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Chapter 1

Introduction

“The increasingly wired nature of the world means cyberspace

will likely be the world’s next large battlefield (if it isn’t already..)”

Jeremy Bender, February 2014,

Business Insider, UK

We live in a hyper-connected digital word in which every digital system is daily

exposed to several threats. While sometimes these threats are innocent, and ac-

cidentally pursued against the system, many time they have a malicious purpose.

Cybercrime is a growing industry whose annual damage to the global economy is

estimated in many hundreds of billions and is expected to increase in the next years

[1]. Many of such crimes may threaten nations’ security and financial health. Issues

surrounding these types of crimes have become high-profile, particularly those sur-

rounding hacking, copyright infringement, child pornography, and child grooming [2].

There are also problems of privacy when confidential information is intercepted or

disclosed, lawfully or otherwise. In such a digital ‘minefied’, protecting information

is becoming of primary importance [3].

Security-oriented disciplines of signal processing have received increasing atten-

tion in the last decades; multimedia forensics, digital watermarking, steganography

and steganalysis, biometrics, network intrusion detection, spam filtering, traffic mon-

itoring, videosurveillance, are just a few examples. Despite enormous differences,

all these fields are characterized by a unifying feature: the presence of one or more

adversaries aiming at making the system fail. So far, the problem of copying with

an adversary has been addressed by different communities with very limited inter-

action among them. It is not surprising, then, that similar solutions are re-invented

several times, and that the same problems are faced again and again by ignoring

that satisfactory solutions have already been discovered in contiguous fields. As a

result, similar errors are repeated, e.g., the security problem is misunderstood. In

watermarking, for instance, robustness and security have been treated as a unique

problem [4] and it took several years to recognize that they are instead contrasting

requirements calling for the adoption of different countermeasures. In a similar way,
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security issues in biometric research are often neglected, privileging a pattern recogni-

tion perspective more related to robustness than security [5]. Similar concerns apply

to several other fields. The lack of a unifying view makes also difficult to grasp the

essence of the addressed problems and work out effective solutions.

While each adversarial scenario has its own peculiarities, there are some common

and fundamental problems whose solution under a unified framework would speed

up the understanding of the associated security problems and the development of

effective and general solutions. It is relevant, then, to go beyond limited views and

lay the basis of a general theory that takes into account the impact that the presence

of an adversary has on the design of effective signal processing tools, i.e. a theory of

Adversarial Signal Processing (Adv-SP), a.k.a. Adversary-aware Signal Processing.

Driven by the need of developing a general theoretical framework to analyze ad-

versarial problems in signal processing, in this thesis we move a first step in this

direction, studying one of the most recurrent problems, namely binary decision. Bi-

nary decision is also known in literature as binary detection, since, in many appli-

cations, the decision problem pertains to the detection of the presence or absence

of a certain phenomenon or signal (e.g., in radar detection, or in fingerprint detec-

tion). Moreover, being the decision framed as an Hypothesis Test, such problem

is also sometimes referred to as Binary Hypothesis Testing. Among binary decision

problems, source identification is one of the most studied subjects, since it lies at the

heart of several security-oriented disciplines: multimedia forensics, when an analyst

wants to distinguish which between two sources (e.g. a photo camera and a scanner);

biometric authentication, where the authentication system must decide whether a

biometric trait belongs to a certain individual, anomaly detection, traffic monitoring,

steganalysis and so on .

With the above ideas in mind, the first part of the thesis is devoted to the devel-

opment of a general theoretical framework for the binary detection problem in the

presence of an adversary. We start from the observation that in order to make a

correct decision in an hostile environment, we need to model the interaction between

the decision function designer and the adversary, and then define the decision test

and evaluate its performance within this framework. To do so, we cast the adver-

sarial binary detection problem into a game theoretical framework, which is studied

by relying on methods typical of information theory. We consider different possible

decision scenarios (detection based on a single-observation, or decision fusion based

on multiple-observations) which provide frameworks for different application scenar-

ios (e.g. fingerprinting or biometric authentication for the single observation case,

sensor networks and cognitive radio networks for decision fusion of multiple observa-

tions). We consider different variants of the game depending on the behavior of the
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adversary (who may act under only one or both hypotheses under test), the decision

setup (Neyman-Pearson, Bayesian), the a priori knowledge that the designer and the

adversary have about the phenomenon under investigation (perfect knowledge of the

statistical characterization of the system or partial knowledge based on observables)

and finally, the possibility for the attacker to interfere with the learning phase by

corrupting the training set (observables) used by the designer to make the decision.

Drawing a parallelism with optimal transport theory, this thesis also contributes to

the definition of a measure of statistical distinguishability of information sources un-

der adversarial conditions, namely the Security Margin, which summarizes in a single

quantity the expected result of the game. In order to make the analysis tractable, we

focus on an asymptotic versions of the studied problems (with respect to the length

of the observed samples) and confine our analysis to the case in which the decision

is based of first order statistics.

The use of game theory to model the impact that the presence of an adversary

has on Hypothesis Testing is not an absolute novelty. In many security oriented fields

in which Hypothesis Testing plays a central role, game theory has been advocated

to avoid entering the so called ‘cat & mouse’ loop in which researchers alternatively

play the role of the designer and the adversary, and continuously develop new coun-

termeasures, each time by attacking a specific algorithm or strategy. Despite isolated

works in the various fields, a game theoretical formulation that permits to cast under

a unique umbrella all the similar versions of the binary decision problem encountered

in different applications is still missing.

Although the results of the first part of the thesis are general ones, we often use

Multimedia Forensics as leading example to motivate the analysis. The unknowl-

edgeable reader may refer to the introduction to this topic provided in the second

part of the thesis.

In the second part of the thesis, we focus on the application of the theoretical

findings to some selected problems in multimedia forensics. Multimedia Forensics is

a rather mature discipline which pertains to the study of the techniques aimed at

gathering information on the ‘history’ of a multimedia document (e.g. an image, a

video, an audio track), i.e., on its origin, the processing it has undergone and its

authenticity. The need for such tools is the natural consequence of the widespread

diffusion of digital content, which anyone can modify, manipulate and distribute al-

most effortlessly. It is not surprising, then, that restoring the credibility of digital

content has become a task of paramount importance. By playing the role of the

counterfeiter, we develop a universal counter-forensic attack: as long as first order

statistics are concerned, our proposed technique can be adopted to counter any foren-

sic detector, that is, to conceal the traces left by any processing tool. We test our



22 1. Introduction

algorithm in the pixel domain, to counter the detection of the contrast enhancement,

i.e., a common operation which increases the image contrast to improve image qual-

ity. We then adapt our attack to make it work in the frequency domain for countering

the detection of multiple JPEG compressions. Within this framework, we test the

effectiveness of our method against state-of-the-art detectors. Besides, we evaluate

experimentally the theoretical quantities which, according to the theory, summarize

the ultimate achievable performance of the analysis.

1.1 Overview and contribution

This thesis is organized in two parts. Before starting with the first part, in Chapter 2,

we introduce the reader to Adversarial Signal Processing and provide the basic tools

for studying it. We also give an overview of the general structure of the adversary-

aware binary detection problems addressed in the thesis.

In the first part of the thesis we develop the theoretical framework for the study

of several binary detection problems in the presence of an adversary. In Chapter

3, we define and study the first simple case of binary detection when the statisti-

cal characterization of the observed system is known to both the decision function

designer, referred to as the Defender, and the adversary, namely the Attacker. In

the considered scenario, the Attacker is active only under one of the two hypotheses

(one-side attack scenario). Such analysis is extended in Chapter 4 to the case in

which the statistics of the system are known through training data. Chapter 5 is

devoted to the analysis of the final achievable performance of the games studied in

the first two chapters and to the definition of the concept of Security Margin. Then,

in Chapter 6, we generalize the analysis of the adversarial setup studied in Chapter 4

by considering a version of the game in which the adversary can corrupt part of the

training data available to the Defender. A different scenario in which the decision

is based on multiple observations is addressed in Chapter 7. Finally, the case in

which the Attacker is active under both hypotheses (two-side attack) is considered

in Chapter 8, where two versions of the game are analyzed.

The second part of the thesis is devoted to the application of the theoretical find-

ings to some practical problems in Multimedia Forensics. After a brief introduction

to Multimedia Forensics and Counter-forensics in Chapter 9, in Chapter 10 we take

the role of the counterfeiter and develop a universal counter-forensic attack against

first order based detectors, i.e., detectors based on the analysis of the image his-

togram. Our universal scheme is extended to the frequency domain in Chapter 11

and used to counter the detection of multiple JPEG compressions. With reference

to such forensic applications, in Chapter 12 we evaluate the Security Margin in prac-

tice. Chapter 13 concludes the thesis, summarizing the lessons learned and outlining
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a possible path for future research.

1.2 Activity within research projects

The activity of this thesis has been partly carried out within the REWIND European

projects, funded by the European Commission under FP7-FET programme and the

AMULET project, funded by the European Office of Aerospace Research and Devel-

opment (EOARD).

The REWIND (REVerse engineering of audio-Visual content Data) project1,

ended in June 2014, supported the activity presented in this thesis. The aim of

the project was to develop new theories and tools for investigating the digital history

of multimedia contents by synergistically combining principles of signal processing,

machine learning and information theory. The REWIND project successfully reached

its objectives, and we are proud of having contributed to its success. This research

project was essential especially for the development of the second part of this the-

sis. Moreover, the project gave me the opportunity to establish contacts and fruitful

collaborations, with the Signal Processing in Communications Group, University of

Vigo (Spain), where the author of this thesis worked, as a visiting student, from

October 2014 to February 2015.

We worked also on the AMULET (A MUlti-cLuE approach To image forensics)

project, ended in December 2014. The project focused on the development of new

techniques for multi-clue forensic analysis that, starting from the indications provided

by a pool of tools thought to detect the presence of specific artifacts, make a global

decision about the authenticity of a given image. This thesis contributed to this goal

with the results presented in Chapter 7.
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1http://www.rewindproject.eu/
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M. Barni, M. Fontani, B. Tondi. “A Universal Technique to Hide Traces of
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Multimedia and Security, MMSEC 2012.
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Chapter 2

Introduction to Adversarial Signal
Processing

“If you know the enemy and know yourself,

you need not fear the result of a hundred battles.

If you know yourself but not the enemy,

for every victory gained you will also suffer a defeat.

If you know neither the enemy nor yourself,

you will succumb in every battle.”

Sun Tzu, The Art of War

Adversarial Signal Processing (Adv-SP) is an emerging discipline targeting the

study of signal processing techniques explicitly thought to withstand the in-

tentional attacks of one or more adversaries aiming at system failure. The aim of

AdvSP is then modeling the interplay between a Defender, wishing to carry out a

certain processing task, and an Attacker, aiming at impeding it. Adv-SP methods

can be applied to a wide variety of security-oriented applications including multi-

media forensics, biometrics, digital watermarking, steganography and steganalysis,

network intrusion detection, traffic monitoring, video-surveillance, just to mention a

few [6].

While in classical signal processing, a designer carries out a certain processing

task without any interference, in Adversarial Signal Processing, the Defender carries

out its processing task in the presence of an Attacker, aiming at impeding it. Within

such a framework, the classical signal processing theory can no longer be applied to

model the problem: being the processing carried out in an adversarial environment,

in fact, we must account for the presence of two players who interact each other. A

quite natural framework for studying Adversarial Signal Processing is then provided

by Game Theory. A brief introduction to Game Theory and to the main concepts

necessary for deriving the results of this thesis is provided in section 2.2. After that,

in Section 2.3 we give the basics of Adversarial Hypothesis Testing and introduce the

various setups studied in this thesis.
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Before doing that, in the following section, we provide a review of the most recent

advances in the security-oriented fields where signal processing designers must cope

with the presence of an adversary, highlighting the similarities between some existing

approaches in the various fields, thus motivating the interest in building a unitary

view of the most recurrent and basic problems.

2.1 Copying with an adversary: prior art

Copying with an enemy is a common problem to many signal processing fields and

in particular to all security oriented disciplines.

In the various communities, researchers have already started to face this problem:

adversarial machine learning [7], watermarking [8, 4], steganography and steganal-

ysis [9, 10], biometric spoofing [11], traffic analysis [12] and intrusion detection [13]

are among the most popular ones. Examples from other fields include security of

reputation systems [14], cognitive radio [15], content based information retrieval [16],

and many others.

In some cases, researchers are aware of the challenges set by the presence of

intentional or malicius attacks (with respect to the unintentional ones, e.g. noise

addition) and have started addressing them. In other cases, such awareness has still

to be fully developed and the presence of an adversary is properly treated only in

some scattered works.

For instance, in adversarial machine learning, the problem of classifier security

in adversarial environment have attracted a growing interest [17, 18]. However, as

claimed in [19], the related issues have only been sparsely addressed, under different

perspectives and to a limited extent. Most of the works has focused on application-

specific issues related to spam filtering [20] and network intrusion detection (e.g.,

evasion attacks [21, 22]) while the problem of adversarial classification has started to

be addressed in a more systematic way only in a few works [23, 24, 7]. In particular,

in [23], the classification problem is viewed as a game between the classifier and the

adversary (intruder), although the unrealistic assumption of perfect knowledge of the

classifier is made. Starting from this work, game theoretical approaches have been

proposed which go beyond this assumption and study the strategic interaction: for

instance, the intruder classification games in [25, 26, 27], or the game between a spam

filter and a spammer studied in [28].

Stegananography and steganalysis is another field where the resilience of the em-

bedding scheme to attacks have been addressed in a large number of publications.

However, a clear distinction between the concept of security and robustness is still

missing in many works [29]. Several definitions of security have been given: an

information-theoretic definition is given by Cachin [9], based on the K-L divergence
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between cover and stego. Another related and recurrent notion is that of provably

secure steganography [10]. However, provable secure models are difficult to put into

practice and how to prove the security of practical steganographic schemes is still

unclear [30]. Model-based approaches take into account these theoretical concepts

in the design of practical steganographic algorithms; however, it has been shown

that such approaches are flawed against strategic adversaries [31]. Then, it is be-

coming common sense that the security should be evaluated against an adversary

(steganalyzer) who anticipates the behavior of the embedder.

There is a branch of research in the field, where game theoretical approaches

to steganography have been explored and the problem of designing secure stegano-

graphic algorithms addressed more systematically. The first work in which steganog-

raphy and game theory are combined traces back to 1998 [32]. In such a work the

author proposes to use zero-sum games to model the contest between a data-hider

and an attacker. There, the purpose of the active attacker is not only to detect,

but to suppress hidden communication and then is subject to a distortion constraint.

In [33], game theory is used to find best strategies for a steganographer who can

spread the secret message over several homogeneous cover media (batch steganog-

raphy), and a steganalyst who anticipates this and tries to detect the existence of

at least one secret message (pooled steganalysis). Some interesting game theoretical

approaches have been proposed recently in the field of content-adaptive steganog-

raphy. Content-adaptive steganographic schemes embed the stego-message in the

locations of the cover medium which are most suitable for embedding [34], i.e., where

the changes are (supposed to be, according to conventional wisdom) harder to de-

tect. Schöttle et al. [35] have recently drawn the attention to the fact that, if the

steganalyzer behaves in a strategic manner (and then can recalculate the adaptivity

criterion) adaptive embedding schemes are less secure than random embedding. In

[35] the authors provide a rigorous approach to secure content-adaptive steganog-

raphy by means of a game theoretic model: defender and attacker must decide in

which position to hide and look for evidence of embedding, respectively, by taking

into account the opponent’s action. Using the notion of Nash equilibrium, an opti-

mal adaptive embedding strategy which maximizes the security against a strategic

detector is identified in a simple case. The simple model is later extended in [36].

Furthermore, in [37], the approach in [35] is applied to the case of Gaussian cover

and embedding changes using LSB matching.

Game theory and information theory have also been used in watermarking to

model the interplay between the watermarker and the attacker. In [38, 39, 40],

the game is played between the watermark embedder/decoder and an attacker who

attempts to degrade the embedded message by modifying the watermarked signal,

e.g. by adding some noise. The payoff of the game is usually the capacity of the
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watermark channel.

Multimedia Forensics is a relatively novel research field and then less mature in

thought. Prior to our contributions (see [41, 42, 43], which are included as part of

this thesis), attempts to define a general framework to account for the presence of

the adversary have been made only recently in [44], where the validity of an attack

is assessed regardless of the adopted countermeasures. We refer to Chapter 9 for a

more extensive discussion.

It is worth mentioning that the need for adversarial modeling is becoming evident

in many other security-related applications and game theory is often advocated as

a possible useful tool [45]. For this reason, game theory is gaining popularity in all

these areas: among these we mention network security [46, 47, 48], risk control [49]

and cybersecurity [50].

2.1.1 Binary decision in the presence of adversary

In the above security-oriented fields, there are some common problems whose solution

under a unified umbrella would speed up the understanding of the associated security

problems and the development of effective solutions.

The most prominent of these problems is Binary Detection or Hypothesis Testing.

Below, we list some examples of binary detection problems in adversarial environ-

ments from the various fields.

In Multimedia Forensics [51], a forensic analyst may be asked to decide whether

an image has been acquired by a given camera, notwithstanding the presence of an

adversary aiming at deleting the acquisition traces left by the camera. Similarly, the

analyst may be asked to decide whether a signal has undergone a certain processing

or not, by taking into account the possibility that someone deliberately tried to delete

the traces left by the processing. Another popular example comes from spam filter-

ing [23], wherein an anti-spam filter is presented with a test e-mail and must decide

whether the e-mail contains a genuine or a spam message. It is obvious that such a

test can not neglect the presence of an adversary trying to shape the message in such

a way to fool the filter. Biometric authentication provides a further example. In this

case, the authentication system must decide whether a biometric template belongs

to a certain individual, despite the opposite efforts of an attacker aiming at building

a fake template that passes the authentication test [11, 52]. Yet another example is

watermarking, where the detector is asked to decide whether a document contains

a given watermark or not, possibly in presence of an attacker aimed at injecting or

removing the watermark from the content [53], or cognitive radio [15, 54], where the

system has to decide if the spectrum is free or busy for transmission based on the

information collected from many users which may be interested in gaining usage of
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the spectrum resources. Other possible examples include: steganalysis, in which the

steganalyzer has to distinguish between cover and stego images [32, 55], network in-

trusion detection, wherein anomalous traffic conditions must be distinguished from

normal ones [13], reputation systems [14], for which it is essential to distinguish be-

tween genuine and malevolent scores.

A closer look reveals that a similar rationale exists behind some of the most

popular techniques developed so far. This is the case for instance of the oracle attacks,

i.e., attacks based on the information gathered by repeatedly querying the detector.

In watermarking applications, oracle attacks have been successfully used to remove

the watermark from watermarked contents, and/or illegally introduce the watermark

in non-watermarked contents. The most popular cases are the sensitivity [56, 57] and

BNSA attacks [58]. Hill-climbing attacks in biometric recognition systems are other

example of oracle attacks [59, 60, 61] together with similar attacks in spam filtering

and intrusion detection [62, 22], and, more in general, the ACRE attack in machine

learning [63]. Active attackers that use a decoding oracle to detect the presence of

hidden messages are also encountered in steganography [64].

Countermeasures also rely on similar approaches, starting from classical security

by obscurity mechanisms, in which the access to the detector is denied to the at-

tacker, to more sophisticated approaches like detector randomization [65, 66, 7], or

the adoption of complicated detection regions [66, 67]. In addition to these early

countermeasures, which are easily deflectable by the attackers and then poorly ef-

fective, researchers have also started to address the problem in a more systematic

way [68, 69, 70]. Then, finding countermeasures against malicious attacks that query

the classifier to gather information useful for the attack is becoming a common need

in security-oriented applications. A novel direction for counteracting oracle attacks

rely on the concept of smart detectors and has been recently explored in [71] and

[72]. A smart detector is defined as a detector that is able to learn from and react

to repeated query attacks. Notice that detectors producing a random output close

to the decision boundary are not smart according to the previous definition, because

they are not able to determine whether they are being attacked. To learn whether

the system is being subject to an oracle attack, a metadetector is proposed that works

at a higher level than the primary detector. While the operation of the latter is not

modified, the former is specifically devoted to detect malicious queries and its defini-

tion is not affected by the specific purpose of the primary detector. Once the smart

detector decides that an oracle attack is ongoing, effective countermeasures can be

enforced, including the prevention of further accesses to the detector (banning), or

the conservative switch to a more convoluted detection function. It is worth stressing

that, although [71] and [72] consider watermark detection as motivating example, the
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proposed metadetectors are higher-level detectors that can be applied to any binary

decision problem where oracle attacks can be a threat, i.e., regardless of the underly-

ing or primary detection problem. In this way, these works represent a first attempt

to cast the problem of the oracle attacks under a unified framework.

A possible generalization of the basic binary decision problem regards the number

of involved attackers. In attacks against reputation systems, for instance, several at-

tackers may pool to degrade the performance of the system [73], leading to a multiple-

player game. A similar situation is encountered in traitor tracing systems [74], with

the noticeable difference that in this case active techniques like fingerprinting may be

used to improve the performance of the system. Attacks against reputation systems

introduce yet another perspective into the picture: the collaborative nature of the to-

be-performed tasks and the attacks. In addition to the presence of multiple players,

this requires that proper solutions are adopted to either encourage fair behaviors,

e.g. through the definition of a suitable pay-off function, or to allow cross-checking

between users, as commonly done in sentiment tagging applications [75]. In these

cases, the presence of a large number of independent users, with a vast majority of

fair users, ensures the proper behavior of the system.

