets [Zadeh, 1965]. Let A and
B be two fuzzy sets and µApxq, µBpxq their membership functions. The basic
set-operators can be generalised as follows:

µAXBpxq “ minpµApxq,µBpxq q
µAYBpxq “ maxpµApxq,µBpxq q
µ

¯Apxq “ 1 ´µApxq.

(5.3)

By relying on the operations defined by Eq. (5.3), Zadeh also demonstrated
the validity of the basic properties of crisp sets operations like commutativity,
associativity, distributivity and De Morgan’s law.
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5.3.2 Fuzzy operators

By interpreting the values of membership functions as truth values, it is pos-
sible to extend the concepts of fuzzy sets theory so that a multi-valued fuzzy
logic is obtained [Zadeh, 1965]. Classic Boolean logic requires that a proposi-
tion is either true (1) or false (0): there are no other possible values to assign.
Based on real world experience, fuzzy logic can claim that a proposition is
not always totally false or totally true but true or false to some grade in the
interval r0, 1s. Doing so, it is possible that a proposition is true, more or less
true, somewhat true and so on.

Since Boolean logic can be seen as a particular case of fuzzy logic where
one can only assign values 0 and 1 to membership functions, the extension
of logical operators is quite simple and intuitive. In a nutshell, fuzzy AND,
OR and NOT can be obtained directly from Eq. (5.3) by parallelising these
operators respectively to intersection, union and complement as follows:

µA^Bpxq “ minpµApxq,µBpxq q
µAYBpxq “ maxpµApxq,µBpxq q
notpAq “ 1 ´µApxq.

(5.4)

5.3.3 If-then statements

If-then rules are the basic instructions that permit to define the behaviour of
a system by means of commands that are easily understandable by a machine.
The definition of such rules is a critical step in the process of building a fuzzy
control system. It is the aim of if-then rules to establish a linguistic relation-
ship between the description of a situation and an action to be performed. A
simple example of this kind of relationship could be the rule if obstacle is too
close then reduce speed to low. More specifically, if-then rules are based on
the fuzzy logic principles outlined above and define how fuzzy sets and logic
operators interact with each other by means of membership functions.

More rigorously, let x
1

, .., xn and y
1

, .., ym be fuzzy variables (i.e. variables
that can assume as value the label of a fuzzy set) and let A

1

, .., An and B
1

, .., Bm

be fuzzy sets. An if-then rule can be defined as follows:

IF x
1

is A
1

^ x
2

is A
2

^ . . . ^ xn is An

THEN y
1

is B
1

^ y
2

is B
2

^ . . . ^ ym is Bm.

(5.5)
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The first part of the rule (introduced by IF) is called antecedent or premise;
the second part (introduced by THEN) is called consequent or conclusion;
the rule itself is called implication. While the structure of the antecedent is
quite standard, a consequent can be defined in different ways (see [Sugeno,
1985; Mamdani and Assilian, 1975]). The consequent form used in Eq. (5.5) is
compliant with Mamdani’s model [Mamdani and Assilian, 1975] and represents
the most common methodology in fuzzy applications due to its simplicity. It
is also possible to construct compound rules by means of simple or nested
conditional structures such as “if-then-else”, such as for example:

IF x
1

is A
1

THEN ( IF x
2

is A
2

THEN y
1

is B
1

ELSE y
2

is B
2

).

(5.6)

Structures as in Eq. (5.6) can always be decomposed in a set of basic if-
then rules as in Eq. (5.5) [Sivanandam et al., 2007]. Even though the number
of expressions composing a rule is arbitrary, expressions belonging to the an-
tecedent and to the consequent are combined separately. Regardless of the
model, in most cases the adoption of one rule only is not effective: there is
need of a set of two or more rules that can play off one another, so that a
system can react correctly to a large number of situations.

5.3.4 Fuzzy inference systems

The basic concepts introduced so far are the building blocks of Fuzzy Inference
Systems (FIS). Simply put, a fuzzy inference system is nothing else but a set of
fuzzy rules that convert inputs into outputs. More specifically, Fig. 5.2 shows
the five blocks composing a FIS: i) a database of fuzzy if-then rules; ii) a
database of membership functions and fuzzy sets; iii) a Fuzzification Interface
converting crisp input values into fuzzy entities; iv) a Decision-Making Unit
performing the reasoning based on rules; and v) a Defuzzification Interface
converting the reasoning into a crisp output.

Each of the blocks contributes to the interpretation of a set of if-then rules
as in Eq. (5.5) as follows. When crisp inputs are fed to the system, the Fuzzi-
fication Interface begins by converting them to fuzzy sets. More specifically,
it assigns a degree of membership to each input by relying on the membership
functions and on the fuzzy sets stored in the system’s database. The outputs
of the Fuzzification Interface are fuzzy values according to which a certain
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Figure 5.2: General scheme of a Fuzzy Inference System.

decision must be taken. This is the core task of the actual reasoning and it is
carried out by the Decision-Making Unit. All the degrees of membership are
combined with the rules of behaviour. Specifically, if the antecedent consists
of more than one term, the fuzzy logic operators defined in Eq. (5.3) are ap-
plied to resolve the antecedent into a single value called degree of support (or
strength) of the rule. The degree of support is used to shape the output fuzzy
set. The consequent of a rule, in fact, assigns to the output an entire fuzzy
set that is truncated according to the degree of support of the rule. Usually
a fuzzy system features several rules, each of which contributes with its own
truncated output set. However, to make a decision one needs to look at a
single output fuzzy set, thus requiring some kind of aggregation procedure.
The most common method of aggregation is the max criterion. The output
of the Decision-Making Unit is a fuzzy set that a system typically cannot di-
rectly use to make a final decision. Therefore, a process of conversion from
fuzzy quantities to a crisp global value is required. This is the task of the
Defuzzification Interface; such process can be performed in several different
ways [Leekwijck and Kerre, 1999], the most common of which is the centroid
method (also referred to as center of gravity or center of area).

In the next chapter all these stages will be explained in detail and exem-
plified in the context of Image Forensics.





Chapter 6
A fuzzy fusion framework for Image

Forensics

“The color of truth is gray”

André Gide

I

N THIS chapter we present a new framework for the fusion of the out-
puts produced by forensic algorithms [Barni and Costanzo, 2012b].1 By
relying on fuzzy logic principles, such framework allows the cooperation

of multiple tools by overcoming typical problems such as heterogeneous out-
puts, noise and error proneness. Fuzzy logic has demonstrated to be useful
in those applications that need to be robust against noise, approximate or
imprecise inputs [Terano et al., 1992; Sugeno, 1985]. For this reason, a system
based on it may also help to deal with the incomplete or conflicting outputs
provided by different forensic algorithms and to resolve them into a single final
value. Moreover, one of the main advantages of fuzzy logic is the capability
to address problems whose mathematical or statistical models are hard to de-
fine. In this way one may design automated frameworks that resort to the
experience and the knowledge of human operators to mimic their behaviour.
Imagine how a forensic analyst would face the problems of uncertainty and
fusion: first off all, she would tweak the tools at her disposal by gathering
as much information as possible (e.g. which ones are the most trustworthy,
on what kind of images they work, how they interact with each other), thus
tackling with the uncertainty problem. Then, she would run all the tools on
the image under analysis and exploit the previously gathered knowledge to
make a final decision, thus tackling with the fusion problem.

1This work extends the previous study in [Barni and Costanzo, 2012a].
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The proposed framework translates into practice the above rationale by
means of basic fuzzy logic principles. Several advantages are brought by its
usage: it outperforms canonical approaches like SVM and logical disjunction;
it is easily scalable and allows incremental addition of new forensic tools with-
out requiring new training (as opposed to Machine Learning solutions); it does
not require mathematical models; it addresses the fusion problem in a sound
yet intuitive way. To the best of our knowledge, the usage of fuzzy logic to
address the problem of uncertainty in Image Forensics has been very limited
in the past, given that the only technique proposed so far is the one in [Chetty
and Singh, 2010]. A direct comparison with such method is however not pos-
sible, since the two frameworks work at two incompatible levels according to
the categorisation in [Jain et al., 2005].

We divide the formalisation of this chapter into two stages: Sec. 6.1
addresses all the non-fuzzy aspects regarding the gathering of knowledge on
the employed algorithms; based on such knowledge, Sec. 6.2 explains how fuzzy
logic can be used to automatically mimic the forensic analyst’s reasoning.
We use several examples to support our theoretical results, one of which is
examined in detail in Sec. 6.3.

6.1 Gathering information about employed tools

We now formalise the problem of fuzzy-based information fusion in Image
Forensics according to the outline below:

• definition of a common output format for forensic tools;

• definition of tools’ behaviour depending on manipulations;

• design of membership functions of the fuzzy system;

• conversion of tools’ outputs into inputs of the fuzzy system;

• derivation of fuzzy inference rules.

It is worth noting that only the last three tasks involve fuzzy set theory and
logic, whereas the first two are carried out before the inference system is built
and represent the knowledge passed to the system by the forensic analyst.
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6.1.1 Output of the image forensic tools

Let T be a set of K forensic tools for detecting whether an image I is tampered
or not. Since every forgery is described by at least one footprint, each tool
ti P T analyses a feature set in I and generates an output quantifying its
presence. At the end of the detection stage, K outputs are produced.

The first step of every combination technique working at measurement
level consists in setting a common format for the partial scores. In this case
each output consists of a pair of values pD, Rq as in Definitions 1 and 2.

Definition 1. Let ti P T , i “ 1..K, be a forensic algorithm. Di P r0, 1s is
the degree of detection, i.e. a measure of the presence of the tampering trace(s)
that ti is looking for.

Definition 2. Let ti P T , i “ 1..K, be a forensic algorithm. Ri P r0, 1s is
the degree of reliability, i.e. a measure of the confidence of ti in the provided
detection value Di.

D does not necessarily need to be a probability and normally changes
from image to image; R can either be a constant value depending only on the
overall performance of the tool or vary according to the image characteristics
(e.g. size, color, format, visual content). In order to define R, some informa-
tion about the tool’s performance, drawn either from theory or experimental
analysis, is required. The hypothesis of knowing such information does not
affect the generality of the formalisation, since the research community is well
accustomed to benchmarking forensic algorithms upon releasing them. The
concept of reliability, in fact, is strongly related to the behaviour of the tool
“on the field”: the more the tool performs correctly (e.g. assigning an image
to the right class, or localising accurately a manipulation), the more it is reli-
able. Therefore, as long as the analyst can express it with a value in r0, 1s, R
can be derived from any information on performance. For instance, R could
be derived from the area under the ROC curve of the tool or could depend
on JPEG quality factor or image size, if these properties somehow influence
the tool’s output. In the following we explain how the analyst makes use of
reliabilities to merge the detection scores.
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6.1.2 Behaviour of the forensic algorithms

Now that we established a common domain for each tool, the fusion engine
must be informed about their expected behaviour and mutual relationships. In
other words, we are interested in defining how the tools are supposed to react
when a certain known manipulation is carried out on the image. The conclu-
sions drawn at this stage represent the knowledge that the human operator
will transfer, in the form of rules, to the fuzzy system.

Suppose that all K tools are working in ideal conditions, without any dis-
turbance from external factors reducing their effectiveness; in this favourable
state, each tool always provides the correct answer on the authenticity of a
given image. As a consequence, it is possible to define the expected output of
each tool of the set.

Depending on the nature of the manipulation, a tool may or may not
be able to identify a region as tampered. Let us indicate the capability of
detecting the tampering with Y and the incapability with N. Therefore, if
we have K tools, each kind of manipulation (or absence of manipulation) is
identified by one or more K-dimensional sequences of Y and N. In other
words, for each manipulation m we answer to the following questions: can
tool t

1

detect m? Can t
2

? . . . Can tK? By doing so, to each manipulation
we can associate an array that we interpret as the expected (ideal) collective
answer of the tools when there is no external disturbance. Clearly, also the
absence of tampering has its own array(s).

It is convenient to organise such arrays into two different tables, one for
the ideal answers in presence of tampering and one for the ideal answers in
absence of tampering. In the following we will use the symbols TTRUE and
TFALSE for such tables; similarly, we will use the symbol TDOUBT to indicate
the table of unexpected (non-ideal) K-uples of tools’ outputs belonging neither
to TTRUE nor to TFALSE. Since the definition of these tables depends on the
tools and is based on the knowledge of their performances, in the following we
assume that they are always available.

To clarify the above concepts, consider the toy example of a set of two
tools T “ tt

1

, t
2

u. Assume that t
1

(t
2

) considers a region within an image as
tampered if traces of aligned (misaligned) double compression are found. The
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ideal tables corresponding to this simple scenario are shown in Tab. 6.1, whose
columns are explained in the following. If the tools analyse a region to which
an aligned double compression was applied, the sequence pY, Nq is expected;
on the contrary, if the region has undergone misaligned double compression,
pN, Yq is expected; if the region has not been tampered with, then there will
not be traces of compression, neither aligned or misaligned; therefore, pN, Nq
is expected; finally, if the sequence pY, Yq is produced, something went wrong,
at least partially.

Tampering tables
Tool TTRUE TFALSE TDOUBT

t
1

Y N N Y

t
2

N Y N Y

Table 6.1: Toy example of ideal behaviour of the tools.

6.2 Introducing the role of fuzzy inference

In this section we translate the knowledge of the human operator, in the form
of tables TTRUE, TFALSE and TDOUBT, into ideal and non-ideal rules intelligible
to a fuzzy inference system.

6.2.1 Definition of fuzzy sets and membership functions

There are various methods to define the appropriate membership functions,
either based on human understanding of the underlying problems, on specific
algorithms or logical procedures. Nevertheless, the soundness of our formal-
isation does not depend on the shape of membership functions, which are
strongly related to the application at hand and can not be generalised.

Intuitively, detection and reliability can either be considered low or high,
where by low and high we mean fuzzy sets characterised by membership func-
tions in contrast with each other. Similarly, we can assign different degrees of
intensity to the presence of tampering derived from pairs pD, Rq of all tools. In
this thesis we defined five fuzzy sets for the presence of tampering: very weak,
weak, neither weak nor strong, strong and very strong. Even though we
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will not put these principles in practice until Chapter 7, a visual example of
possible membership functions is depicted in Fig. 6.1, to provide the reader
with a rough idea of the concepts discussed above.
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Figure 6.1: Example of membership functions for D and R (left) and tam-
pering (right).

6.2.2 Automatic construction of ideal rules

The set of rules corresponding to ideal cases of presence or absence of tamper-
ing are now derived. Basically, detection is used to define both the antecedent
and the nature of consequent (i.e. tampering, not tampering) of each ideal
rule; reliability is used to define the strength of tampering (very weak, very
strong, etc.) in the consequent.

(A) Detection as a fuzzy variable

The first step is the definition of the relationship between detection D and the
expected presence (Y) or absence (N) of tampering for a single tool. Generally,
no tool is either wholly capable or incapable of detecting a certain tampering.
More often, a tool is capable or incapable of detecting a tampering to some
degree, depending on the characteristics of the analysed image.

Definition 3. A forensic tool is capable of revealing a manipulation if its
detection is high and incapable if its detection is low:

Y “ detection is high
N “ detection is low.

(6.1)
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In Definition 3, D is a fuzzy variable, high and low are fuzzy sets.

The extension to K tools is immediate: first, we substitute each element Y
or N of a given column of TTRUE or TFALSE with the corresponding expression
of Eq. (6.1); then, we put all the elements in AND relationship. Given the
values D

1

, .., DK and a column C, the final expression describes to which degree
the inputs belong to the tampering case C. For example, in a hypothetical
scenario of four tools, the rule antecedent corresponding to C “ pY, Y, N, Nq
would be: D

1

high ^ D
2

high ^ D
3

low ^ D
4

low.

(B) Reliability as a fuzzy variable

To deal with reliability, we follow a different reasoning: in ideal cases, the
forensic analyst is willing to fully trust the joint indication of the tools if
they are all reliable. Should some of the tools not be reliable enough, their
combined detection can still be trusted but only to a lesser extent.

Definition 4. Let F
1

, ..,Fn be the fuzzy sets available for the intensity of
tampering y; let T “ ttiui“1...K be a set of forensic tools. Then, the most
intense set is assigned to y if most of the tools are highly reliable, the less
intense otherwise.

In other words, this reduces to choosing the most intense fuzzy set (very
strong or very weak) or the less intense fuzzy set (strong or weak) depending
on reliabilities.

It goes without saying that it is very unlikely that all the tools are highly
reliable at the same time. More often, some of them will be very reliable and
other less, depending on several unpredictable factors falling into the category
of noise and uncertainty. Therefore, it is of paramount importance to clarify
the meaning of the expression most of the tools of Definition 4. Even though
the final choice is left to the designer of the system, the most immediate and
simple solution is majority: if R of more than half of the tools is high, we
assign the most intense fuzzy set to the consequent. There could be other
ways to achieve the same goal, such as exploiting again the human operator’s
knowledge to identify a subset of most trustful tools. Adopting the former
solution, however, allows to avoid two issues: i) to define trustworthy subsets
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that are valid in general;2 ii) to trust only a subset of tools would go against
the idea of fusion of all contributions including those affected by uncertainty.
The experimental validation of Chapter 7 demonstrates that even the simple
majority voting is sufficient to outperform traditional methods, thus hinting
that greater benefits could be brought by finer solutions.

(C) Example

To clarify the above concepts, we extend the example of Sec. 6.1.2 to en-
compass the construction of ideal rules. Once the procedure is clear, the
generalisation to an arbitrary number of tools is straightforward. Consider
the sequence pY, Nq P TTRUE describing the expected behaviour in presence of
a cut & paste tampering with aligned JPEG grids. The resulting fuzzy rule is
expressed as follows:

IF
`

D
1

high ^ D
2

low

˘

THEN
“

IF (R
1

high ^ R
2

high) THEN tampering is very strong

ELSE tampering is strong
‰
.

(6.2)

Although correct, the rule of Eq. (6.2) is not expressed in the form pre-
sented in Sec. 5.3.3. Consequently, we reduce it to a standard form by starting
from the expression inside square brackets, which can be decomposed in two
contributions as follows (see [Sivanandam et al., 2007]):

IF
`

D
1

high ^ D
2

low

˘

THEN
“

IF (R
1

high ^ R
2

high) THEN tampering is very strong

‰ (6.3)

IF
`

D
1

high ^ D
2

low

˘

THEN
“

IF (R
1

high ^ R
2

high) THEN tampering is strong
‰
.

(6.4)

These two new compound rules can be further rewritten [Sivanandam et al.,
2007] as:

IF
`

D
1

high ^ D
2

low

˘ ^ `
R

1

high ^ R
2

high

˘

THEN tampering is very strong

(6.5)

IF
`

D
1

high ^ D
2

low

˘ ^ `
R

1

high ^ R
2

high

˘

THEN tampering is strong.

(6.6)

2This problem becomes even more complex as the number of cooperating tools increases.



6.2. Introducing the role of fuzzy inference 103

Now both rules are in the form used in Eq. (5.5). The first rule tells that,
given an image and an ideal case, i.e. pY, Nq in the example, if D

1

and D
2

have a high grade of membership in their respective sets and both the tools
are reliable, then the most intense consequent corresponding to tampering
can be assigned. The second rule tells that if one of the tools (or both) is not
reliable,3 then a less intense level of tampering is assigned to the consequent.

By repeating the above procedure for the remaining ideal cases, we can
automatically compose the corresponding set of fuzzy rules without any inter-
vention from the forensic analyst.

The extension of the reasoning to a general case of K tools is quite easy.
The K tools will produce rules characterised by the same compound structure
of Eq. (6.2), that can be reduced to a set of ideal rules by means of Eqs. (6.3)–
(6.6).

6.2.3 Automatic construction of non-ideal rules

Constructing if-then rules for non-ideal cases belonging to TDOUBT is not much
different than the ideal cases. However, when a non-ideal case occurs, no
support from theory or experiments is available, hence further reasoning is
necessary. Consequently, we first bring the non-ideal case back to something
we know (i.e. an ideal case); then, we use a procedure similar to that of ideal
cases.

(A) Mapping doubt into known behaviours

The first task is carried out by means of a mapping strategy that takes into
account the reliability of the various tools. Let p

C be a non-ideal sequence
belonging to TDOUBT and C an ideal sequence belonging either to TTRUE or
TFALSE. Consider now the binary sequence created by assigning values 0 and
1 to N and Y respectively. Then, the distance between sequences p

C and C

can be computed, e.g. by means of the following weighted Hamming distance:

dpp
C, Cq “

Kÿ

i“1

Ri ¨ XOR
”

p
Cpiq, Cpiq

ı
, (6.7)

3Recall that according to De Morgan identity: R
1

high ^ R
2

high “ R
1

high _ R
2

high.
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where: K is the number of tools; Ri is the reliability of the i-th tool; XOR is
the bitwise exclusive-OR; p

Cpiq and Cpiq are the i-th bits of p
C and C. In this

way it is possible to give more importance to the most reliable tools.
By resorting to Eq. (6.7), the distance of p

C from all the M ideal sequences
is computed. Then, the closest ideal sequence is selected as follows:

Cmin “ argmin

n“1,2...M

”
dpp

C, Cnq
ı

. (6.8)

Note that Eqs. (6.7)–(6.8) do not define fuzzy operations, since the mapping
is performed before the inference system is built.

(B) Building if-then rules from mapping

Since the mapping is an approximation based on experimental parameters, it
is not wise to lean towards presence or absence of tampering as much as in
Eq. (6.2). Hence, we make available for the consequent only the less intense
fuzzy set (strong or weak), regardless of reliability. Conversely, we build the
antecedent exactly as in the ideal case.

Once again, we clarify the concepts by means of the example of Sec. 6.1.2.
This time we consider the non-ideal sequence pY, Yq, in which both t

1

and
t
2

claim that the analysed region has been tampered with. Since these tools
are mutually exclusive, the sequence is doubtful. Suppose that the ideal case
at distance dmin is Cmin “ pY, Nq, that is a case indicating the presence of
tampering. The resulting if-then rule is:

IF
`

D
1

high ^ D
2

high
˘

THEN tampering is strong. (6.9)

Note that in Eq. (6.9) we did not take into account again the role of the
reliability because it was already exploited for mapping.

Although we rarely observed such a behaviour in our experiments, it is
possible that two or more tools are equally reliable, thus generating more
than just one C at distance dmin from the non-ideal case p

C. In this situation,
the system acts as follows: i) if all sequences C at distance dmin belong to
TTRUE or TFALSE, then the first of the set is chosen and the task is carried
on normally as described in Eq. (6.9); ii) otherwise, the system resorts to the
fuzzy set neither weak nor strong for the consequent.
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6.2.4 Schematisation of the complete framework

Now that we described all the blocks composing it, we can schematise the
proposed fuzzy fusion framework. Before fusing, we build the set of ideal
and non-ideal rules as in Secs. 6.2.2–6.2.3. Then, we fuzzify the input pairs
pD, Rq coming from the forensic tools by means of membership functions of
Sec. 6.2.1 and we compute the strength of each single rule by resolving logical
operators. We aggregate all the rules to produce the output membership
function, which is finally defuzzified. Finally, we compare the resulting crisp
number measuring the intensity of tampering with a threshold. Values above
such thresholds indicate that the image is not authentic. The whole procedure
is schematised in Fig. 6.2 and exemplified in the next section.

Figure 6.2: Schematisation of the fuzzy fusion framework.
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6.3 The full toy example

In this section we complete the example that we have been using throughout
the chapter by showing the inference process (fuzzification, resolution of log-
ical operators, reasoning, defuzzification) in numbers and how, depending on
its outcome, a decision can be made on the authenticity of the image under
analysis.

Recall that the two tools T “ tt
1

, t
2

u are mutually exclusive in their
search of forgery. They are based on the principle that artefacts of aligned
(misaligned) double JPEG compression within a certain image region denote
a forgery. Clearly, if the former feature is present, the latter must be absent
and vice-versa. The ideal behaviour of t

1

and t
2

is shown again in Tab. 6.2,
while the forgeries corresponding to its columns are summarised in Tab. 6.3.

Tampering tables
Tool TTRUE TFALSE TDOUBT

t
1

Y N N Y

t
2

N Y N Y

Table 6.2: Toy example of ideal behaviour of the tools.

Case Tampering procedure

pY, Nq The region has been compressed twice with aligned grids

pN, Yq The region has been compressed twice with misaligned grids

pN, Nq The region has not been compressed twice

pY, Yq Doubtful case not supported from theory

Table 6.3: Tampering procedure for the toy example.

By applying the principles of Secs. 6.2.2–6.2.3, we derive the following set
of rules:
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(Rule1A) :

`
D

1

high ^ D
2

low
˘ ^ `

R
1

high ^ R
2

high
˘ Ñ y very strong

(Rule1B) :

`
D

1

high ^ D
2

low
˘ ^ `

R
1

high ^ R
2

high
˘ Ñ y strong

(Rule2A) :

`
D

1

low ^ D
2

high
˘ ^ `

R
1

high ^ R
2

high
˘ Ñ y very strong

(Rule2B) :

`
D

1

low ^ D
2

high
˘ ^ `

R
1

high ^ R
2

high
˘ Ñ y strong

(Rule3A) :

`
D

1

low ^ D
2

low
˘ ^ `

R
1

high ^ R
2

high
˘ Ñ y very weak

(Rule3B) :

`
D

1

low ^ D
2

low
˘ ^ `

R
1

high ^ R
2

high
˘ Ñ y weak

(Rule4 ) :

`
D

1

high ^ D
2

high
˘ Ñ y strong.

Some observations are in order. First of all, we omitted for the sake of
clarity the step in which rules labelled with “B” are further simplified by
resolving the negation. In practice, the system generates three new rules
for each of them, where the consequent takes into account the sub-cases of:
pR

1

high^ R
2

lowq; pR
1

low^ R
2

highq; and pR
1

low^ R
2

lowq. Therefore, the
complete set consists of 13 rules. Note that (Rule4) describing the doubtful
case has been mapped here to a case of tampering according to the numerical
input values that we will introduce in the sequel.

For the sake of simplicity, we consider only four of the above rules. Such
an assumption does not alter the final outcome of the example, since the
excluded rules would not bring noticeable contributions to the computed fuzzy
quantities.4 The chosen rules are the following:

(Rule1A) :

`
D

1

high ^ D
2

low
˘ ^ `

R
1

high ^ R
2

high
˘ Ñ y very strong

(Rule1B1) :

`
D

1

high ^ D
2

low
˘ ^ `

R
1

high ^ R
2

low
˘ Ñ y strong

(Rule3A) :

`
D

1

low ^ D
2

low
˘ ^ `

R
1

high ^ R
2

high
˘ Ñ y very weak

(Rule4 ) :

`
D

1

high ^ D
2

high
˘ Ñ y strong.

The rules are graphically represented by means of the corresponding input
and output fuzzy variables and fuzzy sets in Fig. 6.3.

4Obviously, this assumption does not hold as the numbers of tools and rules increase.
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Figure 6.3: Graphical representation of if-then rules.

Consider now the following input values:

D
1

“ 0.9, R
1

“ 0.8, D
2

“ 0.2, R
2

“ 0.6.

The four crisp values are turned into fuzzy quantities by means of the mem-
bership functions. The procedure is shown in Fig. 6.4.

Following fuzzification, we compute the supports of the rules by resolv-
ing logical operators. In this case, we use the min function because all the
membership functions are in AND relationship. Then:

support(Rule1A) “ min

“
µhighpD

1

q,µlowpD
2

q,µhighpR
1

q,µhighpR
2

q‰

“ minp1, 1, 1, 0.75q “ 0.75

support(Rule1B1) “ min

“
µhighpD

1

q,µlowpD
2

q,µhighpR
1

q,µlowpR
2

q‰

“ minp1, 1, 1, 0.25q “ 0.25
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1
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Figure 6.4: Fuzzification of inputs and resolution of logical operators.

support(Rule3A) “ min

“
µlowpD

1

q,µlowpD
2

q,µhighpR
1

q,µhighpR
2

q‰

“ minp0, 0, 0, 0.25q “ 0

support(Rule4) “ min

“
µhighpD

1

q,µhighpD
2

q‰ “ minp1, 0q “ 0.

At this point, the output fuzzy set representing the consequent of each rule
is truncated according to its corresponding support (rightmost column of
Fig. 6.4). The truncated sets are then aggregated, e.g. by means of max

function, as shown by the thick blue line in Fig. 6.5. By doing so, we obtain
the final output fuzzy set gathering all the contributions of the rules.

The final task of the inference system is defuzzification: a crisp value x can
be obtained from the set of Fig. 6.5, e.g. by computing the centroid of the area
under the curve. In this case, x “ 0.8545. The authenticity of the analysed
image is decided based on the comparison with a threshold T (usually 0.5).
In this case, then, it turns out that the analysed image is a counterfeit. It is
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Figure 6.5: Fuzzification of the proposed example depending on the chosen
method: centroid, bisector, Smallest-Medium-Largest Of Maxima.

worth noting that the decision would not change if we had chosen a different
defuzzification method (see lines and names grayed out in Fig. 6.4).

6.4 Concluding remarks

A possible problem with the proposed framework is that the number of rules
increases exponentially with the number of variables (that is the dimension of
the input space). When many tools are employed, this may become a problem
that should not be underestimated. As a matter of fact, the exponential
explosion of the number of rules is a well known weakness of all fuzzy systems.
An excessive number of rules can be the cause of several serious drawbacks,
such as: the difficulty of giving a meaningful linguistic description of the
scenario; loss of generality, transparency and effectiveness; the increase of
computational burden required to control the system. Although the scientific
literature has carefully analysed this problem proposing a number of methods
to tackle with it (see [Delgado et al., 1997; Zeng and Keane, 2006]), it is not
the aim of this work to deal with this situation. When needed, the proposed
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framework could be enriched by introducing hierarchical rules clustering or
by adopting an approach like the one we used to deal with non-ideal rules to
reduce the number of rules composing the system.

The necessity to employ more tools cooperating with each other is a con-
sequence of the typical generation process of a real-world forgery, which is
often the product of multiple processing. Several problems may arise when a
single decision must be made from outputs that are heterogenous, discording
or incomplete. To cope with these problems, in this chapter we formalised a
novel framework based on fuzzy logic. The next chapter will be devoted to
the experimental validation of the framework in a forensic scenario addressing
cut & paste detection.





Chapter 7
Performance evaluation of the fuzzy fusion

framework

“He that would perfect his work
must first sharpen his tools”

Confucius

W

E SHOW in this chapter how to build a practical implementa-
tion of the fusion framework described in the previous chapter.
Our ultimate goal is to validate the ideas on which the inference

system is based on a realistic image forensic scenario of cut & paste forgery
detection, whereby a region from a source image is pasted on a target image
with the intent to alter its meaning. More specifically, five recently proposed
tools collaborate to decide whether an image has undergone said forgery by
analysing a suspicious region within it. The principles of detection underlying
the tools are based on JPEG characteristics or, more precisely, on their pres-
ence (or absence) within the region under analysis with respect to the rest of
the image. Depending on how the forgery is carried out, e.g on the number of
compressions steps and grid (mis)alignments, a forensic tool may or may not
be able to detect it. This is the typical scenario that we can model with the
tables of ideal and non-ideal outputs we discussed in Chapter 6. Moreover, all
the typical complications of real-world scenarios are present: forensic tools of
varying reliability, different types of images, realistic manipulations in which
JPEG footprints are attenuated by processing aiming at creating a convincing
fake.

The chapter is organised as follows. Sec. 7.1 describes the forensic tools
whose outputs are going to be merged and defines their behaviour in presence
of manipulations; additionally, details on the choice of the image data sets used
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in the experiments are also provided; for the sake of reproducibility, Sec. 7.2
provides all the parameters of the system; Sec. 7.3, compares the performance
of the fuzzy fusion framework to those of a method based on logical OR.

7.1 Tools and image data sets

The presence of JPEG artefacts can be exploited to find out whether an im-
age has undergone a cut & paste forgery. The basic idea is the following.
Cut & paste is commonly carried out by taking a region R from a source im-
age S and pasting it into a target image T, thus creating a fake image F. Let
either the source or the target images (or both) be JPEG compressed and sup-
pose that the fake image F is saved in JPEG format after the manipulation.1

The superposition of multiple JPEG compression stages, either with aligned
or misaligned 8 ˆ 8 grids, characterised by different quality factors, typically
brings into the fake image a number of peculiar footprints.

By looking for inconsistencies in the number of compressions in certain
regions with respect to the rest of the image, a great deal of forensic methods
can reveal the occurred manipulation. This work makes use of K “ 5 of them,
namely the methods proposed by Luo et al. [Luo et al., 2007], Lin et al. [Lin
et al., 2009], Farid [Farid, 2009a] and Bianchi et al. [Bianchi and Piva, 2011;
Bianchi et al., 2011]. For the rest of the chapter they will be referred to as tA,
tB, tC, tD and tE; we now briefly outline their working principles.

1. Tool tA determines whether a region has been cropped from a JPEG
image with quality QF

1

and pasted without preserving grid alignment
on a second image, that afterwards is JPEG compressed with quality
factor QF

2

° QF
1

. Detection relies on a statistical analysis of image
blockiness. When used to detect cut & paste tampering, regions where
JPEG grids are not aligned are considered as tampered [Luo et al., 2007].

2. Tool tB determines whether a region has been cropped from a JPEG im-
age or from an uncompressed image and pasted on a JPEG target image.
In this case the untouched region undergoes a double compression caus-

1Given the widespread usage of JPEG storage, this seems to be a reasonable assumption.
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ing its DCT coefficients to be doubly quantised, leaving a characteristic
trace called Double Quantisation (DQ) effect [Lin et al., 2009].

3. Tool tC determines whether a region has been cropped from a JPEG im-
age and pasted while preserving grid alignment. This result is achieved
by looking for the so called JPEG ghosts, obtained by differencing the
image under analysis and several of its re-compressed versions: forged
regions present small differences with respect to those of the rest of the
image [Farid, 2009a].

4. Tool tD detects the presence of non-aligned double JPEG compression
by relying on a single feature depending on the integer periodicity of the
DCT coefficients. Intuitively, the method evaluates how a subset of the
DCT coefficients (the DC coefficients, on which the quantisation effects
are more evident) clusters around a given lattice for any possible JPEG
grid shift. This measure is compared with a threshold to decide whether
grids are aligned or not [Bianchi and Piva, 2011].

5. Tool tE is a direct improvement of tB and discriminates between original
and forged regions in JPEG images, under the hypothesis that the former
are compressed twice while the latter just once. Such a task is performed
by relying on two specific probability models for the DCT coefficients
of regions that are JPEG compressed once and twice. This method
provides better discriminating performance with respect to tB, especially
when QF

2

† QF
1

[Bianchi et al., 2011].

For a more in-depth description of the above techniques, we refer to the
respective papers. In Sec. 6.1.1, we stated that each tool must produce a
detection value D P r0, 1s. For tA, such value is obtained by applying a
probabilistic SVM classifier [Platt, 1999]; for tB and tE, it corresponds to the
median of the probability map of the analysed region [Lin et al., 2009; Bianchi
et al., 2011]; for tC, it is equal to the KS statistics in [Farid, 2009a]; for tD, it
is a simple normalisation in r0, 1s of the un-thresholded statistic [Bianchi and
Piva, 2011].
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7.1.1 Ideal behaviour of the forensic tools

The next step consists in the construction of the tables TTRUE and TFALSE.
According to the principles underlying the employed tools and according to
our preliminary experimental analysis, we identified four classes of tampered
images, for which the tools ideally provide different quintuples of answers. By
relying on such an analysis, we obtained Tab. 7.1. For the sake of brevity,
quintuples belonging to TDOUBT have been omitted but can be easily derived.
For a detailed description of the four classes of tampering appearing in the
table, see next section and in particular Tab. 7.2. Note that the two pairs

TTRUE TFALSE

Tool C
1

C
2

C
3

C
4

C
5

tA Y Y N N N
tB N Y N Y N
tC N Y Y Y N
tD Y Y N N N
tE N Y N Y N

Table 7.1: Expected behaviour of the 5 tools. Omitted combinations belong to
TDOUBT .

of tools (tA,tD) and (tB,tE) work under the same operative conditions (in
particular, tE has been developed to overcome some limitations of tB). For
this reason, their answers should always be in agreement with each other.

7.1.2 Construction of image data sets

We have collected three data sets consisting of original and tampered images:

1. a large data set of 1, 600 images for the general evaluation of the method;

2. a smaller data set of 400 textured natural images to better highlight the
benefits brought by the fuzzy approach in a particular case where one
of the tools shows an erroneous behaviour;

3. a data set of 60 images simulating real-world tampering.
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The first two synthetic data sets share the same generation procedure. Starting
from a set of images, we defined four classes of images simulating cut & paste
tampering. We designed each class so that at least one tool (or a pair of tools)
is able to detect the presence of the manipulation.2 Each tampering is the
result of small variations of a typical cut & paste procedure, as summarised
in Tab. 7.2. More specifically, all manipulations have been conducted by
substituting the 256 ˆ 256 central block of the image. In order to bypass
most of the technical limitations of the algorithms, we applied the following
criteria: QF

1

P t55, 60, 65, 70u and QF
2

´ QF
1

“ 20. We conducted our tests
on the 256 ˆ 256 central area of each image.

Class Tampering procedure

C
1

Outer region is compressed once. Inner region is com-
pressed twice with misaligned grids

C
2

Outer region is compressed twice with aligned grids. Inner
region is compressed twice with misaligned grids

C
3

Outer region is compressed once. Inner region is com-
pressed twice with aligned grids

C
4

Outer region is compressed twice with aligned grids. Inner
region is compressed once

C
5

Non-tampered images. The image is compressed once with
random quality factor: QF P t70, 75, 80, 90u

Table 7.2: Tampering classes. Each class is created by varying the number
of compressions with aligned or non-aligned grids.

The first data set is originated by 100 uncompressed TIFF images with
different visual content (landscapes, cityscapes, people). Each original image
has been used to create two tampered images, thus leading to 200 images for
each class and a total of 800 tampered images. An equal number of non-
tampered images, simply compressed once, complete the data set.

The second data set derives from the observation of a peculiar behaviour
of tB. This tool, in fact, tends to claim as tampered a specific type of nat-

2For example, the tampering belonging to class C
1

in Tab. 7.2 is a double JPEG com-
pression with misaligned grids, therefore only tA and tD are supposed to detect it.
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ural images, i.e. those containing textures and regular geometric edges (e.g.
buildings, walls, squares), compressed once with a very high quality factor.
The other tools do not show any particular behaviour on this specific cate-
gory of images. The erroneous behaviour of tB generates doubtful cases that
cause an OR-based method to provide wrong results, thus creating a typical
scenario in which the fuzzy system should perform better. The plausibility of
the experiment is guaranteed by the fact that such images are very common
in real-world scenarios. To build this second data set, we used 50 natural
images whose central regions contain textures and regular edges, compressed
once with native camera quality factor QF

1

“ 100, to create 200 tampered
images and 200 original images with the same procedure of Tab. 7.2. Again,
we conducted both tampering and testing on the 256 ˆ 256 central area. A
few examples of such images are depicted in Fig. 7.1.

(a) (b) (c) (d)

Figure 7.1: Examples of the images used for the experiments. (a)-(b): second
data set; (c)-(d): third data set. In particular, (c) is original while (d) is
tampered by pasting a new face into (c).

The third data set originated from a simple consideration: rarely, in real-
world scenarios, a tampering is obtained by playing around only with JPEG
compression on well defined square regions. Even an unexperienced user will
resort to several tools provided by some image editing software, in the attempt
to cut & paste regions of irregular shape and variable size. After that, she
will likely spend some time correcting inconsistencies in color, size and edges.
Finally, most of the times the partial/final result will be stored in JPEG
format.
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To mimic this situation, we created a set of images of convincing visual
quality by using several popular processing tools. As for the subjects of the
manipulations, we chose images containing frontal faces. The reason behind
this choice is twofold: it is very common to stumble on manipulated faces on
the Web due to the meaningful message they convey (e.g. satirical or political);
fixed postures allow to create good photomontages rather easily.

Therefore, 30 original images were used to created 30 fakes by substituting
the original faces. Tampering was performed by means of Adobe Photoshop.
A variety of processing tools have been used including: geometrical manip-
ulations (scaling, rotation, horizontal flip); color manipulations (brightness
and contrast correction); enhancement of pasted region’s borders. In case of
multiple JPEG compressions, all these processing steps tend to attenuate or
eliminate the JPEG artefacts of the oldest compression step. To avoid the com-
plete loss of such traces, we paid particular attention to quality factors before
and after the processing. Since Photoshop defines JPEG quality with linguis-
tic terms rather than with numerical values, medium quality corresponds to
QF

1

and maximum quality to QF
2

(recall that all tools perform better when
QF

1

† QF
2

). The experiments have been conducted on the bounding boxes
containing the faces. Figs. 7.1 (c)-(d) provide an example of an original image
and its tampered counterpart.

7.2 Experimental settings

The set of parameters of the fuzzy approach is rather small. We opted for
the Mamdani’s model for if-then rules; we implemented the AND operator
with the min function to combine antecedents; the intensity of the consequent
is based on the majority criterion applied to the reliabilities of the tools; if-
then rules are aggregated by means of the max function; defuzzification is
carried out by means of the centroid method. The system features 10 inputs
(DA,B,C,D,E and RA,B,C,D,E) and one output (tampering).

(A) Detection

In order to calculate D, instead of considering only the detection value of each
tool in the specified region, we carried out two separate analyses: one on the
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region under investigation (Dinner) and one on the rest of the image (Douter).
Then, we fed their absolute difference D “ |Douter ´ Dinner| to the fuzzy fusion
system. This approach is, in fact, more robust to false positives. Given a
tool, if no tampering has occurred, the difference between the outputs of the
detectors on the inner and outer regions should be small (ideally 0). On the
other hand, if the region has been tampered with, the difference between the
values should be very noticeable (ideally 1). It goes without saying that, due
to the uncertainty usually affecting forensic tools, the system often works with
differences D that are quite distant from their ideal values.

(B) Reliability

While defining R, it turned out that tA, tD and tE are more reliable when the
second JPEG quality factor QF

2

is high. For this reason reliabilities increase
linearly depending on QF

2

. We derived the coefficients of the linear transfor-
mation of Tab. 7.3 from the curves of accuracy as a function of QF

2

published
by the authors of the tools [Luo et al., 2007; Bianchi and Piva, 2011; Bianchi
et al., 2011].

Second JPEG quality factor QF
2

Tool 60 70 80 90 100

RA 0.7292 0.825 0.8975 0.9642 0.9655

RD 0.695 0.748 0.795 0.8267 0.9083

RE 0.65 0.735 0.82 0.92 1

Table 7.3: Reliability of tA, tD and tE depending on QF
2

.

Reliabilities of tB and tC do not seem to be affected by QF
2

, therefore,
following previous tests carried out on a separate data set, they are set to the
following constant values: RB “ 0.4 and RC “ 0.85. In Sec. 7.3.3 we evaluate
the robustness of the fuzzy system to variations of reliability scores.
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(C) Membership functions and if-then rules

In our implementation we opted for smooth membership functions for the
variables: sigmoid for inputs and combination of Gaussians for the output.3

Fig. 7.2 (left) shows that detection (but also reliability) can belong to two fuzzy
sets: low and high. The point where the two functions cross (crossover point)
is where maximum fuzziness is measured, since an input value is characterised
by the same degree of membership for both classes. Values to the left of this
point have a higher degree of membership in the fuzzy set low (µlow ° µhigh);
values to the right of this point have a higher grade of membership in the fuzzy
set high (µlow † µhigh). More details on the choice of points of maximum
fuzziness will be provided in Sec. 7.3.1. Fig. 7.2 (right) plots the output
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Figure 7.2: Smooth membership functions for system variables. Left: input
detection (in this case on point of max fuzziness 0.4). Right: output.

membership functions representing the intensity of tampering. In this case,
five fuzzy sets are defined: from left to right very weak, weak, neither weak
nor strong, strong and very strong.

3Piecewise trapezoidal membership functions have been also employed with slightly lower
performances; the corresponding curves are omitted for the sake of brevity.
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7.3 Experimental validation

7.3.1 Evaluation procedure

The experiments started with a separate analysis of the forensic tools. To
this aim, a dedicated data set of 1, 600 images has been created according to
the procedures of Tab. 7.2 but starting from a different set of original images.
The reason behind using a new data set rather than the one described in
Sec. 7.1.2 is the following. At this point, we are still evaluating separately the
performance of each tool: this stage is meant to provide the optimal setup
for the aggregation of tools. If such parameters were tuned on a data set
then used again to evaluate the overall performance, incorrect results may be
produced.4 The Receiver Operating Characteristic (ROC) of each tool was
computed only on those subsets of the data set that satisfy the assumptions
the tool relies on: tA and tD on classes 1, 2, 5; tB and tE on classes 2, 4, 5; tC
on classes 2, 3, 4, 5.

With detailed information about the performance of each tool at disposal,
we computed the ROC curves obtainable by using the fuzzy and OR-based
fusion as follows.

1. Sampling the ROC of each tool. Firstly, the probability of false
alarm Pf a of each curve is sampled with step 10

´3. Then, for each value
of Pf a, its corresponding probability of correct detection Pd is retrieved.
The pair (Pf a, Pd) is used to calculate the threshold in r0, 1s that needs
to be applied to the detection values provided by the various tools in
order to obtain those probabilities. By repeating this procedure for all
curves, five thresholds for each value of Pf a are obtained and organised
in quintuples thr “ rthrA, thrB, thrC, thrD, thrEs.

2. Aggregated ROC of the OR method. The values of each thr are
directly used as binary thresholds. For example, thrA is used to thresh-
old DA (the output of tool tA), thrB to threshold DB and so on. The
authenticity of the analysed region is verified by OR-ing the five binary
values.

4From a Machine Learning perspective, this corresponds to performing both training and
testing stages on the same data.
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3. Aggregated ROC of the fuzzy method. The values of thr are used
to set the point of maximum fuzziness for high and low membership
functions of D. For example, thrA is used for the membership functions
of DA, thrB for those of DB and so on. Once membership functions
are defined, the process of fuzzification, reasoning and defuzzification is
carried out. In order to make a final decision on image authenticity,
the defuzzified value of tampering presence is compared with the binary
threshold set to 0.5. Note that only membership functions of detection
are set according to thr, while those of reliability have a fixed crossover
point set to 0.5.

7.3.2 Results and discussion

We measured the accuracies of OR-based and fuzzy-based fusion in terms of
Area Under Curve (AUC). Fig. 7.3 (a) shows the results we obtained on the
data set of 1, 600 images. The results of the two methods are very close to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

itiv
e 

Ra
te

 

 

OR       (AUC=0.947) 
FUZZY (AUC=0.974)

(a) Synthetic 1, 600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

itiv
e 

Ra
te

 

 

OR       (AUC=0.889)
FUZZY (AUC=0.958)

(b) Synthetic 400

Figure 7.3: ROC curves for the two synthetic data sets.

each other, with fuzzy approach slightly outperforming logical OR (`2.7%

AUC). This can be explained by noting that the image classes have been
designed so that at least one tool is ideally able to detect the tampering.
No unknown tampering altering the analysed features was introduced. In
addition, the number of tools is still quite limited. For these reasons, this is a



124 7. Performance evaluation of the fuzzy fusion framework

case that is likely to be managed satisfactorily even by a simple OR operator.
Nevertheless, the fuzzy method already performs better.

In order to better highlight the potentiality of the fuzzy framework, the
same test is performed on the second data set. Recall that we created such
data set of highly textured natural images to trigger a specific weakness of one
of the tools. By doing so, we introduced uncertainty that should highlight the
superior performance of our method. Fig. 7.3 (b) confirms that, as expected,
the benefits brought by the fuzzy system are now more significant (`6.9%

AUC).

Consider now the data set of tampered faces, that is the closest representa-
tion of a real-world scenario. As clearly shown in Fig. 7.4, the benefits brought
by the fuzzy approach are evident (`11.2% AUC). Moreover, a large portion
of such gain is located in the leftmost part of the curve that corresponds to low
Pf a § 0.15, i.e. the working condition that are likely to be used in practice. In
conclusion, the last results are an encouraging step towards the correct under-
standing of what happens in real-world scenarios, where unknown processing
is likely to introduce doubtful cases that the fuzzy approach can handle more
efficiently.
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Figure 7.4: ROC curves for the data set of tampered faces.
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7.3.3 Robustness to variations of parameters

Reliabilities RA, RC and RE have been derived from the papers implementing
their respective algorithms, while RB and RC were defined experimentally. Al-
though this is the typical example of the operator’s knowledge being passed
to the fuzzy system, the assignment of constant values may appear as an arbi-
trary choice depending on experimental data. Therefore, this section evaluates
the robustness of the proposed approach with respect to relatively small vari-
ations of reliability. To this aim, we iterated the experimental procedure of
Sec. 7.3.1 for variations of RB in r0.3, 0.5s and RC in r0.7, 0.9s with step 0.05.
The results are shown in Fig. 7.5: for each data set we display the ROC curves
corresponding to the best (solid lines) and worst (dotted lines) performances
of both fusion methods.
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Figure 7.5: Robustness to variations of RB and RC. Solid lines: perfor-
mance’s upper bound; dotted lines: performance’s lower bound.

The small differences in terms of AUC between the two curves on all data
sets (1.7%, 5% and 3% respectively) highlight the robustness of the fuzzy
approach when we assign suboptimal values to reliability. It is worth noting
that the minimum performance granted by the fuzzy fusion continues to be
superior to that of the optimised OR method.
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7.3.4 Comparison with other fusion techniques

A comparison between different fusion methods, including an earlier version
of the system discussed in this chapter, has been presented in [Fontani et al.,
2012]. More specifically, Fontani et al. compare four methods: Fuzzy [Barni
and Costanzo, 2012b], Dempster-Shafer [Fontani et al., 2011],5 logic OR and
SVM. The methods were used to merge the outputs of 3 forensic tools, i.e. tA,
tB and tC, on the two synthetic data sets of Sec. 7.1.2. From the ROC curves of
Fig. 7.6 (left) we can observe that the performance of all the methods in terms
of AUC are very similar on the large data set of 1, 600 images; as we already
observed, we designed such data set so that at least one tool can detect the
tampering, thus no uncertainty was introduced. Conversely, on the noisy data
set of 400 images of Fig. 7.6 (right) the difference between the simple OR and
the rest of the methods is evident. Tab. 7.4 summarises the true positive rate
of the examined techniques for a selection of low false positive rates.
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Figure 7.6: Comparison of different fusion methods.

5This work has been extended in [Fontani et al., 2013].
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False Positive Rate

Method 0 0.05 0.1 0.15 0.2

DS 0.54 0.77 0.84 0.88 0.91

Fuzzy 0.6 0.8 0.84 0.85 0.88

SVM 0.51 0.77 0.84 0.88 0.91

OR 0.56 0.76 0.81 0.84 0.86

Table 7.4: Accuracy of different fusion methods for low false positive rates.

7.3.5 Computational complexity

When K forensic tools are employed, there are 2

K possible K-uples belonging
either to TTRUE, TFALSE or TDOUBT. Each column of these tables corresponds
to an if-then rule in the form of Eq. (6.2) or Eq. (6.9), thus resulting in 2

K

compound rules. In practice, it is not possible to deal directly with rules in
such a form, hence the resorting to Eqs. (6.3)–(6.6) and to a particular indexing
for fuzzy sets, that is necessary to apply the majority criterion to reliabilities.
The final number of basic rules amounts to 2

2K. In the presented case of
K “ 5 tools the system consists of 32 cases generating a set of 1, 024 if-then
rules. On a common desktop configuration (3 GHz dual-core processor, 4 GB
RAM, 32 bit OS), the optimised version of our code resulted in the following
execution times: about 1 second to build TTRUE, TFALSE and TDOUBT (this
operation is performed only once for each data set); 0.2 seconds to build the
fuzzy inference system and 0.5 seconds to resolve all rules (these operations
are performed once for each image).

7.4 Concluding remarks

In this chapter we implemented and validated a fuzzy inference system to deal
with uncertainty when using multiple forensic detectors. Usually each forensic
technique deals with a single type of manipulation, whilst a real tampering is
often the result of several processing. It is therefore necessary to employ more
tools cooperating with each other. Several problems arise when we must take
a single decision by looking at heterogenous, discording or incomplete outputs.
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The results are promising, nevertheless several issues still need to be ex-
plored, including: i) implementing a wider set of forensic tools working on dif-
ferent manipulations; ii) devising a strategy to tackle the exponential growth
of if-then rules occurring every time that a new tool is added to the system.
For example, we could use the weighted Hamming distance currently employed
to map non-ideal cases or a hierarchical clustering; iii) testing the accuracy on
a large real-world data sets of tampered images, e.g. gathered from the Web;
iv) comparing the fuzzy method against other soft decision approaches, like
Bayesian, Support Vector Machines and Neural Networks, on extended data
sets; v) extending the theoretical framework to the most complex case where
the suspicious tampered region is not known a priori. In this scenario we can
imagine that each tool produces a tampering map automatically localising the
forged region. As a matter of fact, the process of localisation may introduce
uncertainty. Once the region has been located, the fusion can proceed as
described in this chapter.



Part III

Digital Image Counter-Forensics





D igital Image Counter-forensics is the art of misleading forensic analysis
by hiding, removing or falsifying the traces that forensic algorithms are

looking for. Although this discipline is still in its infancy, researchers have
successfully bypassed both source and forgery detection by means of methods
hiding the presence of compression artefacts, histogram manipulations, resam-
pling or median filtering. Most of the times, however, counter-forensic tech-
niques are not perfect and leave traces on their own. Such traces can then be
exploited by the forensic analyst, thus feeding a circle improving the tools at
the community’s disposal.

Despite the satisfactory results obtained so far by Counter-forensics, there
are still some categories of algorithms that have not been challenged, such as
those based on salient point detectors. The features extracted by such detectors,
in fact, are robust against several processing tools and generally invariant to
geometrical manipulations; moreover, their high distinctiveness makes them
the ideal choice for matching-based forensic detection (e.g. copy-move). In this
part of the thesis we target the most popular of such feature extractors, i.e. the
Scale Invariant Feature Transform (SIFT) and we attempt to impair forensic
detectors based on it. Our contribution is threefold: i) we propose a new attack
to remove SIFT keypoints from images and we apply it successfully to bypass a
state-of-the-art SIFT-based copy-move detector; ii) we develop three different
algorithms to detect global and local keypoint removal; and iii) we propose an
attack to inject fake keypoints and we attempt to mislead the removal detectors
introduced previously.





Chapter 8
Introduction to Counter-forensics

“What were you expecting? Once the process of falsification is set in motion, it
won’t stop. We are in a country where everything that can be falsified has been
falsified [...]. The result is that nobody can be sure what is true and what is
false, the political police simulate revolutionary actions and the revolutionaries
disguise themselves as policemen.”

If on a winter’s night a traveler
Italo Calvino

T

HE TOPIC of this chapter is Digital Image Counter-forensics. Sec. 8.1
informally introduces the meaning and the role of counter-forensic
analysis and explains the reasons why it can be useful to the whole

forensic community. Secs. 8.2–8.3 formally approach the problem of Counter-
forensics from a theoretical point of view, as proposed in [Kirchner, 2011;
Böhme and Kirchner, 2012]. In these works, a model for Image Forensics is
first elaborated and then extended to embrace the counter-forensic scenario.
Such a framework will be adopted for the rest of the dissertation. The chapter
ends with the overview of counter-forensic techniques in Sec. 8.4.

8.1 What is Counter-forensics?

The first decade of Image Forensics has produced a large number of algorithms,
some of which has been described in Chapter 2. The robustness of these
algorithms is generally evaluated against the most common processing tools,
such as compression or resampling. However, little or no importance has
been given to the study of countermeasures specifically devised to bypass the
analysis of the forensic algorithms. Anyone with such a purpose is commonly
referred to as adversary, i.e. a party who has the same knowledge on signal
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processing as the forensic analyst and some reasons to mislead a specific image
forensic investigation.

A goal like this can be pursued by hiding, removing or falsifying traces of
illicit processing, so that the counterfeited image appears authentic. In other
words, the adversary does not limit anymore herself to manipulate an image
but she also wants that manipulation to be undetectable. All the solutions in
this sense fall into the discipline called Counter-forensics (also known as anti-
forensics or tamper hiding). Most of the times, similarly to the algorithms
they are supposed to fool, counter-forensic techniques are not perfect and
leave traces on their own. Such traces can then be exploited by the forensic
analyst to detect the adversary’s misdoing and gain a new advantage. Far
from being a mere divertissement, studying the mutual interaction between
these two parties can bring several advantages, such as:

• providing data about real-world scenarios. Forensic techniques are gener-
ally validated in a “friendly” laboratory environment. Intelligent counter-
forensic methods can instead provide valuable insights on real-world per-
formance;

• building better tools. The weaknesses exploited by counter-forensic
methods can either push towards devising improved or brand new, more
secure, forensic algorithms;

• providing directions for theoretical formalisations. Research community
has already begun to study adversarial challenges to forensic analysis
more rigorously. Encasing Counter-forensics into a sound framework
would ultimately allow it to evolve from the art of misleading to the
science of misleading;

• providing tools for improved privacy. Sometimes the information that
a forensic algorithm can extract from an image may violate the privacy
of its rightful owner. Erasing sensitive footprints by means of Counter-
forensics could be seen as an effective form of self-defense.

Given the above, the growing interest on Counter-forensics should not be
surprising. There are, however, some caveats. The potentially virtuous circle,
defined by any new iteration of forensic algorithm, counter-forensic scheme
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and new forensic algorithm, risks to lean towards a cat and mouse game,
i.e. a contrived action involving constant pursuit, near captures, and repeated
escape,1 leading to a sterile stalemate situation. This is a risk connected to the
fact that Counter-forensics is still in its infancy, often looking more like the
work of “craftsman” rather than that of a scientist. To address this potential
issue, the counter-forensic scenario has been recently cast into more rigorous
theoretical frameworks, including the one introduced in the next section.

8.2 Formalisation of the forensic problem

The next two sections review the formalisations of Image Forensics and Counter-
forensics as a hypothesis testing problem, as recently proposed by Kirchner
and Böhme [Böhme and Kirchner, 2012; Kirchner, 2011]. Such framework will
be adopted throughout the rest of the thesis.2 The authors first systematise
the procedure of generating a digital image and then develop a terminology for
original, authentic and counterfeited images. Furthermore, the forensic anal-
ysis is modeled as a decision problem and Counter-forensics is contextualised
accordingly. In the following, only those concepts that are instrumental to the
purpose of the dissertation are summarised. The interested reader may consult
[Kirchner, 2011] for a full account of the complete theoretical framework.

8.2.1 Image generation process

A digital image is the representation over a finite set of discrete symbols of
one of all the possible natural phenomena N P N . An image I is generated
by means of a function, namely generate : N ˆ ⇥ Ñ I , where ⇥ is the set
of all possible generation parameters and I is the set of all possible images.
More precisely, the generation process is influenced by a subset of parameters
✓ P ⇥, depending both on the acquisition device and on the characteristics of
the natural scene.

1The Mirrian-Webster Online Dictionary, http://www.merriam-webster.com/
dictionary/cat%20and%20mouse

2It is worth noting that Kirchner and Böhme’s is one of the possible problem formalisa-
tions. For alternative formulations, see Sec. 8.4.6.

http://www.merriam-webster.com/dictionary/cat%20and%20mouse
http://www.merriam-webster.com/dictionary/cat%20and%20mouse
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The function generate can be further decomposed into two steps: a first
stage in which the device captures the natural scene and a second stage in
which the acquired scene is conveniently elaborated to produce a suitable out-
put image. Fig. 8.13 outlines the generation process. The scene is first cap-
tured by a function acquire P A : N Ñ I , chosen from the set of all possible
acquisition functions A . Then, a function process P P : I Ñ I taken in
the set of all processing functions P is applied. The pairs pacquire, processq
belong to the space A ˆ P of all the possible combinations of acquisition and
processing functions.

acquire 2 A process 2 PN 2 N

image generation

image acquisition image processing

generate(✓ 2 ⇥)

natural
 scene

 image analysis

I 2 I

Figure 8.1: Outline of the image generation process.

There are some aspects of the above scheme that are worth noting. First of
all, process can also be a cascade of more than one independent function, i.e.
process “ rp

1

, p
2

, . . . , pKs, pk P P , k P r1, Ks. Post-processing can be carried
out directly by the acquisition device, by software working on device’s output
or by both. Furthermore, not necessarily post-processing has to follow the
acquisition stage. In this case, process corresponds to the identity function
KP : I Ñ I.

8.2.2 Original images, authentic images and forgeries

With the support of the definitions given in previous section, it is possible
to introduce the notions of originality and authenticity of a digital image in
terms of the pair pacquire, processq.

Definition 1. An image I is original if it is the result of the generation
functions pacquire,KPq.

3Fig. 8.1 reproduced from [Kirchner, 2011] with kind permission of the authors.
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The formal definition of originality given by Kirchner and Böhme is very strict:
to retain it, an image cannot undergo any kind of processing, not even those
embedded more and more often in commercial acquisition devices. Any image
in contrast with Definition 1 is considered processed .

Definition 2. An image is processed if it is the result of the generation
functions pacquire,processq P A ˆ PztKPu.

From the point of view of a forensic analyst, not all processing is the same.
While some operations may be acceptable because they are simply meant
to enhance an image or represent it in a convenient way, others may not
be allowed as one could exploit them to intentionally alter image semantics.
Therefore, it becomes necessary to introduce the notion of authenticity. Let
P

legitimate

Ñ P be the subset of acceptable processing functions. Then, an
image is defined authentic as follows.

Definition 3. An image is authentic if it is the result of the generation
functions pacquire,processq P A ˆ Plegitimate.

Now let P
illegitimate

“ P ´ P
legitimate

be the subset of processing func-
tions compromising the authenticity of an image. Then, an image is defined
manipulated as follows:

Definition 4. An image is manipulated (i.e not authentic) if it is the result
of the generation functions pacquire,processq P A ˆ Pillegitimate.

In practice, the distinction between legitimate and illegitimate processing,
and consequently between authentic and not authentic images, is fuzzier than
theoretically, as it is not known beforehand but rather varies significantly from
application to application.

8.2.3 Image Forensics as a classification problem

Normally, the function generate leaves into the image specific traces, that
can be used by the forensic analyst to deduce information on the generation
process. By doing so, it is possible to discriminate between different generation
processes and also to draw conclusions on the authenticity of an image.
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As a consequence, forensic analysis can be modeled as a classification prob-
lem, whereby the generation space A ˆ P is partitioned into subspaces pA ˆ
PqpCiq, according to different classes Ci P C . Each class is determined by a cer-
tain range of the generation parameters ⇥pCiq. All the images of a class share
the same identifying traces, i.e. I

pCiq “  
I P I | I “ generatep✓ P ⇥pCiqq(

.
Hence, any forensic algorithm can be defined as follows.

Definition 5. A digital image forensic algorithm is a function decide :

I Ñ C assigning an image I P I to a class C P C .

The number of partitions (and thus of classes) depends on the application
at hand. Consider the following two examples.

• The source identification problem requires to define a class Ck for each ac-
quisition device. Consequently, the generation subspaces are determined
by the family of acquisition functions Ak of each device, and correspond
to pAk ˆ PqpCkq.

• The forgery detection problem requires (see Definition 4) to define two
classes, i.e. C

0

for authentic images and C
1

for manipulated images. Ac-
cording to which processing tools are considered legitimate and which il-
legitimate, the corresponding generation subspaces are pA ˆPlegitimateqpC

0

q
and pA ˆ PillegitimateqpC

1

q.

8.3 Formalisation of the counter-forensic problem

In Counter-forensics, the goal of the adversary is to bypass the analysis of one
or more forensic tools. Any solution serving such purpose is called attack or
counter-forensic scheme.

Definition 6. Given an image I, a function attack P P is a composition of
processing functions that is used to produce a manipulated image J “ attackpIq
capable of misleading a forensic algorithm decide.

From a classification perspective, the purpose of a counter-forensic attack
could be twofold: i) to remove or hide specific image properties qualifying
the image as a member of a certain class Ck; and ii) to make an image of
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class Ck appear as if it were belonging to another class Cl ‰ Ck. Whenever
attack manages to alter an image IpCkq (shortly Ipkq) in such a way that decide
erroneously assigns it to Cl, the resulting image will be indicated with JpC

ˆlq
(shortly Jpˆlq).

The attack of Definition 5 produces a manipulated image. The capability
of this image to fool a certain forensic algorithm depends on the notion of
vulnerability of the forensic technique.

Definition 7. A digital image forensic algorithm decide is vulnerable to a
counter-forensic scheme attack if, given an authentic image I,

D attack P P , J “ attackpIq : decidepIq ‰ decidepJq
subject to constraints:

(a) the probability of finding attackpIq is not negligible within a given com-
plexity bound

(b) images I and J are semantically equivalent.

The first constraint of Definition 8 ensures that the attack is feasible in
terms of time and computational efforts. Intuitively, the second constraint
ensures that the semantic content of the manipulated image cannot be distin-
guished from the authentic one. The notion of semantic equivalence, formally
explained in Definition 8, is based on the assumption that the correspondence
between a natural scene and an image depicting it can be somehow measured.

Definition 8. Two images I and J are semantically equivalent if:

D N P N : |distpI,N q ´ distpJ,N q| † d

where dist : I ˆ N Ñ R` is an arbitrary metric of the semantic distance
between an image and a natural phenomenon and d is a given threshold.

Now, if one considers again the two typical forensic classification problems
of Sec. 8.2.3, the corresponding counter-forensic strategies are the following.

• Countering source identification. The authentic image Ipkq P Ck is ma-
nipulated to produce the attacked image Jpˆlq “ attackpIpkqq such that
decidepJpˆlqq “ Cl, where Cl ‰ Ck. Depending on the objective of the
adversary, class Cl can be any class or a specifically targeted class.
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• Countering forgery detection. The authentic image Ip0q P C
0

is firstly
altered according to the adversary’s objective, thus producing the ma-
nipulated image I1

p1q P C
1

. Then, a semantically equivalent image I1
pˆ

0q “
attackpI1

p1qq is elaborated in such a way that decidepI1
pˆ

0qq “ C
0

.

In [Böhme and Kirchner, 2012], a categorisation of counter-forensic tech-
niques is also proposed. The methods are subdivided according to: whether
they address the security or the robustness of a forensic algorithm; the stage
of the image generation process at which they are carried out; the range of
countered forensic algorithms. Since the theoretical definition of robustness
and security is a very complex task which is not the focus of this dissertation,
only the second and third categorisations are adopted in the sequel.

The first category subdivides counter-forensic attacks into integrated and
post-processing . An attack is integrated (Fig. 8.2, bottom blocks4) if it replaces
or interacts with the generation process, by defining a new pair pacquire1

, process1q
such that no peculiar footprints are generated or such that traces of a target
class are falsified. In other words, integrated attacks prevent the formation
of footprints, rather than deleting them at a later stage, which is exactly the
behaviour of post-processing attacks (Fig. 8.2, top blocks).

post-processing attack

integrated attack

(A ⇥ P)
(Cl̂)

(A ⇥ P)
(Cl̂)

(A ⇥ P)
(Ck)

acquire 2 A

acquire0 2 A process0 2 P

process 2 P attack 2 P

N 2 N

I

post

(

ˆ

l)

2 I

I

int

(

ˆ

l)

2 I

I

(k)

2 C
k

Figure 8.2: Distinction between post-processing and integrated attacks.