Concerning the connection between adversarial binary detection and game theory,

it is worth mentioning the relatively novel and interesting field of application of the

inspection games [76]. An inspection game models a situation where an ‘inspector’

verifies that another party, called ‘inspectee’, adheres to certain legal rules, which

found their main applications in arms control, economics and crime control. However,

inspection games are also seen as a way to extend the classical statistical decision

problem, when the distribution of the random variable is strategically controlled by

another player, namely the ‘inspectee’. The ‘inspectee’ can behave either legally or

illegally, in which case he also chooses a violation procedure. Then, the statistician,

namely the inspector, has to decide between the two cases. The field of the inspection

games provide useful tools for handling practical problems that can be modeled in the

above way. Inspection games are expected to play an interesting role in the study of

some problems of adversarial signal processing. For example, they could be used for

modeling the problem of the oracle attacks (see Section 2.1) in the practical scenarios

where the detector works as an oracle and then an attacker may query the detector

to learn the parameter of the systems.

2.2 Basics of Game Theory

G
ame theory is a branch of mathematics devoted to the study of the interplay,

of conflict and/or cooperation, between decision-makers or players. Game theo-

retic concepts apply whenever the actions of several decision-makers are interdepen-
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dent, that is their choices potentially affect and are affected by the choices of the

other players. Game theory is also referred to as interactive decision theory, as a

counterpart of classical decision theory.

Although examples of games occurred long before, the birth of modern Game

Theory as a unique field traces back to 1944, with the book ”Theory of Games and

Economic Behavior” by John von Neumann and Oskar Morgenstern [77]. Game

Theory provides tools to formulate, model and study strategic scenarios in a wide

variety of application fields, from economics and political science to computer science.

A central assumption in most variants of Game Theory is that each decision-maker

is rational and intelligent. A rational player is one who has a relation of preferences

over the outcomes of the game 1. An intelligent player is able to act in a rational way

and then always chooses the action which gives him the outcome he prefers most,

given what he expects his opponents to do (his expectation on the other players).

The goal of game-theoretic analysis is then to predict how the game will be played

by rational players, or, relatedly, to give advice on how to play the game against

rational opponents.

The models of Game Theory are highly abstract representations of classes of real-

life situation for which equilibrium solutions are suggested with interesting (desirable)

properties. Game Theory encompasses a great variety of situations depending on the

number of players, the way the players interact, the knowledge that a player has

on the strategies adopted by the others, the deterministic or probabilistic nature

of the game, etc. In all the models, the basic entity is the player, which should

be interpreted as an individual or as a group of individuals making a decision. A

distinction can be made between situations in which the players have common goals,

and are allowed to form binding agreements (cooperative games) and situations in

which the players have different and possibly conflicting goals, in which case they

behave as individual entities (modeled as non-cooperative games). Hybrid games

contain cooperative and non-cooperative elements. For instance, coalitions of players

are formed in a cooperative game, but they play in a non-cooperative fashion.

Another common classification is made between simultaneous and sequential games.

Simultaneous games are games where both players move simultaneously, or if they

do not move simultaneously, they are unaware of the earlier players’ actions (making

their action effectively simultaneous). On the contrary, sequential games (or dynamic

games) are games where players have some knowledge about earlier actions. The dif-

ference between simultaneous and sequential games is captured in the different ways

of representing the game. With reference to non-cooperative games, the strategic

form is used when the players choose their action or plan of actions once and for all

at the beginning, that is when all the players’ decisions are made simultaneously. The

1Axioms of rationality, Von Neumnn-Morgenstern utility theorem [77].
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games in strategic form are discussed in the next chapter. By contrast, the so called

extensive form is used for sequential games, when each player needs to reconsider his

plan of action whenever it is his turn to move. The extensive form of a game indeed

is an explicit, highly descriptive, representation of a number of important aspects,

like the sequencing of players’ possible moves, their choices at every decision point,

the (possibly imperfect) information each player has about the other player’s moves

when he makes a decision, and his payoffs for all possible game outcomes [78].

In this thesis, we focus on non-cooperative, 2-players, strategic games.

2.2.1 Strategic games

The strategic form (also called normal form) is the basic type of game studied in

non-cooperative game theory. A game in strategic form lists each players’ strategies,

and the outcomes that result from each possible combination of choices.

For a 2-player interaction, a strategic game is defined as a 4-tupleG(S1,S2, u1, u2),

where S1 = {s1,1 . . . s1,n1
} and S2 = {s2,1 . . . s2,n2

} are the sets of strategies (actions)

the first and the second player can choose from, and ul(s1,i, s2,j), l = 1, 2 is the

payoff of the game for player l, when the first player chooses the strategy s1,i and the

second chooses s2,j . A pair of strategies (s1,i, s2,j) is called profile and corresponds

to an outcome of the game. Games in strategic form are compactly represented by

matrices, namely payoff matrices.

In a strictly-competitive game, also referred to as zero-sum game, the two players

have opposite goals; in this case, the two payoff functions are strictly related to each

other since for any profile we have u1(s1,i, s2,j)+u2(s1,i, s2,j) = 0. In other words, the

win of a player is equal to the loss of the other. In the particular case of a zero-sum

game, then, only one payoff function needs to be defined. The payoff of the game

(generally indicated by u) can be defined by adopting the perspective of one of the

two players, e.g., without loss of generality, u1 = u, with the understanding that the

payoff of the second player u2 is equal to −u. In the most common formulation (game

with perfect information), the sets S1, S2 and the payoff functions are assumed to be

known to both players. In addition, as discussed before, it is assumed that the players

choose their strategies before starting the game so that they have no hints about the

strategy actually chosen by the other player. The above discussion assumes that the

players play pure strategies; however, it can be extended to the case in which the

players make random choices over their set of actions, i.e., they play mixed strategies.

Specifically, a mixed strategy for a player is defined as a distribution of probability

over its set of actions.
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Nash equilibrium

Given a game, the determination of the best strategy that each player should follow

to maximize its payoff is not an easy task, all the more that a profile that is optimum

for both the players may not exist. A common goal in Game Theory is to determine

the existence of equilibrium points, i.e., profiles that, in some sense represent a satis-

factory choice for both players. While there are many definitions of equilibrium, the

most famous and commonly adopted is the one by Nash [79, 80]. For the particular

case of a 2-player game, a profile (s1,i∗ , s2,j∗) is a Nash equilibrium if:

u1((s1,i∗ , s2,j∗)) ≥ u1((s1,i, s2,j∗)) ∀s1,i ∈ S1

u2((s1,i∗ , s2,j∗)) ≥ u2((s1,i∗ , s2,j)) ∀s2,j ∈ S2,
(2.1)

where for a zero-sum game u2 = −u1. In practice, a profile is a Nash equilibrium

if no player can improve its payoff by changing its strategy unilaterally. It is known

that every strategic game with finite sets of strategies for the players has a (at least

one) Nash equilibrium in mixed strategies.

The notion of Nash equilibrium captures a steady-state of the play of a strategic

game; the process by which such steady-state is reached is not examined.

For strictly competitive games, Nash equilibria have interesting properties. Let G

be a zero-sum game and (s1,i∗ , s2,j∗) be a Nash equilibrium; then, s1,i∗ is a maxmin-

imizer for player 1, that is s1,i∗ is the action that maximizes the payoff of player

1 in the worst case scenario, i.e., assuming that player 2 plays his most profitable

strategy (corresponding to the most damaging action for player 1). Similarly, s2,j∗

is a maxminimizer for player 2. We also have that

max
S1

min
S2

u1(s1,i, s2,j) = min
S2

max
S1

u1(s1,i, s2,j) = u1(s1,i∗ , s2,j∗) (2.2)

As a consequence of relation (2.2), if many equilibrium points exist, they all yield

the same payoff. A known result asserts that, if the two players are allowed to take

randomized strategies over their set of actions (mixed strategies), finding the Nash

equilibria for the game corresponds to solving one of the two Linear Programming

(LP) problems in (2.2), (Von Neumann’s Minimax Theorem, 1928 [81]).

Dominance-solvable games

Despite its popularity, the practical meaning of Nash equilibrium is often unclear,

since there is no guarantee that the players will end up playing at the Nash equilib-

rium. A particular kind of strategic games for which stronger forms of equilibrium

exist are the so called dominance solvable games [80]. The concept of dominance-

solvability is directly related to the notion of dominant and dominated strategies. In
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particular, a strategy is said to be strictly dominant for one player if it is the best

strategy for the player, i.e., the strategy which corresponds to the largest payoff, no

matter how the other player decides to play. Reasonably, when one such strategy

exists for one of the players, he will surely adopt it. In a similar way, we say that a

strategy sl,i is strictly dominated by strategy sl,j , if the payoff achieved by player l

choosing sl,i is always lower than that obtained by playing sl,j regardless of the choice

made by the other player. Formally, in the 2-players case, we say that strategy s1,i

is strictly dominated by strategy s1,k for player 1 (or, equivalently, that strategy s1,k

strictly dominates s1,i) if

u1(s1,k, s2,j) > u1(s1,i, s2,j) ∀s2,j ∈ S2. (2.3)

Accordingly, a strictly dominant strategy is a strategy which strictly dominates all

the other strategies.

The recursive elimination of dominated strategies is a possible technique for solv-

ing games. The basic idea is the following: all the strategies that a player should

definitely not take can be eliminated from the set of possible actions. By this view,

the recursive elimination works as follows: in the first step, all the dominated strate-

gies are removed from the set of available strategies, since no rational player would

ever play them. In this way, a new, smaller game is obtained. At this point, some

strategies, that were not dominated before, may be dominated in the remaining game,

and hence are eliminated. The process goes on until no dominated strategy exists

for any player. A rationalizable equilibrium is any profile which survives the iterative

elimination of dominated strategies [82, 83]. If at the end of the process only one

profile is left, the remaining profile is said to be the only rationalizable equilibrium

of the game, which is also the only Nash equilibrium point. A dominance solvable

game is a game that can be solved according to the procedure described above.

It goes without saying that the concept of rationalizable equilibrium is a much

stronger notion than that of Nash equilibrium, and its practical meaning easier to

grasp [84]: in fact, under the assumption of rational (and intelligent) players, we

can anticipate that the players will choose the strategies corresponding to the unique

rationalizable equilibrium. We notice again that, whereas every game with finitely

many players, each of whom has finitely many pure strategies, has a Nash equilibrium

in mixed strategies, a rationalizable equilibrium only exist for dominance solvable

games. An interesting, related notion of equilibrium is that of dominant equilibrium.

A dominant equilibrium is a profile which corresponds to dominant strategies for both

players and is the strongest kind of equilibrium that a strategic game may have.
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2.3 Adversarial Hypothesis Testing (Adv-HT)

Hypothesis Testing is a widely studied topic with applications in virtually all techno-

logical and scientific fields. In its most basic form, an analyst is asked to decide which

among two hypotheses, usually referred to as null hypothesis (H0) and alternative

hypothesis (H1), is true based on a set of observables. Several versions of the problem

are obtained according to the knowledge that the analyst has on the statistics of the

observables under the two hypotheses.

Due to its importance, Hypothesis Testing has been extensively studied and a

solid theoretical framework has been built permitting to analyze and understand its

many facets [85, 86]. In the last years, though, many applications have emerged in

which Hypothesis Testing is given a new twist, due to the presence of an adversary

aiming at making the test fail. In all these applications, the analyst cannot neglect

the presence of one or more adversaries explicitly aiming at decision error and the

attacking behavior must be taken into account when defining the test. The reader

may refer to the discussion in Section 2.1.1 for a review of hypothesis testing problems

from various security-oriented fields.

Below, we introduce the main concepts of Hypothesis Testing in classical decision

theory, when no attacker is present. Then, we adapt the test to encompass the

presence of an attacker aiming at impeding a correct decision. We also provide the

reader with an overview of the hypothesis testing problems studied in the first part of

the thesis and introduce some of the choices we made in the definition of the various

setups, when casting the defender-attacker interaction into a rigorous framework.

2.3.1 Hypothesis Testing

Here we review the main concepts of Hypothesis Testing [86].

Let S be an observed system, whose probabilistic model is different under two

hypotheses, namely H0 and H1. We wish to test hypothesis H0 against H1 based on

n observations. We denote with xi be the i-th outcome of the system, belonging to

the alphabet of symbols X , and with xn = (x1, x2, ..., xn) the observed sequence. As

a result of the test, Xn is partitioned into two complementary regions Λ and Λ̄, such

that for xn ∈ Λ the Defender decides in favor ofH0, while for xn ∈ Λ̄,2 H1 is preferred.

We say that a Type-I error occurs if H1 is chosen when H0 holds. In the same way, we

say that a Type-II error occurs when H1 holds but H0 is chosen. In the following, we

will refer to Type-I errors as false positive errors (or false alarms) and to Type-II as

false negative (or missed detection), and will indicate the probabilities of such events

as PFP and PFN respectively. The motivation for such a terminology comes from

2Given a set A, notation Ā denotes the complementary set.
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applications in which H0 is seen as a standard situation and its rejection in favor of

H1 raises an alarm since something unusual happened. This is the case, for instance,

in multimedia forensics applications, where H0 corresponds to the hypothesis that

xn was produced by a legitimate source, and an alarm is raised whenever this is not

the case; or in radar applications, where H0 corresponds to the absence of the target.

It goes without saying that our derivation remains valid even in different scenarios

where the false positive and false negative terms may not be appropriate. In our

analysis we are mainly interested in the asymptotic behavior of PFP and PFN. In

particular, we define the false positive (η) and false negative (ε) error exponents as

follows:3

η = − lim sup
n→∞

logPFP

n
; ε = − lim sup

n→∞

logPFN

n
, (2.4)

where the log’s are taken in base 2. Note that when the classical limit exists the

above definitions can be simplified by avoiding the use of lim sup: whenever this is

the case, in our derivations, we will directly use lim instead of lim sup.

2.3.2 Hypothesis Testing in adversarial setup

We now define the hypothesis testing problem in the presence of an adversary aiming

at impeding the correct decision. To do so, we must assume that an analyst and an

adversary, to whom we will refer as Defender (D) and Attacker (A), face each other

in rigorously defined contexts.

A schematic representation of the adversarial binary decision test in its most basic

form is depicted in Figure 2.1. Given the test sequence zn, D must decide whether

it has been generated under hypothesis H0 or H1.

When the Neyman Pearson (NP) setup is considered [86], as in the classical

scenario, the Defender must choose the decision regions Λ and Λ̄ in such a way to

ensure that the Type-I error probability is lower than a certain prescribed value.

Regarding the specific goal of the Attacker, we distinguish between one-side attack,

when A is active under one of the two hypothesis only, and two-side attack, when

A acts under both hypotheses. In the one-side attack case, the Attacker takes a

sequence yn generated under one of the two hypothesis, usually H1, and transforms

it into a modified sequence zn so that when presented with the modified sequence

D still accepts H0. In doing so, the Attacker has to respect a distortion constraint,

limiting the amount of modifications that can be introduced into the sequence. In

3We remind that the limit superior of a sequence xn is defined as:

lim sup
n→∞

xn = lim
n→∞

(
sup
m≥n

xm

)
.

Differently from the limit, the lim sup always exists.
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Figure 2.1: Basic adversarial decision setup considered in this thesis. PX and PY
denote the generation probabilities under H0 and H1 respectively.

such a scenario, the goal of the Attacker is causing a false negative decision error.

Therefore, A aims at maximizing the Type-II error probability, while D’s goal is to

minimize it by taking into account the presence of the Attacker.

The scenario with one-side attack provides a suitable model for the decision prob-

lems found in many practical applications, when the adversary wants to pass a forgery

off as an authentic signal (e.g. in biometric authentication, multimedia forensics, wa-

termarking) and most of the analysis developed in this thesis focuses on this case.

Clearly, in such situations, we implicitly assume that the Attacker knows the system

status when he pursues the attack.

Given the general adversarial setup, depending on the knowledge that the De-

fender and the Attacker have on the statistical characterization under the two hy-

potheses, various versions of the problem can be defined. In the thesis, we studied

both the case in which a full statistical knowledge of the system, i.e. of the probability

mass function (pmf) underlying both hypotheses, is available to D and A (Chapter 3)

and the case in which D and A know only some ’examples’, i.e. sequences generated

under the two hypotheses, namely training sequences (Chapter 4). Yet another vari-

ant is considered by assuming that the Attacker has the freedom of modifying, up to

a certain extent, the training data available to D (Chapter 6). A completely different

situation where the decision is based on multiple, possibly corrupted, observations is

also investigated (Chapter 7).

In the two-side attack scenario, the goal of the Attacker is to mix up the deci-

sion, i.e. to cause a decision error of both types. This is a relevant for instance in

applications of camera fingerprinting, where an attacker may be interested in remov-

ing the fingerprint from an image to hide the generating camera or implanting in

the image the fingerprint of another camera to frame an innocent victim; another

example comes from watermarking, where an attacker may want to remove the wa-
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termark from an image or a video, to erase the information about the ownership,

or to embed a watermark into the content, e.g., to redistribute a video with fake

copyright. For the study of the detection problem in the two-side attack scenario, we

consider two different setups: in the first setup, the Defender bases the decision on

an adversary-aware Neyman-Pearson test; in the second one, a Bayesian approach is

adopted, where the role of the two error probabilities is symmetrized, and the deci-

sion is based on the minimization of a Bayesian risk function. The analysis of the

two side attack is limited to Chapter 8.

We analyze all the above variants, by adopting a game-theoretic approach, in

which the Defender and the Attacker have opposite goals (zero-sum games) and

operate by satisfying a different set of requirements, all together specifying the nature

of the game. The final goal will be the derivation of the optimum strategies for the

Defender and the Attacker in terms of game equilibrium points, and the study of the

achievable performance at the equilibrium.
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Abstract

We theoretically study the binary detection problem in adversarial conditions.

Many variants of the problem are considered depending on the decision setup,

the attacking conditions and the knowledge that the Defender and the Attacker

have about the sources and the status of the observed system. We focus mainly

on the the scenario with one-side attack, where the Attacker is active under

one of the two hypotheses only, however the scenario with a two sided attack

is also considered, where the Attacker acts under both hypotheses. Thanks to

the adoption of a game-theoretic approach, under some limiting assumptions,

namely the first order statistical analysis and the asymptotic setup, our analysis

permits to derive the ultimate achievable performance when both players act

rationally to maximize their payoff.





Chapter 3

Detection Games with Known Sources

I
n this chapter we study the simple case of binary detection in a scenario with one-

side attack, when both the Defender and the Attacker have full knowledge of the

two sources.

First, we propose a rigorous framework based on game theory and information

theory that can be used to model and analyze the interplay between the Defender

and the Attacker, and we derive the equilibrium point of the game for some simple,

yet meaningful cases. Specifically, we show that under certain assumptions on the set

of strategies available to the Defender, the game admits an asymptotic rationalizable

equilibrium, and derive the optimum strategies for the Defender and the Attacker

at the equilibrium. As a second contribution, we analyze the asymptotic behavior

of the payoff at the equilibrium. In this way we are able to distinguish the cases in

which the Defender will succeed from those in which the Attacker will eventually win

the game. The complete characterization of the game at the equilibrium is possible

only by means of numerical analysis, except for some very simple cases in which the

payoff at the equilibrium can be expressed in closed-form.

The chapter is structured as follows: first, we introduce the notation used through-

out the thesis in Section 3.1; then, in Section 3.2 we provide a rigorous definition of

the binary detection game with known sources. The game is solved by determining

the equilibrium points in Section 3.3. Section 3.4 introduces an alternative and in-

sightful characterization of the detection game by means of transportation theory,

leading to an interesting interpretation of the optimum attack strategy (and of the

outcome of the game). Then, in Section 3.5, we analyze the behavior of the payoff

at the equilibrium. A closed form expression for the payoff is derived in the simple

case of binary alphabet sources. In Section 5.3, we extend the analysis to the case in

which the L∞ metric is used in the definition of the Attacker’s strategies (which is a

case of particular interest in practical applications). The analysis is carried out for

the case of memoryless sources; then, the chapter ends with some considerations on

the extension of the analysis to the case of sources with memory, see Section 3.6.
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3.1 Basic concepts, notation and definitions

In this section we summarize the notation and the definitions used in this chapter,

to which we stick throughout the thesis. We also introduce some basic concepts of

information theory that are needed to study the various versions of the detection

problem.

We will use capital letters to indicate scalar discrete random variables (RVs),

whose specific realizations will be represented by the corresponding lower case let-

ters. Random sequences, whose length will be denoted by n, are indicated by Xn.

Instantiations of random sequences are indicated by the corresponding lowercase let-

ters, so xn indicates a specific realization of the random sequence Xn, and Xi, xi,

i = 1, ..., n indicate the i−th element of Xn and xn, respectively. Information sources

will also be defined by capital letters. The alphabet of an information source will

be indicated by the corresponding calligraphic capital letter (e.g., X ). Calligraphic

letters will also be used to indicate classes of information sources (C) and classes of

probability density functions (P). The probability mass function (pmf) of a random

variable X will be denoted by PX . The same notation will be used to indicate the

probability measure ruling the emission of sequences from a source X, so we will

use the expressions PX(a) and PX(xn) to indicate, respectively, the probability of

symbol a ∈ X and the probability that the source X emits the sequence xn, the exact

meaning of PX being always clearly recoverable from the context wherein it is used.