The second categorisation takes into account the ultimate target of the
adversary. If the countermeasure has been specifically tailored to remove traces
detectable by a particular forensic technique known to the adversary, then such

4Fig. 8.2 reproduced from [Kirchner, 2011] with kind permission of the authors.
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an attack is defined targeted . On the contrary, if the attack attempts to leave
unaltered as many authentic features as possible in order to hide forgeries even
to unknown forensic methods, then it is defined universal .

So far, the majority of counter-forensic attacks are targeted, as universal
attacks are harder to design (for example, see [Barni et al., 2012]). Despite
one’s intuition, the combination of multiple targeted attacks does not neces-
sarily results in a good universal attack. The problem with such solution, in
fact, is twofold: firstly, as it was shown in Chapter 6 from the perspective
of the forensic analyst, the interactions between heterogenous tools are not
trivial to model; secondly, the accumulation of instruments has detrimental
effects on the forged image’s quality.

8.4 A brief state-of-the-art of Counter-forensics

This section organises the counter-forensic algorithms proposed so far accord-
ing to the scenario they address. It is not our aim to provide a thorough
analysis of the state-of-the-art on Counter-forensics, but rather to provide
some examples of the algorithms that have been devised so far. Therefore, we
only briefly describe each technique; we refer to the corresponding paper for
a detailed description of the algorithm.

8.4.1 Hiding JPEG or the paradigm of cat & mouse game

Compressing an image with JPEG generates two peculiar footprints: the
comb-like shape of the Discrete Cosine Transform (DCT) coefficient histogram,
which contains empty bins caused be the quantisation stage; and the blocking
artefacts in the spatial domain caused by the block-based coding approach.
Forensic analysis leverages on such artefacts to infer information on the his-
tory or on the source of JPEG images. In the past few years, several counter-
forensic schemes have been developed to hide traces of compression. Some
of these attacks inspired new forensic detectors, which in turn inspired new
attacks. Fig. 8.3 graphically schematises what is probably the best example
of cat & mouse game in Image Forensics.

The first attempts to render JPEG footprints forensically undetectable are
the techniques in [Stamm et al., 2010a] and [Stamm et al., 2010b]. In [Stamm
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Figure 8.3: Succession of JPEG forensics and Counter-forensics.

et al., 2010a], the quantisation gaps in the DCT histogram are reduced by
spreading the coefficients with an additive noise called anti-forensic dither.
The distribution of this noise depends on the value of DCT coefficient that
is being modified, on the quantisation step and on the estimation of DCT
coefficient distribution prior to compression. As a result, the DCT coefficient
distribution in the attacked image approximates as closely as possible the
distribution of the unquantised coefficient. In [Stamm et al., 2010b], the traces
of blocking artefacts are hidden by means of smoothing based on median
filtering, followed by the addition of a Gaussian noise whose variance depends
on the JPEG quality factor of the manipulated image. The effectiveness of
the two attacks, which can be combined to impair different kinds of detector,
is demonstrated against the detector of doubly compressed images in [Fan and
de Queiroz, 2003].

Not long after Stamm et al.’s studies, [Lai and Böhme, 2011] discovered
that anti-forensic dither leaves peculiar traces, and thus a new forensic detec-
tor was proposed. Furthermore, the authors modified the original dither in
such a way to also fool their own new detector. Finally, a second detector
revealing the traces left by the improved dither was developed. When [Stamm
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et al., 2010a] cannot estimate the distribution of a coefficient, in fact, this is
left unaltered. Such a behaviour generates the two footprints exploited by the
first detector, that is the high number of zero valued high frequency coeffi-
cients and the small absolute value of unaltered AC coefficients. The above
detector is fooled by improving the estimation stage of the anti-forensic dither
on the problematic coefficients. The final improved detector, by borrowing
from steganalysis the notion of calibration [Fridrich et al., 2003b], uses as cue
the ratio of the variance of high frequency coefficients between the manipu-
lated image and its slightly cropped (calibrated) version. Dithered images, in
fact, are characterised by a higher ration than authentic images.

The cost of anti-forensic dithering in terms of image quality has been evalu-
ated in [Valenzise et al., 2011b], where it emerged that the impact of the attack
is perceptually not negligible. Tests conducted on an improved, content-aware
version of the original scheme yield similar results. Based on this preliminary
analysis, the same authors presented a new detector capable of discriminating
between original images and anti-forensically dithered images [Valenzise et al.,
2011a, 2013]. The detector relies on total variation (TV), i.e. the `

1

norm of
first-order spatial derivatives, to compute a measure of re-quantisation “noise”,
that is significantly higher in dithered images. Valenzise et al.’s detector, how-
ever, is not robust to the counter-forensic scheme in [Fan et al., 2013b], which
removes JPEG blocking artefacts by means of a minimisation criterion based
on TV. Moreover, Fan et al.’s method also includes a de-calibration stage that
impairs the detector in [Lai and Böhme, 2011].

In [Li et al., 2012], the authors observe that random DCT modifications
as in [Stamm et al., 2010a] destroy the correlations between the coefficients
within each 8 ˆ 8 block and between each block and the adjacent ones. There-
fore, again by borrowing from steganalysis [Chen and Shi, 2008], they evaluate
such correlations to expose anti-forensic dither. The authors also claim that
their method outperforms the one in [Valenzise et al., 2011a]. In [Qian and
Zhang, 2012], the abnormal distribution of decimal values of the DCT coef-
ficient of a dithered image with respect to an unprocessed one is used as a
proof of manipulation. [Fan et al., 2013a] argue that anti-forensic dither’s as-
sumption of Laplacian distribution for the unquantised DCT coefficient is not
always accurate. Therefore, they propose a non-parametric DCT histogram
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smoothing based on image restoration and calibration. Given a JPEG image,
first they estimate its uncompressed version by means of image restoration.
Then, they estimate the noise by subtracting the restored image and a cal-
ibrated version in DCT domain. Finally, the so obtained noise is added to
the starting JPEG image to remove its DCT histogram gaps. The proposed
technique is then used to neutralise the detectors in [Lai and Böhme, 2011]
and [Valenzise et al., 2011a].

To conclude, it is worth noting that the idea behind anti-forensic dithering
has also been extended to encompass the case of Wavelet-based compression
[Stamm and Liu, 2010].

8.4.2 Countering other JPEG compression-related methods

Understanding whether an image has been JPEG compressed multiple times
can be useful for a number of forensic applications, including the detection
of image splicing. In this scenario, a typical detector looks for a mismatch
between the number of compressions of manipulated regions with respect to
the rest of the image (see the tools of Chapter 7). Expectedly, counter-forensic
schemes attempt to hide the manipulation by uniforming the number of com-
pressions, as in [Chunhui et al., 2012], where double quantisation artefacts are
removed. The idea underlying the scheme in [Milani et al., 2013] is similar.
This tool attacks detectors based on Benford’s law of first digit (FD), like the
one in [Milani et al., 2012], by altering the FD’s probability mass function to
match that of a single compressed image.

8.4.3 Hiding traces of image histogram manipulations

Contrast enhancement can be used to destroy forensically relevant traces.
There exist several forensic algorithms exploiting the fact that the grayscale
histogram of a contrast enhanced image typically exhibits two characteristics:
impulsive peaks when multiple pixels are mapped to the same bin and gaps
where no pixel is assigned to a bin. The method in [Cao et al., 2010a] allows
to remove these peaks and gaps with an approach that is quite similar to the
JPEG dither. During the contrast mapping stage, in fact, each pixel is per-
turbed with a Gaussian dithering whose variance depends on the original pixel
value. The attack, implemented in two equivalent versions (integrated into the
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contrast remapping and post-processing), successfully impairs the well known
detector in [Stamm and Liu, 2008].

Recently, [Barni et al., 2012] tackled with the same problem from a more
general point of view and proposed an universal post-processing attack target-
ing forensic algorithms based on first order statistics (i.e. image histogram).
The authors claim that their technique can hide any kind of manipulation leav-
ing traces in the image histogram. The idea behind the technique consists in
modifying the histogram of a manipulated image in such a way to match that
of another, totally different, authentic image drawn from a database. First, a
new target histogram is chosen according to minimum distance and maximum
shape similarity criteria. Then, the pixel values of the manipulated image are
changed (i.e. moved from a bin to another) according to a mapping function
minimising perceptual distortion. The effectiveness of the method is proved
by invalidating the contrast enhancement detector in [Stamm and Liu, 2008].
Not long after the above counter-forensic schemes were introduced, a new con-
trast enhancement detector capable of discovering the traces they leave when
applied to color images was devised [Lin et al., 2013]. In fact, when the two
attacks are applied to color images, the natural inter-channel similarities of
high-frequency components are altered.

8.4.4 Hiding resampling and median filtering

Evidence of resampling is particularly useful for forensic algorithms detecting
cut & paste forgeries, since pasting a portion of image into another image typ-
ically requires adaptations (e.g. resizing or rotating) to create a convincing
forgery. State-of-the-art detectors exploit the space-periodic dependency be-
tween neighbouring resampled pixels [Popescu and Farid, 2005]. Such period-
icity can be avoided with the integrated attack in [Kirchner and Böhme, 2007;
Kirchner and Bohme, 2008]. The image to be resampled is split into two con-
tributions, low-frequency and high-frequency. The high frequency pixels are
perturbed with a perceptually-driven Gaussian noise while being resampled,
as opposed to the low frequency pixels, that are first traditionally resampled
and then median filtered. The two contributions are finally recomposed to
produce the resampled and forensically undetectable image.
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Median filtering can be used for high quality image denoising and smooth-
ing, as well as for hiding malicious image processing. Among these manipu-
lations, there are the aforementioned removal of evidences of resampling and
the anti-forensic dither of Sec. 8.4.1. Consequently, great effort has been put
towards its detection, based on the fact that median filtering greatly increases
the probability of two adjacent pixels having the same value and introduces
correlation between neighbouring image blocks. The method in [Fontani and
Barni, 2012] attempts to make such traces forensically undetectable by search-
ing the best sliding window operator which removes median filtering footprints
while maximising the similarity between the median image and its countered
version. The validity of the approach is experimentally proved by successfully
hindering two well known median filtering detectors [Cao et al., 2010b; Yuan,
2011].

8.4.5 Forging image source

As mentioned in Chapter 2, the source of a digital image can be accurately
determined by analysing its PRNU or its CFA pattern, which vary between
different camera brands and models. Moreover, cut & paste forgeries can be
detected by looking at image regions whose underlying PRNU (or CFA) does
not match that of the rest of the image. Methods to falsify PRNU and CFA
footprints have been proposed respectively in [Gloe et al., 2007b] and [Kirchner
and Böhme, 2009]. In [Gloe et al., 2007b] the authentic PRNU is removed
and substituted with a target PRNU that has been previously estimated from
a set of images originated by the target camera. It is possible to counter
this attack by means of the so called Triangle Test in [Goljan et al., 2010].
However, recently [Rao et al., 2013] has shown how to successfully impair
source identification methods and to significantly attack the Triangle Test. In
[Kirchner and Böhme, 2009], the authentic CFA is substituted with another
target pattern maximising the PSNR between the input image and the output
image containing the desired pattern.
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8.4.6 Counter-forensics as a Game Theory problem

In order to better understand the ultimate performance of the forensic anal-
ysis in presence of an intelligent adversary, the research community focused
more and more on developing rigorous theoretical frameworks in which to cast
the forensic and counter-forensic problems. The formalisation in Secs. 8.2–8.3
is not the only one proposed so far. Very recently, in fact, the two problems
have been also cast into a game-theoretical framework [Barni, 2012; Stamm
et al., 2012]. Game theory is a branch of mathematics devoted to the anal-
ysis of strategic situations, referred to as games, in which the success of one
player depends on the choices made by the other player(s). This particular
formulation, in fact, elegantly allows to understand under which conditions
the challenge between adversary and analyst has a winner.

A first step in this direction is the one in [Stamm et al., 2012], where
the effectiveness of an adversarial strategy is evaluated and the corresponding
optimum forensic countermeasure is derived. A more rigorous and general
approach is proposed by Barni and Tondi (see [Barni, 2012] and [Barni and
Tondi, 2013]). In particular, the authors focus on the source identification
game with known statistics. Under certain assumptions, they demonstrate
that optimum strategies for both the analyst and the adversary can be de-
rived and numerically evaluated. In [Barni and Tondi, 2012], the analysis is
further extended to the case where the statistics of the source are known to
the adversary only through training data.

8.5 Concluding remarks

This chapter introduced Counter-forensics, that is the art of misleading im-
age forensic analysis by hiding, removing or altering the traces identifying a
specific image manipulation. Several benefits are brought by counter-forensic
research, the most evident of which is the impulse to improve existing tools or
to devise new and more robust tools. Even though this discipline is still in its
infancy, several popular forensic techniques have been successfully impaired.
Moreover, the first attempts of casting the counter-forensic problem into a
rigorous framework have been proposed.

Despite the satisfactory results obtained so far, there are still some cate-
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gories of forensic algorithms that have not been challenged, like those based on
physical or geometrical properties of the image scene or those based on salient
point detectors. As it has been observed in Chapter 2, the former typology of
algorithms is mainly used to detect cut & paste forgeries by looking for physi-
cal or geometrical inconsistencies in an image (e.g. [Johnson and Farid, 2008,
2005]). Regions where such inconsistencies are found are considered tampered,
based on the assumption that it is very hard to forge an image in such a way
that properties like perspective, directions of light or shadows of the spliced
region are coherent with those of the authentic content.

Similarly, countering techniques based on salient point detectors (e.g. SIFT,
SURF) presents several difficulties. The features extracted by such detectors,
in fact, are robust or invariant to geometrical manipulations, thus permit-
ting very accurate matching between similar or identical images or portion
of images. For example, this is the reason behind the good performance of
copy-move forgery detectors based on such feature extractors [Pan and Lyu,
2010; Amerini et al., 2011]. In the next chapters we will try to exploit the
weaknesses of the most reliable category of copy-move detectors, that is to say
those based on the most popular of feature extractors, i.e. the Scale Invariant
Feature Transform (SIFT).



Chapter 9
The SIFT algorithm

“No matter how the wind howls,
the mountain cannot bow to it”

The Emperor of China
Mulan

T

he aim of this chapter is to provide the reader with a detailed de-
scription of the Scale Invariant Feature Transform (SIFT) algorithm.
Knowing the concepts underlying SIFT, in fact, is the key to under-

standing its strengths and weaknesses. By relying on such information, we will
be able later in the thesis to develop methods to either undermine (Chapters
10, 11 and 13) or support (Chapter 12) SIFT-based forensic analysis.

The outline of the chapter is as follows. First, some pointers to the state-of-
the-art of local features detection are given in Sec. 9.1, where the terminology
that will be adopted for the rest of the discussion is also provided. Then, in
Sec. 9.2, all the stages composing the SIFT workflow are analysed in depth.
To conclude, in Sec. 9.3 the most interesting extensions of SIFT are described.

9.1 Multi-scale feature detection

The research preceding the development of SIFT had devised a great deal of
feature extractors. An exhaustive overview of such techniques is provided in
[Tuytelaars and Mikolajczyk, 2008], where the authors track back to 1954 the
origins of the interest on finding relevant and robust points or small regions
of an image [Attneave, 1954]. Since this early work, a vast amount of tech-
niques have been developed, improved and finally put aside in favour of more
performing approaches. Without going into details here, it suffices to say that
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there exist several categories of methods: based on edges or corners, on image
intensity, on color, on derivatives, on human visual system, on photometric
models and so on. As a matter of fact, all these early techniques suffered from
a general lack of robustness.

Following the technology advancements of the last two decades and the
worldwide diffusion of more demanding applications based on images and
videos, the research community felt the need of features that could be not
just relevant and unique, but also robust, when not completely immune, to
the most common image processing tools. More specifically, the aim was to
extract features not affected by geometric manipulations such as translation,
scaling, rotation, reflection or combinations of them.

Among these transformations, scaling was the most critical operation to
deal with. Often, not only in Computer Vision but also in physics, the best
scale to analyse a certain phenomenon is not known a priori or not trivial to
determine with theory or experiments. Therefore, a sound strategy should
consist in including the information coming from different scales, rather than
choosing a single scale and focusing only on it. In Computer Vision, this
approach is referred to as multi-scale analysis and has been studied since
the early 1980’s [Burt, 1981; Crowley and Parker, 1984; Lindeberg, 1994].
In its most refined version, such approach first selects an initial scale and
then extracts structures of the input image at that scale. Then, the scale is
increased to obtain a coarser version of the input image and its structures are
extracted again. The purpose of this approach is to separate the structures of
the original image among the different scales, in such a way that finer scale
structures are not propagated to coarser scales and no new structures are
introduced during the process. Usually, the whole procedure is repeated from
the beginning after the original image’s size has been reduced. By relying on
this representation, the features are computed from the image structures across
different scales, in such a way that robustness to scale changes is achieved.
Interestingly, this approach is surprisingly close to the way visual system of
primates (and possibly of humans) works [Tanaka, 1997].

All the works on scale-space representation and its applications, in par-
ticular those by Lindeberg [Lindeberg, 1994, 1998], have been of fundamental
importance to the ideas underlying SIFT. There is no doubt that SIFT has
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been one of the most well-engineered Computer Vision algorithms of the last
decade. With almost 30, 000 academic citations1 and a U.S. Patent,2 the work
by David G. Lowe, introduced in 1999 [Lowe, 1999] and further refined in 2004
[Lowe, 2004] in two seminal papers, has been successfully employed in a huge
variety of scientific fields, including scene (object) recognition and detection,
image retrieval, image registration, image forgery detection, panorama stitch-
ing, automated navigation, tracking and 3D modeling. In [Mikolajczyk and
Schmid, 2005], the authors documented the superiority of SIFT performance
with respect to similar methods in most of the tests they have conducted.

9.1.1 Terminology

Before analysing in detail the technical aspects of SIFT, we introduce the
terminology that will be adopted for the rest of the discussion [Tuytelaars and
Mikolajczyk, 2008]. The term feature denotes a piece of information that is
extracted from an image by a detector (or extractor) and that is relevant to the
solution of some specific problem. If such feature is a pattern extracted from
a subpart of the image and different from its immediate neighbours, then it is
called local feature. Commonly, a local feature is extracted from a rectangular,
circular or elliptical pixel neighbourhood centred in a point of interest. The
visual content of these patches is often not as relevant as their spatial location
and statistical or mathematical properties. These properties are represented
in a convenient, highly descriptive and compact form which is often referred
to as descriptor. To be of some practical use, local features must possess the
following three main properties: distinctiveness, invariance, and robustness
(sometimes called quasi-invariance).

• Invariance. A feature is invariant under a certain set of transformations
T if its values are not affected when a transformation t P T is applied.
The most important invariances are those to geometric transformations
and to lightning variations.

1So far (January 2014), the articles were referenced 7, 042 and 22, 194 times respectively.
2United States Patent number 6711293, “Method and apparatus for identifying scale

invariant features in an image and use of same for locating an object in an image”, released
on 23 March 2004 and owned by the University of British Columbia, Canada.



152 9. The SIFT algorithm

• Robustness. A feature is robust to a certain processing (e.g. noise ad-
dition, quantisation, compression) if its values are not altered excessively
when such a processing is applied. This result is achieved at the cost of
some loss in accuracy by reducing the impact of that specific processing
on the detector.

• Distinctiveness. A feature is distinctive if its underlying patterns show
many variations, thus making it easily distinguishable from the other
features.

Ideally, invariance is the property one should always grant. However, full
invariance is hard to achieve in practice, hence robustness also plays an im-
portant role. These two properties are sometimes summarised with the term
repeatability. In addition to the above properties, good features should also
possess: locality, i.e. support should be small enough to describe only local
characteristics; quantity, i.e. amount of features should be sufficiently large
but not excessive; accuracy, i.e. localisation in space and scale should be
precise; and efficiency, i.e. computational cost should be low.

Unfortunately, it is unlikely that all local features have the three main
properties outlined above; a feature missing at least one of them is consid-
ered unstable or unreliable. Unstable features should be discarded, as they
suffer a number of drawbacks which may impact on accuracy, and even their
mere presence raises the complexity of the system and reduces its scalabil-
ity. Some unstable features are however inevitable, in consideration of the
number of trade-offs existing between their properties. Among them, we men-
tion those between distinctiveness and locality, distinctiveness and invariance,
distinctiveness and robustness. In the first case, the smaller the feature neigh-
bourhood, the less the feature can effectively describe the underlying pattern.
In the second and third cases, the processing required to achieve repeatabil-
ity flattens the variations of intensity patterns, thus making the features less
distinguishable.
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9.2 Scale Invariant Feature Transform

According to the terminology of Sec. 9.1, SIFT computes multi-scale distinc-
tive local features that are invariant to scale and rotation and robust, to a
variable extent, to affine distortions, changes in illumination, changes of 3D
viewpoint, cluttering, occlusions and noise addition. These features are ob-
tained from the neighbourhoods of salient points referred to as keypoints; SIFT
provides a high amount of keypoints, even if dependent on image’s content and
size, densely distributed across the image, at a low computational cost.

The method consists of four stages: i) construction of the scale-space rep-
resentation of the input image; ii) keypoint localisation and refinement; iii)
assignment of canonical orientation; and iv) construction of the descriptor.
First, the algorithm identifies good candidate locations across all scales; then,
locations are refined according to some criteria of stability; in order to achieve
rotation invariance, to each keypoint a principal orientation is assigned; finally,
the neighbourhood of each keypoint is used to elaborate an unique descriptor.

9.2.1 Scale-space representation

The first SIFT stage localises candidate features that are invariant to scale
changes. The input image is represented in such a way that the effect of
different scales can be conveniently simulated. Such representation is the so
called scale-space representation, which, for the sake of clarity, is introduced
here in its two-dimensional formulation. The reader is referred to [Lindeberg,
1994] for the straightforward generalisation to an arbitrary number of dimen-
sions.

Let f : R2 Ñ R be a 2D signal. Then, the scale-space representation
Lpx, y;�q of f is the convolution of f with a function G : R2 ˆ R` Ñ R:

Lpx, y;�q “ Gpx, y;�q ˚ f px, yq, (9.1)

where Gpx, y;�q is the Gaussian kernel such that:

Gpx, y;�q “ 1

2⇡�2

e´px2`y2q{2�2

. (9.2)

The width of the Gaussian kernel, i.e. � P R` is referred to as the scale
parameter. There exist multiple ways to demonstrate that the Gaussian kernel
is the only possible kernel for scale-space analysis [Lindeberg, 1994].
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In order to obtain stable candidate keypoints, SIFT makes use of an ex-
tractor named Difference of Gaussians (DoG), which is defined as follows. Let
k� and � be two consecutive scales separated by a constant k P R` and let
Lpx, y; k�q and Lpx, y;�q be their corresponding scale-space representations.
Then, the DoG Dpx, y;�q is obtained by subtracting the two scale-space rep-
resentations, as follows:

Dpx, y; k�q “ Lpx, y; k�q ´ Lpx, y;�q
“ pGpx, y; k�q ´ Gpx, y;�qq ˚ f px, yq. (9.3)

The candidate keypoints are selected as the maxima and minima of Dpx, y;�q.
The DoG can be efficiently computed across all adjacent scales of the levels

of a multi-scale pyramid, as pictured in Fig. 9.1.

Figure 9.1: Construction of the Difference of Gaussians (DoG).

In practice, the input image is pre-smoothed (�
0

“ 0.5) and the result is re-
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peatedly convolved with a Gaussian kernel, whose width � (default � “ 1.6)
increases by a multiplicative factor k at each step, to obtain progressively
smoother images. The procedure is repeated s ` 3 times, where s is a parame-
ter of the algorithm (default s “ 2). The stack of Gaussian images constitutes
an octave of scale-space (left column of Fig. 9.1). Then, Gaussian images at
adjacent scales are subtracted and the Difference of Gaussians for a full octave
are obtained (right column). At this point, the whole procedure is repeated
for the next octaves, which are computed by downsampling by a factor 2 the
Gaussian image of width k2� of the preceding octave. If a larger amount
of keypoints is required (usually on small images), the initial octave can be
computed on the input image upscaled by factor 2.

The choice of the parameter k requires some additional considerations.
In multi-scale analysis, the scale-normalised Laplacian of Gaussians (LoG)
�2r2G is an operator well-known for providing very stable and truly scale-
invariant extrema [Lindeberg, 1998; Mikolajczyk, 2002]. The Difference of
Gaussians is a very efficient approximation of the normalised LoG [Lowe, 2004];
more precisely, their relationship is the following:

Gpx, y; k�q ´ Gpx, y;�q « pk ´ 1q�2r2G, (9.4)

where pk ´ 1q represents a constant approximation error for all scales. It has
been observed experimentally that the effect of k on the stability of DoG
extrema is negligible, as long as its value is not much greater than 1. In the
standard SIFT implementation such value is set to k “ 2

1{s (default k “ ?
2).

9.2.2 Keypoint localisation and refinement

The method for localising stable local extrema of Dpx, y;�q is displayed in
Fig. 9.2. Each extremum at scale n is compared with all the DoG values
within a 3 ˆ 3 neighbourhood at the current scale n and at the two adjacent
scales n ´ 1 and n ` 1. If this value is the largest or the smallest, the point is
an extremum. These 26 fast checks ensure that two keypoints do not fall too
close to each other.

The extrema are just approximated locations, as they may not lie exactly
on a pixel, thus requiring a resolution higher than the sampling density. While



156 9. The SIFT algorithm

��
�
�� �������

���������

���������

�

�

Figure 9.2: Localisation of DoG extrema.

this improvement may not be essential for lower octaves, it becomes funda-
mental for higher ones, where small differences in measurement correspond to
several pixels in the base image. Therefore, the locations of extrema need to
be further refined to sub-pixel accuracy, in order to increase the stability of
the keypoint (the usefulness of this step has been proved experimentally in
[Brown and Lowe, 2002]). To this aim, a quadratic polynomial is fitted to the
DoG’s magnitude values around each extremum, by means of the second-order
Taylor expansion:

Dpxq “ D ` BD
Bx

T
x ` 1

2

x

T B2D
Bx

2

x, (9.5)

where D is the DoG computed in the keypoint and x “ px, y,�qT is the offset
from that keypoint. The solution ˆx, obtained by differentiating with respect
to x and equating to zero, corresponds to the refined location of the keypoint:

ˆx “ B2D
Bx

2

´1 BD
Bx

. (9.6)

The localisation stage generally produces a high number of candidate key-
points. However, not all these keypoints are stable in the presence of noise.
Therefore, additional checks must be performed at this point. Unstable key-
points are ruled out by eliminating extrema whose contrast is too low or whose
edge response is strong only in one direction.
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(A) Eliminating low contrast extrema

Noise can generate extrema whose absolute values are not large enough. There-
fore, they are discarded if they do not pass the following check:

|Dpx̂q| “
ˇ̌
ˇ̌
ˇ D ` 1

2

BD
Bx

T
x̂

ˇ̌
ˇ̌
ˇ † Tcontrast. (9.7)

First, the contrast value is computed in the normalised interval r0, 1s of DoG
by conveniently resorting again to Eqs. (9.5)–(9.6). Then, the absolute value
of the contrast is compared with a threshold Tcontrast empirically set to 0.03

in [Lowe, 2004].

(B) Eliminating weak edge responses

The second stability check is based on the following rationale: keypoints sitting
on top of edges are not robust, as noise can move them along the edges. On
the contrary, keypoints nearby corners are very robust, as their location is,
intuitively, “anchored”. Consequently, the former should be discarded while the
latter should be kept. This discrimination is based on the principal curvature
[Schoen and Yau, 1994] of the candidate, that is a measure of how the surface
around it bends in different directions.

In practice, SIFT proceeds in a way that is inspired to the Harris corner
detector [Harris and Stephens, 1988]. For the sake of clarity, let D be the
difference of Gaussians and let H be the Hessian matrix of second derivatives:

H “

»

——–

B2D
Bx2

B2D
BxBy

B2D
BxBy

B2D
By2

fi

��fl . (9.8)

Now, let (↵,�) be the eigenvalues of Hpx, y;�q, i.e. the derivatives computed
at the keypoint. Then, the principal curvatures are proportional to the mag-
nitude of ↵ and �:

• if both (↵,�) are small, then the region of interest is flat, i.e. its intensity
values are approximately constant. This case does not occur in SIFT
following the elimination of low contrast keypoints;
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• if either ↵ or � is high and the other is low, then the region of interest
is an edge;

• if both (↵,�) are high, then the region of interest is a corner.

By relying only on the trace and the determinant of H, one can avoid the direct
evaluation of eigenvalues, thus defining the following metric R quantifying the
edge/corner response of a keypoint:

R “ TrrHpx, y,�qs2

DetrHpx, y,�qs “ pHxx ` Hyyq2

HxxHyy ´ H2

xy
“ p↵ `�q2

↵�
† Tedge. (9.9)

In practice, if R is smaller than a threshold Tedge, then the keypoint is dis-
carded. Let now ↵ be the largest of the eigenvalues and r be their ratio,
r “ ↵{�. Then, the threshold Tedge can be conveniently expressed in terms of
r as follows [Lowe, 2004]:

Tedge “ pr ` 1q2

r
. (9.10)

The above measure has a minimum value of 4 when both ↵ and � are equal
(i.e. in proximity of curved peaks) and increases as one of the eigenvalues
grows and the other remains small (i.e. near edges). Similarly to the contrast
threshold, the value of r is a configurable parameter of the SIFT algorithm
and has been set empirically to r “ 10.

9.2.3 Assignment of keypoint orientation

All the candidates that survived the refinement process are stable keypoints.
While the previous stage was intended to confer scale invariance, the current
stage is meant to ensure rotation invariance. This task is executed by assigning
to each keypoint a dominant orientation, in such a way that the keypoint
remains recognisable when the image is arbitrarily rotated.

First, the algorithm selects Lpx, y;�q according to the keypoint’s scale � .
Then, for each spatial coordinate, the gradient magnitude and orientation are
computed:

mpx, yq “
b`

Lpx ` 1, yq ´ Lpx ´ 1, yq ˘
2 ` `

Lpx, y ` 1q ´ Lpx, y ´ 1q ˘
2 (9.11)

✓px, yq “ tan´1

ˆ
Lpx, y ` 1q ´ Lpx, y ´ 1q
Lpx ` 1, yq ´ Lpx ´ 1, yq

˙
. (9.12)
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Once mpx, yq and✓px, yq have been computed, orientations are first weighted
by their magnitudes and by a circular Gaussian window3 of width �G “ 1.5�

and then organised into a histogram of 36 bins, each covering 10 degrees. As
shown in the example of Fig. 9.3, the dominant orientation assigned to the
keypoint corresponds to the highest peak of the histogram. If the histogram
has other peaks whose height is comparable to that of the dominant orienta-
tion (• 80% of the dominant peak), for each of them a new keypoint, up to a
maximum of 3, is generated at the same location and scale but with different
orientation.
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Figure 9.3: Assignment of dominant orientation(s).

At this stage, a keypoint x is represented by a quadruple tx, y,� ,✓maxu,
also called frame, where: px, yq are the spatial coordinates; � is the scale; ✓max

is the dominant orientation.

9.2.4 Computation of SIFT descriptor

The final stage consists in computing the descriptor, that is a compact repre-
sentation of the region surrounding the keypoint, as shown in Fig. 9.4. SIFT
borrows the idea of histograms of gradients from previous works (see [Schiele
and Crowley, 2000]). First, the 16 ˆ 16 patch centred on the keypoint (at the
relevant scale �) is rotated relatively to the dominant orientation, in order
to ensure rotation invariance. Secondly, the gradients of patch’s pixels are
computed and weighted by a circular Gaussian window of width equal to half
of the patch size (hence, 8). This step is meant to grant robustness to small

3The window needs to be circular in order to be fully invariant to rotation.
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translations of the window. Thirdly, the patch is decomposed into 16 tiles of
size 4 ˆ 4. For each such tile, the histogram of gradients is computed, with
each of the 8 bins covering 45 degrees.

Figure 9.4: Construction of SIFT descriptor: rotation along the domi-
nant orientation (left); Gaussian weighting (middle); histograms of gradients
(right).

At this point, the values of the 16 tile histograms are read in counter-
clockwise order and concatenated into the descriptor, thus forming a vector
of 16 ˆ 8 “ 128 elements. Finally, to attain additional robustness to changes
of illumination, the descriptor is normalised in r0, 1s and all values above 0.2

are thresholded and normalised again (the usefulness of this last step has been
proved experimentally).

9.2.5 Matching SIFT descriptors

The original goal of SIFT was to compare two images (or parts of them)
that can be deduced from each other or from another common image; to this
end, keypoints are detected in both images and then matched. The simplest
way to find a correspondence between two descriptors p and q is to verify
whether their distance dpp, qq falls below a certain threshold. For instance,
d can be the Euclidean distance in the 128-dimensional space of descriptors,
i.e. dpp, qq “ “∞

128

i“1

ppi ´ qiq2

‰
1{2. However, considering the typically large

amount of keypoints and the fact that not all descriptors are equally distinc-
tive, any attempt of setting a global threshold may end causing false matches.
The solution implemented by SIFT to tackle with this problem is the follow-
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ing. Given a keypoint in the first image, the matching candidate at closest
distance d

1

(nearest neighbour) in the second image is found. Then, the second
best matching candidate at distance d

2

is also found. If the ratio between d
1

and d
2

exceeds a threshold, then the match is rejected. The rationale behind
this check is that a match is considered correct only if the closest neighbour
is sufficiently closer than the closest incorrect match. Based on experimental
tests on several thousands of keypoints, Lowe set d

1{d
2

† 0.8 [Lowe, 2004]. In
practical application, images with thousands of keypoints need to be rapidly
compared with large databases, thus making the exhaustive research of near-
est neighbour costly and inefficient. There exist several improvements for this
and similar scenarios, including the use of specialised structures for efficient
nearest-neighbour queries (e.g. KD-trees [Bentley, 1980]) and the reduction
of dimensionality of the descriptor.

9.3 Extensions of the SIFT algorithm

In the last years, several variants of the original SIFT algorithm have been
developed. Although all these extensions claim improved distinctiveness or
robustness at a reduced computational cost, their comparison is not a trivial
task, since their performances are often strongly related to specific applica-
tions. Among the most useful variants of SIFT, we mention: including color in-
formation into the descriptor [Van De Weijer and Schmid, 2006; Abdel-Hakim
and Farag, 2006]; reducing the computational burden by either sampling key-
points [Bosch et al., 2006; Foo and Sinha, 2007] or by shrinking the descriptor
[Ke and Sukthankar, 2004]; increasing robustness of the descriptor [Mikola-
jczyk and Schmid, 2005]; and ensuring invariance to affine transformations
[Yu and Morel, 2011]. In the following, these techniques are briefly described.
For a more in-depth analysis, the reader is referred to the respective papers.

9.3.1 Color SIFT

SIFT discards color information and works exclusively on the grayscale image.
Such choice is justified by the fact that both global and local color features
are often not robust to changes of illumination or viewpoint, shading and
specularity. However, especially in image retrieval applications, the color is
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highly distinctive and can be used to find similarities across images. As a
consequence, the research community has proposed three different strategies
to incorporate color information into SIFT. The first and simplest strategy is
to compute SIFT keypoints separately for each image channel and then use
them to find matches channel by channel. This task can be performed in any
convenient color space, be it RGB, red-green blue-yellow opponent (IUV) [Hall
et al., 2000] or Gaussian color model [Geusebroek et al., 2000]. The second
strategy consists in computing the SIFT descriptors of the grayscale image and
then augment them with color features. Finally, the third strategy consists
in using the three-channel color image as input to a modified SIFT, which
computes a color descriptor by means of a multi-scale pyramidal approach.

[Van De Weijer and Schmid, 2006] is the first work dealing with color
SIFT and belongs to the second category. In this method, the canonical SIFT
descriptor is augmented with invariant color features. More specifically, the
authors compute four histograms (three of 37 bins and one of 121 bins) of color
features invariant to photometric changes, according to a previously assumed
physical reflectance model. All the histograms are weighted and concatenated
to the canonical SIFT descriptor, which becomes a vector of 360 elements.

Inspired by the previous work, [Abdel-Hakim and Farag, 2006] proposed
a method named Colored -SIFT (shortly, C-SIFT), which belongs to the third
category. First, the input image is converted by means of a linear combination
into a suitable Gaussian opponent color model, and invariant color channels are
obtained according to a reflectance model. At this point, the method proceeds
similarly to SIFT, by localising keypoints as extrema of DoG computed on the
new channels. The procedure to obtain the descriptor is again similar to the
one used by the original SIFT, but computed on gradients of color invariant
channels rather than on grayscale gradients.

In the subsequent years, several variants of these approaches have been
introduced, including HSV-SIFT, rgSIFT, RGB-SIFT and Opponent-SIFT
[Van De Sande et al., 2010]. In [Burghouts and Geusebroek, 2009], some of
these methods are compared against grayscale SIFT and the experiments doc-
umented that matching color descriptors grants slightly better results than
grayscale matching. In particular, while the two approaches are equally in-
variant, color based descriptors show a greater discriminative power. In [Van
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De Sande et al., 2010], several color descriptors are compared against each
other. Although some of the descriptors appear to perform better than others
(C-SIFT above all), there is no golden rule to determine the best one for all
purposes, as performance are also related to the application, to the data set
at hand and to image properties.

9.3.2 Dense SIFT

Dense-SIFT is a method to reduce the amount of sparse keypoints that are
generated by the original SIFT. Such method has been introduced in [Bosch
et al., 2006] and further developed in [Bosch et al., 2007]. As a matter of
fact, not all SIFT-based applications can afford to elaborate the thousands
of keypoints usually detected in natural images. A typical example is the
classification of scenes or objects, where maximising accuracy while minimising
the computational cost of comparing many keypoints against large databases
is paramount. In order to be effective in these scenarios, SIFT keypoints
need to be represented in a more compact fashion without compromising their
invariance.

Dense-SIFT does not rely on the DoG detector for localisation, but instead
forces the keypoints to fixed coordinates, where descriptors are then computed
as usual. The analysis can be carried out either at fixed scale and orientation as
in [Bosch et al., 2006], or at multiple scales as in [Bosch et al., 2007]. The latter
solution is called PHOW (Pyramidal Histogram Of visual Words). Either way,
the method begins by superposing to the input image a M ˆ M grid of points
(usually M is 5, 10 or 15), both horizontally and vertically. Then, at each
point of the grid descriptors are computed over circular grayscale patches with
n ° 1 increasing radii r (usually n “ 4 and r “ 4, 8, 12, 16). As a result, each
point of the grid is univocally characterised by n descriptors of 128 elements,
which are supposed to take into account all the SIFT scales.

This model can be further elaborated to exploit the color information of
the circular patches. In this case, the image is converted to the HSV color
space and the above procedure is repeated separately for each channel, thus
leading to n descriptors of 3 ˆ 128 elements for each point of the grid (Color
Dense-SIFT or PHOW-color). The information conveyed by Dense-SIFT de-
scriptors can be further compressed: first, the descriptors are clustered; then,
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a predetermined visual word is assigned to the centroid of each cluster (this
approach is referred to as Bag of Keypoints [Csurka et al., 2004]); and finally,
the histogram of different visual words contained in the image is stored and
used for efficient comparisons.

9.3.3 PCA-SIFT

PCA-SIFT [Ke and Sukthankar, 2004] is basically a different approach to
the calculation of descriptors. According to the authors, the standard SIFT
descriptor, although wisely designed to cope with local pixel changes, is redun-
dant and could be represented more compactly. Therefore, they propose an
alternative shorter descriptor of 20 elements rather than 128. The PCA-SIFT
begins by computing the spatial location, scale and dominant orientation of
keypoints by means of the standard SIFT technique. Then, for each keypoint,
a 41 ˆ 41 patch (centred on the keypoint, rotated according to its canonical
orientation) is extracted at the corresponding scale and rotated in such a way
that the dominant orientation becomes vertical. The local vertical and hori-
zontal gradients of each patch are then computed, concatenated and slightly
cropped, thus producing a 78 ˆ 39 patch, which is subsequently rearranged
into a vector of 3042 elements. By assuming that the vectors can be modeled
as Gaussian distributions, their dimensionality is reduced to 20 by means of
Principal Component Analysis (PCA) [Jolliffe, 2002]. The authors compared
the performance of image matching based on PCA-SIFT and original SIFT
descriptors and came to the following conclusions: increasing the dimension-
ality of the PCA-SIFT descriptor does not bring any noticeable advantage;
PCA-SIFT descriptor is better suited to cope with errors introduced during
keypoint localisation; SIFT descriptor is better suited to cope with errors intro-
duced during the assignment of dominant orientations. Moreover, according
to [Mikolajczyk and Schmid, 2005], PCA-SIFT obtains better matching scores
than SIFT for low false positive rates.
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9.3.4 Affine SIFT

A change of viewpoint introduces distortions that can be modeled as affine
planar transformations consisting of six parameters: translation along the two
axes, zoom (scale), rotation and the two angles defining camera orientation.
SIFT does not take into account the last two parameters and thus it is not
affine invariant. Moreover, Lowe observed that SIFT matching accuracy nears
50% for viewpoint changes whose angle exceeds 50 degrees [Lowe, 2004]. The
goal of Affine-SIFT (ASIFT) [Yu and Morel, 2011] is to introduce full affine
invariance. To do so, it simulates changes in view by varying the two camera
axis orientations (the latitude and the longitude) and exploits SIFT’s invari-
ance to the remaining four parameters. ASIFT has been designed only for
applications that require matching. In a nutshell, it consists of three stages:
i) simulation of all affine transformations; ii) research of best transformations;
and iii) SIFT matching. More specifically, it proceeds as follows.

Let A and B be two images, represented by squares in Fig. 9.5. ASIFT
creates n versions of A, each of which corresponds to an affine transformation
with different camera angles ✓ and �, called respectively latitude and longi-
tude. In practice, each copy is first rotated by � degrees and then tilted by
means of directional sub-sampling with tilt t “ 1

cos✓ . The whole procedure is
repeated again for B. Such images are represented with blue parallelograms
in Fig. 9.5. Let now SA and SB be the sets of newly generated images (includ-
ing respectively A and B). In the next stages, first all the images of SA are
matched with all the images of SB by means of standard SIFT (the arrows of
Fig. 9.5). The image pairs yielding a satisfactory number of matches are used
to map the matching keypoints into the starting images A and B. To keep
the potentially high computational cost under control, the angles (�,✓) are
sampled and a two-resolution approach is adopted: the algorithm is initially
applied to a low resolution version of the images and then only the best trans-
formations are simulated again on the high resolution images. The authors
observe that the time complexity of high resolution ASIFT is approximately
twice the complexity of normal SIFT. Such an increase, however, is balanced
by the full affine invariance (mathematically demonstrated in [Yu and Morel,
2011]) and by the superior performance when it is necessary to match images
that have undergone a critical change of viewpoint.
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Figure 9.5: Scheme of Affine-SIFT [Yu and Morel, 2011]. The images A
and B (squares) are distorted by simulating camera angles (parallelograms and
rectangles). The simulated images are matched with SIFT (dashed arrows).

9.4 Concluding remarks

In this chapter we reviewed the SIFT algorithm. Such an analysis is necessary
to introduce the ideas and the concepts illustrated in the sequel of the disser-
tation. Both adversarial schemes countering SIFT-based detection and their
forensic nemeses, in fact, leverage on very specific aspects of SIFT algorithm,
which need to be fully grasped.



Chapter 10
SIFT keypoint removal

T

HE COUNTER-FORENSIC principles of Chapter 8 are now put in
practice to assess the security of SIFT-based forensic algorithms. Sev-
eral compelling reasons push towards such study: they are discussed

in Sec. 10.1. The few existing attacks developed so far to this purpose are out-
lined in Sec. 10.2. The principal contribution brought by this part of the thesis
lies among them, in the form of a new keypoint removal scheme, namely the
Classification-based attack. Such attack is detailed in Sec. 10.3 and experimen-
tally validated in Secs. 10.4–10.5. The chapter is concluded by a short section
providing additional examples of images manipulated with the aforementioned
attack.

10.1 Motivations and contributions

The robustness of SIFT is universally acknowledged by the countless real-world
applications based on it. However, what about SIFT security? Is it possible
for an adversary to remove SIFT features from images so that the correct
detection of the algorithm is jeopardised? Recently, the research community
has begun to seek answers to these questions. It came out that the feat is not
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simple but indeed feasible, as a handful of attacks available so far confirm.
The most serious consequence of these studies is the awareness that if SIFT
can be compromised, then all those applications relying on it may not be as
secure as we thought.

At present, several applications dealing with sensitive information rely on
SIFT, including: image authentication and copy-right enforcement [Lv and
Wang, 2012], image retrieval [Do et al., 2010a], filtering of illegal content
[Lopes et al., 2009], face and fingerprint authentication [Park et al., 2008]
and detection of image forgeries [Amerini et al., 2011]. Nowadays, scenarios
in which a forged image is deemed authentic and used as evidence of a fact
that has never happened are alarmingly at reach. Therefore, fixing security
flaws of SIFT-based applications and, if necessary, developing new and more
secure techniques is rapidly becoming a pressing need. There is more. Now,
it is even possible to recover the content of an image by resorting only to its
SIFT descriptors [Weinzaepfel et al., 2011]. This is a significant menace to
the privacy of the content’s owner, should a database of SIFT features leak
information.

Some interesting results on attacks against SIFT were obtained so far, al-
though the state of infancy of this research is betrayed by the difficulty of
balancing strength and perceptibility of the attacks. Quite often, in fact, the
efforts of very effective attacks are frustrated by the introduction of unac-
ceptably noticeable artefacts in the manipulated image. To overcome such
limitations and to push the research forward, this part of the thesis proposes
a new attack to SIFT keypoints. In particular, the intuition behind it lies
on abandoning the well-established hypothesis that all SIFT keypoints have
the same characteristics. The direct consequence of this assumption is that
all keypoints are attacked in the same way, and often this is not the wisest
of the strategies. Conversely, we demonstrate that two things are possible:
to discriminate between different categories of keypoints and to attack each
category with customised attacks. These intuitions are put in practice by a
two-stage scheme (classification followed by ad-hoc attacks), that outperforms
state-of-the-art-techniques and provides a good trade-off between efficacy of
removal and perceptual quality of the manipulated image.



10.2. State-of-the-art of SIFT countering 169

10.2 State-of-the-art of SIFT countering

Essentially, the attacks to SIFT detection can be catalogued according to
how they impair the correct functioning of the SIFT algorithm: by removing
authentic keypoints to trigger false negatives; by introducing fake keypoints
to trigger false positives; or by modifying properties of authentic keypoints
(e.g. orientation). Depending on the targeted application, the adversary may
adopt one or more of these solutions.

The first attempt to test the security of SIFT has been made in [Hsu et al.,
2009]. In this early work, the authors were able to compromise an authenti-
cation system based on SIFT and image hashing by deleting keypoints. More
specifically, Hsu et al. devised two different attacks. The first attack is the
Collage attack, that is the replacement of image blocks containing keypoints
with blocks not containing them. The substitution is carried out according to
a criterion of similarity based on Mean Square Error. The second attack super-
poses a local patch to the keypoint neighbourhood in such a way to introduce
a second fake extremum close enough to the authentic one. By doing so, the
refinement check (see Sec. 9.2.2) is forced to discard the authentic keypoint.

In 2010, Do et al. applied the latter technique to assess its potential threat
on a SIFT-based Content Based Image Retrieval (CBIR) scenario [Do et al.,
2010b]. It turns out that their CBIR system is not affected by Hsu et al.’s
attack, since all the manipulated images are correctly indexed and their au-
thentic versions are retrieved. The major drawback with Hsu et al.’s method
consists in the fact that it frequently creates new keypoints in proximity of
those that have been removed. Due to similarity of the corresponding descrip-
tors, the final effect resembles more a keypoint translation than a removal.

Following this analysis, Do et al. focused again on the CBIR scenario, this
time by devising new attacks to spatial locations [Do et al., 2010a] and to dom-
inant orientations [Do et al., 2012] of keypoints. Two important contributions
came from [Do et al., 2010a]. The first one is the Removal with Minimum
Distortion (RMD) attack, i.e. a scheme capable of removing a keypoint by
pushing its contrast value below SIFT’s threshold. Following a symmetrical
approach, low contrast values are pushed above the same threshold by means
of the Forging with Minimum Distortion (FMD) attack. The second contri-
bution is the intuition that, in practical applications, concatenating multiple
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attacks may improve the final outcome. Finally, in [Do et al., 2012], matches
between descriptors are inhibited by manipulating the orientation of keypoints.
The authors achieve such goal by applying a visual patch, whose coefficients
have been learned by means of Support Vector Machines forcing the gradient
to rotate.

Recently, the CBIR scenario has been taken into account again in [Lu
and Hsu, 2012], where the authors proposed two techniques for removing and
adding keypoints, formulated in terms of a constrained optimisation problem.
Finally, in [Caldelli et al., 2012] SIFT keypoints were removed by means of
local warping attacks derived from image watermarking [D’Angelo and Barni,
2008].

10.3 A new approach: classification-based attack

The attacks proposed so far to remove SIFT keypoints are based on the as-
sumption that all the keypoints of an image have equal properties. The con-
sequence of this hypothesis is that such methods are applied indifferently to
all the keypoints of an image. To be more specific, the only adaptive solution
consisted so far in increasing the strength of the attack proportionally to the
scale (and thus to the robustness) of the keypoint. Our idea is that, in general,
the effectiveness of an attack may be strictly related to the properties of the
keypoint that must be removed. As an example, suppose that the neighbour-
hood of a keypoint contains a straight vertical edge; a local warping attack,
such as the one in [Caldelli et al., 2012], would probably succeed in deleting it.
Unfortunately, after the attack the straight edge would be no more straight
and the bending effect would be clearly visible. Perhaps a Gaussian smooth-
ing attack may delete the keypoint as well, arguably with a significantly lower
impact on quality.

In this section we propose a new SIFT keypoint removal scheme, referred
to as Classification-Based Attack (briefly CLBA1), whose strategy is based on
two hypotheses, supported by a preliminary experimental analysis [Amerini
et al., 2013b]. The first hypothesis is that it is possible to discriminate between
SIFT keypoints according to some of their local properties (in this case, the

1From now on all attacks will be indicated with typewriter font.
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first order statistics of surrounding regions in the pixel domain). The second
hypothesis is that each class of keypoints reacts differently to counter-forensic
attacks. Consequently, one may devise attacks specifically tailored to a class,
with reduced impact on the counterfeited image’s quality.

10.3.1 General properties

According to the formalisation of Chapter 8, the CLBA is a universal, post-
processing attack. It is universal, since it allows to remove SIFT features,
thus potentially misleading any (forensic) analysis built on top of them. It
is post-processing, since first the image is generated and then traces of all of
its keypoints (or a subset of them) are removed. As we will explain in the
following, our attack leverages on specific weaknesses of the strategy used by
SIFT to refine the initial pool of DoG extrema, but also on common processing,
like Gaussian blur. The properties of CLBA may however vary to fit the specific
SIFT-based algorithm to fool. In this sense, then, the attack can be remodeled
in such a way to become integrated2 or targeted.3

10.3.2 General CLBA framework

Before describing each stage of the attack, it is useful to introduce its general
structure (see Fig. 10.1).

The proposed scheme relies on an iterative procedure. At the beginning
(1st iteration), a grayscale image I P I is fed to the system, which starts by
detecting the vector of SIFT keypoints kp. Then, for each keypoint kppiq “
txi, yi,�i,✓iu, its N ˆ N neighbourhood is extracted as follows:

R
kppiq “ Ipxi ` u, yi ` uq, u P r´N{2, N{2s. (10.1)

The neighbourhood is subsequently assigned to a class C
kppiq according to

certain properties of its first order statistics (i.e. grayscale histogram). De-
pending on the assigned class, each keypoint is attacked by means of a tailored

2For example, in Chapter 11 it will be shown that a forensically undetectable copy-move
forgery can be created by removing SIFT keypoints while counterfeiting the image.

3Some SIFT-based forensic detectors (e.g. copy-move) may require to remove only a
certain amount of matching keypoints in specific locations, rather than all of them.
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Figure 10.1: Schematic overview of the Classification-based attack.

procedure carried out on the M ˆ M patch4 centred on it (M † Nq. Finally,
the manipulated neighbourhood R1

kppiq is re-inserted in its original position:

Ipxi ` u, yi ` uq “ R1
kppiq, u P r´N{2, N{2s. (10.2)

Once all first-iteration keypoints have been attacked, the procedure is iter-
ated on the manipulated image. The iterations halt when particular require-
ments are met (e.g. percentage of removed keypoints, maximum number of
iterations, minimum allowed perceptual quality), thus generating an image
J “ CLBApIq. Two main reasons suggest the use of an iterative procedure:

• some keypoints are easier to remove than others. For the sake of vi-
sual quality of J, the former are attacked with less strength than the
latter. Therefore, an iterative approach naturally allows to intensify the
strength of the attack as more robust keypoints keep surviving;

• changes in pixel values may generate a new keypoint in the proximity of
the one that is being removed. This phenomenon occurs in the neigh-

4For the sake of classification’s accuracy, N must be sufficiently large to include significant
yet local information. For the sake of imperceptibility, M must be as small as possible.
Typical values, experimentally justified in the following, are N “ 32, M “ 8.
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bourhoods of those candidate keypoints that were discarded because
barely below the SIFT thresholds of Eqs. (9.7)–(9.10). CLBA does not
keep track of this different category of keypoints but rather deals with
them in the same way as the original ones: new keypoints introduced
during an iteration iter are classified and attacked again at the following
iteration iter ` 1.

Although we will elaborate on the concepts that follow later, some observa-
tions are in order here. Despite J and I may look similar by visual inspection,
the absence of SIFT keypoints in J, especially in those textured regions where
they should be found, could be interpreted as a footprint of CLBA, as we actu-
ally do in Chapter 12. Obviously, the perceptibility of this effect depends on
the number of removed keypoints: if we delete only a few out of the thousands
that are usually found in natural images (as in Chapter 11), the manipulation
is difficult to identify. Nevertheless, it may be useful to falsify SIFT features,
i.e. to introduce fake but plausible keypoints into a previously attacked image
(see Chapter 13). By doing so, we can obtain a new image J1, still visually
similar to both I and J but without plain traces of removal. Fig. 10.2 depicts
the complete scenario. In practice, the adversary can opt for a single stage or
both depending on the application.

image 
analysis

image 
analysis

hiding SIFT features falsifying SIFT features

I 2 I
J 2 I J

0 2 IClassification-based 
Removal

Falsification of SIFT
Keypoints

Figure 10.2: Removal of authentic keypoints and introduction of false ones.
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10.3.3 SIFT keypoints classification

The class to which we assign each SIFT keypoint depends on the visual con-
tent of a relatively small neighbourhood around the keypoint in the pixel
domain. We have chosen a classification criterion based on the grayscale his-
togram properties of the keypoint’s neighbourhood and more specifically on
the number of modes, since it provides valuable information about the local
image content. It is worth noting that there exist multiple ways to discrim-
inate among different visual content, including analysing textures or shapes.
We opted for the histogram because it is computationally light and does not
require learning stages or parametric models. This fact becomes extremely
important when dealing with images with tens of hundreds of keypoints, each
of which needs to be classified for several iterations of the attack.

We carried out the classification with a modified version of the algorithm
proposed in [Chang et al., 2002], which was originally designed for image
segmentation based on histogram thresholding.

(A) The original classification algorithm

The original algorithm relies on the assumption that the histogram H of large
natural grayscale images can be modeled as a mixture of Gaussians f :

f pkq “
n`1ÿ

i“1

Pi?
2⇡�i

e´ 1

2

`
k´mi
�i

˘
2

(10.3)

where: k “ 1 . . . 256 are the samples of the mixture; n ` 1 is the number of
histogram segments; and (Pi, mi, �2

i ) are respectively the weight, the mean
and the variance of the i-th Gaussian.

Chang et al.’s classifier is designed to estimate the model parameters min-
imising | f ´ H|. In a nutshell, it proceeds as follows.

1. H is Gaussian blurred to reduce the number of unstable local extrema,
thus producing rH.

2. rH is roughly segmented into approximated clusters Ci, each of which is
enclosed between two consecutive local minima.

3. For each Ci, the calculation of (Pi, mi,�
2

i ) consists of two steps:
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3.1. estimating a unique optimal window w˚ with minimum skewness,
allowing to locate with more precision the center of the segment;5

3.2. estimating the Gaussian parameters in w˚, which are then refined
by means of a maximum likelihood criterion.

4. The final thresholds used to segment H are computed by relying on the
refined Gaussian parameters.

(B) Improved classification algorithm

In order to classify the keypoints, however, we need to know the number
of modes nmodes, rather than the segments of H. Unfortunately, it is not
possible to derive this information directly from the number of Gaussians
composing the mixture, since Chang et al.’s algorithm tends to over-segment
the histograms, thus creating rather flat segments whose weight is very small.
Therefore, the original technique required some adjustments to fit the proposed
counter-forensic algorithm. We modified the classification as follows:

5. Select the weight of the largest contribution Pmax “ max

1§i§n`1

Pi.

6. Suppress all contributions 1 § i § n ` 1 such that
Pi

Pmax
§ ↵.

7. Set nmodes equal to the number of surviving contributions.

We let ↵ “ 0.2 based on the following experimental procedure. We pro-
gressively increased n from 1 to 5 to create five classes Cn consisting of 500

histograms H each, such that Cn “ tH : nmodespHq “ nu. Each histogram
is generated as a mixture of Gaussians as in Eq. (10.3), with n equal to the
desired number of modes and Pi, mi and �i randomly chosen in the intervals
r0.01, 1s, r0, 255s and r5, 20s respectively. To simulate the histogram of natural
images, we perturbed each H with uniformly distributed noise.

We ran the modified classification algorithm on all the classes and we
observed its accuracy as a function of↵, to which we assigned values in r0.1, 1s.

5The rationale underlying this step is that skewness quantifies how asymmetric the dis-
tribution is. Gaussian distributions are symmetric, hence their skewness is equal to zero.
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The metrics we chose are the Precision pi and Recall ri for each class:

pi “ Tpi
Tpi ` Fpi

ri “ Tpi
Tpi ` Fni

, (10.4)

where Tpi is the number of histograms of Ci that are correctly classified; Fpi
is the number of histograms of Ck ‰ Ci that are erroneously assigned to Ci;
and Fni is the number of histograms of Ci erroneously assigned to Ck ‰ Ci.
Hence, pi is the fraction of histograms assigned to Ci that are truly belonging
to Ci and ri is the probability that a histogram is correctly assigned to Ci.
Precision and recall can be combined with their harmonic mean, or F-score:

Fi “ 2 ¨ pi ¨ ri
pi ` ri

. (10.5)

The closer is Fi to 1, the more accurate is the classifier. In Fig. 10.3 we show
the Precision, Recall and F-score averaged over all classes as a function of
the threshold ↵ defining the significance of a contribution to the Gaussian
mixture of Eq. (10.3). We can observe that the three curves have a maximum
in ↵ “ 0.2, which is the value we assigned to the parameter.
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Figure 10.3: Precision, Recall and F-score as a function of ↵.

(C) Classes of keypoints

By relying on the above modified method, we classified the N ˆ N neighbour-
hoods of about 120, 000 keypoints extracted from natural images with different
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visual content (landscapes, people, buildings).6 The choice of N is closely re-
lated to Chang et al.’s algorithm: N should be large enough in such a way
that the hypothesis of Gaussianity holds. At the same time, it should be small
enough to guarantee the locality of the approach. We observed experimentally
that a good trade-off is obtained by letting N “ 32.

Furthermore, experimental analysis confirmed the hypothesis that his-
tograms tend to cluster into distinct groups. In particular, three of such
groups are clearly discernible according to the modality: unimodal, bimodal
and multimodal. The three classes are defined as follows:

C
1

“ tz P kp, z “ px, y,� ,✓maxq : nmodes
`
R

kppzq
˘ “ 1u

C
2

“ tz P kp, z “ px, y,� ,✓maxq : nmodes
`
R

kppzq
˘ “ 2u

C
3

“ tz P kp, z “ px, y,� ,✓maxq : nmodes
`
R

kppzq
˘ ° 2u,

(10.6)

where kp is the array of all keypoints and R
kppzq is the neighbourhood of each

keypoint.
Interestingly, these classes correspond to very different visual contents:

uniform flat regions with low variance tend to have a unimodal histogram;
edges and geometric shapes correspond to bimodal histograms; regions with
high variance (resembling some sort of “noise”) usually have a multimodal
histogram. Fig. 10.4 provides an example of a keypoint belonging to each of
the three classes.

10.3.4 Class-tailored single attacks

The second stage of CLBA consists of a set of class-tailored attacks, two of
which are variants of techniques already known. In the following, with the
term support we will indicate the M ˆ M patch centred on the keypoint that
is effectively manipulated by an attack. Such patch should not be confused
with the N ˆ N neighbourhood (centred on the keypoint and containing the
support) that was used for the classification task.

6The data set can be downloaded at http://homepages.lboro.ac.uk/~cogs/datasets/
ucid/ucid.html (see Sec. 10.4.1 for more information).

http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html
http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html
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Figure 10.4: Example of visual contents (first row) and histograms (second
row) for the 3 classes of keypoints. From left to right: unimodal (water sur-
face), bimodal (top of a building) and multimodal (foliage).

(A) Smoothing attack

The Smoothing attack is a Gaussian blur flattening the local pixel values in
such a way that the contrast value of keypoints slightly above the threshold of
Eq. (9.7) is brought below it. The problem with this attack is that an excessive
blur has a noticeable impact on the perceptual quality and, most importantly,
it may even conjure against removal by introducing new keypoints.7 It is then
important to tune the attack parameters so that a good trade-off between
removed keypoints, introduced keypoints and perceptual quality is ensured.

In [Do et al., 2010a], the authors considered satisfactory the results ob-
tained by letting the size of the filtering window h f and the standard deviation
of the Gaussian kernel � f be respectively 3 and 1.3. We tuned our parameters
according to the following experiment: first, we collected 50 images and we
attacked the neighbourhoods of their keypoints with the Smoothing attack
of increasing � f for a total of 30 iterations (the rationale behind the itera-
tive approach is the same of Sec. 10.3.2); then, we measured the percentage
of removed keypoints of each manipulated image with respect to the original

7We will see in Chapter 13 that this side effect of the Smoothing attack can be controlled
by the adversary to create fake keypoints further misleading SIFT-based analyses.
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amount. Fig. 10.5 shows the average keypoint removal depending on the stan-
dard deviation of the filter; the trend plateaus for � f • 0.9, suggesting that
no further gain can be obtained with higher values. Furthermore, increasing
� f damages the image quality, since up to 6 dB of PSNR (averaged over all
the attacked neighbourhoods) are lost. Concerning the filter window size, we
did not observe a significant dependence of the outcome of removal on h f .
Consequently, we set the Smoothing parameters to h f “ 3 and � f “ 0.9.
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Figure 10.5: Parameter tuning of the Smoothing attack (removal): percent-
age of removed keypoints as a function of standard deviation �.

(B) Collage attack

The Collage attack is a variant of the method used in [Hsu et al., 2009].8

In general, it consists in the substitution of an authentic image patch with
another patch of the same size but with different properties. In our case, the
new patch should obviously not contain SIFT features and should be as similar
as possible to the original one according to a similarity criterion.

CLBA evaluates similarity by means of the Histogram Intersection Distance
[Swain and Ballard, 1991]. Let H and Q be two histograms of L bins; their

8The idea behind the Collage attack has been derived from Digital Image Watermarking
[Fridrich et al., 2000].
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intersection distance Dintersect is evaluated as follows:

DintersectpH, Qq “
∞L

u“1

min

`
Hpuq, Qpuq ˘

∞L
u“1

Qpuq . (10.7)

The numerator of Eq. (10.7) is the intersection of the histograms, that is the
number of pixels of Q having corresponding pixels of same value in H. In
order to obtain a metric in the interval r0, 1s, the numerator is normalised
according to the number of elements of Q.

In terms of Collage attack, given a keypoint i, H corresponds to the
histogram of the initial patch R

kppiq containing SIFT features. Conversely, Q
corresponds to the histogram of a patch not containing SIFT features. We
stored a large amount of such patches in a previously created database (more
details will be provided in Sec. 10.4).

Let Rmin be the patch of the database that is most similar to the initial one
(hence, whose histogram is at minimum Dintersect); to avoid visible artefacts
along the borders, Rmin is not substituted directly into the source image.
Instead, we employ the following linear combination:

R1
kppiq “ W ¨ R

kppiq ` p1 ´ Wq ¨ Rmin. (10.8)

The window W is an empirical M ˆ M weighting matrix whose elements wi, j P
r0, 1s are set to 1 along the patch borders and progressively decrease to 0 near
the center. Fig. 10.6 shows the weighting window corresponding to M “ 8.
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Figure 10.6: Weighting window of size 8 ˆ 8 of Eq. (10.8) and its coefficients.
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(C) Removal with Minimum Distortion attack

The Removal with Minimum Distortion (RMD) attack is the same method in
[Do et al., 2010a]. The idea behind it is to calculate a small patch ✏ that, added
to the neighbourhood of a keypoint, allows its removal. The coefficients of ✏
are chosen in such a way that the contrast around the keypoint (at DoG level)
is reduced, thus invalidating the corresponding SIFT check. In a nutshell, it
works as follows. Let x “ px, y,�q be a keypoint and let Dpxq be the DoG in
x; patch ✏ is derived from the optimisation problem:

✏ “ argmin

✏:D1pxq“Dpxq`�

1

2

||✏||2, (10.9)

where � is a parameter that controls the intensity of the attack. SIFT contrast
is reduced by |�| in such a way that the altered value D1pxq drops below its
threshold. Since the size of ✏ depends on the scale of the targeted keypoint, the
final altered DoG region is Dpx ` u, y ` v,�q, with pu, vq P r´6

?
2h� , 6

?
2h�s

and h “ 2

1{3.
With respect to the original scheme by Do et al., we introduced two small

variations in compliance with the other attacks: first, we limited the size of ✏
to a maximum of M ˆ M also for those keypoints whose spatial support would
be normally larger; secondly, we used the same weighting window of Eq. (10.8)
to replace the initial neighbourhood:

R1
kppiq “ W ¨ R

kppiq ` p1 ´ Wq ¨✏. (10.10)

10.3.5 CLBA’s composition of single attacks

The class-unaware attacks of the previous section are arranged into CLBA’s
iterative procedure, which repeatedly classifies and attacks keypoints until
one of the following conditions is verified: the maximum number of allowed
iterations pmaxIterq is reached; or a certain percentage of keypoints has been
removed (minRemoval).

Iterations are divided in two blocks: r1, Ks and [K+1,maxIters. The first
block deals with weaker keypoints, while the second block deals with the
remaining stronger keypoints. The attacks associated to each block are shown
in Tab. 10.1, while the pseudo-code of CLBA is provided in Algorithm 1.
The rationale behind the above choice is explained in the following.
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Iteration block

Ci“t1,2,3u iter P r1, Ks iter P rK ` 1, maxIters
unimodal Smoothing Collage

bimodal Smoothing RMD

multimodal Smoothing Collage

Table 10.1: Attacks assigned to each class depending on iterations.

• Smoothing reduces the population of less robust keypoints, regardless of
their content and class, without a significant loss of quality.