Notation X ∼ PX indicates that source X emits symbols according to PX . Given an

event A (be it a subset of X or Xn), we will use the notation PX(A) to indicate the

probability of the event A under the probability measure PX . Given two sequences

xn and yn, their Hamming distance is defined as the number of locations for which

xi 6= yi, i.e.,

dH(xn, yn) = n−
n∑

i=1

δ(xi, yi), (3.1)

with δ(xi, yi) = 1 if xi = yi and 0 otherwise.

Throughout the thesis, for a given quantity s, we adopt the following notation:

[s]+
4
= max{s, 0}. Equivalently, [s]+ = s if s ≥ 0 and zero otherwise.

We also need to introduce the concept of distances between subsets and the defi-

nition of the Hausdorff distance, as a way to measure distance between subsets of a

metric space [87]. Let S be a generic space and d a metric defined over S. For any

point x ∈ S and any non-empty subset A ⊆ S, the distance of x from the subset A

is defined as:

d(x,A) = inf
a∈A

d(x, a). (3.2)

Definition 1. For any given pair (A,B) of subsets of S let us define δA(B) =
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supb∈B d(b, A). Let then δH be a function which associates to the pair of subsets

(A,B) the quantity

δH(A,B) = max{δA(B), δB(A)}. (3.3)

δH(A,B) is the Hausdorff distance between A and B.

It is worth observing that, according to the definition above, the Hausdorff dis-

tance is not a true metric, but only a pseudometric (δ(A,B) = 0 implies that the

closures of the sets coincide, namely cl(A) = cl(B), but not necessarily that A = B).

Then, in order for δH to be a metric we would need to restrict the definition to closed

subsets.

Let L(S) denote the space of non-empty closed and limited subsets of S and let

δH : L(S)×L(S)→ [0,∞). The assumption of boundedness of the sets 1 guarantees

that the Hausdorff distance takes a finite value. Then, the space L(S) endowed with

the Hausdorff metric δH is a metric space [88]. We can give the following definition.

Definition 2. Let {Kn} be a sequence of closed and limited subsets of (X, d), i.e.,

Kn ∈ L(S) ∀n. We use the notation Kn
H→ K to indicate that the sequence has limit

in (L(S), δH) and the limiting set is K.

3.1.1 Basic information theory concepts

The mathematical machinery used to prove the main results of the thesis relies heavily

on the methods of types [89, 90].

Then, throughout the thesis, we make extensive use of the concepts of type and

type class defined in the following. Let xn be a sequence with elements belonging to

a discrete alphabet X . The type Pxn of xn is the empirical probability distribution

induced by the sequence xn, i.e. ∀a ∈ X , Pxn(a) = 1
n

∑n
i=1 δ(xi, a).2 In the following

we indicate with Pn the set of types with denominator n, i.e. the set of types

induced by sequences of length n. Given P ∈ Pn, we indicate with T (P ) the type

class of P , i.e. the set of all the sequences in Xn having type P . Similarly, given

a sequence xn we denote with T (Pxn), or simply T (xn), the set of the sequences

having the same type of xn. Given a pair of sequences (xn, yn), the conditional type

class T (Pyn|xn), or T (yn|xn), is the set of sequences yn having empirical conditional

probability distribution (i.e., conditional type) Pyn|xn .

For more insights into the use of type classes in information theory and statistics

we refer to [90].

1We remind that the boundedness of the sets depends on the distance measure d defined in the

metric space.
2Pxn is often referred to as empirical probability distribution or type of the sequence xn, for

short.
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Empirical distributions can be used to calculate empirical information theoretic

quantities, thus the empirical entropy of a sequence will be denoted by:

H(Pxn) = −
∑

a∈X
Pxn(a) logPxn(a), (3.4)

sometimes simply referred to as Hxn . Similar definitions hold for other informa-

tion theoretic quantities (e.g. joint and conditional entropy) governed by empirical

distributions.

The Kullback-Leibler (KL) divergence between two distributions P and Q defined

on the same finite alphabet X is:

D(P ||Q) =
∑

a∈X
P (a) log

P (a)

Q(a)
, (3.5)

where, according to usual conventions, 0 log 0 = 0 and p log p/0 =∞ if p > 0. When

empirical distributions are considered, definition (3.5) is the empirical KL-divergence.

3.2 Definition of the detection game with known

sources

3.2.1 Problem formulation

Let C be a class of the discrete memoryless sources (DMS), i.e., the class of the sources

with finite alphabet X and let X and Y be two sources belonging to C. Given their

memoryless nature, the sources can be identified with their pmf’s, respectively PX
and PY .

As already said in Section 2.3.2, the goal of D is the definition of a test to accept

or reject the hypothesis that the sequence under analysis was generated by the source

X. On the other hand, the goal of A is to take a sequence generated by Y and modify

it in such a way that D accepts the hypothesis that the modified sequence has been

generated by X. In doing so A may want to minimize the amount of modifications

he has to introduce to deceive D.

In the scenario considered in this chapter, we assume that the probability mea-

sures PX and PY ruling the emission of sequences by X and Y are known to both D

and A. The assumption that the source Y is also known to D may seem a question-

able choice in some practical applications, since it could be difficult for D to have

full access to the source Y . We will see, however, that, at least asymptotically, the

assumption that D knows Y can be removed, thus leading to a more realistic model.

One may also argue that perfect knowledge of sources X and Y can never be reached
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Figure 3.1: General scheme of the adversarial decision setup with one-side attack

considered in Chapter 3 through 5.

in practice, yet we believe that the analysis of even this simplified version of the game

can be extremely insightful and open the way to the analysis of more realistic and

complex scenarios, like those studied in Chapters 4 and 6.

Let xn ∈ Xn, res. yn ∈ Xn, be a sequence drawn from X, res. Y and let zn ∈ Xn
denote the sequence observed by the Defender. With reference to the adversarial

setup with one-side attack depicted in Figure 3.1, we have zn = xn under H0 (no

attack occurs), whereas, under H1, zn is a modified version of yn produced by the

Attacker in the attempt to deceive the Defender.

3.2.2 The DTks game

We define the binary detection game with known source (DTks) as follows.

Definition 3. The DTks(SD,SA, u) game is a zero-sum, strategic, game played by

D and A, defined by the following strategies and payoff.

• Defender’s strategies. By adopting a Neyman-Pearson approach, the set of

strategies the Defender can choose from is the set of acceptance regions for H0

for which the false positive probability is below a certain threshold:

SD = {Λn : PX(zn /∈ Λn) ≤ P ∗FP}, (3.6)

where Λn is the acceptance region for H0 (similarly we indicate with Λ̄n the

rejection region for H0) P ∗FP is a prescribed maximum false positive probability.

The term PX(zn /∈ Λn) indicates the probability that a sequence generated by

X does not belong to Λn, i.e., the false positive probability.

• Attacker’s strategies. The set of strategies of A is formed by all the functions

that map a sequence yn ∈ Xn into a new sequence zn ∈ Xn subject to a
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distortion constraint:3

SA = {g(·) : d(yn, g(yn)) ≤ nL}, (3.7)

where d(·, ·) is a proper distortion function and L is the maximum allowed

average per-letter distortion.4

• The payoff function. The payoff of the game is defined in terms of the false

negative error probability (PFN), namely:

u(Λn, g) = −PFN = −PY (zn ∈ Λn) = −
∑

yn:g(yn)∈Λn

PY (yn), (3.8)

where the Defender’s perspective is adopted, i.e., the Defender aims at maxi-

mizing u, while the Attacker wishes to minimize it.

Discussion

We pause to clarify some of the choices we made to formulate the DTks game.

First of all, we decided to limit the strategies available to A to deterministic

functions of yn. This may seem a limiting choice, however we will see that, at least

asymptotically, the optimum strategy of D depends neither on the strategy chosen by

A nor on PY , then, it does not make sense for A to adopt a randomized strategy to

confuse D. Accordingly, everything would remain the same if we modeled the attack

strategy in (3.7) as a channel, thus only complicating the notation.

The second comment regards the assumption that D knows PY . As it is evident

from equation (3.8), this is a necessary assumption, since for a proper definition of

the game it is required that both players have a full knowledge of the payoff for all

possible profiles. An alternative possibility could be to define the payoff under a worst

case assumption on PY , however such a choice has two major drawbacks. First of all,

if X and Y belong to the same class of sources C, the worst case for D would always

be PX = PY , a condition under which no meaningful analysis can be made. One

could require that X and Y belong to different source classes, however such classes

should have to be known to D for a proper definition of the game, thus raising the

same concerns raised by the assumption that D knows Y . Secondly, adopting a worst

case analysis leads to the necessity of differentiating the payoffs of D and A, since for

3To avoid confusion between distortion and distance, we stress that, depending on the case, d(·, ·)
may or may not be a distance (e.g., we will consider the case of measures L1, L2

2,...); that is why

we prefer to refer to this quantity with the more general term of distortion.
4While L can be interpreted as the average per-letter distortion, A is not obliged to introduce a

distortion that is lower than L for each sample of the sequence, since equation (3.7) defines only a

global constraint.
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D the worst case corresponds to the highest false negative error probability across all

Y ∈ C, while A knows PY and hence can compute the actual error probability. This

observation would lead to the definition of a non-competitive version of the game in

which two different payoffs are specified for D and A. In the sequel, we will focus on

the asymptotic solution of the game for which the optimum strategy of D does not

depend on PY , thus making the assumption that D knows PY irrelevant.

A last, even more basic, comment regards the overall structure of the game. Since

the Attacker is interested in the false negative probability and does not intervene

when H0 holds (one side attack), his action has no impact on the false positive

probability. In Chapter 8, we will consider a situation in which A modifies also the

sequences generated under H0 in the attempt to increase the false positive rate (two-

side attack scenario). In this case, we will also depart from the Neyman-Pearson set

up by considering the decision based on a Bayesian approach, and define the payoff

in terms of the overall error probability.

3.2.3 DTks game with limited resources

Solving the DTks game as stated in Definition 3 is a cumbersome task, hence in this

section we focus on the asymptotic optimum strategies that are obtained when the

length n of the observed sequence tends to infinity. In order to make the problem

tractable, we also limit the kind of acceptance regions D can choose from. We will do

so by using an approach similar to that used in [91] to derive the optimal embedding

and detection strategies for a general watermarking problem. Specifically, we limit

the complexity of the analysis carried out by D by confining it to depend on a limited

set of statistics computed on the test sequence. Given the memoryless nature of the

sources, it makes sense to require that D bases its decision by relying only on Pzn ,

i.e., on the empirical probability distribution induced by the test/observed sequence

zn. Note that, strictly speaking, Pzn is not a sufficient statistics for the test under

H1: in fact, even if Y is a memoryless source, A could introduce some memory within

the sequence as a result of the application of g. This is the reason why we need to

introduce explicitly the requirement that D bases its decision only on the empirical

distribution, that is, on first order statistics.

A fundamental consequence of this limited resources assumption is that it forces

Λn to be a union of type classes, i.e., if zn belongs to Λn, then the whole type class of

zn, namely T (Pzn), will be contained in Λn. Since a type class is univocally defined

by the empirical probability density function of the sequences contained in it, we can

redefine the acceptance region Λn as a union of types P ∈ Pn, where Pn is the set of

all possible types with denominator n.

With the above ideas in mind we can define the asymptotic DT lrks game (where
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lr stands for limited resources) as follows.

Definition 4. The DT lrks(SD,SA, u) game is a game between D and A defined by the

following strategies and payoff:

SD = {Λn ∈ 2Pn : PFP ≤ 2−λn}, (3.9)

SA = {g(·) : d(yn, g(yn)) ≤ nL}, (3.10)

u(Λn, g) = −PFN, (3.11)

where in the definition of SD, 2Pn indicates the power set of Pn, i.e., all the

possible unions of types5. Note also that we now require that the false positive error

probability decays exponentially fast with n, with exponent λ, thus opening the way

to the asymptotic solution of the game.

As a final remark, we point out that so far we did not make any assumption on

the distortion measure d(·, ·) adopted by the Attacker. However, we anticipate that

for deriving some of the results of this chapter, that is, for computing the payoff

at the equilibrium (Section 3.5), we will need to confine it to permutation-invariant

distortion functions.

Since in this thesis we study only this version of the detection game with known

sources, for the sake of readability, in the sequel we will omit the apex in the corre-

sponding notation: then, from now on, the notation DTks will directly refer to the

limited resources version of the game stated in Definition 4.

3.3 Solution of the DTks game

We start our derivation by proving the following lemma.

Lemma 1. Let Λ̄n,∗ be defined as follows:

Λ̄n,∗ =

{
P ∈ Pn : D(P ||PX) ≥ λ− |X | log(n+ 1)

n

}
, (3.12)

and let Λn,∗ be the corresponding acceptance region of the test.6 Then we have:

1. PFP ≤ 2−n(λ−δn), with δn → 0 for n→∞,

5In the rest of the chapter we will refer at Λn as a union of sequences or a union of types

interchangeably, the two perspectives being equivalent and clearly understandable from the context.
6For convenience, sometimes the source pmf PX and/or the threshold λ is made explicit in the

notation for the acceptance region, and we refer to Λn,∗ as Λ̄n,∗(PX) or Λ̄n,∗(PX , λ).
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2. for every Λn ∈ SD (with SD defined as in (3.9)) we have Λ̄n ⊆ Λ̄n,∗.

Hence, Λn,∗ is a dominant strategy for the Defender.

Proof. Since Λ̄n,∗ and Λn,∗ are unions of type classes, PFP(Λn,∗) can be rewritten as

PFP(Λn,∗) =
∑

P∈Λ̄n,∗

PX(T (P )), (3.13)

where PX(T (P )) indicates the collective probability (under PX) of all the sequences

in T (P ). For the class of DMS sources, the number of types is bounded by (n+ 1)|X |

and the probability of a type class T (P ) by 2−nD(P ||PX) (see [90] chapter 12), hence

we have:

PFP(Λn,∗) ≤ (n+ 1)|X | max
P∈Λ̄n,∗

PX(T (P ))

≤ (n+ 1)|X |2−nminP∈Λ̄n,∗ D(P ||PX)

≤ (n+ 1)|X |2−n(λ−|X| log(n+1)
n )

= 2−n(λ−2|X | log(n+1)
n ), (3.14)

proving the first part of the lemma with δn = 2|X | log(n+1)
n and where the last in-

equality derives from (3.12).

We now pass to the second part of the lemma. Let Λn be in SD and let P be in

Λ̄n. Then we have (see [90] Chapter 12 for a justification of the last inequality):

2−λn ≥ PX(Λ̄n)

≥ PX(T (P ))

≥ 1

(n+ 1)|X |
2−nD(P ||PX), (3.15)

that, by taking the logarithm of both sides, proves that indeed P ∈ Λ̄n,∗.

The first relation proved in Lemma 1 says that, asymptotically, Λn,∗ defines a

valid strategy for D, while the second one implies the optimality of Λn,∗. In fact, if

for a certain strategy of A we have that P /∈ Λ̄n,∗, a fortiori we have that P /∈ Λ̄n for

any other choice of Λ̄n hence resulting in a higher false negative error probability.

Some interesting consequences of the lemma are the following. The optimum

strategy for the Defender does not depend on the strategy chosen by the Attacker.

By adopting a game theoretic terminology, the best defence strategy is dominant,

i.e., it is optimum regardless of the attacking strategy. As a further consequence,

the optimum defence strategy does not depend on PY , meaning that the optimum

strategy is universal with respect to Y in C, i.e., it is optimal across all the sources
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under the alternative hypothesis (H1). As we anticipated, this result makes the

assumption that D knows PY irrelevant. In the same way, it is not necessary for D

to know the probability distribution of the attacked sequences.

As a final notice, we observe that the strategy expressed by equation (3.12) has a

simple heuristic interpretation: D will accept only the sequences whose empirical pmf

is close enough, in divergence terms, to the known pmf of X: this result corresponds

to the known Hoeffding test for the non-adversarial case [92].

We now pass to the determination of the optimum strategy of A. The existence of a

dominant strategy for D significantly simplifies the search for the optimum attacking

strategy. In fact, since a rationale Defender will surely play his dominant strategy

Λn,∗, A can choose her strategy by assuming that Λn = Λn,∗. In this way, the

derivation of the optimum attacking strategy becomes an easy task. By observing

that the goal of A is to maximize PFN, we argue that such a goal is obtained by

trying to bring the sequences produced by Y within Λn,∗, i.e. by trying to reach the

condition:

D(Pg(yn)||PX) < λ− |X | log(n+ 1)

n
. (3.16)

In doing so A must only respect the constraint that d(yn, g(yn)) ≤ nL. The optimum

strategy for A can then be expressed as follows:7

g∗(yn) = arg min
zn:d(zn,yn)≤nL

D(Pzn ||PX). (3.17)

Together with Lemma 1, the above observation permits to state our first fundamental

result, summarized in the following theorem.

Theorem 1. (Equilibrium point of the DTks game). The DTks game is a dominance

solvable game and the profile (Λn,∗, g∗) is the only rationalizable equilibrium.

Proof. Lemma 1 asserts that Λn,∗ is a strictly dominant strategy for D, thus permit-

ting us to eliminate all the other strategies in SD (since they are strictly dominated

by Λn,∗). The theorem, then, follows by observing that g∗ satisfies

− u(Λn,∗, g∗) ≥ −u(Λn,∗, g) ∀g ∈ SA, (3.18)

that is, g∗ maximizes the false negative error probability for a fixed Λn,∗. In fact,

for any to-be-attacked sequence yn, whenever the minimum in (3.17) is not lower

than the acceptance threshold, no other strategy will succeed in bringing yn inside

the acceptance region; hence, A maximizes the false negative probability, namely

PY (g(yn) ∈ Λn,∗), by playing strategy g∗.

7In principle, the minimization in (3.17) may have multiple solutions. However, for all the

distortion functions considered in our analysis (see Section 3.4), the minimum is unique.
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As a remark, we observe that, being a rationalizable equilibrium, profile (Λn,∗, g∗)
has the desirable characteristic of being the only possible choice if the two players

behave rationally. In fact, a rational Defender will surely adopt the acceptance region

Λn,∗, since any other choice will lead to a (asymptotically) higher PFN, regardless of

the choice made by A. On his side, a rational Attacker, knowing that D will behave

rationally, will adopt the strategy g∗ since this is the strategy that optimizes his

payoff when D plays Λn,∗.
It is worth noticing that, even if in the definition of the DT game the payoff

corresponds to the average false negative error probability, the strategy defined by

equation (3.17) represents the optimal attack that A can use for each sequence: if

the minimization in (3.17) fails to bring a sequence yn into Λn,∗, any other attack

will also fail.

As a final remark, we observe that, due to the universality of the defence strategy

with respect to Y , with few modifications, Theorem 1 can be applied to a more general

composite hypothesis testing scenario in which only the characterization under H0 is

known [86].

3.4 Characterization of the game by means of trans-

portation theory

In deriving the results of the previous sections, we did not make any assumption on

the distortion measure d(·, ·). However, as already said, in order to be able to compute

the payoff of the game at the equilibrium, we will need to limit our analysis to the case

of permutation-invariant distortion measures.8 Since most of the commonly adopted

distortions are permutation invariant, such a limitation is not a strict one. On the

other hand, confining the analysis of the game to this class of distortion measures

allows an interesting reformulation of the game, which is the purpose of this section.

Specifically, we show that for the case of permutation-invariant distortion, we can

look at the optimum Attacker’s strategy from a different perspective, by drawing a

parallelism with optimal transport theory [93].

The theory of optimal transportation (OT) has its origins in the eighteenth cen-

tury when the problem of transporting resources at a minimal cost was first formalised

[94]. In its most ancient formulation, optimal transport theory deals with the prob-

lem of moving mass from a source location to a sink location by minimizing some cost

function of the transportation per unit of mass. In one of its instance, OT searches

for the transportation map that transforms a random variable with a given pmf into

8For any pair (yn, zn), a permutation invariant distortion d is such that d(yn, zn) =

d(σ(yn), σ(zn)) for any permutation σ of the elements of the sequence.
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another random variable with a different pmf, defined over the same alphabet, by

minimizing the average cost of the transport, that can be interpreted as an expected

distance between the variables.9

Drawing a parallelism with optimal transport theory allows us to derive a very

intuitive and insightful interpretation of the optimum Attacker’s strategy, opening

the way to the analysis performed in Chapter 5.

Given a sequence yn drawn from Y , the goal of A is to transform it into a sequence

zn belonging to the acceptance region chosen by D. Let us indicate by n(i, j) the

number of times that the i-th symbol of the alphabet is transformed into the j-th

one as a consequence of the attack. Similarly, we indicate by SnY Z(i, j) = n(i, j)/n

the fraction of times the i-th symbol of the alphabet is transformed into the j-th

one. In the following, we refer to SnY Z as transportation map. Once again, we

explicitly indicate that SnY Z refers to n-long sequences by adding the superscript n.