• Collage is best suited to those patches whose content can be substituted
in a fairly imperceptible way, hence uniform and noisy patches. Con-
versely, it is not suitable for patches containing geometric edges, because
histogram similarity does not take into account shapes.

• RMD is a very powerful attack that does not suffer of Collage drawback
and thus is used on the remaining class of bimodal keypoints.

10.4 Experimental validation

In this section, we evaluate experimentally CLBA’s performance. More specifi-
cally, we demonstrate the following two facts:

• effectiveness of CLBA: the classification stage followed by class-tailored
attacks outperforms class-unaware attacks;

• robustness of CLBA: performance does not dependent significantly on the
specific SIFT implementation at hand.

The performance in successfully removing keypoints is evaluated by means of
the Keypoint Removal Rate pKRRq metric, which is defined as follows:

KRR “
ˆ

1 ´ keypoints detected a f ter attack
keypoints detected be f ore attack

˙
ˆ 100. (10.11)
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Algorithm 1: Pseudo-code of the Classification-based attack.
function J = CLBA(I, minRemoval, maxIter)

input : Authentic image I, target removal rate,
maximum iterations

output: Manipulated image J without keypoints

iter – 1;
K – 10;
J – I;
removal_rate – 0;
while piter § maxIter and removal_rate † minRemoval) do

keypoints “ calculateSIFTpJq;
rC

1

, C
2

, C
3

s “ classifySIFTpkeypointsq;
foreach keypoint in keypoints do

if piter § Kq then
J – smoothingAttackpkeypointq;

else
if pCkeypoint ““ C

2

q then
J – RmdAttackpkeypointq;

else
J – collageAttackpkeypointq;

end
end

end
removal_rate – calculate_removal_ratepI, Jq;
iter – iter ` 1;

end

The visual quality of the manipulated image is measured with PSNR (Peak
Signal-to-Noise Ration) and SSIM (Structural SIMilarity) index [Wang et al.,
2004]. For the sake of clarity, we make two assumptions. The first one is
to work on grayscale images, which has no consequence on the generality of
the approach, since SIFT normally ignores color information. The second one
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is to limit the analysis to keypoints of the first octave, corresponding to the
image at its original size (octave “ 0). We will relax the latter assumption at
the end of this section, where we will show that CLBA’s trend on other octaves
(i.e. t´1, 1, 2u) is comparable to that of the first one.

Finally, unless otherwise specified, the experiments are based on the VLFeat
SIFT implementation of [Vedaldi and Fulkerson, 2010]. To obtain descriptors
that are as close as possible to the original implementation by Lowe,9 we set
SIFT thresholds as follows: edge_threshold “ 10, peak_threshold “ 4.

10.4.1 Image data set

The experimental analysis has been carried out on the UCID image database
[Schaefer and Stich, 2003], a well-known benchmark in image retrieval research
community.10 It consists of 1, 338 uncompressed (TIFF) color images, whose
size is either 384 ˆ 512 or 512 ˆ 384 pixels and whose contents depict land-
scapes, cityscapes, people and man-made objects. The rather large size of
this collection allows us to make conclusive statements on the performance of
CLBA, while the relatively small size of the images provides a significant yet
not excessive amount of keypoints to deal with. The first-octave keypoints are
distributed as shown in the histogram of Fig. 10.7.

In addition, UCID images are also used to create the database for the
Collage attack of Sec. 10.3.4, consisting of 150, 000 patches not containing
SIFT features.

10.4.2 Effectiveness of CLBA

The comparison between CLBA and class-unaware attacks in terms of removal
effectiveness and quality of the manipulation proceeded as follows.

1. Classification and attack supports are set to 32 ˆ 32 and 8 ˆ 8 respec-
tively; target removal rate is set to 100%; the iteration switch K and the
maximum number of iterations are set to 10 and 40 respectively.11

9Compiled binaries can be downloaded at: http://www.cs.ubc.ca/~lowe/keypoints/.
10The UCID data set can be freely downloaded at: http://homepages.lboro.ac.uk/

~cogs/datasets/ucid/ucid.html.
11The choice of such values for the parameters K and maxIter, justified by data of Fig. 10.9,

ensures an acceptable trade-off between removal and quality.

http://www.cs.ubc.ca/~lowe/keypoints/
http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html
http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html
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Figure 10.7: Distribution of first-octave keypoints (UCID).

2. Each image is attacked by means of four methods: i) CLBA; ii) iteration of
RMD (� “ 1); iii) iteration of Smoothing (� f “ 0.9, h f “ 3); iv) iteration
of Collage. Each attack is halted when either 100% removal rate or the
40

th iteration is reached.

3. When the algorithms halt, the KRRs achieved on each image are evalu-
ated and organised in four histograms.

The envelopes of such histograms are shown in Fig. 10.8 (only for KRR • 50%,
since they are null otherwise). The CLBA provides the highest removal rates,
while granting a minimum removal rate of 80% practically on the whole data
set. As an example, consider KRR • 90%: CLBA achieves such goal on 1, 149

images out of 1, 338 (86% of data set), followed by Collage, which achieves
the same results on 468 images (35% of the data set). The RMD and Smoothing
are the less effective, with 147 (11% of data set) and 12 (0.9% of data set)
respectively. It is also worth noting that only CLBA reaches perfect removal,
although only on a limited number of images (32, i.e. 2.7% of the data set).
Fig. 10.9 shows the KRR trend for each attack depending on iterations sampled
with step 5. The barely noticeable improvement in removal past the 40

th

iteration does not justify the assignment of larger values.
The number of deleted keypoints is not the only important metric for

evaluating the performance of the attacks. To be really effective, an attack also
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Figure 10.8: Effectiveness of CLBA with respect to class-unaware techniques
(UCID data set).
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Figure 10.9: Keypoint Removal Rate versus number of iterations for all the
removal attacks.

needs to preserve the image quality. Therefore, to assess the impact on quality,
the images belonging to each bin of the histograms of Fig. 10.8 are selected and
their average PSNR over all the attacked patches is computed. The results for
high removal rates are summarised in Tab. 10.2, where results corresponding
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to the images for which KRR • 90% are omitted because averaging on a small
number of images does not produce significant results.

Keypoint Removal Rate

Attack 60% 65% 70% 75% 80% 85% 90%

CLBA 36.66 36.6 36.59 36.57 36.56 36.55 36.4

Smoothing 41.83 41.79 41.87 41.98 41.85 41.28 40.55

RMD 29.57 29.46 29.31 29 28.77 28.4 27.99

Collage 30.34 30.31 30.27 30.24 30.12 29.87 29.71

Table 10.2: Average patch PSNR (dB) versus removal rate for the 4 attacks.

Expectedly, the Smoothing attack has the lowest impact on image quality,
but such an advantage comes at the price of the lowest removal rates. Among
the remaining techniques, CLBA provides the best quality. One may wonder
about the causes behind the poor performance of Collage and RMD: for the
former, they may be related to the size or the quality of the database; as for the
latter, they are undoubtedly related to the nature of the attack itself. RMD, in
fact, although very powerful, covers the original patches with very unpleasant
“dots” rather than replacing them with something more similar content-wise.
Consequently, this effect quickly deteriorates the local quality, especially for
those keypoints whose spatial support is large.

Fig. 10.10 provides a visual comparison of the three most effective methods.
The artefacts introduced by RMD (bottom left) and Collage (bottom right)
are more noticeable than those inserted by CLBA (top right). Such phenomena
are particularly visible between the ears of the dog. Additional examples of
both authentic and CLBA-forged images are provided in the section closing this
chapter.
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Figure 10.10: Detail of an attacked region. From top left to bottom right:
Authentic; CLBA (KRR “ 98%, average patch PSNR of 37.8 dB); RMD (94%,
25.6 dB); Collage (91%, 35.1 dB).

10.4.3 Robustness to SIFT implementations

There exist a number of different implementations of the SIFT algorithm, of-
ten have different outcome in terms of number or spatial location of keypoints.
It is reasonable to assume that the adversary does not necessarily know which
implementation the forensic analyst is going to use. Therefore, the effective-
ness of the attack should not be influenced by the use of a particular software.

(A) Chosen implementations

To verify whether CLBA can cope with different SIFT implementations, we
gathered four software:

• VLFeat12 [Vedaldi and Fulkerson, 2010]. This is the “reference library”
for SIFT-based applications. Other than the work presented here, [Amerini
et al., 2011], [Do et al., 2010b], [Do et al., 2010a] and [Do et al., 2012]
are also based on it.

12Freely available for download at: http://www.vlfeat.org.

http://www.vlfeat.org
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• Sift Legacy13 (also known as Matlab/C and SiftC++) [Vedaldi, 2007].
Although this is basically the predecessor of VLFeat and has been su-
perseded by it, such software is still used (see [Caldelli et al., 2012]).

• Rob Hess Sift Library14 [Hess, 2010]. Another popular implementation,
due to its dependence on the well-established OpenCV Computer Vision
library.

• JIFT (by Jun Liu).15 Arguably the less famous implementation among
the ones we used in this work, it makes use of the VXL Computer Vision
library.

In order to obtain fair results, we did not tweak the attacks to the charac-
teristics of the various detectors: the only constraint we imposed to the tools
is to work on the first octave, in compliance with our initial assumption. We
left all other parameters unchanged (see Tab. 10.3), with their values corre-
sponding most of the times to those suggested in [Lowe, 2004].

Octaves Thresholds

Total Initial Intervals Contrast Edge Peak

VLFeat 1 0 3 ˆ 10 4

SiftLegacy 1 0 3 0.03 10 4

RobHess 1 0 3 0.04 10 0.8

JIFT 1 0 3 0.03 10 0.8

Table 10.3: Main parameters of the employed SIFT implementations.
VLFeat controls contrast by means of Peak threshold (hence the symbol ˆ).

(B) Evaluation procedure

For each image, the test proceeded as follows: i) original keypoints are com-
puted independently with all SIFT implementations; ii) images are manipu-
lated by means of VLFeat-based CLBA; iii) KRR is evaluated according to the

13Freely available for download at: http://www.vlfeat.org/~vedaldi/code/sift.html.
14Freely available for download at: http://blogs.oregonstate.edu/hess/code/sift.
15Freely available for download at: http://www.cs.man.ac.uk/~liuja/#downloads.

http://www.vlfeat.org/~vedaldi/code/sift.html
http://blogs.oregonstate.edu/hess/code/sift
http://www.cs.man.ac.uk/~liuja/#downloads
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number of final keypoints detected by each version of SIFT. Similarly to the
procedure leading to Fig. 10.8, all values are organised into histograms, whose
envelopes are shown in Fig. 10.11.
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Figure 10.11: Robustness of the VLFeat-based CLBA. Curves correspond to
histogram envelopes of KRR, obtained by analysing the manipulated UCID data
set by means of four different SIFT versions.

As expected, the best results are achieved against the VLFeat-based de-
tector (average KRR “ 92%), followed by SiftLegacy (80%) and JIFT (75%).
However, the proposed method does not seem to be effective against RobHess,
given that on average only 9.5% of the detected keypoints are removed. Fur-
thermore, on 216 images out of 1, 338 (about 16% of data set) new keypoints
are introduced by CLBA, thus explaining the negative rates of Fig. 10.11. A
more accurate analysis revealed that this specific implementation often tends
to calculate several keypoints in spatial locations different from those detected
by the remaining tools. Therefore, the CLBA did not actually manipulate the
neighbourhoods of RobHess keypoints.

This problem can be solved by modifying the base CLBA framework in such
a way that both VLFeat and RobHess are used. This time, the union of key-
points coming from the two detectors is considered. The curves of Fig. 10.12
are obtained by following the same procedure of the previous case.

Not only the attack is now dramatically more effective against the RobHess
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Figure 10.12: Robustness of the VLFeat+RobHess-based CLBA.

version (KRR “ 76.7%), but the performance remains basically the same
against VLFeat (91.5%), SiftLegacy (79.8%) and JIFT (71%).

(C) A visual example

As an example, consider the test image shown in Fig. 10.14 (left). When
applied to the authentic image, VLFeat and RobHess detect respectively 58

and 24 keypoints.
The results of Fig. 10.13 (top) are obtained by relying on VLFeat only; for

each iteration (x-axis), we show the number of keypoints (total and for each
class) that have been left into the image. We omit the iterations past 25 since
there are no more variations in the number of remaining keypoints. According
to VLFeat, there is only 1 keypoint left in the attacked image. However, if
the same image is analysed with RobHess, 15 keypoints are still detected.
Conversely, when the attack is carried out again by using both VLFeat and
RobHess inside CLBA, the results of Fig. 10.13 (bottom) are obtained. Clearly,
the amount of keypoints is higher now (82), as it corresponds to the union
of the keypoints detected by the two implementations. However, the attack
shows the same trend as before and, more importantly, now it is also effective
against RobHess.

It is important to point out that such an improvement does not come
at the cost of perceptibility. As Fig. 10.14 can confirm, loss of quality of
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Figure 10.13: Iterations on a test image: number and classes of keypoints.
VLFeat alone (top) and VLFeat+RobHess (bottom).

VLFeat+RobHess (middle) with respect to VLFeat alone (right) is hardly
noticeable. In terms of PSNR, 44.1 dB versus 45.8 dB full-frame and 36.6

dB versus 37.7 dB for the average over all patches; in terms of SSIM, 0.971

versus 0.998 full-frame and 0.882 versus 0.891 patch average.

10.4.4 Perceptual quality assessment of CLBA

The quality degradation caused by CLBA has been evaluated in terms of PSNR
and SSIM in Sec. 10.4.2. To better understand the impact of the attack on
human perception, we performed two campaigns of subjective tests by resort-
ing to crowdsourcing [Keimel et al., 2012], whereby problems are broadcast to



10.4. Experimental validation 193

Figure 10.14: Perceptibility of CLBA on a test image (40-th iteration). From
left to right: authentic, VLFeat alone and VLFeat+RobHess.

an unknown group of solvers (referred to as the crowd) in the form of an open
call for solutions. In our case, we asked to rate authentic and CLBA-forged
images or to discriminate between them without providing a ground truth.
Even though some of the results refer to the slightly modified perceptually-
driven version of CLBA presented in [Amerini et al., 2014], they still retain their
validity for the original version discussed in this thesis.

(A) Subjective experiments

The first experiment, whereby 250 subjects participated to a crowdsourcing-
based campaign, was devoted to verify the impact of CLBA on the perceived
image quality. After the screening process to remove outliers and incomplete
results, a set of 213 subjects were considered. Each subject evaluated 60

different images: 10 original images and 50 modified ones produced by CLBA
at different iterations t1, 2, 3, 5, 40u. The test was performed by using an
Absolute Category Rating with Hidden Reference approach (ACR-HR), which
means that the images were presented one at a time in random order and were
rated independently on a scale from 1 to 5, with 1 denoting poor quality and
5 excellent quality. The obtained results are reported in Tab. 10.4. It can
be noticed that the average MOS (Mean Opinion Score) does not change
significantly with the number of considered iterations. Moreover, the results
show that the subjects were not able to discriminate between originals and
CLBA-forged images, thus proving that the attack does not significantly affect
the image quality.

Twenty-five subjects took part to the second test, whose purpose was to
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CLBA iterations

Authentic 1 2 3 5 40

MOS 3.502 3.531 3.553 3.521 3.488 3.507

Table 10.4: Result of the first subjective test: Mean Opinion Score corre-
sponding to a selection of CLBA iterations.

assess whether authentic and forged images can be distinguished by means of
a pair-wise comparison approach. The stimuli were displayed on a Panasonic
BT-3DL2550 screen (1920 ˆ 1080 pixels). Each subject was asked to choose,
for every couple of images displayed on the screen, the one that was modified
(i.e. attacked with CLBA at iteration t1, 2, 3, 5, 40u). For each couple, the
authentic image and the modified one were randomly displayed on the left
and right side of the screen. The results are displayed in Fig. 10.15, where
correct detections are represented with respect to the users. It is possible to
notice that it is a complicate task for users (also in a controlled environment)
to distinguish the original image from the attacked one.
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Figure 10.15: Correct detections with respect to the crowdsourcing users.

(B) Color comparisons

The last experiment consisted on the re-introduction of color information into
the attacked image to evaluate potential differences with respect to the au-
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thentic RGB image. Color restoration is carried out in the YCbCr color space
first by performing the removal procedure on the luminance channel of the
authentic image and then by joining the forged luminance and the authen-
tic color channels Cb and Cr and reverting to the RGB color space. Some
examples of this procedure are shown in Fig. 10.16.

(a) (b) (c) (d)

Figure 10.16: Restoration of color information. (a)–(c): CLBA-forged im-
ages; (b)–(d): authentic images. �pa, bq “ 1.36, �pc, dq “ 1.92.

The color difference �E between each attacked image and its authentic
version, measured by means of the method in [Rajeev Ramanath et al., 2002]
(see Sec. 4.1.2 and Eq. (4.4) in particular) and then averaged over all the
UCID images, is 2.14; such value is smaller than the just noticeable threshold
empirically set to 2.3 in [Mahy et al., 1994], thus confirming that the quality
of the forged images is perceptually satisfactory.

10.4.5 Remarks on the complexity of CLBA

All the attacks evaluated so far are fairly lightweight in terms of computational
resources. Within a single iteration, the main contribution to time complexity
comes from cycling through all keypoints, while detection of SIFT features
generally has a negligible impact. In Fig. 10.17, average execution times over
the UCID data set are shown for each attack. Even Collage attack (triangular
marker), whose highest complexity (evident for removal rates • 75%) is the
consequence of several comparisons with the database content, remains feasible
(up to five minutes for 95% removal).
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The comparisons are still required by CLBA (star marker), but they are
limited in terms of iterations (25 instead of 40) and keypoint classes (2 instead
of 3). All tests have been performed on MathWorks Matlab on a desktop
configuration with a 2 GHz dual-core processor, 4 GB RAM, 32 bit OS.
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Figure 10.17: Removal rate versus average processing time (UCID).

10.5 Towards multi-octave keypoint removal

The tests we carried out so far considered exclusively first-octave keypoints.
It is the aim of this section to relax such an assumption and evaluate the be-
haviour of the Classification-based attack on the remaining octaves t´1, 1, 2u.
Therefore, in the sequel we will use CLBA to delete keypoints originated from
images whose size has been upscaled by factor 2 and downscaled by factors 2

and 4, respectively.16 Tab. 10.5 summarises the total number of keypoints in
each octave and their average number in each image.

In order to keep the complexity of tests manageable but without losing
generality, we carried out all the following tests on the first 500 images of the
UCID data set.

In the first experiment all octaves are attacked by means of CLBA with 8 ˆ 8

support. The outcome is certainly positive for lower octaves t´1, 0u, where
average removal rates of 99.89% and 93.22% are obtained (see Fig. 10.18 (b)).

16To make the comparisons easier, we show again the results already obtained for the first
octave.
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Octaves

´1 0 1 2

keypoints 1, 236, 264 388, 662 127, 811 39, 855

average 924 291 96 30

Table 10.5: Total keypoints per octave and average keypoints per image.

On the contrary, results are not as satisfactory for higher octaves t1, 2u, with
just 55.19% and 39.73% average removal rates.

To obtain good results on higher octaves, the support of the attack must
be increased (see Fig. 10.18 (c)–(d)). This observation is corroborated by the
data of Tab. 10.6, describing the relationship between removal rates, octaves
and support size.

Such trends can be explained by noting that CLBA is not a pyramidal
approach: each keypoint is attacked on the base image, regardless of the
octave that generated it. Every time SIFT moves to a higher octave, the
keypoint’s neighbourhood attacked at first octave is progressively halved. As
a consequence, the manipulation tends to be compromised, thus failing to
remove the stronger keypoints.

Expectedly, the problem with larger supports is perceptibility. Fig. 10.19
shows an example of the removal artefacts introduced at higher octaves. The
image on the left has been attacked at octave 1 with M “ 14, the one on
the right at octave 2 with M “ 20. The most visible artefacts correspond
to the typical “dots” introduced by the RMD attack on bimodal keypoints; the
side effects become more and more visible as the support grows. While the
quality of the leftmost image of Fig. 10.19 is still acceptable even at a close
inspection, this is not true for the rightmost image, see for example the bottom
right portion in proximity of Pippo’s mouth.

Nevertheless, according to Tab. 10.7, the quality of the manipulated images
(with respect to KRR) remains acceptable especially for octaves t´1, 0, 1u.
Tab. 10.8 concludes the analysis by summarising the average KRR for each
octave, depending on iterations and on a selection of supports.

The procedure for multi-octave keypoint removal is summarised in Algo-
rithm 2 for octaves t´1, 0u, but can be easily generalised to the remaining
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(a) M=4

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Keypoint Removal Rate (%)
N

um
be

r o
f i

m
ag

es
 

 
octave = −1
octave = 0
octave = 1
octave = 2

(b) M=8
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(c) M=12
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(d) M=16

Figure 10.18: Histogram envelopes of KRR for each SIFT octave depending
on attack support. CLBA’s effectiveness is proportional to support’s size.

ones. In practice, keypoints are firstly removed by means of standard CLBA,
from the higher octave with larger support. Then, support is reduced and the
manipulated image is attacked again with CLBA until all the octaves have been
processed. The parameters better suited to each octave have been derived
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Figure 10.19: Example of removal artefacts at higher octaves (best wieved
on display). Left: octave 1, M “ 14; right: octave 2, M “ 20.

Octaves

´1 0 1 2

M “ 4 94.69 58.28 40.27 29.35

M “ 8 99.89 93.22 55.19 39.73

M “ 10 99.89 99.15 66 43.98

M “ 12 99.9 99.87 77.05 48.78

M “ 14 99.9 99.91 86.7 54.49

M “ 16 99.88 99.93 93.83 59.68

M “ 20 99.93 99.9 99.1 69.82

Table 10.6: Average KRR depending
on octave and on attack support.

Octaves

´1 0 1 2

M “ 4 39.95 42.14 42.87 42.07

M “ 8 35.03 40.66 40.86 38.43

M “ 10 33.65 35.48 36.54 37.44

M “ 12 32.44 34.23 33.08 36.68

M “ 14 31.61 32.99 31.61 33.97

M “ 16 31 31.98 30.28 29.31

M “ 20 30.1 30.12 28.56 27.93

Table 10.7: Average local PSNR de-
pending on octave and attack support.

experimentally from Tabs. 10.6–10.8.
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Algorithm 2: Pseudo-code for multi-octave CLBA.
function J = multiOctave_CLBA(I, minRemoval)

input : Authentic image I, target removal rate
output: Manipulated image J without keypoints

octaves – r0, ´1s;
M – r8, 4s;
maxIter – r40, 25s;
J – I;
for u – 1 to n_octaves do

J – CLBA (J, octavespuq, Mpuq, minRemoval, maxIter(u));

end

Attack iterations

M = 4 5 10 15 20 25 30 35 40

o “ ´1 61.67 77.32 87.2 91.34 92.97 93.8 94.27 94.69

o “ 0 32.28 40.81 49.23 53.66 55.86 57.04 57.67 58.28

o “ 1 24.96 29.63 34.7 37.32 38.74 39.45 39.75 40.27

o “ 2 20.23 22.64 25.25 27.14 28 28.29 28.49 29.35

M = 8

o “ ´1 73.22 91.55 97.1 98.85 99.28 99.47 99.56 99.89

o “ 0 46.44 63.91 82.39 88.53 90.81 91.88 92.54 93.22

o “ 1 30.2 38.42 47.57 51.51 53.21 54.04 54.45 55.19

o “ 2 25.12 29.43 34.45 37.03 38.08 38.52 38.75 39.73

M = 16

o “ ´1 77.56 95.87 97.44 98.49 98.99 99.32 99.49 99.88

o “ 0 46.89 68.64 92.86 98.39 99.01 99.23 99.39 99.93

o “ 1 37.03 50.9 78.04 86.59 89.78 91.49 92.44 93.835

o “ 2 28.56 35.63 46.78 53.19 55.92 57.47 58.32 59.68

Table 10.8: Average KRR per octave depending on iterations and support.
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10.6 Concluding remarks

In this chapter we presented a new tool capable of removing SIFT features. In
contrast with the rest of the (still limited) literature, this technique first dis-
criminates between different classes of keypoints and then attacks each class
with specifically tailored attacks. Results obtained in this way are superior to
class-unaware state-of-the-art attacks in terms of trade-off between keypoint
removal effectiveness and perceptual quality of the manipulated image. Sev-
eral aspects of the proposed method could benefit from further investigation,
including: i) exploring the scenario that has emerged from the analysis of
Sec. 10.4.3, where more than one implementation of SIFT interact with each
other; ii) improving effectiveness of the Classification-based attack on higher
octaves, where acceptable removal rates come at the cost of a significant im-
pact on visual quality.
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Additional examples of keypoint removal

Figure 10.20: Additional examples of images attacked with CLBA (i). Left:
authentic; right: forged (octave “ 0, M “ 8, KRR • 99% for all images).
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Figure 10.21: Additional examples of images attacked with CLBA (ii). Left:
authentic; right: forged (octave “ 0, M “ 8, KRR • 99% for all images).
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Figure 10.22: Additional examples of images attacked with CLBA (iii). Left:
authentic; right: forged (octave “ 0, M “ 8, KRR • 99% for all images).



Chapter 11
Counter-forensics of SIFT-based copy-move

detection

“The only way you can get good,
unless you’re a genius, is to copy.
That’s the best thing. Just steal.”

Ritchie Blackmore, Deep Purple

T

he attack devised in the previous chapter is now applied to an im-
age forensic scenario to impair SIFT-based detection of copy-move
forgeries. We discuss the principal aspects of the new problem in

Sec. 11.1. Then, in Sec. 11.2, we briefly review the SIFT-based detector tar-
geted by the proposed counter-forensic scheme. We explain the copy-move
Classification-based attack in Sec. 11.3 and we evaluate its performance in
Sec. 11.4.

11.1 Introduction and motivations

Copy-move forgery, whereby a portion of an image is copied and pasted once
or more times elsewhere into the same image, is one of the most common ways
of manipulating the semantic content of a picture. Such manipulation can be
used either to conceal undesired portions of the image or to duplicate seman-
tically relevant content. Consequently, the objective of the forensic analyst
consists in detecting image areas that are extremely similar to each other.
Conversely, the goal of the adversary is to conceal those traces allowing to
draw conclusions on said similarity.

The research community has put great effort in the development of algo-
rithms to reveal copy-move forgeries [Christlein et al., 2012]. In principle, all
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methods extract some kind of image features and match them with each other,
in search of strong similarities interpreted as cues of the forgery. The most
common categorisation of these methods is made according to the procedure
of extraction: block-based and keypoint-based. In the former case, an image is
divided into overlapping blocks from which some features are extracted and
then ordered by similarity; in the latter case, highly descriptive robust points
of an image are computed and then a unique descriptor is assigned to each
of them. Duplicated content is revealed by matching similar blocks or simi-
lar descriptors. A great deal of methods falling into the second category rely
on SIFT keypoints [Huang et al., 2008; Pan and Lyu, 2010; Amerini et al.,
2011] because of SIFT’s capability to discover correspondences between similar
visual contents even after several processing.

Despite the intense activity on this topic, little attention has been paid so
far to the security of existing algorithms. The first work in this sense is the one
in [Nguyen and Katzenbeisser, 2011], where the security of three well-known
block-based approaches is tested. It turns out that block-based detection can
be mislead by resorting to very basic geometric manipulations, a weakness that
is not shared with SIFT-based detectors. In this latter case, as the studies
carried out in [Caldelli et al., 2012] have hinted, more challenging solutions
are required. In particular, the authors were able to impair a state-of-the-art
SIFT-based detector by removing all the keypoints of the duplicated regions
using local warping attacks derived from image watermarking. Starting from
the above results, the same authors proposed a new technique to suppress SIFT
keypoints [Amerini et al., 2013b], whose effectiveness was again demonstrated
in a copy-move scenario, with performance far superior to that in [Caldelli
et al., 2012], both in terms of efficiency and imperceptibility. The latter work
represents the main contribution of this chapter.
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11.2 Copy-move forgery detection

In this section we describe the forensic detector targeted by the proposed
counter-forensic scheme. Additionally, we provide some pointers to block-
based detection to better understand the experimental results of the second
part of the chapter (Sec. 11.4.6 in particular).

11.2.1 SIFT-based detection

Generally, the SIFT operator is applied to two images. In the case of copy-
move detection, it is instead applied to one image only, since the copied part
is within the same image. Expectedly, the descriptors extracted from a cloned
region are quite similar to those of the source, thus making possible to discover
the manipulation by matching keypoints. During this process, one can also
retrieve information about the geometric transformation that has been applied
to the cloned region.

The algorithm we aim to counter [Amerini et al., 2011] is based on the
above rationale. In a nutshell, it works as follows (see Fig. 11.1). Given an
image I, the method first extracts the keypoints X “ tx

1

, . . . , xnu and their
descriptors D “ t f

1

, . . . , fnu. Then, the best candidate match for each key-
point xi is found by identifying its nearest neighbour among the other n ´ 1

keypoints, i.e. the keypoint with the minimum Euclidean distance descriptor.
Given a keypoint, a similarity vector S “ td

1

, d
2

. . . , dn´1

u is defined with
sorted Euclidean distances with respect to the other descriptors. The keypoint
is matched only if d

1{d
2

† Td (set empirically to 0.6). By iterating on each
keypoint in X, a set of matched points is obtained.

Although this set of linked, isolated keypoints already provides a rough
idea of the presence of cloned areas, a clustering procedure is run for improved
accuracy. To assess the existence of cloned areas, an agglomerative hierarchical
clustering is carried out: i) each keypoint is assigned to a cluster; ii) the
reciprocal spatial distances among clusters are computed; iii) the closest pair of
clusters is found; and iv) the obtained pair is merged into a single cluster. The
procedure is repeated until no more pairs can be merged. Upon agglomerating,
the forgery is revealed if there are two or more clusters linked by at least 3

pairs of matches points.
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Figure 11.1: Workflow of the forensic detector of [Amerini et al., 2011].

11.2.2 Block-based detection

A typical block-based approach divides a grayscale image into overlapping
segments by sliding a small window (by a certain number of pixel) from the
upper left corner to the lower right corner. For each tile, a feature vector is
computed. Such vectors are used to match blocks having the same (or very
similar) representations by means of lexicographical sorting. In a nutshell,
all feature vectors are arranged into a matrix, where each row corresponds
to a block. The idea is that similar rows correspond to similar blocks. To
better identify such relationships, rows are ordered so that similar ones come
successively [Fridrich et al., 2003a; Popescu and Farid, 2004; W et al., 2006].
By doing so, consecutive pairs of rows correspond to the candidate duplicates,
which can be further verified by subsequent post-processing. The robustness
of popular block-based copy-move detectors has been studied in [Nguyen and
Katzenbeisser, 2011]. It came out that such approaches have several weak-
nesses, both to simple processing like noise addition, JPEG compression, crop
or rescaling and to targeted attacks like randomly changing the least signif-
icant bit of each pixel or randomly swapping pairs of low DCT coefficients.
Nguyen et al. propose a simple attack consisting of cropping and compression
that is sufficient to impair the most reliable block-based detectors.

11.3 Copy-move Classification-based attack

For the sake of simplicity, we address the case of a single pair of copy-moved
regions. Such an assumption does not affect at all the generality of our ap-
proach because the algorithm can be straightforwardly adapted to multiple
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versions of the same region or multiple pairs of different regions. It is worth
noting that CLBA addresses only the first-octave keypoints, i.e. those extracted
from the image at its original resolution. This fact prevents CLBA from be-
ing a threat to applications relying on the few, more robust higher-octaves
keypoints. The attack, however, can effectively counter copy-move detection,
whereby the majority of matches linking the cloned regions are extracted from
the first octave. We adapt CLBA for the copy-move scenario to devise a new
attack, called cm-CLBA (copy-move Classification-based Attack), whose role in
the framework of Chapter 8 is depicted in Fig. 11.2.

The key idea consists in analysing the forged image with the targeted foren-
sic detector, taking note of the matches between cloned areas and iteratively
removing them. Standard CLBA already offers multiple ways to achieve this
goal. Although their outcome is the same, however, the quality and percepti-
bility may greatly vary.

1. The first and most obvious solution is to use standard CLBA to completely
remove all the keypoints from the image. However, this appears rather
excessive and unnecessary.

2. The second solution consists in applying standard CLBA to all the key-
points of both cloned regions. This is still excessive, since to destroy a
match it is sufficient to eliminate only one of its members.

3. The third solution consists in applying standard CLBA to all the keypoints
of a single region. Still, due to processing, not all keypoints of a region
always match with a corresponding one in the other and thus there is
still room for improvement.

4. The fourth solution consists in attacking only the matching keypoints
revealed by the copy-move detector. For better concealment of the at-
tack, the manipulation can be distributed over the two regions. Note
that if the adversary does not have access to the forensic detector, the
most viable solution is the third one.

In Sec. 11.4.2, an example for each approach is provided. In the following, the
last solution will be implemented in the cm-CLBA.
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Figure 11.2: cm-CLBA in the framework of Chapter 8. C
0

and C
1

are respec-
tivey the classes of authentic and forged images.

11.3.1 Adapting CLBA to the copy-move scenario

At each iteration, only one keypoint of each match is manipulated. Let Nm

be the number of matches across the two cloned regions A
1

and A
2

; first,
Nm
2

matches are randomly picked and the corresponding keypoints in A
1

are
erased; then, the same thing is done for the remaining Nm

2

matches by attacking
only the corresponding keypoints in A

2

. A difference with the standard attack
is that the effectiveness is now measured in terms of removed matches. In
practical terms, the halting conditions of the attack are controlled by a target
match removal rate and a maximum number of iterations. Although presented
here as a post-processing procedure, the attack can also be implemented in
an integrated fashion. In this latter case, cloned regions are deprived of their
matching keypoints and then copied into the image to create a forgery.

Before moving to the next section, two aspects are worth of note. Firstly,
it is not always strictly necessary to completely remove every matching pair of
keypoints, given that to cope with false positives, copy-move detectors require
a minimum number of matches (3-4 usually) to spot a forgery. In spite of
this, we preferred a more general solution to the problem and thus we always
attempted to remove all the matches. Secondly, the occasional introduction
of new keypoints in the proximity of deleted ones should be also considered.
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The descriptor of a new keypoint may be similar enough to that of the old one
and thus their match may be conserved. In this circumstance, the subsequent
iteration of the attack will deal with it. Moreover, the imperceptibility of the
attack benefits from those lucky cases in which new keypoints without matches
(or false positive matches) are introduced.

11.4 Experimental validation

Four aspects concerning cm-CLBA’s performance will be examined:

• the perceptibility with respect to other possible ways of using CLBA to
hide copy-move;

• the effectiveness in hiding copy-move forgeries with respect to adapta-
tions of state-of-the-art SIFT countering methods;

• the robustness to parameter variations in the copy-move detector;

• the interactions with block based copy-move detection.

The effectiveness of the attack is expressed in terms of Match Removal
Rate (MRR), wherein only matches across cloned regions are considered:

MRR “
ˆ

1 ´ matches detected a f ter attack
matches detected be f ore attack

˙
ˆ 100. (11.1)

All assumptions we previously made still hold here: we limit the forgery
to two cloned regions and all attacks work on first-octave keypoints of the
grayscale image. We set the target MRR and the maximum iterations to 100%

and 40 respectively. We leave all parameter values of cm-CLBA unchanged with
respect to CLBA. Keypoint detection relies on VLFeat (edge_threshold “ 10

and peak_threshold “ 4). The detection of copy-move is performed with an
implementation of the detector in [Amerini et al., 2011], with the maximum
ratio between the distances of two to-be-matched points set to Td “ 0.6 as
suggested by the authors.
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11.4.1 Image data sets

The experimental analysis has been carried out on two different data sets
of copy-move forgeries: a large synthetic one and a realistic one composed
by 10 man-made manipulations. Each data set has a specific purpose: the
former, thanks to its size, allows to fully assess cm-CLBA’s performance; the
latter, with its realistic forgeries obtained without restrictions on the image
processing at adversary’s disposal, brings the attack out of a safe laboratory
environment. The synthetic data set, consisting of 1, 338 images of size 512 ˆ
384 or 384 ˆ 512, has been created from the UCID data set (see Sec. 10.4.1)
by automatically copying the central region of each image and pasting it in a
random, non overlapping region of the same image.

11.4.2 Perceptibility of cm-CLBA

The forged image of Fig. 11.3 is used to demonstrate that the approach chosen
by cm-CLBA grants equal MRRs but superior imperceptibility with respect to
other solutions based on standard CLBA.

Figure 11.3: Copy-move forgey with highlighted tampered regions (left) and
output of Amerini et al.’s detector (right).

Three different approaches have been chosen to hide copy-move: i) stan-
dard CLBA on both regions; ii) standard CLBA on a single region; and iii)
cm-CLBA on both regions. We stress out that all the methods successfully
impair the copy-move detector. The outcome in terms of population of key-
points, however, is quite different, as Fig. 11.4 confirms. Red circle markers
indicate original keypoints, while blue square markers correspond to keypoints
within copy-moved regions following the specified attack. It appears evident
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that CLBA leaves very peculiar footprints, in the form of areas full of textures
and corners but suspiciously deprived of SIFT features, as in Fig. 11.4 (b)–(c).
It goes without saying that this is not the wisest approach, because quality is
unnecessarily degraded and the attack is exposed too much to another kind
of forensic detection.1 This problem does not seem to concern cm-CLBA, as it
is very hard to notice any difference between the plain copy-move of Fig. 11.4
(a) and the forensically undetectable image of Fig. 11.4 (d).

(a) Plain copy-move (b) CLBA both regions

(c) CLBA one regions (d) cm-CLBA both regions

Figure 11.4: Comparison of different copy-move counter-forensic approaches.
Red circle markers indicate original keypoints, while blue square markers cor-
respond to keypoints within copy-moved regions following the specified attack.
Copy-move detector did not find traces of manipulation in (b), (c) and (d).

1For more information on this topic, refer to Chapter 12.
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11.4.3 Effectiveness on synthetic data set

The UCID data set has been used to randomly create 1, 338 copy-move forg-
eries with 2 cloned regions. All the experiments have been carried out for
two tampered areas, i.e. 150 ˆ 150 and 200 ˆ 200 pixels. In few cases the
automatic procedure did not produce detectable forgeries, since it duplicated
regions with less than the minimum number of keypoints required by the
forensic detector. We did not consider the contribution of such images to the
results.

The envelope of the MRR is shown in Fig. 11.5. Regardless of the area,
the proposed scheme removed more than 99% of detected matches in most of
the images.
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Figure 11.5: Match Removal Rate of cm-CLBA on synthetic data set.

The consequences of this behaviour can be better appreciated in Tab. 11.1,
where we summarise the percentage of detected forgeries before and after
cm-CLBA depending on the minimum number of matches required to reveal
the forgery. The countered detector typically requires 3 or 4 matches, hence
it classifies correctly only about 6% and 3% of the images, respectively.

Results are satisfactory also from the point of view of the quality (see
Fig. 11.6). The average PSNR and SSIM across the two cloned regions do not
change substantially with their size and reach minimum values of 41.8 dB and
0.945 for MRR “ 100%.
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Minimum matches for detection

1 2 3 4 5

Area Before After Before After Before After Before After Before After

150 1 0.19 1 0.1 1 0.06 0.99 0.03 0.97 0.02

200 1 0.23 1 0.13 1 0.07 0.99 0.03 0.98 0.02

Table 11.1: Detection accuracy of [Amerini et al., 2011] before and after
cm-CLBA.
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Figure 11.6: Quality metrics of cm-CLBA on synthetic data set.

11.4.4 Effectiveness on realistic data set

The next experiment has been carried out on 10 realistic copy-move forgeries,
created manually without any restrictions on image properties or on the pro-
cessing at counterfeiter’s disposal. Tab. 11.2 confirms that the conclusions
drawn for the general full-frame scenario of Sec. 10.4.2 remain valid for the
copy-move scenario. The classification-based method represents again the best
trade-off between removal (all matches deleted within the lowest number of
iterations) and perceptual quality (average PSNR of 35.2 dB second only to
the Smoothing attack). More importantly, it emerges from Tab. 11.3 that
cm-CLBA avoids detection on all images, regardless of the threshold employed
by the forensic detector.

Fig. 11.7 shows an example of copy-moved regions following the four at-
tacks (image I

7

). In this case, Collage can compete with cm-CLBA in terms of
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cm-CLBA Smoothing

Image (matches) After Iter. PSNR After Iter. PSNR

I
1

p37q 0 (100%) 14 41.2 12 p67.6%q 40 39.4

I
2

p66q 0 (100%) 20 39.9 29 p56.1%q 40 47.7

I
3

p150q 0 (100%) 23 48.1 103 p31.3%q 40 57.8

I
4

p41q 0 (100%) 15 42.8 11 p73.2%q 40 42.1

I
5

p23q 0 (100%) 31 47 8 p65.2%q 40 44.5

I
6

p56q 0 (100%) 17 45.8 27 p51.8%q 40 41.1

I
7

p55q 0 (100%) 28 34.3 10 p81.8%q 40 40.9

I
8

p32q 0 (100%) 15 45 8 p75%q 40 38.7

I
9

p52q 0 (100%) 19 45.8 21 p59.6%q 40 48.6

I
10

p53q 0 (100%) 21 44.2 16 p69.8%q 40 46.7

Average: 100% 21 43.4 63.1% 40 45.1

RMD Collage

Image (matches) After Iter. PSNR After Iter. PSNR

I
1

p37q 5 p86.5%q 40 30.7 3 p91.9%q 40 28.6

I
2

p66q 21 p68.2%q 40 25.6 6 p90.9%q 40 33.7

I
3

p150q 0 p100%q 26 41.2 7 p95.3%q 40 43.1

I
4

p41q 9 p78.8%q 40 27.4 2 p95.1%q 40 32.2

I
5

p23q 8 p65.2%q 40 25.3 0 p100%q 9 28.0

I
6

p56q 7 p87.5%q 40 26.3 3 p94.7%q 40 33.3

I
7

p55q 10 p81.8%q 40 26.2 1 p98.2%q 40 28.4

I
8

p32q 1 p96.8%q 40 30.1 2 p93.8%q 40 29.4

I
9

p52q 10 p80.8%q 40 25.3 2 p96.2%q 40 33.5

I
10

p53q 22 p58.5%q 40 29.4 3 p94.3%q 40 32.0

Average: 80.3% 39 28.8 95% 37 32.2

Table 11.2: Results of cm-CLBA and other attacks on realistic data set. Tests
on 10 copy-move manipulated images: left matches are listed according to the
relative iteration.
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Minimum matches for detection

Attack 1 2 3 4 5

cm-CLBA 0 0 0 0 0

Smoothing 1 1 1 1 1

RMD 0.9 0.8 0.8 0.8 0.8

Collage 1 0.8 0.5 0.2 0.2

Table 11.3: Detection accuracy of [Amerini et al., 2011] following cm-CLBA,
depending on the minimum number of matches required to claim the manipu-
lation (realistic data set).

removal, although the quality of the former is significantly lower than that of
the latter (28.4 dB versus 34.3 dB).

(a) Smoothing (b) Collage

(c) RMD (d) cm-CLBA

Figure 11.7: Matches of copy-moved image I
7

after the four attacks.
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11.4.5 Dependence on the copy-move detector’s parameter

The results discussed so far have been obtained by letting the threshold Td for
the copy-move detection be 0.6, as suggested by the authors of the technique
[Amerini et al., 2011]. Recall that Td corresponds to the maximum allowed
ratio between the distance of two to-be-matched points across the cloned re-
gions. Since increasing such value yields a higher amount of matches, it is
important to understand whether this fact affects cm-CLBA’s performance.

To this purpose, we set up the following experiment. First, we created 100

large copy-move forgeries by cloning a random 400 ˆ 400 region containing at
least 100 keypoints. Then, we ran the CMFD on the images with progressively
increasing Td P r0.1, 1s; finally, for each threshold we measured the correct
and the wrong matches. Fig. 11.8 (left) shows the average number of the two
categories of matches as a function of the threshold. We can observe that, while
the correct matches remain approximately constant for 0.15 § Td § 1, the
wrong matches rapidly increase for Td ° 0.7, to the point that they represent
the 75% of all the detected matches, as shown in Fig. 11.8 (right).
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Figure 11.8: cm-CLBA dependence on the copy-move detector’s threshold.
Left: average number of correct and wrong matches: right: fraction of correct
and wrong matches.

Based on the above experiment, we can conclude that the value originally
assigned to Td is a good trade-off between the number and the reliability of
the matches and, more importantly, that variations of Td do not affect the
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performance of the attack. Since the number of correct matches does not
vary significantly for Td P r0.2, 1s, the results we obtained in this chapter for
Td “ 0.6 retain their validity for the other possible values. Furthermore, ei-
ther decreasing or increasing the threshold damages the forensic analyst. In
fact, low Td values cut down the number of detected matches, thus simplify-
ing their removal and reducing the impact on the attacked image’s quality,
whereas high Td values trigger false positive matches, thus playing in favour of
the counterfeiter by discrediting the trustworthiness of the forensic analysis.
The average number of correct and wrong matches for the test data set are
shown in Tab. 11.4; the second row is of particular interest since it highlights
the incapability of the CFMD of revealing the copy-move following cm-CLBA,
regardless of Td’s value.

CMFD threshold

Matches 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Correct before 203 266 282 293 299 304 308 313 317 318

Correct after 0 0 0 0 0 0 0 0 0 1

Wrong before 0 0 0 1 1 2 7 34 205 909

Wrong after 0 0 0 0 1 2 8 37 223 861

Table 11.4: Average number of correct and wrong matches depending on
CMFD’s threshold before and after cm-CLBA.

The images in Fig. 11.9 provide an example of the above observations.
In the first row, the outcome of the forensic analysis is shown for Td “
t0.1, 0.6, 0.8u; the number of correct matches for the three thresholds is re-
spectively 9, 54 and 70 and the number of wrong matches is 0, 6 and 29.
Only the wrong matches are left into the image once they are attacked with
cm-CLBA (second row).
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Figure 11.9: Effect of different CFMD’s thresholds on cm-CLBA. Authentic
image (first row) and forged image (second row) for Td “ t0.1, 0.6, 0.8u. Re-
gardless of the threshold, the CMFD is impaired and only wrong matches are
left into the images.

11.4.6 Relationships with block-based detection

In literature, there exist a number of works comparing block-based and keypoint-
based copy-move detection (see [Christlein et al., 2012] for example). It would
also be interesting to take into consideration the relationships between the
corresponding counter-forensic schemes. What does happen when a SIFT-
countered copy-moved image is analysed by means of a block based detector?
(and vice-versa). Moreover, could heterogeneous attacks be combined? In this
section, we provide the first exploratory answers to these questions, while a
more in-depth analysis is left to future endeavours.

For the following test, we selected two copy-move detectors and two copy-
move counter-forensic attacks: the block-based detector in [Fridrich et al.,
2003a], where the lexicographically ordered feature vectors rely on low fre-
quency DCT coefficients;2 the SIFT-based detector in [Amerini et al., 2011];
the cm-CLBA attack; and the geometric attack in [Nguyen and Katzenbeisser,

2An implementation of Fridrich et al.’s detector is freely available as a Gimp pluging at:
https://sites.google.com/site/elsamuko/forensics/clone-detection.

https://sites.google.com/site/elsamuko/forensics/clone-detection
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2011]. The latter scheme proved to be effective against a number of block-
based detectors, including the one by Fridrich et al. It consists of a crop
of 3 pixels (column-wise and row-wise), followed by two JPEG compressions
(qualities 70 and 60) and a final resampling (bicubic interpolation) back to
the size of the original image. The popular copy-move forgery we used for this
experiment is shown in Fig. 11.10.

Figure 11.10: Authentic image (left) and copy-move forgery (right).

When invoked, both forensic detectors correctly reveal the manipulation.
At this point, two (supposedly) forensically undetectable images have been
obtained by means of cm-CLBA and the geometric attack and the detectors in-
voked again. Expectedly, the block-based attack does not impair SIFT-based
detection and vice versa. Obviously, SIFT features cannot be removed by a
simple geometric attack. On the other hand, cm-CLBA is designed to modify
pixel values as less as possible, thus not altering the features analysed by the
block-based detector. However, the cascade of the two attacks (regardless of
their order) is effective against both detectors. Fig. 11.11 summarises the var-
ious phases of the experiment. In conclusion, the above analysis suggests that
cooperation between different counter-forensic schemes is the key to impair a
wider spectrum of detection techniques.
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Copy-move Block-based SIFT-based

Geom. attack on (a) Block-based SIFT-based

CLBA on (a) Block-based SIFT-based

(d) + (g) on (a) Block-based SIFT-based

Figure 11.11: Block-based versus SIFT-based copy-move countering. Each
version of the counter-forensically forged image (first column) is analysed by
means of the two detectors (second and third columns).
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11.5 Concluding remarks

In this chapter we adapted the Classification-based attack to the forensic sce-
nario of copy-move forgery detection. We obtained several interesting results.
First of all, it was possible to successfully hide copy-move tampering by remov-
ing SIFT features in the cloned areas of an image. By doing so, we hindered
a state-of-the-art copy-move detector based on SIFT. Secondly, we obtained
a good trade-off between effectiveness and imperceptibility of the attack by
means of expedients tailored to the scenario. Finally, it was possible to in-
teract with other copy-move hiding schemes to impair different categories of
detector at the same time. Concerning possible extensions, it would be of
practical interest to extend the copy-move attack to an arbitrary number of
cloned regions. Moreover, said attack could be validated against similar SIFT-
based detectors, such as those in [Huang et al., 2008] and [Pan and Lyu, 2010],
to verify whether it retains its effectiveness.





Chapter 12
Forensic analysis of SIFT keypoint removal

“The world is full of obvious things which
nobody by any chance ever observes.”

The Hound of the Baskervilles
Arthur Conan Doyle

E

VEN THOUGH resilient to several processing, state-of-the-art tech-
niques for copy-move detection can be successfully challenged by ma-
nipulating SIFT features to prevent the algorithms from linking cloned

image regions. Like any other processing, however, keypoint removal leaves
traces into the manipulated areas, in the form of high-variance textured re-
gions where keypoints should be found but are instead absent. Despite that,
no method has been devised so far to find such footprints. To tackle with this
problem and restore the efficiency of SIFT-based forensic analysis, it is then
necessary to devise adversary-aware algorithms to understand whether SIFT
keypoints have been artificially removed.

In this chapter we devise three forensic detectors for the identification of
images whose SIFT keypoints have been artificially removed. The proposed
algorithms scan image regions with sufficiently high variance in search of sus-
pect inconsistencies in the number and in the distribution of SIFT keypoints.
By relying on such algorithms, the forensic analyst can decide on the authen-
ticity of the image as a whole or localise tampered regions within the image
by means of a sliding window approach.

The chapter is organised as follows. Secs. 12.1–12.3 describe the three key-
point removal detectors and Sec. 12.4 experimentally validates their capability
to reveal both global and local removal forgeries. Finally, Sec. 12.5 investigates
more in-depth the robustness of the most performing tool.
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12.1 Keypoint-to-Corner Ratio detector

The first keypoint removal detector is based on two simple observations. The
first observation is that SIFT keypoints lie in proximity of corners, i.e. in-
terest points where two edges intersect, which can be identified by means of
methods like the Harris [Harris and Stephens, 1988] or the Shi and Tomasi
[Shi and Tomasi, 1994] detectors. Such observation is supported both by SIFT
theory, which selects keypoints according to a corner response metric inspired
to the Harris detector, and by the experimental results that we will discuss in
Sec. 12.4.3.

The second observation is that all removal attacks devised so far have been
designed to preserve as much as possible image content by working on small
neighbourhoods of the keypoints. As a consequence, while the number of
keypoints is significantly reduced by a removal attack, the number of corners
is subject to negligible variations.

If the above two assumptions hold, then we can understand whether an
image has been subject to a keypoint removal attack based on the conservation
of corners and on the reduction of keypoints in proximity of corners. Let
Ncorners be the number of corners; consider a square patch of side d centred
on each corner and let Nkeypoints be the total amount of keypoints falling into
such patch. An image is labelled as forged if the ratio between the above two
quantities (Keypoint-to-Corner Ratio or KCR1) falls below a threshold:

KCR “ log

10

ˆ Nkeypoints

Ncorners

˙
?§ T

1

. (12.1)

Under the hypothesis that keypoint removal does not affect corners, the de-
nominator of Eq. (12.1) is approximately the same for the authentic and the
manipulated image. Conversely, the numerator of Eq. (12.1) is drastically re-
duced by the attack, hence the KCR index of the attacked image is smaller
than that of its authentic counterpart. The value d defining the corner prox-
imity and the threshold T

1

are empirically derived in Secs. 12.4.3–12.4.5.
Even though technical details are left to the sequel, in Fig. 12.1 we show

an example of the population of SIFT keypoints and corners before and after
1In the sequel we will use the mathematical font (i.e. KCR) for the numerical index and

the typewriter font (i.e. KCR) for the detector.



12.2. CHI-square distance detector 227

CLBA to emphasise the conservation of corners and the reduction of keypoints.
To help understanding the consequences of the attack, we highlighted the
differences in the last column of Fig. 12.1, where the green markers identify the
deleted keypoints (top) and corners (bottom). The KCR index is respectively
´1.6 for the authentic image and ´15.7 for the forgery.

Figure 12.1: Impact of keypoint removal on distribution of keypoints (first
row) and corners (second row). First column: before CLBA; second column:
after CLBA; third column: difference.

12.2 CHI-square distance detector

The second detector is based on the observation that keypoints are concen-
trated in image regions characterised by high variance, due to the fact that
SIFT discards candidate keypoints whose neighbourhoods have low contrast.
Consequently, an image targeted by keypoint removal should exhibit high-
variance regions unnaturally deprived of keypoints. To translate this intuition
into a detectable footprint, we studied the distributions of SIFT keypoints in
image blocks characterised by different variance. In practice, first we assigned
each non overlapping block of side B of the image to one among three classes
depending on its variance: low, medium and high (see Sec. 12.4.1 for tech-
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nical details on variance-based classification); then, we examined each class
in search of anomalies in the distribution of keypoints. More specifically, we
adopted the following strategy.

1. Divide an image I into non-overlapping 32 ˆ 32 blocks whose variance
is assigned either to the low, medium or high class.

2. For each class of variance and given a fixed amount of bins (10 in our
implementation), compute the percentage of blocks containing a cer-
tain number of keypoints.2 The resulting percentages correspond to
histograms referred to as hL, hM and hH.

3. Attack the image with CLBA and repeat steps 1)–2) on the forged image.

The result of the above procedure is shown in Fig. 12.2, where the first row
corresponds to the histograms of an authentic image and the second row to
those of its tampered version. As a matter of fact, we can recognise different
shapes, especially in the case of medium and high variance histograms, which
reveal an anomalous percentage of textured blocks without keypoints.
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Figure 12.2: Histograms hL, hM and hH for a test image. Top row: authentic;
bottom row: forged.

2For example, in the case of the medium class, for bin “ 0, we count the percentage
of medium blocks containing 0 keypoints; for bin “ 1, the percentage of medium blocks
containing 1 keypoint and so on, until we reach the last bin.
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Since one image alone is not sufficient to draw any conclusion on the relia-
bility of the above footprint, we repeated the same procedure on a large data
set of images (see Sec. 12.4.1). We accumulated each class histogram of all the
images with a bin-by-bin sum and we averaged them, first for the authentic
images and then for their forged versions, as follows:

pHpauthq
Ck

“ 1

Nauth

Nauthÿ

i“1

hpiq
Ck

(12.2)

pHp f orgedq
Ck

“ 1

Nf orged

Nf orgedÿ

j“1

hp jq
Ck

, (12.3)

where: hpiq
Ck

is the histogram of blocks belonging to the variance class Ck for the
i-th image; Nauth and Nf orged are the number of authentic and forged images,
respectively.

The resulting histograms are shown in Fig. 12.3; the trends we observed on
a single image are now even more evident. We will refer to the accumulated
histograms as pHpauthq

L , pHpauthq
M and pHpauthq

H for authentic images and pHp f orgedq
L ,

pHp f orgedq
M and pHp f orgedq

H for forged images. We will consider such histograms
our ground truth.
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Figure 12.3: Accumulated reference histograms for the CHI detector. Top
row: authentic; bottom row: forged.
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The shape difference for low variance histograms is not as pronounced as
for the other classes because candidate keypoints in uniform regions are less
likely to pass the SIFT contrast check. Therefore, we rely only on the other
two histograms. In particular, we look at the distance between the medium
variance histogram of the image under analysis and pHpauthq

M and compare it
against a threshold. In our implementation we chose the chi-square distance
[Pele and Werman, 2010], hence the name CHI detector:

�2 “ 1

2

Lÿ

l“1

´
hMplq ´ pHpauthq

M plq
¯

2

hMplq ` pHpauthq
M plq

?• T
2

, (12.4)

where l denotes one histogram bin and L indicates the total amount of bins.
The image is considered as forged if the distance exceeds T

2

, whose value is
empirically derived in Sec. 12.4.5.

Note that in Eq. (12.4) we chose the histogram of medium blocks but,
according to our experiments, similar performance can be attained by consid-
ering the histogram of high variance blocks. Nevertheless, we prefer the former
because it is more reliable on images characterised by few textured regions and
consequently by few blocks with high variance. Finally, to exemplify the above
concepts, the �2-score is 42.4 for the authentic image of Fig. 12.1 and 92.1 for
its manipulated version.

12.3 SVM detector

The last detector is based on the same principles underlying the CHI detector
but does not require the knowledge of the reference histograms. In fact, the
histograms hL, hM and hH extracted from the image under analysis are first
concatenated into a feature vector F “ rhL, hM, hHs and then fed to a prob-
abilistic Support Vector Machine [Platt, 1999] that has been trained with a
large amount of examples F coming from authentic and forged images. Ac-
cording to this detector, the analysed image has been tampered with if the
SVM output out is higher than a threshold:

out “ ProbpI is forgedq ?• T
3

. (12.5)

The value of T
3

is empirically determined in Sec. 12.4.5.
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12.4 Experimental validation of keypoint removal de-
tectors

We now validate experimentally the hypotheses underlying each algorithm and
discuss the performance of each technique in detecting both global and local
SIFT keypoint removal.

12.4.1 Experimental setup

First-octave keypoints are removed by means of CLBA with 100% target re-
moval rate and a maximum of 40 iterations, unless specified otherwise. For the
detection of SIFT features we rely on VLFeat with edge and peak-difference
thresholds set to 10 and 4 respectively. It is important to point out that the
results we show are obtained by taking into account only the keypoints be-
longing to first octave (i.e. 0), in compliance with the assumption underlying
CLBA. The conclusions drawn for the detectors, however, are general and retain
their validity on all octaves.

The variance-based classification is carried out on square blocks of side
B “ 32. We begin by computing the variance map V for the whole image I,
where the value of each element Vpi, jq is the variance within a square window
centred on the corresponding image pixel Ipi, jq. We first binarise V and then
we subdivide both V and I into non overlapping B ˆ B blocks. Let IB be
one of such image blocks and VB the corresponding variance block; the ratio
⌧ of pixels with value 1 with respect to the total number of pixels of VB is
computed and IB is classified as follows:

if

$
’’&

’’%

0 § ⌧ § 1

3

ñ IB P low
1

3

† ⌧ § 2

3

ñ IB P medium
2

3

† ⌧ § 1 ñ IB P high .

(12.6)

In Fig. 12.4 we provide an example of visual content (first row) and binary
variance map (second row) for the three classes of blocks.
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Figure 12.4: Example of visual content (first row) and binary variance map
(second row) for the 3 classes of blocks. Left to right: low, medium and high.
Pixels with value 1 are respectively 4%, 39% and 86%.

12.4.2 Image data sets

We collected two image data sets to test the algorithms, one consisting of the
first 1, 000 images of the well-known INRIA Holidays data set [Jegou et al.,
2008] and one consisting of the first 100 images of the ancillary INRIA Copy-
days data set. In the sequel, we will refer to the data sets as Holidays1000 and
Copydays100. To limit the complexity of the experiments, we downscaled all
the images to 1600 ˆ 1200 pixels. We have chosen fairly large images because
the amount of keypoints allows us to assess more accurately the performance
of the detectors; however, in Sec. 12.4.5 we also consider smaller images.

The idea behind the two data sets is to use the largest one for the verifi-
cation of the hypotheses underlying the detectors, for parameter tuning (e.g.
determining thresholds) and to train the SVM. Once we gathered such infor-
mation, the three algorithms are tested on the smaller data set.
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12.4.3 Verification of the hypotheses behind the detectors

(A) SIFT keypoints lie in proximity of corners

For all the images of the Holidays1000 data set, we measured the percentage
of SIFT keypoints falling within a d ˆ d neighbourhood of the corners pro-
vided by three extractors: Harris [Harris and Stephens, 1988], Shi and Tomasi
[Shi and Tomasi, 1994] and FAST (Features from Accelerated Segment Test)
[Rosten and Drummon, 2005]. When d “ 0, we count only the number of key-
points coinciding with corners; as d increases, we also include the keypoints in
the proximity of the corner. Clearly, a keypoint is counted only once even if it
falls in the neighbourhood of more than one corner. Fig. 12.5 shows the result
of this experiment averaged over all the images. The percentage of keypoints
coinciding with corners is lower for the Shi and Tomasi and the FAST detec-
tors because they provide less numerous but more robust corners. However,
regardless of the algorithm, on average more than 95% of the keypoints of
an image are contained in neighbourhoods of side d “ 3, thus confirming our
starting assumption.
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Figure 12.5: Percentage of keypoints in the d ˆ d neighbourhood of corners
for three different corner extractors.
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(B) Keypoint removal does not affect corners

Fig. 12.6 reports the difference in the number of Harris corners before and
after CLBA is carried out on the Holidays1000 data set (given the similarity,
we omit the other algorithms for the sake of brevity). For each image, we
express the difference between the number of corners of the authentic and
CLBA-forged images in terms of percentage. The reduction in the number of
corners in the majority of the images is due to the smoothing operators used
by the removal attack; nevertheless, for 97% of the images the difference is
bounded in r`1%, ´3%s.

1 100 200 300 400 500 600 700 800 900 1000
−5%

−4%

−3%

−2%

−1%

0

+1%

+2%

+3%

+4%

+5%

Image index (INRIA Holidays 1000)

D
iff

er
en

ce
 in

 H
ar

ris
 c

or
ne

rs
 u

po
n 

re
m

ov
al

Figure 12.6: Difference in the number of Harris corners following CLBA.

(C) Keypoint removal does not affect block classification

The procedure leading to the graphs of Fig. 12.7 is the same as above. This
time, however, we plot the differences in number of low, medium and high
variance blocks before and after the removal attack. Again, variations are not
significant, being confined to the interval r´1%, `1%s for all classes.
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Figure 12.7: Difference in block-based variance classification following CLBA.
Top: low variance; middle: medium variance; and bottom: high variance.

12.4.4 Detection of full-frame keypoint removal

The contribution of this section is twofold: first, we analyse and compare the
performance of each detector by means of Receiving Operator Characteris-
tics (ROC); then, we derive the thresholds ensuring an acceptable trade-off
between the probabilities of detection and false alarm.

(A) Performance of the KCR detector

We now evaluate the performance of the KCR detector based on the three differ-
ent corner extractors introduced in Sec. 12.4.3-A, whose d ˆ d neighbourhood
wherein to count the keypoints is set to 3 ˆ 3.

To assess the discriminative power of the KCR index in Eq. (12.1), we com-
puted the scattergram shown in Fig. 12.8. In practice, the index is calculated
for all the images of the Holidays1000 data set and their forged versions (re-
spectively, blue squares and red circles). The observations sitting exactly on
the x-axis correspond to the images with very low KCR, which we set to ´4.5

for better readability. More precisely, in Fig. 12.8 we show the scattergram
obtained by relying on the FAST corner extractor [Rosten and Drummon,
2005]; we omit the other two graphs because of their extreme similarity to the
one being displayed.
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Figure 12.8: KCR scattergram. Blue squares: authentic images red circles:
CLBA-forged images.

It can be clearly seen how the indexes cluster into two distinct groups that
are effectively separable, as confirmed by the ROC curves of Fig. 12.9. We
obtained the curves of each subfigure by varying the threshold separating the
clusters in the interval r0, ´5s and CLBA’s target removal rate in the interval
r10%, 100%s, in order to understand to what extent the forgery is detectable.
We carried out the above experiment for each of the corner extractors: Shi
and Tomasi (Fig. 12.9 left), Harris (middle) and FAST (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 

 

Removal = 10%   (AuC = 0.764)
Removal = 30%   (AuC = 0.842)
Removal = 50%   (AuC = 0.915)
Removal = 60%   (AuC = 0.939)
Removal = 70%   (AuC = 0.966)
Removal = 80%   (AuC = 0.984)
Removal = 100% (AuC = 0.995)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 

 

Removal = 10%   (AuC = 0.728)
Removal = 30%   (AuC = 0.806)
Removal = 50%   (AuC = 0.878)
Removal = 60%   (AuC = 0.921)
Removal = 70%   (AuC = 0.965)
Removal = 80%   (AuC = 0.987)
Removal = 100% (AuC = 1.000)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 

 

Removal = 10%   (AuC = 0.767)
Removal = 30%   (AuC = 0.849)
Removal = 50%   (AuC = 0.922)
Removal = 60%   (AuC = 0.944)
Removal = 70%   (AuC = 0.973)
Removal = 80%   (AuC = 0.984)
Removal = 100% (AuC = 1.000)

Figure 12.9: ROCs of KCR detector depending on removal rate for each
corner extractor. Left: Shi and Tomasi; middle: Harris; and right: FAST.

We can observe two facts. First of all, the more keypoints are left into
the image, the harder it is for the detector to separate the clusters; regardless
of that, satisfactory results can be obtained even for very low removal rates.
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Secondly, the performance of the detector does not depends significantly on
the algorithm used to extract the corners, as confirmed by the comparison
in terms of Area Under Curve (AUC) and true positive rate for a fixed false
alarm probability in Tabs. 12.1–12.2. This is a very important conclusion
for the generality of the method, which appear reliable as long as the image
content is significant.

Keypoint Removal Rate

Corners 100% 80% 70% 60% 50% 30% 10%

Shi and Tomasi 0.99 0.99 0.97 0.94 0.92 0.84 0.76

FAST 1 0.98 0.97 0.94 0.92 0.85 0.77

Harris 1 0.99 0.96 0.92 0.87 0.80 0.73

Table 12.1: AUC for the KCR detector based on different corner extractors.

Keypoint Removal Rate

Corners 100% 80% 70% 60% 50% 30% 10%

Shi and Tomasi 0.99 0.97 0.91 0.86 0.85 0.71 0.54

FAST 1 0.97 0.98 0.9 0.9 0.77 0.56

Harris 1 0.97 0.94 0.82 0.51 0.28 0.2

Table 12.2: True positive rate for false positive rate 0.1 for the KCR detector
based on different corner extractors.

For the rest of the discussion, we will consider only the KCR detector based
on FAST corners. The reason of this choice is twofold.

• According to Tab. 12.2, for lower keypoint removal rates (KRR § 50%)
and low probabilities of false alarm (0.1) the FAST extractor is signif-
icantly more accurate than Harris (+36-49%). This fact is probably
due to the higher amount of points provided by Harris, which tend to
unnecessarily increase the denominator of Eq. (12.1). While this has no
consequences on those images that have been deprived of the majority
of keypoints, problems arise when distinction is made harder by lower
removal rates.
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• The difference in the performance of FAST and Shi and Tomasi extrac-
tors is not as noticeable as above. Nevertheless, the accuracy of the KCR
based on the former technique is superior by 2-6% for false positive rate
0.1. It is worth noting that, despite its acronym, the FAST extractor is 4

times slower than the Shi and Tomasi extractor. However, its processing
time remains quite manageable, as it takes about 35 seconds to process
a 1600 ˆ 1200 image.