For any permutation-invariant distortion measure, the overall distortion introduced

by the attack can be expressed in terms of SnY Z . In this thesis, we focus on distortion

measures for which the average per-letter distortion between yn and zn can be written

in the form

f({d(i, j)}|X |i=1, S
n
Y Z),

where d(i, j) is the distortion introduced when the symbol i is transformed into the

symbol j and f(·) is an arbitrary function.

For example, for an additive distortion measure, we have d(yn, zn) =
∑
i d(yi, zi) =∑

i,j n(i, j)d(i, j), and hence the average per-symbol distortion depends only on SnY Z ,

i.e.

d(yn, zn)/n =
∑

i,j

SnY Z(i, j)d(i, j).

The map SnY Z determines also the empirical distribution (i.e. the type) of the

attacked sequence. In fact, by indicating with Pzn(j) the relative frequency of symbol

j within zn, we have

Pzn(j) =
∑

i

SnY Z(i, j) , SnZ(j).

Finally, we observe that the Attacker can not change more symbols than there are

in the sequence yn; as a consequence a map SnY Z can be applied to a sequence yn

only if SnY (i) ,
∑
j S

n
Y Z(i, j) = Pyn(i). The above reasoning suggests an interesting

interpretation of SnY Z , which can be seen as the joint empirical pmf of the sequences

yn and zn. In the same way, SnY and SnZ correspond, respectively, to the empirical

pmf of yn and zn.

9Further insights on optimal transportation can be found in Section 5.1.1.
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By remembering that Λn depends only on the empirical pmf of the test sequence

(i.e., on its type), and given that the empirical pmf of the attacked sequence depends

on SnZ only through SnY Z , we can define the action of the Attacker as the choice of a

transportation map among all admissible maps, a map being admissible if:

{
SnY = Pyn

f({d(i, j)}|X |i=1, S
n
Y Z) ≤ L, (3.19)

where, in the general case, the second condition expresses the average per-symbol dis-

tortion constraint the Attacker is subject to, and L is the maximum (average) allow-

able per-letter distortion. The set of the admissible maps is denoted by An(L,Pyn).

For the case of additive distortion, the admissibility constraints can be rewritten as

follows: {
SnY = Pyn∑
i,j S

n
Y Z(i, j)d(i, j) ≤ L. (3.20)

Given the above definitions, the space of strategies of the Attacker can be seen

as the set of all the possible ways of associating an admissible transformation map

to the to-be-attacked sequence. In the following, we will refer to the result of such

an association as SnY Z(yn), or SnY Z(i, j; yn), when we need to refer explicitly to the

relative frequency with which the symbol i is transformed into the symbol j. In

the same way, SnZ(j; yn) indicates the output marginal of SnY Z(i, j; yn). With regard

to the input marginal, we always have SnY (i; yn) = Pyn(i).10. By adopting this

symbolism, the space of strategies for the Attacker can be redefined as:

SA = {SnY Z(yn) : SnY Z(i, j) ∈ An(L,Pyn)}. (3.21)

Accordingly, we can rewrite the payoff function, i.e., the opposite of the false negative

probability of the test, as follows

u(Λn, SnY Z) = −
∑

yn:SnZ(yn)∈Λn

PY (yn). (3.22)

By adopting the above transportation theory perspective, Theorem 1 can be

rephrased as follows.

Corollary 1 (Equilibrium point of the DTks game). Let

Λn,∗ =

{
P ∈ Pn : D(P ||PX) < λ− |X | log(n+ 1)

n

}
, (3.23)

10Similarly, we use notation SnY (yn) to denote the pmf Pyn .
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and

Sn,∗Y Z(yn) = arg min
SnY Z∈An(L,Pyn )

D(SnZ ||PX). (3.24)

Then Λn,∗ is a dominant equilibrium for D and the profile (Λn,∗, Sn,∗Y Z(yn)) is the only

rationalizable equilibrium of the DTks game, which, then, is a dominance solvable

game.

3.5 Analysis of the payoff at the equilibrium

The next step is the computation of the payoff at the equilibrium. Given the asymp-

totic nature of the solution we found, it makes sense to compute the asymptotic

behavior of PFN at the equilibrium. From the foregoing discussion it is easy to argue

that PFN will either tend to 0 or to 1 for n → ∞ depending on the relationship be-

tween the maximum allowed distortion and the KL-divergence between PX and PY .

For a more accurate analysis, we will also evaluate the error exponent of the false

negative error probability at the equilibrium11. Such evaluation will be carried out

under the assumption that the set of admissible maps A is determined by a linear

set of constraints, or equivalently, by assuming that the distortion measure d can

be expressed as a linear function of the transportation map SnY Z (or equivalently,

function f in (3.19) is linear in SnY Z). It is straightforward to see that for instance

any additive distance measure meets this constraint.

Let us define Γn as the set of sequences generated by Y that can be moved into

Λn,∗ as a consequence of the attack. We can write:12

Γn(PX , λ, L) = {yn : ∃ zn ∈ Λn,∗(PX , λ) s.t. d(yn, zn) ≤ nL} . (3.25)

Accordingly, the false negative error probability is equal to the probability that the

sequence yn belongs to this set, that is PFN = PY (yn ∈ Γn). We observe that, under

some very general assumptions, Γn is still a union of type classes.

Property 1. The set Γn(PX , λ, L) defined in (3.25) is a union of type classes for

any permutation invariant distance-measure.

The above property can be easily proven by observing that Λn,∗ depends on the

observed sequence only via the type class and that, whenever the distance measure

is permutation invariant, the action of the Attacker is equivalent to the application

11We remind that, according to the Neyman-Pearson setup adopted, the false positive error ex-

ponent is always larger than or equal to λ (see (3.9)).
12We notice that when we write the constraint in the form d(yn, zn) ≤ nL, we are implicitly

assuming that an additive distortion measure is adopted.
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of a transportation map Sn,∗Y Z(yn). The set in (3.25) can then be easily redefined in

terms of types instead of sequences: 13

Γn(PX , λ, L) = {P ∈ Pn : ∃ SnPV ∈ An(L,P ) s.t. V ∈ Λn,∗(PX , λ)}. (3.26)

The above region defines all the type classes (with denominator n) whose se-

quences can be moved within Λn,∗ by the Attacker. In order to decide whether the

sequences generated by two generic sources (not necessarily belonging to Pn) can be

distinguished, we now investigate the asymptotic behavior of PFN.

We find convenient to introduce the asymptotic version of Γn(PX , λ, L), which is

defined as follows:

Γ(PX , λ, L) = {P ∈ P : ∃ SPV ∈ A(L,P ) s.t. V ∈ Λ∗(PX , λ)}, (3.27)

where

Λ∗(PX , λ) = {P ∈ P : D(P ||PX) ≤ λ}, (3.28)

while the definitions of SPV (i, j) and A(L,P ) are obtained immediately from those

of SnPV (i, j) and An(L,P ), by relaxing the requirement that SPV (i, j) and P (i) are

rational numbers with denominator n.

We now have all the necessary tools to prove the following theorem.14

Theorem 2. (Asymptotic payoff of theDTks game at the equilibrium). For the DTks
game, the error exponent of the false negative error probability at the equilibrium is

given by15:

ε = min
P∈Γ(PX ,λ,L)

D(P ||PY ), (3.29)

leading to the following cases:

1. ε = 0, if PY ∈ Γ(PX , λ, L);

2. ε 6= 0, if PY /∈ Γ(PX , λ, L).

Proof. In order to derive the error exponent of the false negative probability, we must

evaluate the following limit16

ε = − lim
n→∞

1

n
log (PY (Pn ∈ Γn)) , (3.30)

13We denote with SnPV the transportation map from a pmf P ∈ Pn to another pmf V ∈ Pn,

when the sequences that induce the pmfs are not specified.
14For the definition of the error exponent of false negative and positive probability we remind to

(2.4).
15The use of the minimum instead of the infimum is justified by the compactness of Γ(PX , λ, L)

which will be actually demonstrated within the proof (the same in the following).
16We use directly the lim (and not the lim sup) because, as we will show, such limit exists.
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namely, the error exponent of the probability of the sequence of sets Γn. The evalu-

ation of the above limit can be carried out by applying the generalization of Sanov’s

theorem proven in Appendix A. In order to apply the theorem to our case, it is suf-

ficient to show that, for a given distance measure d : P × P → [0,∞), Γn
H→ Γ, that

is, Γn tends to Γ in the Hausdorff metric δH (see Corollary 4 in the appendix).

We first notice that, due to the convexity and continuity of the divergence function

w.r.t. its arguments, and the density of rational numbers into the real ones, the

Hausdorff distance between Λn,∗ and Λ∗ gets smaller as n increases, meaning that

δH(Λn,∗,Λ∗)→ 0 as n→∞ (and hence, Λn,∗
H→ Λ∗).

We now show that such property can be extended to the sets Γn and Γ. To

this purpose, it is convenient to rewrite Γ and Γn in a slightly different manner, by

considering the inverse transportation map which moves a distribution out of the

acceptance region, that is

Γ(PX , λ, L) = {P ∈ P : ∃SV P ∈ A(L, V ), for some V ∈ Λ∗(PX , λ)}. (3.31)

The equivalence of definition (3.31) and (3.27) follows from the fact that for any map

SPV that moves P into V , the inverse map SV P moves V into P by introducing the

same distortion17. A similar equivalence holds for the set Γn(PX , λ, L). Being Γn ⊆ Γ

(which is obvious from the definition of Γn and Γ), any pmf P in Γn also belongs

to Γ, and hence δΓ(Γn) = supP∈Γn infP ′∈Γ d(P ′, P ) = 0. In order to show that

δH(Γn,Γ)→ 0 as n→∞ we must prove that δΓn(Γ) = supP∈Γ infP ′∈Γn d(P, P ′)→ 0

as n→∞.

Let us fix P1 ∈ Γ. Let V1 be a pmf in Λ∗(PX , λ) such that SV1P1
∈ A(L, V1).

We can choose a point V2 ∈ Λn,∗(PX , λ) such that d(V1, V2) ≤ δH(Λn,∗,Λ∗). By

exploiting the fact that δH(Λn,∗,Λ∗) tends to 0 as n→∞, V2 can be taken arbitrarily

close to V1 for large enough n. According to Theorem 25 (Appendix B), it is possible

to move V2 into a pmf P2 close to P1 with a map in An(L, V2); by construction,

P2 ∈ Γn. Specifically (see the proof of Theorem 25), for any given P1 and SV1P1
,

the map SnP2V2
∈ An(L, V2) can be chosen in such a way that P2 ∈ B(P1, en)18 with

en = (2/n + δH(Λn,∗,Λ∗)) · |X |2. Accordingly, infP∈Γn d(P, P1) ≤ d(P2, P1) ≤ en,

∀P1. Then, δΓn(Γ) = supP ′∈Γ infP∈Γn d(P, P ′) ≤ en which tends to 0, as n → ∞,

thus concluding the proof.

The main consequence of Theorem 2 is that, given PX , L and λ, the set of sources

PY can be split into two distinct regions: the subset of sources for which the false

17We are implicitly assuming that the element-wise distortion d(i, j) is symmetric, i.e., d(i, j) =

d(j, i) ∀(i, j), which holds in all the cases considered in this thesis.
18For any point P ∈ P, B(P, τ) denote the neighborhood of P of radius τ , according to the

considered metric d.
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D(P ∗λ ||PY ) = ε

PY

P ∗λ

Γ(PX , λ, L)

PX

Λ∗(PX , λ)

Figure 3.2: Geometric interpretation of Γ(PX , λ, L) and Λ∗(PX , λ) by the light of

Theorem 2.

negative probability tends to zero exponentially fast (PY ∈ Γ̄(PX , λ, L)) and the

sources for which, as a consequence of the attack, the false negative probability tends

to 1. Stated in another way, given two pmf’s PX and PY , a maximum attacking

distortion L and the desired false positive error exponent λ, Theorem 2 permits to

understand whether D may ever succeed to make the false negative error probability

vanishingly small and thus win the game. Then, Γ(PX , λ, L) can be interpreted as the

region with the sources that cannot be reliably distinguished from PX guaranteeing a

false positive error exponent at least equal to λ in the presence of an adversary with

allowed distortion L, where by reliably distinguished we mean distinguished in such

a way to grant a strictly positive error exponent for PFN. Accordingly, Γ(PX , λ, L)

represents the indistinguishability region of the adversarial detection test in the DTks
setup. A geometric interpretation of Theorem 2 is given in Figure 3.2.

In general, the expression of Γ does not allow an analytic computation of the

pmf’s PY which the Defender is not able to distinguish from PX . In the next section,

we consider a simple case in which a closed-form expression can be found for Γ.

3.5.1 Hamming distance and distinguishability of Bernoulli

sources: a case study

In this section, we consider the particular case in which the distortion constraint is

expressed in terms of the Hamming distance and we specialize the expression of Γ

to such a case. Given two sequences xn and yn, their Hamming distance dH(xn, yn)

is defined as the number of locations for which xi 6= yi. It is easy to see that the

Hamming distance is a particular case of additive distance for which the distance

between a pair of alphabet symbols (i, j) is given by the one’s complement of the
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Kronecker delta,19 namely, d(i, j) = δij .

When the Hamming distance is considered, a closed-form expression can be found

for Γ thus greatly simplifying the analysis. The simplification relies on the following

lemma.

Lemma 2. If d(yn, zn) = dH(yn, zn), the set Γn can be expressed as:

Γn,∗(PX , λ, L) = {P ∈ Pn : ∃P ′ ∈ Λn,∗(PX , λ) s.t. dL1(P, P ′) ≤ 2L} (3.32)

where the L1 distance between P and P ′ (sometimes called variational distance) is

defined as:

dL1(P, P ′) = ||P − P ′||L1 =
∑

a∈X
|P (a)− P ′(a)|. (3.33)

Proof. We start by proving that a sequence whose type has a L1 distance larger

than 2LH from all the types in Λn,∗ cannot belong to ΓnH . Let yn and zn be two

sequences, and let Pyn and Pzn be their types. The distance between Pyn and Pzn

can be rewritten as follows:

||Pyn − Pzn ||L1
=

∑

a∈X+

[Pyn(a)− Pzn(a)]

+
∑

a∈X−
[Pzn(a)− Pyn(a)]

= 2
∑

a∈X+

[Pyn(a)− Pzn(a)], (3.34)

where X+ (res. X−, X=) indicates the set of a’s for which Pyn(a) > Pzn(a) (res.

Pyn(a) < Pzn(a), Pyn(a) = Pzn(a)), and where the last equality follows from the

observation that:

∑

a∈X−
Pyn(a) = 1−

∑

a∈X+

Pyn(a)−
∑

a∈X=

Pyn(a). (3.35)

Let us consider now the Hamming distance between the sequences yn and zn. By

considering X+, we see that dH(yn, zn) is larger than or equal to
∑
a∈X+ n[Pyn(a)−

Pzn(a)]. In fact, for each a ∈ X+, there must be at least n[Pyn(a)−Pzn(a)] positions

in which the sequences yn and zn differ, so to justify the presence of n[Pyn(a)−Pzn(a)]

more a’s in yn than in zn, thus yielding:

||Pyn − Pzn ||L1
≤ 2dH(yn, zn)

n
. (3.36)

19Given two variables i and j, the Kronecker delta δij is equal to 1 if i = j, 0 otherwise.
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For the sequences yn whose type does not satisfy (3.32), we have ||Pyn − Pzn ||L1
>

2LH ∀zn ∈ Λn,∗, yielding

2L < ||Pyn − Pzn ||L1
≤ 2dH(yn, zn)

n
, (3.37)

showing that Γn ⊆ Γn,∗.
We now show that Γn,∗ ⊆ Γn. Let P be a type in Γn,∗. Then there exists a type

P ′ ∈ Λn,∗ whose distance from P is lower than or equal to 2L. Let yn be a sequence

belonging to T (P ), the type class of P . Starting form yn we can easily build a new

sequence zn whose type is equal to P ′ by proceeding as follows. Let X+ be the set of

a’s for which Pyn(a) > P ′(a). For each a ∈ X+ we take n[Pyn(a)− P ′(a)] positions

where yi = a, and replace a with a value b ∈ X−, in such a way that at the end we

have Pzn(a) = P ′(a) ∀a ∈ X . Note that this is always possible as we have

∑

a∈X+

[Pyn(a)− P ′(a)] =
∑

b∈X−
[P ′(b)− Pyn(b)]. (3.38)

Since to pass from yn to zn we modified only
∑
a∈X+ n[Pyn(a)−P ′(a)] positions

of yn we have:

dH(yn, zn) =
∑

a∈X+

n[Pyn(a)− P ′(a)]

=
n||Pyn − P ′||L1

2
≤ nL, (3.39)

showing that yn ∈ Γn, and hence Γn,∗ ⊆ Γn, thus concluding the proof of the

lemma.

Lemma 2 permits to rewrite the expression for the indistinguishability region in

a simpler form:

Γ∗ = {P ∈ P : ∃P ′ ∈ Λ∗0(PX) s.t. dL1(P, P ′) ≤ 2L} . (3.40)

The relation between Hamming distance and L1 distance, investigated in the proof

of the Lemma 2, will turn useful in other parts of the thesis (e.g. in Chapter 6).

Bernoulli sources

In order to exemplify the general concepts introduced in the previous section, we

now apply them to the case of two Bernoulli sources. For the sequences emitted by

these sources (binary alphabet sources), the Hamming distance is a natural choice to
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define the distortion constraint, thus permitting to adopt the simplified definition of

Γ given in (3.40).

Let X and Y be Bernoulli sources with parameters p = PX(1) and q = PY (1)

respectively. In this case the acceptance region for H0 assumes a very simple form.

In fact, the KL-divergence between Pxn and PX depends only on the number of 1’s

in xn, the divergence being a monotonic increasing20 function of |νx(1) − p|, where

we indicated with νx(1) the relative frequency of 1’s in xn. When seen as an union

of types, the acceptance region may be defined in terms of P (1) (the probability of

1 under P ) only:

Λn,∗(p, λ) = {P ∈ Pn : P (1) ∈ (νinf (λ), νsup(λ))} , (3.41)

where νinf (λ) and νsup(λ) derive from the equality

D(P ||PX) = λ− |X | log(n+ 1)

n
. (3.42)

Note that in some cases we may have νinf = 0 and/or νsup = 1, since equation (3.42)

may admit a solution only for P (1) > p, P (1) < p, or no solution at all.

The optimum strategy of A is also easy to define. Given the monotonic nature

of the KL-divergence, A will increase (decrease) the number of 1’s in yn to make the

relative frequency of 1’s in zn as close as possible to p. The Attacker will succeed in

inducing a decision error if the relative frequency of ones in zn belongs to the interval

(νinf , νsup). Since the distortion constraint states that d(yn, zn) ≤ nL, we clearly

have:

Γn(p, λ, L) = {P ∈ Pn : P (1) ∈ (νinf (λ)− L, νsup(λ) + L)} , (3.43)

with the boundaries of the interval truncated to 0 or 1 when needed. For the computa-

tion of the error exponent of PFN at the equilibrium, we first consider the asymptotic

version of Λn,∗ and Γn:

Λ∗(p, λ) = {P ∈ P : P (1) ∈ (ν∞inf (λ), ν∞sup(λ))}, (3.44)

where ν∞inf and ν∞sup are now derived from the equality

D(P ||PX) = λ; (3.45)

and then the indistinguishability region is

Γ∗(p, λ, L) = {P ∈ P : P (1) ∈ [ν∞inf (λ)− L, ν∞sup(λ) + L]}. (3.46)

20Actually the KL-divergence may have an asymmetric behavior for nx(1) < np and nx(1) > np

however this asymmetry does not have any impact on our analysis.
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As stated by Theorem 2, we can distinguish two cases:

q = PY (1) ∈ [ν∞inf (λ)− L, ν∞sup(λ) + L]

q = PY (1) /∈ [ν∞inf (λ)− L, ν∞sup(λ) + L]. (3.47)

In the first case ε = 0. In the second case PFN tends to 0 for n → ∞ and the

error exponent can be computed by resorting to equations (3.29) and (3.40). Let

us suppose for instance that q > ν∞sup + L. The type in Γ(p, λ, L) closest to PY in

divergence is a Bernoulli source with parameter p∗ = ν∞sup + L, and hence the error

exponent will be ε = D(p∗||q).

3.5.2 Analysis of the game with L∞ distance

In this section, we extend the analysis of the previous Sections 3.3–3.5 to the case in

which the distortion measure constraining the Attacker is expressed in terms of the

maximum absolute distance between the samples of yn and zn, that is to the case in

which the distortion is measured by relying on the L∞ distance.

The particular interest in this scenario is justified by the fact that, in many prac-

tical applications, the distortion constraint must be satisfied locally, thus requiring

that the maximum absolute distance between yn and zn is limited rather than its

average across the whole sequences. This is the case, for instance, of biomedical and

remote sensing image compression, for which the maximum error introduced at each

pixel location must be strictly controlled, thus calling for the adoption of near-lossless

image coding schemes [95]. Another example in which the use of the L∞ distance

is recommended, is when it must be ensured that two versions of the same image,

an original and a processed one, are visually indistinguishable. In such a case, it

is necessary that the absolute difference between the two images is lower than the

visibility threshold (often referred to as just noticeable distortion (JND) [96]) at each

pixel location.