(B) Performance of the CHI detector

We validated the CHI detector with the same procedure of KCR. We measured
the �2 distance of the histogram hM of each image of the Holidays1000 data
set and its forged counterpart from the authentic medium reference pHpauthq

M as
in Sec. 12.2, thus producing the scattergram of Fig. 12.10. Again, two clusters
corresponding to authentic (green diamonds) and forged (magenta triangles)
images can be clearly distinguished. The curves of Fig. 12.11 have been cal-
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Figure 12.10: CHI scattergram for the Holidays1000 data set. Green dia-
monds: authentic images; magenta triangles: forged images.

culated on the Copydays100 data set by relying on the reference histograms
obtained from the Holidays1000 (Fig. 12.3) and by varying the threshold T

2

in r0, 80s and the target removal rate in r10%, 100%s. We show two ROCs:
the one on the top right is based on the �2 distance from pHpauthq

M and the one
on the bottom left on the �2 distance from the manipulated medium reference
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pHp f orgedq
M ; both solutions are equally viable.
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Figure 12.11: ROC curves of CHI. Left: �2 distance from pHpauthq
M ; right: �2

distance from pHp f orgedq
M .

(C) Performance of the SVM detector

The SVM detector was implemented by relying on the well-established LIBSVM
software [Chang and Lin, 2011]. The training stage has been carried out on
2, 000 feature vectors F, i.e. those extracted from the Holidays1000 data set
and its CLBA-forged version. Recall that each feature vector consists of 30

elements, i.e. the 10 bins for low, medium and high variance histograms. The
tests have been carried out on the 200 feature vectors coming from the Copy-
days100 data set. We used a Radial Basis Function kernel with parameters
C “ 8 and � “ 0.5 derived from a 5-fold cross-validation on 400 images, which
were not considered again for training to prevent over-fitting. The SVM model
is probabilistic, i.e. it outputs the probability that the image under analysis
is tampered. We calculated each ROC curve of Fig. 12.12 by varying T

3

in
r0, 1s and the target removal rate as in the previous tests.

To conclude this set of experiments, in Tab. 12.3 and 12.4 we compare
the detectors in terms of AUC and true positive rate (fixed false positive
rate of 0.1), as a function of keypoint removal rate; noticeable differences
in performance exist only for removal rates below 50%, for which the KCR
detector appears to be the most reliable. Concerning higher removal rates,
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Figure 12.12: ROC curves of SVM detector depending on the percentage of
removed keypoints.

the SVM detectors appears to be slightly more accurate than KCR (+1–5% true
positive rate) but the latter detector does not require a learning stage.

Keypoint Removal Rate

Detector 100% 80% 70% 60% 50% 30% 10%

KCR 1 0.98 0.98 0.94 0.92 0.85 0.77

CHI 0.99 0.99 0.98 0.93 0.87 0.79 0.7

SVM 1 0.99 0.98 0.93 0.85 0.75 0.63

Table 12.3: AUC for the detectors as a function of removal rate.

12.4.5 Dependence on image size and removal rate

To assign the threshold values T
1

, T
2

and T
3

, we took into account two factors:
the target removal rate and the image size. Both parameters, in fact, impact
negatively on the performance of the detectors. Low removal rates cause the
forged image to be similar to the authentic one; conversely, reducing image
size also reduces keypoints, thus making the authentic image appear as if it
were forged.
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Keypoint Removal Rate

Detector 100% 80% 70% 60% 50% 30% 10%

KCR 0.99 0.98 0.94 0.87 0.86 0.75 0.6

CHI 1 0.99 0.97 0.78 0.52 0.31 0.21

SVM 1 1 0.99 0.92 0.66 0.48 0.33

Table 12.4: True positive rate for the detectors for a false positive rate 0.1

as a function of removal rate

In the following experiment we used the Copydays100 data set to build 4

new sets by progressively downscaling the images to 1600 ˆ 1200, 1200 ˆ 900,
800 ˆ 600 and 400 ˆ 300. Then, we randomly subdivided each data set in
5 sets of 20 images which have been attacked with CLBA with removal rate
t50, 60, 70, 80, 100u, respectively. From the ROC curves of Fig. 12.13 we can
conclude that there is not a strong dependence of the performances of KCR and
SVM on the image size, as opposed to CHI, for which the detection is easier on
larger images.
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Figure 12.13: ROC for mixed removal rates depending on image size. From
left to right: KCR, CHI and SVM.

To determine the thresholds, we fixed a maximum value of 0.1 for the false
positive rate and we gathered the corresponding value for the true positive
rate from each curve. Finally, we retrieved the threshold responsible for that
specific point in the ROC curves. The results summarised in Tab. 12.5 show
that the KCR threshold is stable for the various sizes, whereas the CHI and SVM
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thresholds require more tweaking.

Image size

Detector 400 ˆ 300 800 ˆ 600 1200 ˆ 900 1600 ˆ 1200

KCR ´1.8 ´1.9 ´1.9 ´1.9

CHI 48 32 22 20

SVM 0.41 0.42 0.58 0.67

Table 12.5: Thresholds vs image size for a probability of false alarm 0.1

12.4.6 Detection of local keypoint removal

We now take into consideration the case in which keypoints are removed from
a specific area of the image. To reveal a local forgery, we apply the detectors
in a block-wise fashion: each 32 ˆ 32 non-overlapping block of the image is
processed by analysing the statistics of a larger square region surrounding it.
In fact, a statistical analysis of a small block would not be meaningful enough;
consequently, on the one hand the analysed region should be large enough,
while on the other hand it should be small enough so that its characteristics
are representative of the to-be-classified block. Following the experiments of
Sec. 12.4.5, we opted for a 600 ˆ 600 region. In practice, for each block we
run the detectors on a 600 ˆ 600 area, we compute a soft value describing the
degree of tampering and we assign it to the inner 32 ˆ 32 block. Then, we
shift by 32 pixels and we repeat the procedure. This procedure provides a soft-
valued map roughly localising areas artificially deprived of SIFT keypoints,
which is binarised by applying the detector’s threshold. The map is finally
cleaned by removing those regions whose area is smaller than 2% of the total
image area.

Fig. 12.14 displays an example of local removal detection by means of
KCR. The keypoints of an authentic image were removed from the framed
region (top left), with decreasing removal rate of 100%, 80%, 60%, 40% and
20%. As expected, detection becomes more difficult as the removal rate lowers;
nevertheless, even in the case of the lowest removal rate, the detector is still
able to correctly localise 39% of the manipulated area.
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Figure 12.14: Example of local removal. From top left to bottom right:
authentic image; 100%, 80%, 60%, 40% and 20% removal rate.

One issue with the windowed approach is that blocks surrounded by regions
naturally poor of keypoints, such as in the sky or sea areas, are erroneously con-
sidered tampered. Our solution conveniently resorts to the binarised variance
map V: first, very low blocks (variance § 0.1) are set to 0; then, morpholog-
ical flood-fill and area opening are used to remove holes and isolated pixels.
The actual tampering map is obtained by binary AND-ing V and the localisa-
tion map provided by the removal detector. Two examples of this procedure
are shown in Fig. 12.15. A few additional examples are shown in Fig. 12.16,
where the leftmost image of each row is the forgery, the middle image is the
mask helping localise the manipulated regions and the rightmost image is the
output of the KCR. In the first image, we hid a fish by duplicating the bottom
of the sea; in the second image, we mirrored a bunch of Sistine’s Chapel saints
on the right and we duplicated them on the left.

Concerning the time complexity of the approach, localisation is computa-
tionally intense, since it requires to run the detector on several thousands of
blocks; for example, it takes about 9 minutes on a 64 bit OS with 8 GB RAM
to process the 1333 ˆ 2000 image of Fig. 12.14 (top).
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(a) (b) (c) (d)

Figure 12.15: Local detection in presence of authentic regions with few or
no keypoints. (a)-(c): keypoints following CLBA; (b)-(d): masking avoids false
positives in the sea and in the sky.

Figure 12.16: Examples of local removal detection by means of KCR. First
column: forged image; second colum: tampering mask; third column: detection.

12.5 Additional remarks on KCR assumptions

In Sec. 12.1 we assumed that SIFT keypoints lie in proximity of corners and
that keypoint removal does not affect significantly corner detection. Based on
such assumptions, which we validated experimentally, we were able to devise
the most performing of the keypoint removal detectors we proposed in this
chapter, i.e. the KCR detector. In this section we investigate more in-depth
the above two assumptions and, in particular, we discuss the behaviour of the
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KCR in those cases where they do not hold.
In general, the first assumption holds regardless of the employed corner

extractor, as long as the content of the image under analysis conveys relevant
information. However, problems could arise with images characterised by
low-variance flat content, such as for example night pictures of the moon,
water surfaces, sand or the sky. This kind of content yields few keypoints
and few corners even before CLBA is carried out, and thus the KCR index of
the authentic image may be as low as that of its CLBA-forged version. To
verify whether this fact actually affects the performance of KCR, we gathered
25 images representing the sea, the desert and the sky. One image for each
category is displayed in Fig. 12.17.

Figure 12.17: Examples of the images with few keypoints and corners.

We collected the KCR indexes of all images before and after CLBA (100%

removal rate) and we calculated the ROC curve of Fig. 12.18. We can clearly
see that the KCR does not seem to be particularly influenced by the charac-
teristics of the chosen images. In particular, setting the KCR threshold to its
default value T

1

=´1.9 ensures true positive rate 0.96 and false positive rate
0.2. Among the pictures of Fig. 12.17, only the rightmost one is not recog-
nised as forged: the KCR index, in fact, is ´1.12 before CLBA and ´1.21 after.

Let us now consider the case where the second assumption is not respected.
This could be the case of a careless counterfeiter who resorts to too perceptible
attacks or of a wise counterfeiter trying to counter the KCR by artificially raising
the indexes of forged images. Recall that the KCR index is computed as:

KCR “ log

10

ˆ Nkeypoints

Ncorners

˙
§T

1

. (12.7)

The goal of the counterfeiter, then, is to reduce both Nkeypoints and Ncorners so
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Figure 12.18: ROC for authentic images with few keypoints and corners.

to keep their ratio below T
1

throughout the manipulation. In our experiments,
we resorted to two attacks manipulating the neighbourhood of each keypoint
in such a way to remove the keypoint and as much nearby corners as possible.

• CLBA20: the strongest version of CLBA based on a support of size 20,
which ensures the highest keypoint removal rates for all octaves at the
cost of the lowest resulting quality (see Tabs. 10.6–10.7).

• BlackPatch10: an attack setting to 0 all the pixels in the 10 ˆ 10 neigh-
bourhood of each to-be-removed keypoint. Given its extreme degrada-
tion of the image, such an attack is obviously not usable in practice
but it allows to conceptually simulate an effective strategy to remove
corners.

We attacked the first 100 images of the Holidays1000 data set with the
above attacks; as shown in Fig. 12.19, both of them considerably reduced the
percentage of corners, given that the average reduction is respectively ´14.1%

for CLBA20 and ´25% for BlackPatch10. Both these values are far superior to
the corner reduction caused by the CLBA with support 10 (i.e. ´3%) employed
throughout the chapter. Regardless of this fact, the attacks do not succeed in
keeping the KCR indexes above T

1

nor in raising them significantly, as proved
by the scattergrams in Fig. 12.20. Note that the indexes corresponding to the
BlackPatch10 attack are slightly higher than those of CLBA 20.
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Figure 12.19: Difference in the number of FAST corners (%) following
CLBA20 (yellow circles, left) and BlackPatch10 (green diamonds, right).
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Figure 12.20: KCR scattergram following CLBA20 (yellow circles, left) and
BlackPatch10 (green diamonds, right). Blue square markers correspond to
authentic images.

In conclusion, deleting corners seems to be an unlikely strategy to impair
the KCR detector due to problems of perceptibility and effectiveness. The per-
centage of corners that need to be deleted to keep the KCR index of forged
images above the authenticity threshold is too high and consequently the qual-
ity of the image following the attack is seriously compromised. Instead, we
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will see in the next chapter that a sound strategy to artificially raise the KCR
index consists in inserting spurious SIFT keypoints (not matching with the
originals and not interfering with the preceding removal) into a CLBA-forged
image.

12.6 Concluding remarks

In this chapter we discussed three different forensic detectors revealing global
and local keypoint removal attacks and we experimentally validated them. We
observed that there exists a trade-off between the capability of detection and
the removal rate of the attacks: the less keypoints are removed from an image,
the more difficult the detection. As a consequence, if the manipulation has
to be undetectable, the adversary is either forced to remove only a limited
amount of keypoints or to devise new counter-forensic methods against the
removal detectors. Such is the aim of the next chapter, where we will address
the dual problem of keypoint removal, i.e. keypoint insertion. Our goal is to
repopulate an image with fake keypoints that: i) are detected by the SIFT
DoG; ii) cause the failure of removal detectors; and iii) have different properties
than authentic keypoints to preserve the results attained by the removal stage.



Chapter 13

SIFT keypoint injection

F

rom the previous chapter it emerged that under some conditions
the detection of keypoint removal is possible. In this chapter the coun-
terfeiter attempts to bypass the newly devised forensic detectors by

forging false keypoints to repopulate previously depleted areas. Firstly, the
reasons why keypoints should be re-inserted (or “injected”) are explained in
Secs. 13.1 and 13.2, where a general framework for this task is also proposed.
Then, a number of original techniques are presented in Sec. 13.3, combined into
a new and more efficient injection attack in Sec. 13.4 and compared against
each other on a large data set in Sec. 13.5. In the same section we also try to
counter the keypoint removal detectors of Chapter 12 by means of the most
performing injection attack. Sec. 13.7 concludes the chapter by considering
again the SIFT-based copy-move detection scenario, where we apply all the
tools developed so far.
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13.1 Motivations

We know from Chapter 12 that keypoint removal leaves traces of its application
into a manipulated image. Such traces consist in the anomalous distribution
of keypoints in semantically relevant image regions or in proximity of certain
points of interest (corners), near which keypoints should be found but are
instead absent. Based on such footprints, we were able to devise keypoint
removal detectors exposing the work of the counterfeiter.

Arguably, the most straightforward strategy to bypass keypoint removal
detection consists in introducing fake keypoints in suitably chosen positions.
If enough of such keypoints are reintroduced, then the discriminative power
of the forensic tools of Chapter 12 may be compromised. Obviously, to avoid
invalidating what has been accomplished with the removal stage, some con-
straints must be satisfied: first of all, new keypoints should pass all SIFT
checks and thus be detectable; secondly, they should not have the same de-
scriptors of their authentic counterparts.

So far the re-introduction (or “injection”) of SIFT keypoints did not attract
the same attention that has been dedicated to their removal. In early works,
injection has been seen more as a side effect of removal rather than as a
potentially useful tool. Consequently, although briefly analysed in the CBIR
context in [Do et al., 2010a], the topic has not been systematically studied yet:
in this chapter we push the research towards this direction. More specifically,
the chapter further develops the ideas underlying the preliminary studies in
[Amerini et al., 2013c]. With respect to such a work, we compare existing
and newly devised techniques against each other on a large data set of images.
Moreover, we combine the most effective among such methods to obtain a
new attack outperforming each single technique and we assess its negative
impact on the performance of keypoint removal detectors. Finally, we apply
all the tools to a practical image forensic scenario of SIFT-based copy-move
forgery detection, where we let the counterfeiter resort to keypoint removal
and injection to create copy-move forgeries that successfully elude SIFT-based
detectors but are in turn exposed by the keypoint removal detectors.
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13.2 Keypoint injection

We evaluated five possible attacks to introduce fake keypoints. Three of them
in particular are based on adaptive image enhancement algorithms already
known in the literature but never used before in the context of SIFT coun-
tering. The rationale behind repurposing locally adaptive image enhancement
for keypoint injection is the following. It is known that smoothing techniques
perform well in removal since they reduce image details; therefore, we may
argue that enhancement techniques, which in turn exalt details, should con-
versely introduce new keypoints. Furthermore, because traditional techniques
applied to the whole image (e.g. sharpening, global contrast enhancement)
generate visually unpleasant images, more sophisticated solutions should be
employed, so that the resulting quality is comparable to that of the authentic
image. The experimental results obtained later in this chapter confirm both
intuitions. In addition to the above tools, we also considered the dual ver-
sions of keypoint removal methods already known in literature, i.e. Gaussian
Smoothing and FMD [Do et al., 2010a]. Regardless of the approach, one of the
advantages brought by the above methods is that it is possible to combine
them to achieve better results in terms of injected keypoints, as we prove by
devising a sixth method, called Classification-Based Injection (CLBI).

13.2.1 Injection framework

The framework we will use to evaluate the capability of injection is the same
for all the methods. Therefore, for the sake of clarity we introduce its working
principles here in accordance with the block diagram of Fig. 13.1.

The injection attack is applied to an image Irem whose keypoints have been
removed by means of a certain attack, for example Irem “ CLBApIq. Unlike
removal, the first stage of keypoint injection is not iterative nor local, since
Irem is processed full-frame with the chosen injection algorithm, producing the
injected image Iin j. Although Iin j already contains new keypoints, two facts
suggest avoiding to use it as it is: the overall visual quality of the image is
degraded by full-frame processing and some injected keypoints may match
with their homologues in the authentic image I.

The first problem is tackled with by extracting the M ˆ M neighbourhood
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Figure 13.1: Work-flow of the injection framework.

of each new keypoint and inserting it back into Irem. Artefacts along the edges
of the pasted region can be hidden by means of a linear combination of I and
Irem in analogy with how CLBA works in Eq. (10.8).

The second problem requires to find and suppress those new keypoints of
Iin j that are correctly matching with their homologues in I. In practice, a
match is considered correct if the distance between old and new descriptors
falls below a certain threshold. When one of such matches is found, the key-
point of Iin j is discarded by restoring the M ˆ M region of Irem preceding the
injection. The idea is to primarily avoid a SIFT match at the expense of the
loss of an injected keypoint. Ideally, the resulting image J has a plausible
amount of forged keypoints, that are not distinguishable from authentic key-
points. Interestingly, it is not so crucial to check whether a fake keypoint is
or is not in the same spatial position of an authentic one before removal, as
long as their descriptors do not match.
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13.3 Injection algorithms

The attacks used to forge fake keypoints rely on five different algorithms, which
are briefly described in this section.

13.3.1 Contrast Limited Adaptive Histogram Equalisation

Global contrast enhancement techniques assume that the distribution of gray
scale pixel values is uniform over all the areas of an image. When this as-
sumption does not hold, performances of global methods are poor and the
enhanced images are visually unpleasant. CLAHE’s (Contrast Limited Adap-
tive Histogram Equalisation) [Zuiderveld, 1994] solution to this problem is
twofold: it adapts to the local properties of the regions of an image and it
limits the contrast differences across them. In a nutshell, the algorithm pro-
ceeds as follows (see [Zuiderveld, 1994] for details). First, the M ˆ N grayscale
image I is divided into non-overlapping tiles and the histogram of each tile is
computed. Then, a clipping limit � for the contrast enhancement is obtained:

� “ MN
L

´
1 ` ↵

100

psmax ´ 1q
¯

, (13.1)

where L is the number of histogram bins, ↵ • 0 is the clipping factor and smax

is the slope of the transfer function mapping the contrast from its input value
to its output value; if smax “ 1, then no enhancement is performed, while
larger values (usually up to 4) will result into more visible enhancements.
Next, each histogram is clipped in such a way that its height is limited by
�. At this point, it is necessary to remap the clipped values to the entire
intensity range, that is to re-normalise the histogram of the processed image
to its original area. This task can be carried out in several ways, the most
common of which consists in redistributing the clipped pixels uniformly in all
the bins of the histogram of the whole image.

13.3.2 Brightness Preserving Fuzzy Histogram Equalisation

BPDFHE (Brightness Preserving Dynamic Fuzzy Histogram Equalisation) is a
method to enhance the contrast of an image while preserving its mean bright-
ness, and thus the perceived subjective quality [Sheet et al., 2010]. Similarly
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to other contrast enhancement techniques, it proposes to divide the image his-
togram into segments,1 which are then independently equalised. Partitioning,
however, is not performed on the normal histogram but rather on its fuzzy
counterpart, whereby a pixel may belong to some degree to more than one of
the bins in accordance with a fuzzy membership function. Such a histogram,
in fact, is generally smoother and has no missing levels or abrupt fluctuations,
thus allowing a more accurate segmentation. The pixel membership functions
can be designed in different fashions depending on the application. In their
paper, Sheet et al. use Triangular and Gaussian membership functions. The
algorithm proceeds as follows:

1. the fuzzy histogram rHpkq, k “ r0, Ls is computed by assigning to each
bin k the number of pixels whose value is around k, in accordance with
the chosen membership function;

2. the local maxima tm
1

, m
2

, . . . , mnu are computed and used to define the
segments of the histogram: S “ t r0, m

1

´ 1s, rm
1

, m
2

´ 1s, . . . , rmn, Ls u;
3. each segment is equalised by means of a technique depending on the

number of pixels belonging to the partition;

4. in order to cope with the alterations that may have been introduced, the
resulting brightness is normalised to match the original brightness.

13.3.3 Anisotropic Diffusion

Anisotropic Diffusion (2D-AD) is a method to enhance images by preserving
the perceptual quality of semantically relevant parts like straight lines, edges
and geometric shapes [Perona and Malik, 1990]. In principle, it is a generalisa-
tion of the scale-space transform whereby an image I is iteratively convolved
with a nonlinear smoothing filter, which is adapted to the local content to
generate progressively more blurred versions of I (theoretical details are left
to [Weickert, 1999] and [Weickert and Scharr, 2002]). In other words, the key-
idea behind 2D-AD is to keep image structures intact and smooth only the area
around them.

1The idea is not dissimilar from the one behind the classification method on which the
CLBA attack is based.
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The filter model allowing anisotropic diffusion is derived from well-known
operators used to extract image details. Let I� “ I ˚ G� be the convolution
of an image I with a Gaussian kernel (� ° 0); then, the gradient rI� can be
employed to highlight structures like the edges of I. Since the gradient does
not always perform satisfactorily, a more effective operator is derived from it.

Let JprI�q “ rI�rIT
� ; then, J⇢prI�q “ JprI�q ˚ G⇢, that is the convo-

lution with a Gaussian kernel (⇢ ° �), is called tensor operator and it can
be used to effectively highlight flow-like, T-shaped or Y-shaped structures
[Weickert, 1999]. The eigenvectors tw

1

, w
2

u of J⇢ give indications on local
orientations and the corresponding eigenvalues pµ

1

,µ
2

q on the local contrast
along these directions. The 2 ˆ 2 diffusion tensor D performing anisotropic
diffusion is created in such a way that its eigenvectors are the same of J⇢ and
its eigenvalues p�

1

, �
2

q are:

�
1

“ c
1
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2

“
$
&

%
c

1
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1
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2
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1
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ı
otherwise,

(13.2)

where c
1

P p0, 1q and c
2

° 0. The elements of D are derived from p�
1

, �
2

q.
The result is an operator that can steer the enhancement according to the
direction of flow-like structures in the image. By resorting to D, it is possi-
ble to efficiently compute blurred versions of Ipx, tq as numerical solutions of
Eq. (13.3), where t • 0 is called diffusion time:

BI
Bt

“ r ¨ pDrIq. (13.3)

In practice, the algorithm proceeds as follows: given I “ Ipx, 0q, first J⇢prI�q
is computed and D is derived with Eq. (13.2); next, Ipx, 1q is obtained with
Eq. (13.3). Starting from Ipx, 1q, the process is repeated until a specified
number of iterations tmax is reached.
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13.3.4 Gaussian Smoothing

Even though Gaussian Smoothing is primarily used to remove keypoints, it
can also inject keypoints if the filter’s standard deviation � f is large enough.
To highlight this particular behaviour and to determine a suitable value for
� f , we ran a test that is similar to the one we set up in Sec. 10.3.4 for keypoint
removal: we collected 100 random CLBA-forged images from the UCID data
set and we injected them with Gaussian Smoothing with increasing � f in
the interval r1, 3s, then we computed the percentage of injected keypoints
with respect to the number of authentic ones.2 Fig. 13.2 shows the average
percentage as a function of � f ; based on this trend, we set � f “ 2 since the
small gain granted by higher values does not justify additional quality loss.
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Figure 13.2: Parameter tuning of the Smoothing attack (injection): average
percentage of injected keypoints as a function of standard deviation � f .

2Since we are evaluating the raw injection power of the algorithm, we do not worry about
whether the new keypoints match or not with their original homologues. When we apply
match refinement, in fact, less keypoints are effectively injected (see Sec. 13.5.2, Fig. 13.5).
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13.3.5 Forging with Minimum Distortion

Forging with Minimum Distortion (FMD) is the symmetrical version of the RMD
attack used to remove keypoints in [Do et al., 2010a]. Given a location px, yq
and a scale � at which a keypoint should be introduced, this time the patch ✏

that needs to be added to the neighbourhood of px, yq is computed by solving
the following problem:

✏ “ argmin

✏:D1pxq“Dpxq´�

1

2

||✏||2. (13.4)

The parameter � still controls the intensity of the attack: Dpx, y,�q is raised
by |�| in such a way that the altered value D1px, y,�q in now greater than
the contrast threshold. The advantage of the FMD with respect to the use of
the rest of the injection methods is that it allows to choose the coordinates
at which a keypoint should be injected. Consequently, with the FMD we can
define suitable locations wherein to inject the keypoints, while with the rest
of the tools keypoints are injected randomly and the appropriateness of their
positions verified afterwards. On the other hand, the FMD strongly affects the
quality of the forgery and thus it should be used sparingly.

13.4 Classification-based injection attack

During the injection stage we need to pay attention to the perceptibility of
the result, especially because now we are working on images that have been
already manipulated by removing keypoints at the expense of visual quality.
Expectedly, the number of injected fake keypoints is inversely proportional to
the quality of the forged image and thus once again we have to find a balance
between effectiveness and imperceptibility. To do so, we chose to follow the
same approach of the CLBA, that is a classification-driven procedure exploiting
the advantages of each single algorithm while limiting its weaknesses. For this
reason we refer to it as Classification-Based Injection (CLBI).

The new attack relies on FMD and on three image enhancers, i.e. Gaussian
Smoothing, 2D-AD and BPDFHE. Intuitively, CLBI forges keypoints with FMD
where they must be found (i.e. in proximity of corners and edges) and with
the three enhancers where they should be found (i.e. in textured non-flat
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regions). Therefore, the classification task basically consists in distinguishing
between regions containing edges and corners and the rest of the image.

The general scheme of the proposed attack is the same of Fig. 13.1. CLBI
takes as input an image Irem without keypoints and produces the injected
image J in four steps as shown by the colored blocks in Fig. 13.3: i) classifica-
tion of Irem’s regions (red); ii) FMD injection (green); iii) contrast-enhancement
injection (orange); iv) refinement of matches (cyan).
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Figure 13.3: CLBI injection attack (best viewed in color).

13.4.1 Classification of image regions

To distinguish image regions according to the structures they contain, we
chose the tensor operator [Weickert and Scharr, 2002] of Irem, which produces
a map of the same size of the image highlighting edges and flow-like, T-shaped
and Y-shaped structures. By normalising the output of the operator in r0, 1s,
we obtain the injection map Map wherein each element px, yq quantifies the
saliency of the corresponding pixel. The idea is to use the most salient points
such that Mappx, yq • 0.5 as preferred injection locations for the FMD, while
the remaining less descriptive points (whose score is however not null) are left
for the image enhancers:

if

#
0.5 § Mappx, yq § 1, px, yq salient
0 † Mappx, yq † 0.5, px, yq not salient.

(13.5)
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13.4.2 FMD injection

The coordinates of all the pixels belonging to the salient regions as well as the
input image Irem are fed to the first injection block, where the FMD attempts to
introduce a keypoint in each location. The large amount of candidate locations
is a direct consequence of FMD’s characteristics: the artefacts it introduces are
visually unacceptable if the attack is too intense, thus forcing us to set its
strength � to the minimum (that is 2); by doing so, however, the attack can
not ensure a positive outcome and for this reason we repeat the injection for all
the locations; following each attempt, we run a SIFT check to verify whether
a new keypoint has been introduced. If this is the case, we do not further alter
its 8 ˆ 8 neighbourhood to avoid undoing the forgery. This stage produces a
first version I f md of the injected image.

Algorithm 3: Pseudo-code of the first stage of injection.
I f md – Irem;
Map – computeMAPpI f mdq;
foreach Mappx, yq • 0.5 do

I f md – FMDpI f md , x, yq;
end

13.4.3 Contrast-enhancement injection

A copy of the input image Irem is fed to each enhancer to produce the three
partially injected images referred to as Ianiso, Ibpdf he and Igauss in Fig. 13.3.
All the 8 ˆ 8 neighbourhoods of the injected keypoints of these images are
extracted and ordered according to their local PSNR with respect to Irem. If
more than one enhancer has created a keypoint in the same location, we keep
only the one with highest PSNR. The goal of this procedure is to generate
as much keypoints of acceptable quality as possible to repopulate the more
uniform (but still significant) regions of I f md, which were not touched by the
previous stage of the attack; therefore, keypoints passing this selection are
pasted with their neighbourhoods into I f md only if 0 † Mappx, yq † 0.5,
producing the injected image Iin j.
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Algorithm 4: Pseudo-code of the second stage of injection.
Ianiso – 2D-ADpIremq;
Ibpdf he – BPDFHEpIremq;
Igauss – smoothingpIremq;
keypoints – calculateSIFTpIaniso , Ibpdf he , Igaussq;
keypoints – PSNRsortpkeypoints, Iremq;
foreach keypoint “ pxkp , ykpq in keypoints do

if 0 † Mappxkp , ykpq † 0.5 then
Iin j – replaceNeighbourhoodpIin j , xkp , ykpq;

end

end

13.4.4 Match refinement

Finally, we check that the keypoints of Iin j do not match with their counter-
parts in the authentic image. We consider a match correct if the distance
between the old and new descriptors falls below a certain threshold (8 in our
case). This final stage addresses two types of matches at the same time, i.e.
those accidentally created by the injection procedure and those left because of
non-perfect removal. We suppress the former by restoring the corresponding
neighbourhood from Irem. If such neighbourhood already contains keypoints,
then they are suppressed by applying the Removal with Minimum Distortion
(RMD) attack [Do et al., 2010a]; in fact, RMD is very effective when its strength
� is increased at least to 3 (against a default of 2), although this tends to
introduce salt and pepper noise.

The output of this stage is the final refined image J. It is worth noting that,
despite all the controls, J may still have some correct matches, mainly due to
two factors: the changes in pixel values while pasting overlapping neighbour-
hoods and the extreme robustness of some keypoints even to the strengthened
RMD. The presence of such matches, however, is not a major drawback for
several reasons. First of all, their number is very small if compared to that
of the authentic ones (see Sec. 13.5.2 and Fig. 13.6 in particular); secondly,
whether surviving matches constitute a problem or not ultimately depends on
the countered application.
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13.5 Experimental validation of keypoint injection

13.5.1 Experimental setup

The injection capability is measured with the Keypoint Injection Rate (KIR)
in a symmetrical manner with respect to removal:

KIR “
ˆ

new keypoints f ollowing in jection
keypoints be f ore removal

˙
ˆ 100. (13.6)

A second important metric is the number of fake keypoints correctly match-
ing with the authentic ones (the less the better, obviously). We consider a
SIFT match correct if it links two keypoints located in the same spatial posi-
tion or, at most, within a 8 ˆ 8 neighbourhood.

In order to keep the complexity of the experiments under control,3 we
considered smaller images, i.e. those composing the UCID data set. The per-
formance of keypoint removal detection on this data set (Fig. 13.4) are in line
with those we obtained with the downscaled INRIA Holidays images. Con-
cerning the experimental setup, keypoints are detected by means of VLFeat
(edge and peak thresholds set to 10 and 4); matching is performed with near-
est neighbour (threshold fixed to 0.8), as suggested in [Lowe, 2004] and with
k-d trees [Bentley, 1975]. Given the similarity of the results, we discuss only
the former matching strategy. The parameters for the removal stage are the
same of Sec. 10.4.2; the size of the injection support is set to M “ 8. The
specific parameters of each technique have been set to the values indicated in
the reference papers.

13.5.2 Effectiveness of keypoint injection

All attacks are evaluated on the UCID data set, whose 1, 338 images have been
previously attacked with CLBA. Fig. 13.5 shows the KIR histogram envelopes
for the six attacks. The performance of most of the single methods are quite
similar, with Gaussian Smoothing (average KIR “ 27.9%), 2D-AD (23.4%)

3On average, our Matlab implementation takes up to 180 seconds on a 400 ˆ 400 image,
due to the several thousands of iterations required by the FMD, each of which also includes
SIFT detection (64 bit OS, 8 GB RAM).
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Figure 13.4: KCR scattergram and ROC on the UCID data set.

and FMD (17%) being superior to CLAHE (14%) and BPDFHE (either membership
function, 11%). Two observations are in order here. First of all, the methods
allow to introduce a larger number of keypoints with non-default parameters,
if one is willing to trade-off with a reduced image quality. Secondly, attacks
should be used in combinations, as confirmed by CLBI, which guarantees the
best results (KIR “ 49.7%).
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Figure 13.5: KIR envelopes for the CLBI and class-unaware attacks.

In Fig. 13.6 we show the cumulative distribution (with superposed nor-
malised histogram) of the matches between authentic and forged images after
removal (dash-dotted blue line) and after injection (solid red line). Following
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refinement, the matches left because of non-perfect removal and those intro-
duced accidentally during injection are effectively reduced, to the point that
61% of the images have less than 3 matches (versus 39% before injection);
furthermore, the images without matches increased from 11% to 25% of the
data set. Such results are satisfactory, especially if we consider that prior to
the attack images have on average 232 matches. False positive matches are
rarely introduced by CLBI (on average less than one per image), hinting that
more specialised algorithms working on descriptors are required for the task.
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Figure 13.6: Cumulative distribution (with superposed normalised histogram)
of correct matches following removal and following injection.

In Tab. 13.1 we give some results about the quality loss caused by removal
and injection in terms of PSNR and SSIM, evaluated both globally (averaged
on all the data set) and locally (averaged on all the attacked neighbourhoods).
Both the visual quality with respect to the authentic image and to the outcome
of removal are not significantly worsened by injection.

Global quality Local quality

Stage PSNR SSIM PSNR SSIM

After removal 32.74 0.976 28.88 0.894

After injection 30.98 0.97 27.29 0.839

Table 13.1: Quality of removal-injection: average PSNR (db) and SSIM on
entire images and on the attacked neighbourhoods
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In conclusion, the proposed injection attack allows to reach a good com-
promise between percentage of removed keypoints, percentage of injected key-
points, correct matches accidentally left or introduced and perceptual quality
of the forged image.

13.5.3 Examples of keypoint injection

A detailed example of the removal-injection procedure is given in Fig. 13.7.
From left to right, the top row shows the keypoints of authentic (blue squares),
CLBA-forged (perfect removal) and injected (red circles) images. The bot-
tom row shows authentic image’s matches with CLBA-forged (left) and injected
(right) images. The following three aspects are worth attention.

Figure 13.7: Example of removal-injection procedure (i).
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Figure 13.8: Example of removal-injection procedure (ii).

• Concerning keypoints. The CLBA-forged image does not contain any
keypoint, which is quite suspicious per se being the image content very
textured, as clearly evidenced by the authentic distribution of keypoints.
On the contrary, the injected image looks more natural and the absence
of keypoints over the clouds, which is an almost flat area, is not so
strange. The original number of keypoints was 73, the injected amount
is 35 (KIR “ 48%q.

• Concerning matches. Obviously, the CLBA-forged image does not pro-
duce any match. Although the injected image has 12 matches (Fig. 13.7
bottom-right), only one of them is correct4, i.e. that on the left spire.

4Recall that a match is deemed correct if the fake keypoint falls inside the 8 ˆ 8 neigh-
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This is a very interesting outcome, confirming that injection can sup-
port removal not only by concealing keypoint removal traces but also by
further misleading any analysis that is based on matching.

• Concerning quality. The injection procedure does not deteriorate
excessively the manipulated image. With respect to the authentic image,
the following quality metrics are obtained: average patch PSNR of 32.8

dB; average patch SSIM of 0.9671; full frame PSNR of 38.9 dB; full-
frame SSIM of 0.9941. In terms of full-frame PSNR, the injection causes
a small loss of 2.5 dB with respect to the CLBA-forged image.

Similar conclusions can be drawn for the images of Fig. 13.8. The authentic
image (top left) contains 53 keypoints; following a perfect removal (top center
and bottom left), 41 keypoints were injected (top right, KIR 77%). The
injection procedure generated only one match between the authentic and the
removal-injection forgery (bottom right).

13.5.4 Time complexity of keypoint injection

In general, injection attacks are not significantly demanding in terms of com-
putational resource, as the average execution times over the UCID data set in
Fig. 13.9 show. Since full-frame attacks do not permit to decide the spatial
location of the injected keypoints and thus do not require any particular itera-
tion or check, their time complexity is very low and never exceeds 15 seconds.
On the contrary, FMD and consequently CLBI relying on it, need about 60 and
90 seconds respectively to produce the injected image. This behaviour can
be explained with the rather high amount of iterations (several thousands) re-
quired by the FMD to attempt the injection in all the candidate locations and to
verify its outcome by means of a SIFT check. All tests have been performed
with the same configuration used for keypoint removal, i.e. on MathWorks
Matlab on a desktop configuration with 2 GHz dual-core processor, 4 GB
RAM, 32 bit OS.

bourhood of its authentic homologue.
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Figure 13.9: Average processing time depending on the injection algorithm.

13.6 Impact of CLBI on keypoint removal detection

We used 300 images to assess the effect of injection on keypoint removal the de-
tectors: 100 randomly drawn from the UCID data set; the corresponding 100

CLBA-forgeries (effective removal rate • 90%); the same 100 images after CLBI
injection. We ran each of the detectors on all the images, we collected the de-
tection scores and we organised them into scattergrams like in Secs. 12.1–12.3.
In Fig. 13.10 we show the scattergrams relative to the KCR (top), CHI (middle)
and SVM (bottom) detectors, with the blue squares representing authentic im-
ages, red circles images following keypoint removal and green triangles images
following keypoint removal-injection.

The capability of separating the classes of authentic and CLBA-forged im-
ages is in line with the results obtained with different data sets but the scores
of injected images tend to scatter and mix with those of the other two classes.
This phenomenon is noticeable especially for SVM and CHI detectors, while KCR
proves once again to be the most robust tool, as green triangles still appear
separable from blue squares despite their proximity (see Fig. 13.10). This
observation is corroborated by the data of Tab. 13.2 showing the confusion
matrices for each of the detectors when the thresholds suggested in Sec. 12.4.5
for small images are used (T

1

= ´ 1.9, T
2

“ 48 and T
3

“ 0.41).
Authentic and CLBA-forged images are correctly labelled with average de-

tection accuracies of 92.5%, 93.5% and 100%, whereas the accuracy in la-
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Figure 13.10: KCR (top), CHI (middle) and SVM (bottom) scattergrams; blue
squares: originals; red circles: CLBA; green triangles: CLBI.

belling injected images as forgeries is 84%, 2% and 26% respectively; the con-
sequences of keypoint injection are severe on CHI and SVM, for which slightly
better results can be obtained, at the expense of the capability of identifying
authentic images, by tweaking T

2

and T
3

.
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KCR CHI SVM

Authentic Forged Authentic Forged Authentic Forged

Authentic 0.85 0.15 0.98 0.02 1 0

CLBA 0 1 0.11 0.89 0 1

CLBI 0.16 0.84 0.98 0.02 0.74 0.26

Table 13.2: Confusion matrices for the removal detectors (thresholds set to
´1.9, 48 and 0.41).

13.6.1 Three-class SVM detector

Based on the above observations, we improved the SVM detector by reformu-
lating the underlying classification as a 3-class problem, in such a way to
discriminate between authentic, CLBA-forged and injected images. In doing
so, not only we were able to recognise a forged image but also to identify the
manipulation it has undergone.

We have used 1, 200 UCID images of each class to build the probabilistic
SVM model (200 for 5-fold cross-validation, 1, 000 for training with C “ 32

and � “ 0.125) and the remaining 138 images per class to test it. In Tab. 13.3
we report the confusion matrix we obtained by assigning each test image to
the class corresponding to the maximum of the output probability.

Authentic CLBA CLBI

Authentic 0.83 0.02 0.15

CLBA 0.01 0.94 0.04

CLBI 0.15 0.05 0.8

Table 13.3: Detection accuracy for the 3-class SVM detector

The discriminative power of the 3-class SVM in presence of keypoint injec-
tion is now comparable to that of the KCR, with authentic and injected images
misclassified in the 15% of the cases. We believe that such a behaviour is at
least in part due to the nature of the UCID data set, whose relatively low
amount of keypoints in images makes distinctions harder, and that it should
subside as the image size grows.
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13.7 Application to copy-move detection

As a final test, we investigate the interplay between all the tools described so
far in the context of the detection of copy-move forgeries; this is, in fact, a
typical image forensic problem that can be effectively tackled with by relying
on SIFT features, whose robustness and distinctiveness allow to reliably match
cloned areas. In Chapter 11 we saw that the goal of copy-move counter-
forensics is to create a forgery that is undetectable by SIFT-based techniques;
a clever counterfeiter can attain such goal by first applying keypoint removal
to disable the targeted algorithm and then keypoint injection to hide the traces
of removal exploited by removal detectors.5 It goes without saying that all
the manipulations are carried out locally on one (or more) of the cloned areas
and leave the rest of the image unaltered.

13.7.1 Evaluation procedure and employed detectors

We considered again only two copy-moved areas, the source A
1

and its clone
A

2

, both containing a fair amount of keypoints because otherwise concealing
the forgery would be trivial. We collected 10 images ranging from 1600 ˆ 1200

to 3000 ˆ 2000 pixels (some belonging to the data set used in [Christlein et al.,
2012]) and we created 10 realistic forgeries by duplicating one region of size in
the order of 300 ˆ 400 pixels and variable shape (see for example Figs. 13.12
and 13.11 (a)–(b)).

We chose the copy-move forgery detector (CMFD) in [Amerini et al.,
2013a], which improves the one by the same authors in [Amerini et al., 2011].
In a nutshell, following SIFT feature detection and hierarchical clustering, the
algorithm in [Amerini et al., 2011] considers an image as forged if at least 3

matches are found within pairs of image regions. The major drawback with
this approach is that requiring only 3 matches may lead to a large number of
false positives, especially in images with many keypoints and repeated texture
patterns such as walls. To overcome this problem, a new clustering technique
was devised in [Amerini et al., 2013a] allowing to estimate the affine transfor-

5We do not include block-based detection in this analysis; however, due to its lack of
robustness to geometric manipulations, it can be disabled as in Sec. 11.4.6 by cascading
CLBA and simple geometric attacks like those in [Nguyen and Katzenbeisser, 2011].
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mation between two sets of matched points. By extending such transformation
to the image regions underlying matching sets, it becomes possible to localise
the tampered areas. According to the improved detector, an image is tam-
pered if at least one affine transformation is found among pairs of clusters.
We detected keypoint removal by means of the KCR detector which, based on
the experiments, proved to be the most robust to variations of image size,
keypoint removal rate and injection.

Since several hundreds of keypoints at time may match across the cloned
areas, the strategy adopted in Chapter 11 consisting in deleting half of the
matches in each region, did not prove effective; consequently, we chose the
second less perceptible solution: we let the counterfeiter remove all the key-
points in A

2

and those matches that are robust enough to survive the attack
on A

2

have their members in A
1

removed instead. Then, A
2

is repopulated
by means of CLBI.

13.7.2 Experimental analysis

Following each stage of the manipulation, the performances of the CMFD
and the KCR detector are measured at image level to evaluate their capability
of detecting tampered images and at pixel level to assess their accuracy in
localising forged regions. For the first level, we simply consider the fraction of
tampered images that are correctly identified. The metrics we chose for the
second level are precision p and recall r:

p “ Tp
Tp ` Fp

r “ Tp
Tp ` Fn

. (13.7)

When Eq. (13.7) are applied on a pixel basis, Tp is the number of forged pixels
that are correctly identified; Fp is the number of authentic pixels erroneously
labelled as forged; and Fn is the number of forged pixels erroneously labelled
as authentic. Hence, precision is the fraction of pixels identified as tampered
that are truly tampered and recall (or true positive rate) is the fraction of
tampered pixels that are correctly classified as such. Precision and recall are
conveniently combined by considering their harmonic mean, called F

1

-score:

F
1

“ 2

p ¨ r
p ` r

. (13.8)
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(A) Authenticity verification

In our implementation, an image is forged according to the CMFD if there is
at least one affine transformation linking A

1

to A
2

, and according to the KCR
detector if there is at least one tampered region whose area is • 2% of the
image area. In Tab. 13.4, for each test image we report the number of key-
points of A

2

, matches between A
1

and A
2

and the binary decision on image
authenticity according to the CMFD in the plain copy-move, following re-
moval and following removal-injection. Regardless of the underlying criterion
(at least either 3 matches as in [Amerini et al., 2011] or 1 affine transformation
as in [Amerini et al., 2013a]), the CMFD reveals 100% of the plain forgeries
(Tab. 13.4, fourth column) but is always disabled by the keypoint manipula-
tions (seventh and tenth columns). A similar analysis is carried out for the
KCR detector in Tab. 13.5; obviously, the removal detector is incapable of dis-
criminating until keypoints are actually altered (Tab. 13.5, third column); in
the other cases, it recognises 100% of the counter-forensically treated copy-
moves (fifth and seventh columns), since the regions it detects have on average
an area which is 12.3% of the total image area after removal and 9.5% after
removal-injection.

Plain forgery After removal After injection

Img keypoints matches forged keypoints matches forged keypoints matches forged

I
1

157 130 1 1 1 0 85 0 0

I
2

1023 868 1 5 0 0 321 1 0

I
3

284 214 1 6 1 0 126 0 0

I
4

516 417 1 1 0 0 128 2 0

I
5

182 88 1 1 0 0 44 0 0

I
6

782 579 1 11 1 0 208 0 0

I
7

1211 929 1 2 0 0 184 2 0

I
8

1221 989 1 28 0 0 367 0 0

I
9

597 458 1 10 0 0 263 0 0

I
10

306 152 1 0 0 0 87 0 0

Table 13.4: Keypoints in A
2

, matches between A
1

and A
2

and binary decision
on authenticity according to the CMFD following each stage of the forgery.
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Plain forgery After removal After injection

Img area forged area forged area forged

I
1

0% 0 7.8% 1 5.9% 1

I
2

0% 0 28.2% 1 25.1% 1

I
3

0% 0 9.1% 1 5.8% 1

I
4

0% 0 7.9% 1 5.7% 1

I
5

0% 0 9.2% 1 7.6% 1

I
6

0% 0 15.7% 1 14.3% 1

I
7

0% 0 7.7% 1 5.3% 1

I
8

0% 0 15.5% 1 11.4% 1

I
9

0% 0 11.5% 1 6.7% 1

I
10

0% 0 10.2% 1 6.9% 1

Avg. 0% 12.3% 9.5%

Table 13.5: Percentage of total image area detected as tampered by KCR and
binary decision on authenticity following each stage of the forgery.

(B) Tampering localisation

Tab. 13.6 shows the localisation accuracy of the CMFD and the KCR in terms
of average p, r and F

1

-score (computed over all the images’ pixels) following
each stage of the forgery and confirms the inadequateness of the CMFD in
presence of keypoint manipulations. The repercussion of injection on KCR’s
performance is twofold: on the one hand, the probability of detecting forged
pixels (i.e. r) is lowered by 18%, even though the reduction is insufficient
to hide keypoint removal; on the other hand, the false positives caused by
the sliding window approach on the borders of the tampered areas are also
reduced, hence explaining the higher p.

Figs. 13.12 (I
2

) and 13.11 (I
3

), wherein the exit sign was hidden by replicat-
ing a portion of the wall and a cookie was duplicated, exemplify well the data of
Tabs. 13.4–13.6 and the capability of injection in hiding the traces of keypoint
removal to a visual investigation. The distributions of Figs. 13.12–13.11 (e)
can still raise the suspicion of a keen observer but those of Figs. 13.12–13.11 (g)
certainly require specialised tools. It is also worth noting that the CMFD al-
lows to localise both the cloned areas whilst the KCR detector, due to the
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Plain copy-move After removal After injection

Detector p r F
1

p r F
1

p r F
1

CMFD 0.84 0.67 0.75 0 0 0 0 0 0

KCR 0 0 0 0.6 0.85 0.7 0.74 0.67 0.7

Table 13.6: Average precision, recall and F
1

-score for the CFMD and the
KCR detector following each stage of the forgery.

attacker’s strategy, can identify only the one that has been tampered with.
Two additional examples of localisation are shown in Fig. 13.13: the left col-
umn corresponds to the CMFD output on the plain copy-moves and the right
column to the KCR output on the CLBA-attacked forgeries (on which the CMFD
fails).

In conclusion, we can say that in the examined scenario the adversary
struggles in evading copy-move detection if the forensic analyst resorts to the
combination of the two above categories of detectors, e.g. by OR-ing their
binary outputs on image authenticity or the tampering maps.

(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 13.11: Copy-moved image I
3

. (a) Authentic; (b) copy-move; (c)
keypoints of (a) (square markers indicate the keypoints of the cloned area);
(d) output of the CMFD; (e) keypoints following removal; (f) output of KCR
on (e); (g) keypoints following injection; and (h) output of KCR on (g).
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(a) (c) (e) (g)

(b) (d) (f) (h)

Figure 13.12: Copy-moved image I
2

. (a) Authentic; (b) copy-move forgery;
(c) keypoints of (a) (square markers indicate the keypoints of the cloned area);
(d) output of the CMFD; (e) keypoints following removal; (f) output of KCR
on (e); (g) keypoints following injection; and (h) output of KCR on (g).

(a) (b) (c) (d)

Figure 13.13: Examples of localisation. (a)-(c): CMFD output highlighting
copy-moved regions; (b)-(d): KCR output following removal.
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13.8 Concluding remarks

In this chapter we studied the injection of fake SIFT keypoints in an image
whose authentic keypoints have been previously deleted. So far, no systematic
study on this topic was carried out. Our interest stemmed from the consid-
eration that an image with too few keypoints is per se a clue of counterfeit,
which can be used to reveal the removal attack by means, for example, of the
forensic detectors discussed in Chapter 12. As a consequence, the adversary
must improve the imperceptibility of the removal attack by introducing new
keypoints that are detectable by SIFT but do not have any correspondence
with the authentic ones and do not interfere with the results attained with
removal.

Five injection tools have been separately analysed and then combined into
a single, more effective injection attack. Experimental results show that in-
jection is feasible without causing a successive detection at SIFT matching
level. Moreover, sometimes false matches can be introduced to further mis-
lead matching-based analysis. Visual quality is preserved both with respect
to the original image and, particularly, in comparison with the image quality
achieved after keypoint removal. By resorting to the proposed injection attack,
it was possible to reduce the discriminative power of the keypoint removal de-
tectors (dramatically, for two out of three). However, when applied to counter
SIFT-based copy-move forgery detection, removal and injection were not able
to bypass the most robust among the keypoint removal detectors.



Chapter 14
Conclusion

“Now this is not the end.
It is not even the beginning of the end.

But it is, perhaps, the end of the beginning.”

Winston Churchill

I

N THIS thesis we focused on three different image forensic problems:
the study of the history and the relationships between near-duplicate
images; the fusion of multiple detection scores produced by a set of tools

evaluating the authenticity of an image; and the study of weaknesses of SIFT-
based image forensic algorithms.

14.1 Summary

Our interest for the first problem stemmed from a simple observation. When
we query any web engine for an image, several almost identical versions of
the queried image are usually retrieved; most of such images differ in colors,
size, contrast and so on. Clearly, there must be some links (or dependencies)
between them, which are rarely documented by the users who downloaded,
modified and redistributed the images. Though the current state-of-the-art
of Image Forensics permits to gather very interesting information about the
history of an image, the majority of instruments developed so far focus on the
analysis of single images. In several applications, however, the investigation
the relationships between a group of images, may be of similar or even greater
importance (e.g. copyright infringement, clustering, retrieval, news and opin-
ion tracking). We tried to explore such relationships by casting the problem
into a theoretical framework. Since we could not rely on the visual content
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of identical images to understand whether a digital image has been produced
by starting from another image representing the same scene, we proposed a
content-independent footprint characterising the process that produced the
images. Based on such a footprint, which is in principle similar to image
noise, we considered two images as dependent if some form of similarity exists
between their content-independent components.

We also implemented a system, called Image Dependency Explorer, putting
the framework in practice. The system estimates the best transformation
leading from an image A to an image B as the composition of a subset of
the most common processing tools: color manipulations, contrast and bright-
ness adjustments, geometric transformation and compression. The analysis is
applied in a pair-wise fashion to the data set of duplicates and a graph de-
scribing their relationships is produced. The tests we conducted on synthetic
data sets demonstrated the reliability of the relationships when the ground
truth is known; tests on real Web data sets demonstrated the plausibility of
the relationships when the ground truth is unknown. In this latter case we
resorted to alternative ways to evaluate the performance of the system, such
as visual investigation and the introduction of small subsets of duplicates with
known ground truth working in a similar way to the litmus paper in chemistry.

Concerning the second topic addressed in the thesis, we proposed a theo-
retical framework for the cooperation of forensic tools by means of the fusion
of their decision scores. Generally, each forensic technique deals with the de-
tection of a typical footprint left by a single processing tool under specific set-
tings. Forensic techniques, however, like any other realistic process or system,
are never perfect and their measurements are usually affected by uncertainty,
ambiguity or impreciseness. Another obstacle to overcome when judging the
integrity of a given image is that most of the times a tampered image is not
the result of the application of a single processing tool. Since rarely we know
beforehand the kind of manipulation the image has undergone, the application
of a single footprint detection technique may not be enough, thus requiring
the parallel use of more than one technique. A problem with the use of several
tools looking for different footprints is that each tool provides an output de-
scribing the degree of presence of the specific footprint it is looking for. Even
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when using more than one tool, we are interested in obtaining a single global
answer allowing to decide whether the image under analysis is authentic or
not. Obtaining such a global answer is not a trivial task, as outputs may not
only be inaccurate but also heterogeneous.

We tackled with both the above problems by means of a decision fusion
framework based on Fuzzy Theory, because of its capability to address prob-
lems whose mathematical or statistical models are hard to define. Our frame-
work resorts to the experience and the knowledge of the forensic analyst to
mimic her behaviour. An analyst, would first tweak the tools at her disposal
by gathering as much information as possible (e.g. which ones are the most
trustworthy, on what kind of images they work, how they interact with each
other), thus tackling with the uncertainty problem. Then, she would run all
the tools on the image under analysis and exploit the previously gathered
knowledge to make a final decision, thus tackling with the fusion problem.
The proposed framework translating into practice such rationale brings sev-
eral advantages: it outperforms canonical approaches; it is easily scalable and
allows incremental addition of new forensic tools without requiring new train-
ing; it does not require mathematical models; it addresses the fusion problem
in a sound yet intuitive way. We validated the system by fusing five different
forensic detectors revealing cut & paste manipulation, with superior results
with respect to those guaranteed by traditional techniques.

The final part of the thesis is dedicated to Counter-forensics, that is the
exploitation of the weaknesses of forensic algorithms to understand the limits
of the existing tools not only in presence of “innocent” processing but also in
presence of a malicious adversary interested in fooling a certain forensic anal-
ysis. We focused on a class of algorithms not impaired so far, i.e. SIFT-based
detectors. Our first contribution is a new method to remove SIFT keypoints,
called Classification-based Attack (CLBA). Such algorithm is based on the con-
cept of keypoint classification preceding the attack itself; identifying classes of
keypoints with different properties, in fact, allows to choose the attack that
fits the most to such properties. Multiple iterations of the classification and
attack procedure allow the removal of practically all the first-octave keypoints
and, to some extent, of a satisfactory amount of more robust, higher-octave
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keypoints. By using this solution, we were able to outperform state-of-the-art
class-unaware keypoint removal attacks in terms of effectiveness and impact on
the counterfeit’s quality. Furthermore, we used the CLBA to impair SIFT-based
copy-move detection, which represents one of the most robust and reliable ap-
proaches to reveal this common way to tamper with an image. In this scenario,
the counterfeiter can create a forensically undetectable copy-move by deleting
those keypoints whose matches across cloned regions have been revealed by
the targeted SIFT-based copy-move detector. The results we obtained show
that with CLBA the adversary always succeeds in bypassing the targeted foren-
sic algorithms, thus representing a serious threat to SIFT-based detection in
general.

To tackle with this problem, we devised three forensic detectors for the
identification of images whose SIFT keypoints have been artificially removed.
The proposed algorithms scan image regions with sufficiently high variance in
search of suspect inconsistencies in the number and in the distribution of SIFT
keypoints. By relying on such algorithms, the forensic analyst can decide on
the authenticity of the image as a whole or localise tampered regions within
the image by means of a sliding window approach.

We then provided the adversary with new tools to bypass keypoint removal
detection by re-introducing fake keypoints into the attacked image regions.
We combined the most performing of such tools into a new method, called
Classification-based Injection (CLBI), based on the same principle of CLBA,
i.e. a classification-driven procedure exploiting the advantages of each single
injection algorithm while limiting its weaknesses. By relying on such an attack,
we assessed the robustness of keypoint removal detectors in the presence of an
adversary and we demonstrated that in the copy-move detection scenario the
forensic analyst is not defeated.
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14.2 Open issues

The work of this thesis could benefit from further research. Regarding the
first part, future works should begin with a theoretically sound formulation of
the hypothesis testing problem lying at the heart of the Dependency Explorer
Framework, in such a way to dismiss heuristic aspects like the empirical thresh-
olding of pairwise correlations. From a more practical point of view, it would
be interesting to push forward the integration between the proposed system
and the existing forensic tools for source and forgery detection. Knowing the
source of the images composing the set of near-duplicates would help ruling
out implausible relationships (e.g. similar images generated by different cam-
era brands), thus ensuring the construction of a more accurate dependency
graph at a reduced computational cost. Knowing that an image has been
tampered with would have a number of interesting consequences, such as: de-
termining with more accuracy parent-child relationships; in the case of image
splicing, lifting the hypothesis of a single parent for each image; tracking the
history of the tampered regions by means of a dedicated dependency subgraph.

Concerning the second part of the thesis, it is of paramount importance
to extend the theoretical fusion framework to the most complex case in which
the suspicious tampered region is not known a priori. As a matter of fact,
forensic detectors such as those we considered in the implementation of our
fuzzy fusion framework can be used to localise tampered regions of an image,
e.g. by means of a sliding window approach. In this case, however, a potential
issue would arise if each tool produces different tampering maps or different
localisations. Therefore, it could be necessary to somehow fuse the spatial
maps to tackle with this new form of uncertainty and reach a consensus on
the suspicious region. Once the region has been located, the fuzzy fusion can
proceed as we described in this thesis, by relying on the detection scores of
each tool in the suspicious region.

Finally, among the other possible extensions, we mention the following: to
implement a wider set of forensic tools working on different manipulations in
order to better exploit the capability of the system to deal with heterogeneous
outputs; to compare the fuzzy method against other soft decision approaches,
like Bayesian and Neural Networks, on extended real-world datasets.
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As for the third part, much work can still be done. The removal of SIFT
keypoints should be expanded to encompass multiple octaves at the same
time. Even though the majority of the results of the proposed attack were
obtained on the keypoints detected at the first SIFT octave, our preliminary
experiments show that the trend is similar for the remaining octaves and we
have already proposed a variation of the original algorithm taking into account
multiple octaves. Nevertheless, its effectiveness on higher octaves should be
investigated in-depth so that an acceptable trade-off between removal rate and
visual quality of the forgery is attained.

It could also be useful to adapt the CLBA in such a way to make possible
the removal of keypoints detected by other techniques like, for example, SURF
(Speeded Up Robust Features) [Bay et al., 2008] and MSER (Maximally Sta-
ble External Regions) [Matas et al., 2004]. As a matter of fact, while removing
SIFT keypoints, CLBA can already reduce the population of SURF keypoints
and MSER regions as shown in Fig. 14.1. We obtained the data in Fig. 14.1
as follows. We ran a version of the CLBA consisting only of two attacks, i.e.
Gaussian Smoothing and Collage1 attacks on 400 UCID images; we did not
consider the RMD attack because it is specifically tailored to the SIFT algo-
rithms and thus can not be applied as it is to other keypoint detectors. Then,
as usual, we calculated the envelope of the KRR histograms.
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Figure 14.1: KRR attained with CLBA on SURF and MSER keypoints.

1Obviously, we have collected two databases consisting of image patches without SURF
keypoints and MSER regions.
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It turns out that on average this simplified version of CLBA is capable of
deleting 66% of the SURF keypoints and 62% of the MSER regions. These
exploratory results are promising and suggest that CLBA may be also able to
counter applications based on these two keypoint detectors.

In a long-term perspective, it would also be very interesting to consider
another type of attack, i.e. altering SIFT descriptors; such an attack could
be used to impair matching-based applications by hiding matches without
deleting the corresponding keypoints or by introducing false positive matches.

Finally, concerning keypoint injection, we are working on the re-introduction
of the color information into the forged image. To do so, we work in the YCbCr
color space: first we perform the removal-injection procedure on the lumi-
nance channel of the authentic image; then, we reconstruct the color forgery
by means of the attacked luminance and of the authentic color channels Cb
and Cr. Since color conversions may accidentally introduce correctly matching
keypoints, the proposed attack must be tuned to cope with such side effect.
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Adversary, 133
Anisotropic diffusion, 254–255
ASIFT, see SIFT extensions
Attack, 138

Classification, see CLBA
Collage, 179
Combined, see CLBI
copy-move, 207
FMD, 257
integrated, 140
post-processing, 140
RMD, 180
Smoothing, 177, 256
targeted, 141
universal, 141

Cat-and-mouse, 135, 141
CFA, Color Filter Array, 19

forensics of, 21
Counter-forensics of, 146

CHI, CHI-square detector, 227–230
Classification

of CLBI regions, 258
of SIFT keypoints, 173–177
of variance blocks, 231

CLBA, Classification-based Attack, 171
complexity of, 195
effectiveness of, 185

framework, 171, 181
multi-octave, 196–198
perceptibility of, 185
robustness of, 188–191
subjective quality, 192–195

CLBI, 257
complexity of, 266
effectiveness of, 261
framework, 258–260
perceptibility of, 263

cm-CLBA, copy-move CLBA, 208
effectiveness of, 215
framework of, 210
perceptibility of, 212

Color difference, 49
Color transfer, 40, 49
Composite processing function, 34
Contrast enhancement

Counter-forensics of, 144
for injection, 253

BPDFHE, 253
CLAHE, 253

forensics of, 22
Copy-move, 24

block-based detection, 208, 220
counter-forensics, 208
removal detection, 270
SIFT-based detection, 207, 220
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Corners
keypoint-to-corner ratio, 226
proximity of keypoints, 233
SIFT Harris, 157

Counter-forensics, 25, 133
of copy-move, see copy-move
of keypoint removal detection, 267
of SIFT, 167

Cut & paste
detection of, 114

Cut & paste, 23

Dataset
for copy-move counter-forensics, 214
for countering copy-move, 212
for dependencies, 54
for fusion, 116
for SIFT counter-forensics, 184

Dempster-Schafer (fusion), 87, 125
Dependency, 33

Explorer Framework, 46
graph, 38
test, 37, 47

Detection (fusion), 97, 100
Diffusion tensor, 255
Digital Image Forensics, 16
Digital Watermarking, 18
Distinctiveness, 152
DSIFT, see SIFT extensions

Feature, 151
fusion, 84

Fundamental processing function, 34
Fusion, 81

abstract level, 85
feature level, 84
measurement level, 84

Fuzzy
Fusion Framework, 95
histogram equalisation, see BPDFHE

inference system, 92
logic, 90
membership function, 89
operators, 90
rules, 91
set, 89
Theory, 88

Game Theory, 146

Image
acquisition, 20, 135
authentic, 136
cleaned, 172
injected, 251
original, 136
processed, 137

Image registration, 40, 47, 50
Injection of keypoints, 250

framework, 251
Inpainting, 25
Invariance, 151

JPEG
Counter-forensics of, 141–144
cut & paste detection, 114
dependency, 41
matching, 46, 50

KCR, Keypoint-to-Corner ratio, 226–227
KIR, Keypoint Injection Rate, 261
KRR, Keypoint Removal Rate, 182

Lens aberration, 20
Locality, 152

Near-duplicate, 31

Ontology, 38, 48

PCA-SIFT, see SIFT extensions
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Principal curvature, 157
PRNU, 20

Counter-forensics of, 146
forensics of, 21
enhancer, 48

Quantity, 152

Randomness, 35
Real scene, 33
Relationship, see Dependency
Reliability (fusion), 97, 101
Repeatability, 152
Resampling, 22

Counter-forensics of, 145
forensics of, 22

Robustness, 151
ROC, Receiver Operating Curve

of CHI detector, 239
of dependency threshold, 53
of fusion, 122–126
of KCR detector, 236
of SVM detector, 240

Rules
ideal, 100–102
if-then, 91
non-ideal, 103–104

Scale-space, 150, 153
Seam carving, 25
SIFT, 153

descriptor, 159
DoG, 154
extensions, 161–165
keypoint, 153
localization, 155
matching, 160
orientation, 158
refinement, 157

Steganography, 18

SVM
3-class detector, 269
detector, 230
for decision fusion, 125

Tampering tables, 98, 115
Threshold

CHI, 230
CLBA classification, 175–176
CLBI correct match, 260
CMFD, 211, 215, 218–219
color JND, 195
defuzzification, 109
dependency test, 37, 51–53, 59
for fusion, 122
KCR, 226
Removal detectors, 241–242
SIFT contrast, 157
SIFT descriptor, 160
SIFT edge, 158
SIFT matching, 161
SVM, 230
VLFeat, 184
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It’s all so easy with Photoshop. With imaging software so widely available, the 

manipulation of digital images is not anymore a matter for experts only. While 

there is little harm besides gossip in retouching an unwanted belly or an 

incipient baldness, the simplicity of counterfeiting is a serious issue when it is 

exploited to convey social, political or military messages. It is not surprising, 

then, that restoring the credibility of digital content has become a task of 

paramount importance. Digital Image Forensics is a science allowing to gather 

information on the history of an image in such a way that its veracity can be 

evaluated, based on the principle that any manipulation leaves more or less 

subtle traces. 

We contribute to the image forensics’ mission by addressing three open issues. 

First, we analyse the history of groups of near-duplicate images to reveal their 

parent-child relationships, thus opening new scenarios for copyright 

enforcement, news tracking or clustering. Secondly, we make possible the 

cooperation of heterogeneous image forensic detectors by fusing their decision 

scores in such a way to deal with uncertainty, incompatibility and noise 

typically affecting the analysis. Finally, we study strengths and weaknesses of 

the forensic algorithms based the Scale Invariant Feature Transform; we devise 

new attacks bypassing the forensic analysis and we discuss possible counter-

measures. 
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