It is easy to see that the L∞ distance measure is a permutation invariant measure

and then it is possible to express the distortion constraint the Attacker is subject to

by limiting the set of transportation maps he can choose from, that is, to define the

set of admissible maps in the form in (3.19). More specifically, we observe that the

maximum distance between the sequences yn and zn can be rewritten as follows:

dL∞(yn, zn) = max
k
|zk − yk| = max

(i,j):SnY Z(i,j) 6=0
|i− j|. (3.48)

Then, we can define the set of strategies of the Attacker as the set of rules associating

an admissible map SnY Z to the to-be-attacked sequence yn, where, the set of the
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admissible maps AnL∞(L,Pyn) is given by

{
SnY (i; yn) = Pyn

max(i,j):SnY Z(i,j)6=0 |i− j| ≤ L,
(3.49)

where now the distortion constraint is imposed on a per-letter basis and not only on

the average (and L is the maximum allowable per-symbol distortion).

Passing to the analysis of the indistinguishability region, it is straightforward to

see that all the previous definitions continue to hold by replacing An(L,Pyn) with

AnL∞(L,Pyn). In fact, the dominant strategy for the Defender does not depend on the

set of strategies available to the Attacker. Let ΓnL∞(PX , λ, L) denote the set of the

types for which the Defender decides in favor of H0 as a consequence of the attack.

The asymptotic version of ΓnL∞(PX , λ, L) is defined as in (3.27),

ΓL∞(PX , λ, L) = (3.50)

{P ∈ P : ∃ SY Z ∈ AL∞(L,P ) s.t. SZ ∈ Λ∗(PX , λ)},

where AL∞(L,P ) is the asymptotic counterpart of AnL∞(L,P ).

By observing that the maximum distortion constraint can be equivalently rewrit-

ten as a collection of linear constraints in SnY Z , that is:

max
(i,j):SnY Z(i,j)6=0

|i− j| ≤ L←→ SnY Z(i, j) = 0,∀i, j : |i− j| ≤ L, (3.51)

we deduce that the admissible set in (3.49) is a linear set. Accordingly, Theorem 2

also holds in the L∞ case and the asymptotic payoff can be computed as in (3.29),

with the indistinguishability region given by equation (3.50).

3.6 Extension to sources with memory

The existence of an equilibrium for the DTks game has been proven by assuming

that D bases its analysis on the empirical pmf of the test sequence, i.e., on first

order statistics only. Although it might seem that this assumption is justified by

the DMS nature of the sources, actually the memorylessness of the sources and the

first order-based analysis are independent assumptions and we need to explicitly set

both of them. The use of first order statistics to distinguish between two discrete

memoryless sources, in fact, is optimum only when no attack is present [90]. In

general, the Attacker could introduce memory within zn, thus making the use of first

order statistics sub-optimum. This makes the explicit requirement that the detector

relies on first order analysis necessary. As an alternative path, we could have imposed

that the attack corresponds to a memoryless channel. In that case, the use of first
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order statistics by the Defender could be proven to be an optimal strategy, however

we would have simply moved our constraint from the Defender to the Attacker21.

A closer inspection to the methods used in Sections 3.3 and 3.5, however, reveals

that the analysis carried out therein can be extended to sources with memory, as

long as the concepts of type and type class can still be used. As a matter of fact,

even if the method of types was initially developed to work with memoryless sources

[89], it can be extended to more complex models as well. Given a class C of sources

with alphabet X , we say that a partition of Xn into Nn disjoint sets T1, . . . TNn , is

a partition into type classes if all the sequences in the same Ti are equiprobable for

all the sources in C. If the number Nn of type classes grows sub-exponentially with

n, then the method of types can be applied to sources in C, and the analysis we

carried out in Sections 3.3 (and maybe also 3.5) can be extended to such sources, if

we continue to assume that D is restricted to define the acceptance region as a union

of type classes. Then, it turns out that the concept of types can be applied to some of

the most commonly used source models, including Markov sources with finite order

and renewal processes.

For Markov sources of finite order, a model that is commonly used to describe

a wide variety of sources with memory, it is known that the number of type classes

grows polynomially with n [89], hence making the extension of our analysis possible.

For instance, in this case, the limited resources assumption is equivalent to ask that D

bases its decision on the empirical transition probabilities induced by xn plus the pmf

of x1. While the final form of the optimum acceptance region and the minimization

problem to be solved by A will be much more complicated, the theoretical analysis

will remain essentially the same.

Renewal processes are another class of sources that is amenable to be analyzed

by relying on the concept of types. Given a binary source, let us indicate by τ0, τ0 +

τ1, τ0 + τ1 + τ2 . . . the positions of the 1’s in the sequences produced by the source:

τi’s (i ≥ 1) are called inter-arrival times, and τ0 initial waiting time. If the τi’s are

independent and identically distributed random variables, the output of the source

is called a renewal process. In the same way, if the τi sequence forms a k−order

Markov chain, the output of the source is called a Markov renewal process of order k.

Renewal processes can be used, for instance, to model run length sequences and hence

could be of interest in forensic problems dealing with compressed streams adopting

run-length coding (e.g. the JPEG coding standard). In [97], it is shown that the

number of type classes of renewal processes and Markov renewal processes (of finite

order) grows sub-exponentially with n, thus opening the way to the extension of our

analysis to this class of sources.

21By adopting the Defender’s point of view, avoiding to impose any additional constraint on the

action of the Attacker may be interpreted as a worst case assumption.





Chapter 4

Detection Games with Training Data

In this chapter, we consider a more close-to-reality scenario and study the case in

which the sources are not fully known to Defender and Attacker.

The analysis is motivated by the fact that, the assumption of full knowledge of the

sources, made in Chapter 31 is rarely met in real applications. As an example, we can

consider a multimedia forensic scenario in which D is asked to verify that a signal has

been generated by a given acquisition device. It is very unlikely that a good statistical

model of the device is available. On the contrary, it is likely that the analyst will

build a suitable model to characterize H0 by relying on a number of signals produced

by the same acquisition device [98]. For these reasons, in this chapter, we remove the

assumption that PX and PY are known and study the detection game when training

data is available to the players.

The chapter is organized as follow: we first formally define the binary detection

game with training data in Section 4.1. Then, in Section 4.2 we solve the game

by determining the equilibrium point in the case in which equal training sequences

are available to the players. The payoff at the equilibrium of the game is computed

in Section 4.3, where we also compare the performance with those achieved by the

game with known sources. Finally, Section 4.4 addresses the case of different training

sequences available to the players.

4.1 Definition of the detection game with training

data

4.1.1 Problem formalization

By sticking to the notation introduced in Chapter 3.1, let C be the class of discrete

memoryless sources with alphabet X , and let X ∼ PX be a source in C characterizing

H0. As for the DTks game, the purpose of the Defender is to decide whether a

test sequence zn was drawn from X or not. To make his decision, D relies on the

knowledge of a training sequence of a given length N , namely tND , drawn from X. On

1We remind that, in the asymptotic case, only the knowledge of PX is required.
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his side, A takes a sequence yn emitted by another source Y ∼ PY still belonging to

C and tries to modify it in such a way that D thinks that the modified sequence was

generated by the same source that generated tND . As usual, the Attacker must satisfy

a distortion constraint stating that the distance between the modified sequence and

yn must be lower than a threshold. Like the Defender, A derives his knowledge

about the statistics of the sequences generated under H0 through a training sequence

tKA drawn from PX , that in general may not coincide with tND . We assume that

tND , tKA , and yn, as well as the observed sequence under H0, i.e., xn, are generated

independently. With regard to PY , we could also assume that it is known through

two training sequences, one available to A and one to D, however we will see that -

as for the case of known sources and at least asymptotically - such an assumption

is not necessary, and hence we take the simplifying assumption that PY is known to

neither D nor A.

In the above framework, H0 is equivalent to the hypothesis that the test sequence

has been generated by the same source that generated tND . We denote with Λntr the

acceptance region for H0
2 Throughout this chapter, we find convenient to think of

Λntr as a subset of Xn×XN , i.e., as the set of all the pairs of sequences (zn, tND) that

the Defender considers to be drawn from the same, unknown, source.

4.1.2 The DTtr,a game

With the above ideas in mind, and by paralleling the definition given in Chapter

3, we define a first version of the binary decision game with training sequences as

follows:

Definition 5. The DTtr,a(SD,SA, u) game is a zero-sum, strategic, game played by

D and A, defined by the following strategies and payoff.

• Defender’s strategies. The set of strategies D can choose from is the set of

acceptance regions for which the maximum false positive probability across all

possible PX ∈ P is lower than a given threshold:3

SD = {Λntr ⊂ Xn ×XN : max
PX∈P

PX{(zn, tND) /∈ Λntr} ≤ P ∗FP}, (4.1)

where P ∗FP is a prescribed maximum false positive probability, and the quantity

PX{(zn, tND) /∈ Λntr} indicates the probability that two independent sequences

generated by X do not belong to Λntr, that is, the false positive probability.

2To distinguish between the case of known sources and training data, we add the pedex ‘tr’ and

‘ks’ in the notation of the quantities Λ, Γ and ε.
3Strictly speaking, Λntr should depend on both n and N : however, we will express N as a function

of n, thus making the dependence on N implicit.
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• Attacker’s strategies. The set of strategies A can choose from is formed by all

the functions that map a sequence yn ∈ Xn generated by Y into a new sequence

zn subject to a distortion constraint:

SA = {g(·) : d(yn, g(yn, tKA )) ≤ nL}, (4.2)

where d(·, ·) is a proper distortion function and L is the maximum allowed

per-letter distortion. Note that the function g(·) depends on tKA , since when

performing his attack A can exploit the knowledge of his training sequence.

• The payoff function. Adopting again the Neyman-Pearson approach, the payoff

is defined in terms of the false negative error probability, that is:

u(Λntr, g) = −PFN = −
∑

tND∈XN , tKA∈XK
yn:(g(yn,tKA ),tND)∈Λntr

PY (yn)PX(tND)PX(tKA ), (4.3)

where the error probability is averaged across all possible yn and training se-

quences and where we have exploited the independence of yn, tND and tKA . Again,

the Defender’s perspective is adopted in the definition of the payoff.

Before going on with the analysis, we pause to discuss some of the choices we

implicitly made with the above definition.

A first observation regards the payoff function. As a matter of fact, the expression

in (4.3) looks problematic, since its evaluation requires that the pmf’s PX and PY are

known, however this is not the case in our scenario since we have assumed that PX is

known only through tND and tKA , and that PY is not known at all. As a consequence it

may seem that the players of the game are not able to compute the payoff associated

to a given profile and hence have no arguments upon which they can base their

choice. While this is indeed a problem in a generic setup, we will show later on that

asymptotically (when n, N and K tend to infinity) the optimum strategies of D and

A are uniformly optimum across all PX and PY and hence the ignorance of PX and

PY is not a problem. One may wonder why we did not define the payoff under a

worst case assumption (from D’s perspective) on PX and/or PY . The reason is that

doing so would result in a meaningless game since the worst case for D would always

correspond to PY = PX for which no decision is possible4.

As a second remark, we stress that, in the DTks setup, limiting the strategies

of the Attacker to deterministic functions of the sequence is not a restrictive choice

since, at least asymptotically, the optimum strategy of D does not depend either on

the strategy chosen by A (hence on tKA ) or on PY .

4Alternatively, we could assume that X and Y belong to two disjoint source classes CX and CY .
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4.1.3 A variant of the game with equal training sequences:

the DTtr,b game

An interesting variant of the DTtr,a game is obtained by assuming that the training

sequence available to A is equal to that available to D, leading to the following

definition.

Definition 6. The DTtr,b(SD,SA, u) game is a zero-sum, strategic, game defined as

the DTtr,a game with the only difference that K = N and tKA = tND (simply indicated

as tN in the following). The set of strategies of D and A are the same as in the

DTtr,a game, while the payoff is redefined as:

u(Λntr, g) = −PFN = −
∑

tN∈XN
yn:(g(yn,tN ),tN )∈Λ

PY (yn)PX(tN ). (4.4)

Due to its simplicity, in the rest of the chapter we will first focus on version b of

the game, and then extend our results so to cover version a as well.

4.1.4 DT tr,b game with limited resources

Studying the existence of an equilibrium point for the DTtr,b game is a prohibitive

task, hence we use the same approach adopted for the known sources case and consider

a simplified version of the game in which D can only base his decision on a limited

set of statistics computed on the test and training sequences: specifically, we require

that D relies only on the relative frequencies with which the symbols in X appear in

zn and tN , i.e. Pzn and PtN . To be consistent with the terminology introduced in

the previous chapter, we call this version of the game detection game with limited-

resources, and refer to it with the notation DT lrtr,b game. Note that Pzn and PtN are

not sufficient statistics for D, since even if Y is a memoryless source, the Attacker

could introduce some memory within the sequence as a result of the attack. In the

same way, he could introduce some dependencies between the attacked sequence zn

and tN . It is then necessary to treat the assumption that D relies only on Pzn and

PtN as an explicit requirement.

As a consequence of the limited resources assumption, Λntr can only be a union

of Cartesian products of pairs of type classes, i.e. if the pair of sequences (zn,

tN ) belongs to Λntr, then any pair of sequences belonging to the Cartesian product

T (Pzn) × T (PtN ) will also be contained in Λntr. Since a type class is univocally

defined by the empirical pmf of the sequences contained in it, we can redefine Λntr as

a union of pairs of types (P,Q) with P ∈ Pn and Q ∈ PN . In the following, we will
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use the two interpretations of Λntr (as a set of pairs of sequences or pairs of types)

interchangeably, the exact meaning being always recoverable from the context.

In our analysis, we are interested in studying the asymptotic behavior of the game

when n and N tend to infinity. Rather than considering two limits with n and N

tending to infinity independently, we will express N as a function of n, and study

what happens when n tends to infinity. In this way, the exponents of the Type I

and II error probability are still defined as in (2.4) (Section 2.3.1). Note that this

assumption does not reduce the generality of our analysis, however it destroys the

symmetry of the testing problem with respect to the two sequences zn and tN . The

consequences of this loss of symmetry will be discussed at the end of Section 4.2.1.

We are now ready to define the asymptotic version of the DT tr,b game under the

limited resources assumption for the Defender. We will do it by directly rewriting

the set of strategies for the Attacker in terms of transportation maps (adopting the

transportation theoretic formalism introduced in the previous chapter).5

Definition 7. The DT lrtr,b(SD,SA, u) game is a zero-sum, strategic, game played by

D and A, defined by the following strategies and payoff:

SD = {Λntr ⊂ Pn × PN :

max
PX∈P

PX{(zn, tN(n)) /∈ Λntr} ≤ 2−λn}, (4.5)

SA = {SnY Z(yn, tN(n)) : SnY Z ∈ An(L,Pyn)}, (4.6)

u(Λntr, S
n
Y Z) = −

∑

(yn,tN(n))∈Xn×XN :
(Sn
Z

(j;yn,tN(n)),tN(n))∈Λntr

PY (yn)PX(tN(n)), (4.7)

where in the definition of SA, we have explicitly indicated that the choice of

the transportation map depends on tN(n).6 By using the transportation theoretic

formalism introduced in the previous chapter, the set of strategies of the Attacker

consists of all the possible ways of choosing an admissible transportation map to

transform yn into zn. The constraint on the exponential decay velocity for the false

positive probability suggests the asymptotic solution for the game.

A similar definition can be given for version a of the game.

Since we will study only the versions of the game under the limited resources

assumption for the Defender, as we did in the previous chapter, in the sequel we will

omit the apex lr in the corresponding notation.

5Note that, in formulating the game with the transportation approach, we implicitly assume that

the distance measure d defining the distortion introduced by the Attacker is invariant to permutation.
6Notation SnY Z(yn, tN(n)) corresponds to SnY Z where the dependence on the sequences is made

explicit, and should not be confused with SnY Z(i, j), which corresponds to the value taken for a pair

of bins (i, j), extensively SnY Z(i, j; yn, tN(n)).
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4.2 Asymptotic equilibrium of the DTtr,b game.

We start the analysis of the asymptotic equilibrium point of the DTtr,b game defined

in Definition 7, by determining the optimum acceptance region for D.

To do so we will make an analysis similar to that carried out in [99] to study

hypothesis testing with observed statistics. The main difference between our analysis

and [99] is the presence of the Attacker, i.e. the game-theoretic nature of our problem.

The derivation of the optimum strategy for D passes through the definition of the

generalized log-likelihood ratio function h(zn, tN ) ([100], ch. 24, [99] pg.403).

Given a test and training sequences zn and tN , that may or may not come from

the same source, the generalized log-likelihood ratio function is defined as:7

h(zn, tN ) = D(Pzn ||Prn+N ) +
N

n
D(PtN ||Prn+N ), (4.8)

where Prn+N indicates the empirical pmf of the sequence rn+N , obtained by concate-

nating zn and tN , i.e.

ri =

{
zi i ≤ n
ti−n n < i ≤ n+N

. (4.9)

Observing that h(zn, tN ) depends on the test and the training sequences only through

their empirical pmf, we can also use the notation h(Pzn , PtN ). The study of the

equilibrium for the DTtr,b game passes through the following lemmas.

Lemma 3. For any PX we have:

nD(Pzn ||Prn+N )+ND(PtN ||Prn+N ) ≤
nD(Pzn ||PX) +ND(PtN ||PX), (4.10)

with equality holding if only if PX = Prn+N .

Proof. We rewrite (4.10) by moving all the non zero terms to the left-hand side:

nD(Pxn ||Prn+N ) +ND(PtN ||Prn+N )

− nD(Pxn ||PX)−ND(PtN ||PX) ≤ 0. (4.11)

By using the definition of empirical KL divergence stated in (3.5) and grouping the

first term with the third and the second with the fourth, the left hand side of (4.11)

is equivalent to

n
∑

a∈X
Pxn(a) log

PX(a)

Prn+N (a)
+N

∑

a∈X
PtN (a) log

PX(a)

Prn+N (a)
. (4.12)

7To simplify the notation, when it is not strictly necessary, we omit to indicate explicitly the

dependence of N on n.
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Being rn+N the concatenation of xn and tN , we argue that nPxn(a) + NPtN (a) =

(n+N)Prn+N (a) ∀a ∈ X , which permits to rewrite the sum in (4.12) as follows:

(n+N)
∑

a∈X
Prn+N (a) log

PX(a)

Prn+N (a)

= −(n+N)D(Prn+N ||PX). (4.13)

Hence, the proof of relation (4.11) follows from the positivity of the divergence func-

tion, which equals zero if and only if PX = Prn+N .

In hindsight, relation (4.11) derives from the property that the empirical proba-

bility distribution Prn+N maximizes the probability that a source outputs the con-

catenation of xn and tN , i.e., PX(rn+N ) ≤ Prn+N (rn+N ) ∀PX . To show this, from

(4.13) we write:
∑

a∈X
Nrn+N (a) log

PX(a)

Prn+N (a)
≤ 0. (4.14)

Exploiting the properties of the logarithm, relation (4.14) is equivalent to the follow-

ing

log
∏

a∈X
PX(a)Nrn+N (a) ≤ log

∏

a∈X
Prn+N (a)Nrn+N (a), (4.15)

which implies

PX(rn+N ) ≤
∏

a∈X
Prn+N (a)Nrn+N (a) = Prn+N (rn+N ). (4.16)

Given the above, we are now ready to prove the following result.

Lemma 4. Let Λn,∗tr be defined as follows:

Λn,∗tr =

{
(Pzn , PtN ) : h(Pzn , PtN )<λ−|X | log(n+ 1)(N + 1)

n

}
, (4.17)

with

lim
n→∞

log(N(n) + 1)

n
= 0. (4.18)

Then:

1. maxPX PX{(zn, tN ) /∈ Λn,∗tr } ≤ 2−n(λ−νn), with νn → 0, for n→∞,

2. ∀Λntr ∈ SD, we have Λ̄ntr ⊆ Λ̄n,∗tr .



76 4. Detection Games with Training Data

Proof. Being Λn,∗tr a union of pairs of types (or, equivalently, a union of Cartesian

products of type classes), we have:

max
PX

PFP = max
PX

∑

(zn,tN )∈Λ̄n,∗tr

PX(zn, tN )

= max
PX

∑

(Pzn ,PtN )∈Λ̄∗tr

PX(T (Pzn)× T (PtN )). (4.19)

For the class of discrete memoryless sources, the number of types with denominators

n and N is bounded by (n+ 1)|X | and (N + 1)|X | respectively [90], so we can write:

max
PX

PFP ≤ max
PX

max
(Pzn ,PtN )∈Λ̄n,∗tr

[(n+ 1)|X |(N + 1)|X |PX(T (Pzn)× T (PtN ))]

≤ (n+ 1)|X |(N + 1)|X | ·max
PX

max
(Pzn ,PtN )∈Λ̄∗tr

2−n[D(Pzn ||PX)+N
n D(PtN ||PX)], (4.20)

where in the second inequality we have exploited the independence of zn and tN and

the property of types according to which for any sequence zn we have PX(T (Pzn)) ≤
2−nD(Pzn ||PX) (see [90]). By exploiting Lemma 3, we can write:

max
PX

PFP ≤ (n+ 1)|X |(N + 1)|X | · max
(Pzn ,PtN )∈Λ̄∗tr

2−n[D(Pzn ||Prn+N )+N
n D(PtN ||Prn+N )]

≤ (n+ 1)|X |(N + 1)|X | 2−n(λ−|X| log(n+1)(N+1)
n )

= 2−n(λ−2|X | log(n+1)(N+1)
n ), (4.21)

where the last inequality derives from the definition of Λn,∗tr . Together with (4.18),

equation (4.21) proves the first part of the lemma with νn = 2|X | log(n+1)(N+1)
n .8

For any Λntr ∈ SD, let (zn, tN ) be a generic pair of sequences contained in Λ̄ntr.

Due to the limited resources assumption the cartesian product between T (Pzn) and

8We notice that νn → 0 as n→∞ thanks to the condition in (4.18).
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T (PtN ) will be entirely contained in Λ̄ntr. Then we have:

2−λn ≥ max
PX

PX(Λ̄)

(a)

≥ max
PX

PX(T (Pzn)× T (PtN ))

(b)

≥ max
PX

2−n[D(Pzn ||PX)+N
n D(PtN ||PX)]

(n+ 1)|X |(N + 1)|X |

(c)
=

2−n[D(Pzn ||Prn+N )+N
n D(PtN ||Prn+N )]

(n+ 1)|X |(N + 1)|X |
, (4.22)

where (a) is due to the limited resources assumption, (b) follows from the indepen-

dence of zn and tN and a lower bound on the probability of a pair of type classes

[90], and (c) derives from Lemma 3. By taking the logarithm of both sides we find

that (zn, tN ) ∈ Λ̄n,∗tr , thus completing the proof.

The first part of Lemma 4 shows that, at least asymptotically, Λn,∗tr is an admissible

strategy for the Defender; in fact, the constraint in (4.5) is fullfilled asymptotically

and then Λn,∗tr belongs to SD for sufficiently lartge n. Then, the optimality of Λn,∗tr
follows from the second part of the lemma.

An important observation is that the optimum strategy of D is univocally deter-

mined by the false positive constraint. This solves the apparent problem that we

pointed out when defining the payoff of the game, namely that the payoff depends

on PX and PY and hence it is not fully known to D. According to the lemma, the

optimum strategy of D does not depend on the strategy chosen by the A (then, nei-

ther on the training sequence available to him), that is Λn,∗tr is a strictly dominant

strategy for D. As a consequence, Λn,∗tr is the optimum Defender’s strategy even for

version a of the DTtr game.

As it happened for the DTks game, due to the existence of a dominant strategy

for the Defender, the derivation of the optimum attacking strategy is an easy task.

We only need to observe that the goal of A is to take a sequence yn drawn from

Y and modify it by applying an admissible transportation map, trying to reach the

condition

h(SnZ(yn, tN ), PtN ) < λ− |X | log(n+ 1)(N + 1)

n
, (4.23)

The optimum attacking strategy, then, can be expressed as a minimization problem,

i.e.,

Sn,∗Y Z(yn, tN ) = arg min
SnY Z∈An(Dmax,Pyn )

h(SnZ , PtN ). (4.24)

Note that to implement this strategy A needs to know tN , i.e., (4.24) determines the

optimum strategy only for version b of the game. Since Sn,∗Y Z(yn, tN ) (res. SnZ(yn, tN ))
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depends on the sequences yn and tN only through their empirical pmf, we can also

use the notation Sn,∗Y Z(Pyn , PtN ) (res. SnZ(Pyn , PtN )).

Having determined the optimum strategies for D and A, we can state the first

main result of this chapter.

Theorem 3 (Equilibrium point of the DTtr,b game). The DTtr,b game is a dom-

inance solvable game and the profile (Λn,∗tr , S
n,∗
Y Z(yn, tN )) is the only rationalizable

equilibrium.

4.2.1 Comparison between the test functions in the DTks and

DTtr,b setup

To get a better insight into the meaning of the equilibrium point of the DTtr,b game,

it is instructive to compare it with the equilibrium of the corresponding game with

known sources, namely the DTks game.

To start with, we observe that the use of the h function instead of the divergence

D derives from the fact that, for the DTtr,b case, D must ensure that the false posi-

tive probability stays below the desired threshold for all possible discrete memoryless

sources (DMS’s). To do so, he has to estimate the pmf that better explains the evi-

dence provided by zn and tN , that is the pmf maximizing the probability of observing

zn and tN . We know (see relation (4.16)) that such a maximizing pmf corresponds

to the empirical pmf of the concatenation of zn and tN , i.e. Prn+N (rn+N ), and the

generalized log-likelihood function corresponds to 1 over n the log of the (asymptotic)

probability that a source with pmf equal to Prn+N outputs the sequences zn and tN .

A geometric illustration of the difference between the D and the h functions is given

in Figure 4.1. For large N compared to n, Prn+N (rn+N ) is closer to PtN than to Pzn .

Another observation regards the optimum strategy of the Attacker. As a matter of

fact, the functions h(Pzn , PtN ) and D(Pzn ||PtN ) share a similar behavior: both are

positive and convex functions achieving the absolute minimum when Pzn = PtN ,9 so

one may be tempted to think that from A’s point of view minimizing D(Pzn ||PtN )

is equivalent to minimizing h(Pzn , PtN ). While this is the case in some situations,

e.g. when the absolute minimum can be reached, in general the two minimization

problems yield different solutions.

To further compare the DTtr,b and the DTks games, it is useful to rewrite the

generalized log-likelihood function in a more convenient way. By applying some

9Since h is the difference of two divergence functions with the same absolute minimum, the

convexity of h directly follows from the convexity of D.
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Figure 4.1: Geometric interpretation of the difference between D (left) and h (right)

functions. The position of PrN+n in the segment joining Pzn to PtN depends on the

ratio between the lengths N and n.

algebra, it is easy to prove the following equivalent expression for h:

h(Pzn , PtN ) = D(Pzn ||PtN )− N + n

n
D(Prn+N ||PtN ), (4.25)

showing that h(Pzn , PtN ) ≤ D(Pzn ||PtN ), with the equality holding only in the trivial

case Pzn = PtN . This suggests that, at least for large n, it should be easier for A to

bring a sequence generated by Y within Λn,∗tr than to bring it within Λn,∗ks . This is

indeed the case, as it will be shown in Section 4.3.1, where we will provide a rigorous

proof that the DTtr,b game is actually more favorable to the Attacker than the DTks
game.

We conclude this section by investigating the behavior of the optimal acceptance

strategy for different values of the ratio N
n . To do so we introduce the two quantities

cz = n
n+N and ct = N

n+N , representing the weights of the sequences zn and tN in

rn+N . It is easy to show, in fact, that

Prn+N = czPzn + ctPtN . (4.26)

In the simplest case, n and N will tend to infinity with the same speed, hence we can

assume that the ratio between N and n is fixed, namely, N
n = c 6= 0 (we obviously

have cz = 1
1+c and ct = c

1+c ). Under this assumption, the decision of D is dictated

by (4.17) and no particular behavior can be noticed. This is not the case when N/n

tends to 0 or ∞.

If N/n → 0, then Prn+N → Pzn and h(Pzn , PtN ) → 0. This means that the

Defender will always decide in favor of H0. This makes sense since when the test



80 4. Detection Games with Training Data

sequence is infinitely longer than the training sequence, the evidence provided by the

training sequence is not strong enough to let the Defender reject hypothesis 0.

If N/n → ∞, the analysis is slightly more involved. In this case ct → 1 and

Prn+N → PtN , hence the first term in (4.8) tends to D(Pzn ||PtN ). To understand the

behavior of the second term of (4.8) when n→∞, we can use the Taylor expansion

of D(P ||Q) when P approaches Q (see [101], Chapter 4), which applied to the second

term of the h function yields:

N

n
· D(PtN ||Prn+N ) ≈ N

2n
·
∑

x

(PtN (x)− Prn+N (x))2

Prn+N (x)

=
N

2n
·
∑

x

(cxPtN (x)− cxPzn(x))2

Prn+N (x)

=
n
N

2( nN + 1)2

∑

x

(PtN (x)− Pzn(x))2

Prn+N (x)
. (4.27)

When N/n→∞, the above expression clearly tends to 0, and hence h(Pzn , PtN )→
D(Pzn ||PtN ). In other words, the optimum acceptance region tends to be equal to

the one obtained for the case of know sources with PX replaced by PtN . This is also

an intuitively reasonable result: when the training sequence is much longer than the

test sequence, the empirical pmf of the training sequence provides such a reliable

estimate of PX that the Defender can treat it as the ‘true’ pmf.

One may wonder the reason behind the asymmetric behavior of the optimum

decision strategy when the length of one between the two sequences under analysis

grows much faster than the other. This apparent anomaly derives from the choice of

analyzing the asymptotic behavior by letting n tend to infinity, a choice that breaks

the symmetry between the test and training sequences (if we had defined the false

positive and false negative error exponents in terms of N , the situation would have

been completely reversed).

In the following we will always assume that N/n = c, since from the above analysis

this turns out to be most interesting case.

4.3 Analysis of the payoff at the equilibrium

Having derived the equilibrium point of the DTtr,b game, we are ready to analyze the

payoff at the equilibrium to understand who, between the Defender and the Attacker

is going to win the game. Our aim is to derive a result similar to the one derived in

Chapter 3, so that given two pmf’s PX and PY , a false positive error exponent λ and

a distortion constraint L, we can derive the ultimate achievable false negative error
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exponent εtr,b.
10 Specifically, we would like to know whether it is possible for D to

obtain a strictly positive value of εtr,b, thus ensuring that the false negative error

probability tends to zero exponentially fast for increasing values of n.11

From the knowledge of the equilibrium point, we can define the set Γntr,b containing

all the pairs of sequences (yn, tN ), for which A is able to bring yn within Λn,∗tr .

By adopting the transportation formulation of the attacking strategy, Γntr,b can be

expressed as a set of pairs of pmf’s or types (Pyn , PtN ), that is:

Γntr,b(λ, L) = {(P,Q) ∈ Pn × PN : ∃SnPV ∈ An(L,P ) s.t. (V,Q) ∈ Λn,∗tr (λ)}. (4.28)

We will find it convenient to fix the type Q and consider the set of types Pzn for

which (Pzn , Q) belongs to set Λn,∗tr and Γntr,b, that is:

Λn,∗tr (Q,λ) = {P ∈ Pn : (P,Q) ∈ Λn,∗tr (λ)}, (4.29)

Γntr,b(Q,λ, L) = {P ∈ Pn : ∃SPV ∈ An(L,P ) s.t. V ∈ Λn,∗tr (Q,λ)}. (4.30)

To go on, we need to generalize the above sets. To start with, we generalize the

h function so that it can be applied to pmf’s not necessarily belonging to Pn or PN .

By remembering that N/n = c, we introduce the following definition:

hc(P,Q) = D(P ||U) + cD(Q||U), (4.31)

with

U =
1

1 + c
P +

c

1 + c
Q. (4.32)

Note that when P ∈ Pn and Q ∈ PN , the above definition is equivalent to (4.8). By

using hc instead of h, we can generalize definitions (4.30) and (4.29) to a generic pmf

Q in P (not necessarily belonging to PN ).

The derivation of the false negative error exponent at the equilibrium passes

through the asymptotic extensions of the sets:

Γtr,b(Q,λ, L) = {P ∈ P : ∃SPV ∈ A(L,P ) s.t. V ∈ Λ∗tr(Q,λ)}, (4.33)

where

Λ∗tr(Q,λ) = {P : hc(P,Q) < λ} . (4.34)

10For the sake of clarity, we specify the version of the game (i.e., b) in the pedex, since this set

will take a different values in the various setups. We will do the same for the set Γ.
11As for the known sources case, in order to derive the expression of the error exponent at the

equilibrium of the game, we must require that the admissible set A is a convex polytope (i.e., the

set of constraints defining A is a linear set) with the considered permutation-invariant distortion d.
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Of course, when P and Q are not empirical pmf’s, the meaning of Λn,∗tr as acceptance

region for H0 (and that of Γtr,b(Q,λ, L) as the set of points that can be moved inside

the acceptance region by the Attacker) is lost.

The importance of the above definition is that for any source PX , decay rate λ

and maximum allowed per-letter distortion L, the set Γtr,b(Q,λ, L), evaluated for

Q = PX , corresponds to the indistinguishability region of the DTtr,b game, i.e. the

set of all the pmf’s for which D does not succeed in distinguishing between H0 and H1

ensuring a false negative error probability that tends to zero exponentially fast. In

other words, if PY ∈ Γtr,b(PX , λ, L), no strictly positive false negative error exponent

can be achieved by D. The above conclusions follow from the following theorem:

Theorem 4 (Asymptotic payoff of the DTtr,b game at the equilibrium). For the

DTtr,b game, with N/n = c, the false negative error exponent at the equilibrium is

given by

εtr,b(λ) = min
Q

[c · D(Q||PX) + min
P∈Γtr,b(Q,λ,L)

D(P ||PY )]. (4.35)

leading to the following cases:

1. εtr,b = 0, if PY ∈ Γtr,b(PX , λ, L);

2. εtr,b > 0, if PY /∈ Γtr,b(PX , λ, L).

Proof. The theorem is an application of the extended Sanov theorem proven in the

Appendix (see A).

The false negative error probability at the equilibrium, for a given n, can be

written as

PFN =
∑

Q∈PN
PX(T (Q))PY (Γntr,b(Q,λ, L))

=
∑

Q∈PN
PX(T (Q))

∑

P∈Γntr,b(Q,λ,L)

PY (T (P )). (4.36)

We start by deriving an upper-bound of the false negative error probability. By

exploiting the usual bounds on the probability of a type class and the number of
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types in Pn [90], we can write:

PFN ≤
∑

Q∈PN
PX(T (Q))

∑

P∈Γntr,b(Q,λ,L)

2−nD(P ||PY )

≤
∑

Q∈PN
PX(T (Q))(n+ 1)|X |2

−n min
P∈Γn

tr,b
(Q,λ,L)

D(P ||PY )

≤
∑

Q∈PN
PX(T (Q))(n+ 1)|X |2

−n min
P∈Γtr,b(Q,λ,L)

D(P ||PY )

≤ (n+ 1)|X |(N + 1)|X | · 2
−n min

Q∈PN
[Nn D(Q||PX)+ min

P∈Γtr,b(Q,λ,L)
D(P ||PY )]

≤ (n+ 1)|X |(N + 1)|X | · 2
−nmin

Q
[cD(Q||PX)+ min

P∈Γtr,b(Q,λ,L)
D(P ||PY )]

, (4.37)

where the last inequality is obtained by minimizing over all Q without requiring that

Q ∈ PN and where the use of the minimum instead of the infimum is justified by the

fact that Γntr,b(Q,λ, L) and Γtr,b(Q,λ, L) are compact sets. By taking the log and

dividing by n we find:

− logPFN

n
≥ min

Q∈C

[
cD(Q||PX) + min

P∈Γtr,b(Q,λ,L)
D(P ||PY )

]
+ αn, (4.38)

with αn = |X | log(n+1)(N+1)
n tending to 0 when n tends to infinity.

We now turn to the analysis of a lower bound for PFN. Let Q∗ be the pmf achieving

the minimum in (4.35). Due to the density of rational numbers within real numbers,

we can find a sequence of pmf’s Qn ∈ Pn that tends to Q∗ when n tends to infinity.

By remembering that N = nc, the subsequence QN = Qnc also tends to Q∗ when n

(and hence N) tends to infinity12. We can write:

PFN =
∑

Q∈PN
PX(T (Q))PY (Γntr,b(Q,λ, L))

≥ PX(T (QN ))PY (Γntr,b(QN , λ, L)),

≥ 2−ND(QN ||PX)

(N + 1)|X |
PY (Γntr,b(QN , λ, L)), (4.39)

where in the first inequality we have replaced the sum with the single element of the

subsequence QN defined previously, and the the second inequality derives from the

usual lower bound on the probability of a type class [90]. From (4.39), by taking the

log and dividing by n we obtain

− logPFN

n
≤ cD(QN ||PX)− 1

n
logPY (Γntr,b(QN , λ, L)) + α′n, (4.40)

12In order to simplify the analysis, we assume that c is a non-null integer value, the extension of

the proof to non-integer values of c is tedious but straightforward.
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where, as in (4.38), α′n = |X | log(N+1)
n tends to 0 when n tends to infinity.

We now apply the extended Sanov limit (see Appendix A) for computing the

term PY (Γntr,b(QN , λ, L)) in (4.40). To do so, we must show that Γntr,b(QN , λ, L) →
Γtr,b(Q

∗, λ, L), where the convergence is intended in the Hausdorff distance.13 This

can be done by reasoning as in the proof of Theorem 2 (when we proved that

Γnks(PX , λ, L)
H→ Γks(PX , λ, L)). The only difference with respect to that case is

the form of the acceptance region and its asymptotic counterpart. However, since

the generalized test function hc has a similar behavior to D and QN tends to Q∗ as

n → ∞, it easy to see that δH(Λn,∗tr (QN ),Λ∗tr(Q
∗)) → 0. Hence, the proof of the

Hausdorff convergence of Γntr,b to set Γtr,b follows from same arguments used for the

know sources case.

Then, from the generalized Sanov theorem, we get:

− lim
n→∞

1

n
logPY (Γntr,b(QN , λ, L)) = min

P∈Γtr,b(Q∗,λ,L)
D(P ||PY ). (4.41)

Hence, by exploiting the continuity of the divergence function, for n large enough we

can write

− logPFN

n
≤ cD(Q∗||PX) + β′n + min

P∈Γtr,b(Q∗,λ,L)
D(P ||PY ) + β′′n + α′n, (4.42)

where all the sequences α′n, β′n and β′′n tend to zero when n tends to infinity.

By coupling equations (4.38) and (4.42) and by letting n → ∞, we eventually

obtain:

− lim
n→∞

logPFN

n
= min

Q
[c · D(Q||PX) + min

P∈Γtr,b(Q∗,λ,L)
D(P ||PY )], (4.43)

thus proving the theorem.

According to Theorem 4, we can distinguish two cases depending on the relation-

ship between PX and PY . In the former case, for which the minimum in (4.35) is

obtained by letting Q = PX , it is not possible for D to obtain a strictly positive false

negative error exponent while ensuring that the false positive error exponent is at

least equal to λ. In the latter case, it is not possible that the two divergences in (4.35)

are simultaneously equal to zero, hence PFN tends to 0 exponentially fast. In other

words, given λ and L, the condition PY /∈ Γtr,b(PX , λ, L) ensures that the distance

between PY and PX is large enough to allow a reliable discrimination between H0

and H1 despite the presence of the adversary. As anticipated, then, Γtr,b(PX , λ, L) is

the indistinguishability region of the DTtr,b game. A pictorial representation of the

sets Λn,∗tr and Γtr,b is given in Fig. 4.2.

13We remind that, for computing the Hausdorff distance, a distance measure between pmf’s must

be specified, such that P is bounded (see discussion in the Appendix).
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Figure 4.2: Geometric interpretation of the sets Λ∗tr and Γtr,b. When PY ∈ Γtr,b,

a reliable distinction between H0 and H1 is not possible and the Attacker wins the

game.

4.3.1 Comparison between the DTks and DTtr,b games

In this section we compare the performance achievable by D for the DTks and DTtr,b
games. We start the analysis by comparing the indistinguishability regions of the two

games, namely Γks(PX , λ, L) and Γtr,b(PX , λ, L), reported below for convenience:

Γks(PX , λ, L) = {P ∈ P : ∃SPV ∈ A(L,P ), s.t. V ∈ Λ∗ks(PX , λ)}, (4.44)

with

Λ∗ks(PX , λ) = {P ∈ P : D(P ||PX) ≤ λ}; (4.45)

and

Γtr,b(PX , λ, L) = {P ∈ P : ∃SPV ∈ A(L,P ), s.t. V ∈ Λ∗tr(PX , λ)}, (4.46)

with

Λ∗tr(PX , λ) = {P ∈ P : hc(P, PX) ≤ λ}. (4.47)

We observe that the comparison between the two regions relies on the comparison

between the divergence and the generalized log-likelihood function stated by the

following:

Lemma 5 (Relationship between hc and D). Let N/n = c, with c 6= 0, c 6= ∞, for

any P 6= PX we have,

hc(P, PX) < D(P ||PX). (4.48)
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Proof. By rewriting hc(P, PX) as in (4.25), we have:

hc(P, PX) = D(P ||PX)− (1 + c)D(U ||PX), (4.49)

with U = P/(1 + c) + cPX/(1 + c), which is equal to PX if and only if P = PX , when

we have D(U ||PX) = 0 thus yielding hc(P, PX) = D(P ||PX) = 0.

From the above lemma, it follows immediately the strict inclusion between the

acceptance regions, that is Λ∗ks(PX , λ) ⊂ Λ∗tr(PX , λ). From Lemma 5, we can prove

the following theorem:

Theorem 5 (DTtr,b vs DTks). For any finite, non-null value of c, any PX , λ > 0

and L, the following results hold:

• For any pmf P belonging to the boundary 14 of Γtr,b(PX , λ, L) there exists a

positive value ε such that B(P, ε) ⊂ Γks(PX , λ, L) 15, where B(P, τ) is a ball

centered in P with radius τ .

• For any pmf P belonging to the boundary of Γks(PX , λ, L) there exists a positive

value τ such that B(P, τ) ⊂ Γtr,b(PX , λ, L).

• Γks(PX , λ, L) ⊂ Γtr,b(PX , λ, L).

Proof. As an immediate consequence of Lemma 5, we observe that the non-strict

inclusion between the indistinguishability regions holds, i.e.,

Γks(PX , λ, L) ⊆ Γtr,b(PX , λ, L). (4.50)

Point 1.

Let then P ′ be a point on the boundary of Γtr,b(PX , λ, L). Since Γks(PX , λ, L) is a

closed set, we can prove that B(P ′, ε) ⊂ Γks(PX , λ, L) for some ε > 0, by simply

showing that P ′ ∈ Γks(PX , λ, L) and then apply the definition of open set.

14We remark that, by confining the space to the set of probabilities, i.e., the probability simplex,

the following definition of boundary is adopted: given a set A ∈ P, the boundary of A is the set

of the points that can be approached both from A and from Ā, where A ∪ Ā ≡ P. Accordingly, a

point in A which lies on the boundary of the simplex is an internal point of A, except for the case

in which such point can be approached from Ā. Concerning our case, it is worth observing that

there could be points inside the set Γks (or Γtr,b) that lie on the boundary of the simplex, when the

distortion constraint the Attacker is subject to is less constraining than the limitation provided by

the simplex. According to the above definition, such points (except those that can be approached

from the outside/complementary set) do not belong to the boundary.
15The relation is equivalent to B(P, ε) ∩ Γks(PX , λ, L) = ∅.
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Let us assume, by contradiction, that P ′ ∈ Γks (be it inside or on the boundary).

Then, we have that D(R′||PX) ≤ λ for some map SP ′R′ ∈ A(L,P ′); consequently,

from Lemma 5, hc(R
′, PX) < λ, that is R′ is an internal point of Λ∗tr. Let δ be such

that B(R′, δ) ⊂ Λ∗tr. By exploiting Theorem 25 in Appendix B, it is possible to fix

ε > 0 such that for any P ∈ B(P ′, ε) a map SPR ∈ A(L,P ) can be found such that

R ∈ B(R′, δ) (specifically, we can choose ε = δ/|X |2).

Then, by construction, B(P ′, ε) ⊂ Γtr,b, that is, P ′ is internal point of Γtr,b, thus

raising the absurd.

Point 2.

The proof of this point follows straightforwardly from Point 1. In fact, having proved

that any point on the boundary of Γtr,b lies outside Γks, as a consequence, any point

in the boundary of Γks is an internal point of Γtr,b
16. By definition of internal point,

there exists τ > 0 such that B(P, τ) ⊂ Γtr,b, thus concluding the proof.

Point 3.

From the above points it follows that there is at least one point (actually an infinite

number of points) that belongs to Γtr,b but not to Γks, thus proving that the inclusion

relation in (4.50) is indeed strict.

Theorem 5 has the following corollary.

Corollary 2. Let εks and εtr,b denote the error exponents at the equilibrium for the

DTks and DTtr,b games. Then we have:

εtr,b ≤ εks, (4.51)

where the equality holds if and only if PY ∈ Γks(PX , λ, L), when both error exponents

are equal to 0.

Proof. The corollary is obvious when PY ∈ Γtr,b(PX , λ, L), since in this case εtr,b = 0

while εks is equal to zero if PY ∈ Γks(PX , λ, L) and nonzero otherwise. When PY /∈
Γtr,b(PX , λ, L), by considering the expression of the error exponent for the DTtr,b
game we have:

εtr,b = min
Q

[c · D(Q||PX) + min
P∈Γtr,b(Q,λ,L)

D(P ||PY )]

≤ cD(PX ||PX) + min
P∈Γtr,b(PX ,λ,L)

D(P ||PY )

(a)
= min

P∈Γtr,b(PX ,λ,L)
D(P ||PY )

< min
P∈Γks(PX ,λ,L)

D(P ||PY ) = εks, (4.52)

16Note that this is true since Γks ⊆ Γtr,b.
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where the last strict inequality is justified by observing that the absolute minimum of

D(P ||PY ) is obtained for P = PY which we have assumed to lie outside Γtr,b(PX , λ, L)

and hence, due to the convexity of D, the value of P satisfying the minimization on

the right-hand side of equality (a) belongs to the boundary of Γtr,b(PX , λ, L) which,

by Theorem 5, lies outside the closed set Γks(PX , λ, L).

Theorem 5 and Corollary 2 permit to conclude that binary detection with training

data is more favorable to the Attacker than binary detection with known sources.

The reason behind such a result is the use of the h function instead of the divergence,

which in turn stems from the need for the Defender to ensure that the constraint on

the false positive error probability is satisfied for all PX ∈ P. It is such a worst case

assumption that ultimately favors the Attacker in the DTtr,b game.

4.4 Detection game with independent training se-

quences (DTtr,a)

We now pass to the analysis of version a of the DTtr game. Again, we consider the

limited resources version of the game. We remind that in this case D and A rely

on independent training sequences, namely tND and tKA . As for version b, we assume

that both N and K grow linearly with n and that the asymptotic analysis is carried

out by letting n go to infinity. As a matter of fact, assuming that K grows faster

than N with respect to n is not reasonable in practical applications, since usually the

Defender has a better knowledge of the system than the Attacker. This is the case,

for instance, in source identification for multimedia forensics, where we can assume

that the analyst has a better knowledge of the statistics of authorized sources. On

the contrary, one could consider the case where K grows less than linearly with n,

thus considering a situation which is more favorable to the Defender.

Given the above, in the following, we assume that N = cn and K = dn. As we

already noted in Section 4.2, the strategy Λn,∗tr identified by Lemma 4 is optimum

regardless of the relationship between tND and tKA , hence the only difference between

versions a and b of the game is in the strategy of the Attacker. In fact, now the

Attacker does not have a perfect knowledge of the acceptance region adopted by the

Defender, since such a region depends on the empirical pmf of tND which A does not

know. In this case, finding the optimum attack strategy is an hard task.

A reasonable strategy for the Attacker could be to use the empirical pmf of tKA , in

place of the one derived from tND . More precisely, by using the notation introduced

in Section 4.3 (equation (4.29)), the Attacker could try to move yn into Λn,∗tr (PtKA ),

while the acceptance region adopted by the Defender is Λn,∗tr (PtND ). Given that tND
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and tKA are generated by the same source, their empirical pmf’s will both tend to PX
when n goes to infinity, and hence using Λn,∗tr (PtKA ) should be in some way equivalent

to using Λn,∗tr (PtND ). In fact, in the following we will show that, given PX , L and λ,

the indistinguishability region for version a of the game, let us call it Γtr,a(PX , λ, L),

is identical to the indistinguishability region of version b. Of course, this does not

mean that the achievable payoff for the DTtr,a game is equal to that of the DTtr,b
game, since outside the indistinguishability region, the false negative error exponent

for case a may be different (actually larger) than that of case b.

4.4.1 Training sequences of the same length

We start our analysis by assuming that c = d (and hence N = K), i.e. the training

sequences available to the Defender and the Attacker have the same length.

Our goal is to investigate the asymptotic behavior of the payoff of the DTtr,a
game for the profile (Λn,∗tr (PtND ), S̃nY Z), where the, not necessarily optimum, strategy

S̃nY Z(yn, tNA ) played by the Attacker is defined as:

S̃nY Z(Pyn , PtNA ) = arg min
SnY Z∈An(L,Pyn )

h(SnZ , PtNA ). (4.53)

We will use the map S̃nY Z to bound the false negative error exponent and show that,

even if the DTtr,a game is less favorable to the Attacker than the DTtr,b game, the

two games have the same indistinguishability region.

By following the same flow of ideas used in Section 4.3, we consider the set of

pmf’s for which the Attacker is able to move Pyn within the acceptance region, that

is

Γ̃ntr,a(λ, L) = {(Pyn , PtND , PtNA ) : (S̃nZ(Pyn , PtNA ), PtND ) ∈ Λn,∗tr (λ)}. (4.54)

Similarly to version b of the game, we find it useful to introduce the following defini-

tion:

Γ̃ntr,a(PtND , PtNA , λ, L) = {Pyn ∈ Pn : S̃nZ(Pyn , PtNA ) ∈ Λn,∗tr (PtND , λ)}. (4.55)

By using the generalized function hc instead of h in the definition of the acceptance

region, we can apply the above definition to any pair of pmf’s. Specifically, given two

pmf’s Q and R, we define:

Γ̃ntr,a(Q,R, λ, L) = {P ∈ Pn : S̃nZ(P,R) ∈ Λn,∗tr (Q,λ)}. (4.56)

It is easy to see that:

Γ̃ntr,a(Q,R, λ, L) ⊆ Γ̃ntr,a(Q,Q, λ, L) (4.57)

Γ̃ntr,a(Q,Q, λ, L) = Γntr,b(Q,λ, L),
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since when (and only when) Q = R, A performs its attack by using exactly the same

acceptance region adopted by D, while in all the other cases he can rely only on an

estimate based on its own training sequence. Paralleling the analysis of the DTtr,b
game, we introduce the asymptotic set

Γ̃tr,a(Q,R, λ, L) = {P ∈ P : S̃Z(P,R) ∈ Λ∗tr(Q,λ)}, (4.58)

where Λ∗tr(Q,λ) is the same set defined in (4.34). Straightforwardly, the relations in

(4.57) also holds for Γ̃tr,a.

We are now ready to prove the following result.

Theorem 6 (Asymptotic payoff of the DTtr,a game). The error exponent of the pay-

off associated to the profile (Λ∗,ntr (PtND ), S̃nZ(Pyn , PtNA )) is lower (res. upper) bounded

as follows17

ε̃tr,a ≥ min
Q,R

{
c[D(Q||PX) +D(R||PX)] + min

P∈Γ̃tr,a(Q,R,λ,L)
D(P ||PY ))

}
, (4.59)

ε̃tr,a ≤ min
Q

[
2c · D(Q||PX) + min

P∈Γ̃tr,a(Q,Q,λ,L)
D(P ||PY )

]
. (4.60)

Proof. The proof is similar to the proof of Theorem 4, with the noticeable difference

that now the lower and upper bounds are different, hence preventing us to derive a

precise expression for the error exponent. Let us start with the lower bound. By

17We adopt the definition ε̃tr,a = −lim supn→∞
1
n

log(PFN), since the lim may not exists (see

(2.4)).
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recalling the definition of the false negative error probability, for any n we can write:

PFN =
∑

tND

∑

tNA

PX(tND)PX(tNA )PY (Γ̃ntr,a(PtND , PtNA , λ, L))

=
∑

tND

∑

tNA

PX(tND)PX(tNA )
∑

P∈Γ̃ntr,a(P
tN
D
,P
tN
A
,λ,L)

PY (T (P ))

=
∑

Q∈PN

∑

R∈PN
PX(T (Q))PX(T (R))

∑

P∈Γ̃ntr,a(Q,R,λ,L)

PY (T (P ))

≤
∑

Q∈PN

∑

R∈PN
PX(T (Q))PX(T (R)) · (n+ 1)|X |2

−n min
P∈Γ̃ntr,a(Q,R,λ,L)

D(P ||PY )

≤
∑

Q∈PN
PX(T (Q))(n+ 1)|X |(N + 1)|X |

· 2
−n min

R∈PN
[cD(R||PX)+ min

P∈Γ̃ntr,a(Q,R,λ,L)
D(P ||PY )]

≤ (n+ 1)|X |(N + 1)2|X |

· 2
−nmin

Q,R
[cD(Q||PX)+cD(R||PX)+ min

P∈Γ̃ntr,a(Q,R,λ,L)
D(P ||PY ))]

, (4.61)

where the use of the minimum instead of the infimum is justified by the compactness

of the involved sets, and where in the last inequality we replaced the minimization

over all Q and R in PN , with a minimization over the entire space of pmf’s. By

taking the logarithm of both sides and letting n tend to infinity, the lower bound in

(4.59) is easily proved.

We now turn the attention to the upper bound. To do so, let Q∗ be the pmf

achieving the minimum in (4.60). Due to the density of rational numbers within

real numbers, we can find two sequences of pmf’s Qn and Rn that tend to Q∗ when

n tends to infinity, and such that Qn ∈ Pn, Rn ∈ Pn,∀n. By remembering that

N = nc, we can say that the subsequences QN = Qnc and RN = Rnc also tend to

Q∗ when n (and hence N) tends to infinity. We can, then, consider the subsequences

QN and RN to write the following chain of inequalities:

PFN =
∑

Q∈PN

∑

R∈PN
PX(T (Q))PX(T (R))PY (Γ̃ntr,a(Q,R, λ, L)) (4.62)

≥ PX(T (QN ))PX(T (RN ))PY (Γ̃ntr,a(QN , RN , λ, L))

≥ 2−N(D(QN ||PX)+D(RN ||PX))

(N + 1)2|X | · PY (Γ̃ntr,a(QN , RN , λ, L)),

where the first inequality has been obtained by replacing each summation with a

single element of the sum (two elements of the sequences QN and RN ), and the
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second relies on the usual lower bound on the probability of a type class ([90], chapter

12). By taking the logarithm of each side in (4.62) and dividing by n, we get:

−1/n log(PFN) ≤ cD(QN ||PX) + cD(RN ||PX)

− 1/n log(PY (Γ̃ntr,a(QN , RN , λ, L)))− βn, (4.63)

with βn = 2|X | log(N + 1) tending to 0 for n→∞.

In order to apply the generalized Sanov theorem for evaluating the the probability

term in (4.63), we need to prove that

Γ̃ntr,a(QN , RN , λ, L)
H→ Γtr,b(Q

∗, λ, L). (4.64)

We observe that the proof of such convergence is more involved with respect to

similar proofs in Theorem 2 and 4, due to the inveolved expression of Γ̃ntr,a. In

fact, this time, the Attacker does not know the exact form of the acceptance region

adopted by D, i.e. Λn,∗tr (QN ), and considers the estimated version Λn,∗tr (RN ) to carry

out the minimization. Accordingly, set Γ̃ntr,a cannot be written in a form similar to

(4.30) (and (3.26)), thus preventing us from directly using the same arguments used

therein.

We will prove the Hausdorff convergence of Γ̃ntr,a(QN , RN , λ, L) to Γtr,b(Q
∗, λ, L)

by resorting to the definition of an auxiliary set.

Let λ′n = max{λ′ : Λn,∗tr (RN , λ
′) ⊆ Λn,∗tr (QN , λ)}.18 We can define the following

set:

Γ̇ntr,a(QN , RN , λ, L) = {P ∈ Pn : ∃SPV ∈ A(L,P ) s.t. V ∈ Λn,∗tr (RN , λ
′
n)}. (4.65)

By the definition of λ′n, it is easy to see that the above set is contained in Γ̃tr,a(QN , RN , λ, L).

Then, the following chain of inclusions holds:

Γ̇ntr,a(QN , RN , λ, L) ⊆ Γ̃ntr,a(QN , RN , λ, L) ⊆ Γntr,b(QN , λ, L).

Since Γntr,b(QN , λ, L)
H→ Γtr,b(Q

∗, λ, L) (see the proof of Theorem 4), by applying the

squeeze theorem, (4.64) is proven if we show that19

Γ̇ntr,a(QN , RN , λ, L)
H→ Γtr,b(Q

∗, λ, L).

By reasoning as in the proof of Theorem 2 and 4, the above relation follows by

proving that δH(Λn,∗tr (RN , λ
′
n),Λ∗(Q∗, λ)) → 0 as n → ∞, which derives easily from

18Notice that, since QN and RN tend to the same pmf Q∗ as n tends to infinity, and λ > 0, if n

is sufficiently large, the set is non-empty (see Figure 4.3).
19The squeeze theorem (known also as sandwich theorem) also holds in the case of Hausdorff

convergence [102].
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1

Λn,∗
tr (QN , λ)

0 QN RN

λ− |X | log(n+1)(N+1)
n

Q∗

Λn,∗
tr (RN , λ

′)

h(P,RN)h(P,QN)

λ′ − |X | log(n+1)(N+1)
n

Figure 4.3: Geometric construction of set Λn,∗tr (RN , λ
′). For ease of graphical repre-

sentation, the sketch refers to the case |X | = 2 (one-dimensional case).

the density of rational numbers into real ones, the continuity of the hc function and

the fact that RN → Q∗ and λ′n → λ as n tends to infinity.

The assumptions of the generalized Sanov theorem are then satisfied and we can

write:

− lim
n→∞

1/n log(PY (Γ̃ntr,a(QN , RN , λ, L)) = min
P∈Γ̃tr,a(Q∗,Q∗,λ,L)

D(P ||PY ). (4.66)

Therefore, by going on from (4.63), letting n → ∞ and exploiting the continuity of

D with respect to its arguments, we have

ε̃tr,a ≤ cD(Q∗||PX) + cD(Q∗||PX) + min
P∈Γ̃tr,a(Q∗,Q∗)

D(P ||PY ). (4.67)

By recalling that

Q∗ = arg min
Q

[
c · D(Q||PX) + min

P∈Γ̃tr,a(Q,Q,λ,L)
D(P ||PY )

]
, (4.68)

we get the upper bound in (4.60).

Theorem 6 has an important corollary.

Corollary 3 (Indistinguishability region for DTtr,a). The false negative error expo-

nent associated to the profile (Λn,∗tr (PtND ), S̃Y Z(·, PtNA )) is equal to zero if and only if

PY ∈ Γtr,b(PX , λ, L), and hence the indistinguishability region of the DTtr,a game is

equal to that of the DTtr,b game.
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Proof. From the upper bound in Theorem 6, it follows that ε̃tr,a = 0 if PY ∈
Γ̃tr,a(PX , PX , λ, L), whereas from the lower bound we see that ε̃tr,a = 0 implies that

PY ∈ Γ̃tr,a(PX , PX , λ, L). Being Γ̃tr,a(PX , PX , λ, L) = Γtr,b(PX , L, λ), the corollary

is proven.

Corollary 3 provides an interesting insight into the achievable performance of

the DTtr,a game. While, in general, version a of the game is less favorable to the

Attacker than version b, since in the latter case the Attacker knows exactly the

acceptance region adopted by the Defender, if the Attacker adopts the strategy S̃Y Z ,

the indistinguishability regions of the two games are the same. Such a strategy, then,

is optimal at least as far as the indistinguishability region is concerned. Outside that

region, the Attacker could achieve a higher payoff (i.e., a lower error exponent) by

adopting a different strategy. On the other side, a strategy that allows the Attacker

to reach the same payoff as for version b may not exists.

4.4.2 Training sequences with different length

We conclude this section by briefly discussing the case in which the training sequences

tND and tKA have different lengths, i.e. c 6= d. To simplify the analysis we assume that

the length of tND , i.e., c, is known to the Attacker; in this way A knows at least the

form the hc function used by D. We focus on the following attacking strategy: use

the training sequence tKA to estimate PtND and use the estimate to attack the sequence

yn. Specifically, the Attacker may use the following estimate of PtND :

P̃tND (i) =
1

N

⌊
PtKA (i) ·N

⌋
∀i = 1 . . . |X | − 1,

P̃tND (|X |) = 1−
|X |−1∑

i=1

P̃tND (i), (4.69)

to implement the attacking function:

S̃nY Z(Pyn , PtKA ) = arg min
SnY Z∈An(L,Pyn )

hc(Pzn , P̃tND ). (4.70)

With the above definitions, we can easily extend the analysis carried out for the case

c = d and obtain very similar results. Specifically, the upper bound in Theorem 6

can be rewritten as:

ε̃tr,a ≤ min
Q

[
(c+ d) · D(Q||PX) + min

P∈Γ̃tr,a(Q,Q,λ,L)
D(P ||PY )

]
, (4.71)

whose proof is practically identical to the proof of Theorem 6 and is omitted for

sake of brevity. By observing that the performance achievable by the Defender in
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version a of the game are at least as good as those achievable in version b (since in

the latter case A knows exactly the acceptance region adopted by D and hence his

attacks will surely be more effective), equation (4.71) permits to conclude that the

indistinguishability region is equal to that obtained for the case c = d.

4.5 Detection game with dependent training data

We end this section by considering yet another version of the DTtr game, of practical

interest in some situations. In certain cases, in fact, we may assume that D has the

possibility to observe the output of a system under H0, and hence the output of the

source X, for a longer time than A (see [103] for a multimedia forensics scenario in

which such an assumption holds quite naturally). In this framework, the Attacker

knows a subpart of the training set available to D.20 We can model such a situation

by assuming that the sequence tKA is a subsequence of tND , leading to the following

definition.

Definition 8. The DTtr,sub(SD,SA, u) game is a zero-sum, strategic, game defined

as the DT lrtr,a game with the only difference that tKA = (tD,l+1, tD,l+2 . . . tD,l+K) with

l and K known to D.

In some sense, we can say that this new version of the game is halfway between

versions a and b. Like in version a, the Attacker does not have a perfect knowledge of

the training sequence used by the Defender and hence he must resort to an estimate

of the true acceptance region. On the other hand, the situation is more favorable to

the Attacker with respect to version a with d < c, since now A knows at least part

of the training samples used by D. Given that versions a and b of the game have

the same indistinguishability region, we can conjecture that the indistinguishability

region of this latest version of the game will also be the same.21

20We are considering a particuar dependence between the training sequences, which is of interest

in some practical applications.
21We remind that d > c is not a case of interest because of the arguments discussed at the

beginning of Section 4.4.





Chapter 5

Limiting Performance of the Adversarial
Detection: Source Distinguishability

The game theoretical analysis of the previous chapters permitted us to study the

distinguishability of two sources in a Neyman-Pearson setup under adversarial condi-

tions, that is, when an attacker modifies the output of one of the two sources subject

to a distortion constraint. In this chapter, we overcome the lack of symmetry inherent

in the NP approach by symmetrizing the role of the two kinds of error probabilities.

This permits to study the ultimate achievable performance of the detection in ad-

versarial setting. By exploiting the parallelism with Optimal Transport Theory, we

introduce the concept of Security Margin (SM), defined as the maximum distortion

introduced by the Attacker for which the two sources can be distinguished by the De-

fender ensuring arbitrarily small, yet positive, error exponent for Type I and II error

probabilities. The SM is a powerful concept that permits to summarize in a single

quantity the distinguishability of two sources X and Y in an adversarial setting.

We derive the SM for a wide class of pmf’s in both the discrete and the continuous

case and, by relying on some results in the field of optimal transport theory, we present

a numerical algorithm for its efficient computation. We also derive general bounds

on SM assuming that the distortion is measured in terms of the mean square error

between the original and the attacked sequence.

The chapter is organized as follows: in Section 5.1 we study the limiting per-

formance of the game and introduce the Security Margin concept for adversarial

detection with known sources (DTks game) and training data (DTtr game), when

an additive distortion measure is adopted by the Attacker. In Section 5.2, we derive

the Security Margin for several classes of sources, and provide an efficient algorithm

to compute it when a close form solution can not be found. Section 5.3 extends the

Security Margin concept to a situation in which the distortion is defined in terms of

L∞ distance.
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5.1 The Security Margin

A drawback with the analysis carried out in Chapter 3 and 4 is the asymmetric

role of the false positive and false negative error exponents, namely µ and ε 1. In

that cases, in fact, the Defender aims at ensuring a given value for µ, namely λ

(i.e., the Defender imposes that µ ≥ λ), but is satisfied with any strictly positive

ε. In the analysis of this chapter, we make a more reasonable assumption and say

that the Defender succeeds, i.e. he is able to distinguish between X and Y despite

the presence of the adversary, if - at the equilibrium - both error probabilities tend

to zero exponentially fast, regardless of the particular values assumed by the error

exponents. More precisely, by mimicking Stein’s lemma [90] for the non adversarial

version of the test, we analyze the behavior of the indistinguishability regions of the

tests, namely Γks(PX , λ, L) and Γtr(PX , λ, L), when the false positive decay rate λ

tends to 0, to see whether, given a maximum allowable distortion L, it is possible

for D to simultaneously attain strictly positive error exponents for the two kinds of

error, hence permitting to reliably distinguish between PX and PY .

5.1.1 Security Margin for the DTks game

In this section, we adopt an optimal transport interpretation, to introduce a measure

of source distinguishability in the set-up defined by the DTks game when an additive

distortion measure is used by the Attacker. This is the most common and interesting

category of permutation invariant measures. Another interesting case of permutation

invariant distance which does not fall into this category is the case of maximum

distance, which is treated separately in Section 5.3.

Characterization of the indistinguishability region using Optimal Trans-

portation

To start with, we find it convenient to rephrase the results obtained in Chapter 3 as

an optimal transport problem [93].

Let P and Q be two pmf’s defined over the same finite alphabet, and let c(i, j)

be the cost of transporting the i-th symbol into the j-th one. In one of its instances,

optimal transport theory looks for the transportation map that transforms P into Q

by minimizing the average cost of the transport. By using the notation introduced in

the previous section, this corresponds to solving the following minimization problem:

min
SY Z :SY =P,SZ=Q

∑

i,j

SY Z(i, j)c(i, j). (5.1)

1To distinguish between the DTks and the DTtr games, we will use the subscript ks and tr in

the notation of the main quantities.
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A nice interpretation of the problem defined by equation (5.1) is obtained by inter-

preting the pmf’s P and Q as two different ways of piling up a certain amount of soil,

and c(i, j) as the cost necessary to move a unitary amount of earth from position i

to position j. In this case, the minimum cost achieved in (5.1) can be seen as the

minimum effort required to turn one pile into the other. Due to such a viewpoint,

in computer vision applications, the minimum in equation (5.1) is usually known as

Earth Mover Distance (EMD) between P and Q [104]. However, while the definition

of the EMD given in [104] refers in general to signatures (non-normalized distributions

with unequal masses), here the earth piles P and Q are probability mass functions.

In this case, when c(i, j) = l(i, j)p for some distance measure l (with p ≥ 1), the EMD

has a more general statistical meaning. Given two random variables with probability

distributions PX and PY , the EMD between PX and PY corresponds to the minimum

expected p-th power distance between the random variables X and Y taken over all

joint probability distributions PXY with marginal distributions respectively equal to

PX and PY :

EMDlp(PX , PY ) = min
PXY :

∑
y PXY =PX∑
x PXY =PY

EXY [l(X,Y )p]. (5.2)

In transport theory terminology, expression (5.2) is the p-th power of the Wasserstein

distance [105], [93] (or the Monge-Kantorovich metric of order p [106], [107]). In

particular, when c(i, j) = |i − j|2 (i.e. l(i, j) = |i − j| and p = 2) the earth mover

distance EMDL2
2
(PX , PY ) is equivalent to the squared Mallows distance between

PX and PY [108]. In the following, we will continue to refer to (5.1) as EMD(P,Q).

We also observe that even if we introduced the EMD by considering finite-alphabet

sources, there is no need to restrict the definition in (5.2) to discrete random variables.

In fact, in the sequel, we will extend our analysis and use the EMD to measure the

distinguishability of continuous sources.

Optimal transport theory permits to rewrite the indistinguishability region in

a more compact and easier-to-interpret way. In fact, it is immediate to see that

equation (3.27) can be rewritten as:

Γks(PX , λ, L) = {P ∈ P : ∃ Q ∈ Λ∗ks(PX , λ) s.t EMD(P,Q) ≤ L}, (5.3)

where, in the definition of the EMD, c(·, ·) corresponds to the distortion metric d(·, ·)
used to constraint the strategies available to the Attacker.

Such insightful rewriting of the indistinguishability region is useful in the subse-

quent analysis, which leads to the Security Margin definition.

Security Margin definition

We now consider the sequence of DTks games as λ decreases and study the behavior

of Γks(PX , λ, L) when λ → 0. Doing so will allow us to investigate whether two
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sources X and Y are ultimately distinguishable in the setting defined by the DTks
game. The rationale behind such analysis derives directly from the definition of the

acceptance region. In fact, from the definition of SD, it is easy to see that a smaller

λ leads to a more favorable game for the Defender, since he can adopt a smaller

acceptance region and then obtain a larger payoff. Stated in another way, from D’s

perspective, evaluating the behavior of the game for λ→ 0 corresponds to exploring

the best achievable false negative error exponent, when PFP tends to 0 exponentially

fast.

More formally, we start by proving the following property.

Property 2. For any two values λ1 and λ2 such that λ2 < λ1, Γks(PX , λ2, L) ⊆
Γks(PX , λ1, L).

Proof. The property follows immediately from (5.3) by observing that Γks(PX , λ, L)

depends on λ only through the acceptance region Λks(PX , λ), for which we obviously

have Λks(PX , λ2)∗ ⊆ Λks(PX , λ1)∗ whenever λ2 < λ1.

Thanks to Property 2, we can compute the limit of the false negative error ex-

ponent when λ tends to zero, as summarized in the following theorem (somewhat

resembling Stein’s Lemma [90]).

Theorem 7. Given two sources X ∼ PX and Y ∼ PY and a maximum average

per-letter distortion L, let us adopt the following definition:2

Γ(PX , L) = {P ∈ P : EMD(P, PX) ≤ L}; (5.4)

then the maximum achievable false negative error exponent for the DTks game is

lim
λ→0

lim
n→∞

− 1

n
logPFN = min

P∈Γ(PX ,L)
D(P ||PY ). (5.5)

Proof. The innermost limit in the left-hand side of (5.5) defines the error exponent

for a fixed λ, say it εks(λ). From Theorem 2, we know that

lim
n→∞

− 1

n
logPFN = ε(λ) = min

P∈Γks(PX ,λ,L)
D(P ||PY ). (5.6)

Then, according to Property 2, the sequence εks(λ) is monotonically non decreasing

as λ decreases. In addition, since Γ(PX , L) ⊆ Γks(PX , λ, L) ∀λ, for any λ > 0, we

have:

εks(λ) ≤ min
P∈Γ(PX ,L)

D(P ||PY ). (5.7)

2We avoid the subscript ks in the definition of the ultimate indistinguishability region Γ(PX , L),

because, as we will see in the sequel, this is the same for both the DTks and DTtr game.
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Being εks(λ) bounded from above and non-decreasing, the limit for λ→ 0 exists and is

finite. We must now prove that the limit is indeed equal to minP∈Γ(PX ,L)D(P ||PY ).

Let P ∗0 be the point achieving the minimum in (5.5) and P ∗λ the point achieving

the minimum on the set Γks(PX , λ, L), i.e., the point achieving the minimum in

equation (3.29) (see Figure 3.2 for a pictorial representation of P ∗λ ). Due to Lemma

10 (Appendix C.1), for any arbitrarily small τ , we can choose a small enough λ such

that, for any P in Γks(PX , λ, L), a pmf P ′ in Γ(PX , L) exists whose distance from P

is lower than τ . By taking P = P ∗λ and exploiting the continuity of the D function,

we have

D(P ′||PY ) ≤ min
P∈Γks(PX ,λ,L)

D(P ||PY ) + δ(τ), (5.8)

for some P ′ ∈ Γ(PX , L) and some value δ(τ) such that δ(τ)→ 0 as τ → 0. A fortiori,

relation (5.8) holds for P ′ = P ∗0 and then we can write

εks(λ) ≥ min
P∈Γ(PX ,L)

D(P ||PY )− δ(τ). (5.9)

where δ(τ) can be made arbitrarily small by decreasing λ.

Equation (5.9), together with equation (5.7), show that we can get arbitrarily close

to minP∈Γ(PX ,L)D(P ||PY ), by making λ small enough, hence proving that the right-

hand side of (5.5) is the limit of the sequence εks(λ) as λ→ 0.

Figure 5.1 gives a geometric interpretation of Theorem 7. The figure is obtained

from Figure 3.2 in Chapter 3 by observing that when λ→ 0 the optimum acceptance

region collapses into the single pmf PX , i.e., Λ∗ = {PX}.
By the light of Theorem 7, Γ(PX , L) is the smallest indistinguishability region for

the DTks game. Moreover, from equation (5.4), we see that the distinguishability

of two pmf’s (in the DTks setting) ultimately depends on their EMD. In fact, if

EMD(PY , PX) > L, the Defender is able to distinguish X from Y by adopting a

sufficiently small λ. On the contrary, if EMD(PY , PX) ≤ L, there is no positive

value of λ for which the sequences emitted by the two sources can be asymptotically

distinguished.

By adopting a different perspective, given two sources X and Y , one may ask

which is the maximum attacking distortion for which D can distinguish X and Y .

The answer to this question follows immediately from Theorem 7 and leads naturally

to the following definition.

Definition 9 (Security Margin in the DTks setup). Let X ∼ PX and Y ∼ PY
be two discrete memoryless sources. The maximum average per-letter distortion for

which the two sources can be reliably distinguished in the DTks setup is called Security

Margin and is given by

SM(PY , PX) = EMD(PY , PX). (5.10)
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D(P ∗0 ||PY ) = ε

PY

Γ(PX , L)

Λ∗ = {PX}
P ∗0

Figure 5.1: Geometric interpretation of Γ(PX , L) and P ∗0 by the light of Theorem 7.

Since the EMD is a symmetric function of PX and PY [104], the Security Margin does

not depend on the role of X and Y in the test, i.e. SM(PX , PY ) = SM(PY , PX).

Discussion

The Security Margin is a powerful measure summarizing in a single quantity how

securely two sources can be distinguished in (a given) adversarial setup.

It is worth remarking that the Security Margin between two sources pertains to

the security of the hypothesis test behind the binary detection problem and not to its

robustness, since it is derived from the performance at the equilibrium of the game,

i.e. by assuming that both the players of the game make optimal choices. To better

exemplify the above concept, let us consider the simple case of two binary sources.

Specifically, let X and Y be two Bernoulli sources with parameters p = PX(1) and

q = PY (1) respectively. Let also assume that the distortion constraint is expressed in

terms of the Hamming distance between the sequences, that is d(i, j) = 0 when i = j

and 1 otherwise. Without loss of generality let p > q. The distortion associated to a

transportation map SXY can be written as:
∑

i,j

SY X(i, j)d(i, j) = SY X(0, 1) + SY X(1, 0). (5.11)

Since p > q, it is easy to conclude that the minimum of the above expression is

obtained when SY X(1, 0) = 0 (intuitively, if the source X outputs more 1’s than

Y , it does not make any sense to turn the 1’s emitted by Y into 0’s). As a conse-

quence, to satisfy the constraint SX(1) = p we must let SY X(0, 1) = p − q, yielding
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SM(PY , PX) = p−q, or more generally |p−q|. We can conclude that if the Attacker

is allowed to introduce an average Hamming distortion larger or equal than |p − q|,
then there is no way for the Defender to distinguish between the two sources. This is

not the case if the output of the source Y passes through a binary symmetric channel

with crossover probability equal to |p − q|, since the output of the channel will still

be distinguishable from the sequences emitted by X. Consider, for example, a simple

case in which q = 1/2 and p > 1/2. Regardless of the crossover probability, the

output of the channel will still be a binary source with equiprobable symbols, which

is distinguishable from X given that p > 1/2. In other words, in the set up defined

by the DTks game, the two Bernoulli sources cannot be distinguished securely in

the presence of an attacker introducing a distortion equal to |p − q|, while they can

be distinguished even if the output of the source Y passes through a noisy channel

introducing the same average distortion introduced by the Attacker.

5.1.2 Security Margin for the DTtr game

We now study the behavior of the DTtr game studied in Chapter 4 when λ → 0 so

to investigate the best achievable performance for the Defender in this case.

By proceeding as in the previous section, we first rewrite the set Γtr(Q,λ, L) in

(4.33)–(4.34) by exploiting the optimal transport interpretation:

Γtr(Q,λ, L) = {P ∈ P : ∃R ∈ Λ∗tr(Q,λ) s.t. EMD(P,R) ≤ L}, (5.12)

where

Λ∗tr(Q,λ) = {P ∈ P : hc(P,Q) ≤ λ}. (5.13)

We remind that (from the analysis in Chapter 4) when Q = PX the above set corre-

sponds to the indistinguishability region for the DTtr game, namely Γtr(PX , λ, L)3.

To start with, we observe that the divergence and the hc function share a similar

behavior, in that both D(P ||Q) and hc(P,Q) are convex functions in P and are

equal to zero if and only if P = Q. Hence, Property 2 can be extended to the set

Γtr(Q,λ, L), yielding:

Property 3. For any two values λ1 and λ2 such that λ2 < λ1, Γtr(Q,λ2, L) ⊆
Γtr(Q,λ1, L).

In a similar way, Lemma 10 (Appendix C.1) can be extended to the set Γtr(Q,λ, L)

(see discussion at the end of the same appendix), permitting to prove the counterpart

of Theorem 7 for the detection game with training data. In doing so, we focus on the

3We remind that, with regard to the indistinguishability region, we have proven that the games

studied in Chapter 4 are all equivalent, so we do not need to differentiate the notation.
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game with equal training sequences; the extension of the analysis to the other cases

is straightforward and is discussed afterwards.

Theorem 8. Given two sources X ∼ PX and Y ∼ PY and a maximum allowable

average per-letter distortion L, the maximum achievable false negative error exponent

for the DTtr,b game is

lim
λ→0

εtr(λ) = min
Q

[
c · D(Q||PX) + min

P∈Γ(Q,L)
D(P ||PY )

]
, (5.14)

where Γ(Q,L) is defined as in (5.4) by replacing PX with Q4.

Proof. The proof goes along the same line of the proof of Theorem 7. We know from

Theorem 4 (in Chapter 4) that the expression of the false negative error exponent of

the DTtr,b game for the payoff at the equilibrium is given by

εtr(λ) = min
Q

[c · D(Q||PX) + min
P∈Γtr(Q,λ,L)

D(P ||PY )], (5.15)

where c is the ratio between the lengths of training and test.

From Property 3, we see immediately that ε(λ) is non-increasing when λ decreases,

since the innermost minimization in equation (5.15) is taken over a smaller set when

λ decreases. Then, by the same token, we have:

εtr(λ) ≤ min
Q

(
cD(Q||PX) + min

P∈Γ(Q,L)
D(P ||PY )

)
. (5.16)

This implies that limλ→0 εtr(λ) exists and is finite. Given that Lemma 10 still holds

for the set Γtr(Q,λ, L) ∀Q, we can reason as in the proof of Theorem 7 to conclude

that:

min
P∈Γtr(Q,λ,L)

D(P ||PY ) ≥ min
P∈Γ(Q,L)

D(P ||PY )− δ(τ), (5.17)

where δ(τ) can be made arbitrarily small by decreasing λ. By adding the term

cD(Q||PX) to both sides of (5.17) and considering that the relation holds for any

Q ∈ P, we can write:

εtr(λ) = min
Q

[
cD(Q||PX) + min

P∈Γtr(Q,λ,L)
D(P ||PY )

]
(5.18)

≥ min
Q

[
cD(Q||PX) + min

P∈Γ(Q,L)
D(P ||PY )

]
− δ(τ),

which concludes the proof due to the arbitrariness of δ(τ).

4We will see afterwards that, when λ tends to 0, we do not need to differentiate anymore between

the DTks and DTtr games in the definition of Γ.
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A consequence of Theorem 8 is that limλ→0 ε(λ) = 0 if and only if PY ∈ Γ(PX , L),

which then can be seen as the smallest indistinguishability region for the DTtr game.

We conclude that the smallest indistinguishability regions for the two cases are the

same thus implying that the Security Margin for the DTtr setting, say SMtr, is the

same of the DTks game, that is

SMtr(PX , PY ) = EMD(PX , PY ). (5.19)

We remark that, for any allowed distortion L < EMD(PX , PY ), the minimum value

of the false positive error exponent (λ) which allows the Defender to take a reliable

decision in the DTtr setting is lower than that in the DTks setting. However, the

difference between the two settings regards the decay rate of the error probabilities,

not the ultimate distinguishability of the sources.

We conclude this section with a brief discussion of the DTtr game with different

training sequences (tND 6= tKA ), namely the DTtr,a game. We known from the analysis

developed in Chapter 4 that, as long as the length of both sequences grows linearly

with n, the indistinguishability region is equal to that of the game with equal training

sequences. By relying on this result, it is straightforward to prove that the Security

Margin remains the same even for such version of the game.

5.2 Security Margin computation

We now focus on the computation of the Security Margin for two generic sources. By

following the analysis given so far, we first consider the case of discrete sources, then,

at the end of the section, we extend the analysis to the case of continuous sources.

Given two discrete sources X ∼ PX and Y ∼ PY , the computation of the Security

Margin requires the evaluation of EMD(PX , PY ). A closed form solution can be

found only in some simple cases. More generally, the EMD between two sources can

be computed by resorting to numerical analysis, and in fact, due to its wide use as a

similarity measure in computer vision applications, several efficient algorithms have

been proposed (see [109] for example). In the following, we describe a fast iterative

algorithm for the computation of the EMD between any two sources assuming that

the distortion (or cost) function has the general form d(i, j) = |i− j|p, with p ≥ 1. A

case of great interest is p = 1 and p = 2, according to which the distortion between yn

and the attacked sequence zn corresponds, respectively, to the L1 and L2
2 distance.

5.2.1 Hoffman’s greedy algorithm for computing SM
Let us assume that X and Y are discrete sources with alphabets X and Y. The trans-

portation problem we have to solve for computing SM(PY , PX), i.e. EMD(PY , PX),
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is known in modern literature as Hitchcock transportation problem [110]5, which, in

turn, can be formulated as a linear programming problem in the following way:

EMD(PX , PY ) = min
SXY

∑

i,j

d(i, j)SXY (i, j), (5.20)

where SXY must satisfy the linear constraints:
∑

j

SXY (i, j) = PX(i) ∀i ∈ X
∑

i

SXY (i, j) = PY (j) ∀j ∈ Y

SXY (i, j) ≥ 0 ∀i, j, (5.21)

and where, by referring to the original Monge formulation [94], SXY (i, j) denotes the

quantity of soil shipped from location (source) i to location (sink) j and d(i, j) is the

cost for shipping a unitary amount of soil from i to j.

A transportation problem (TP) like the one defined by equations (5.20) and (5.21)

is a particular minimum cost flow problem [111] which, being linear, can be solved

through the simplex method [112]. In general, the solution of TP depends on the

cost function d(·, ·), however there are some classes of cost functions for which the

solution can be found through a simple greedy algorithm. Specifically, the algorithm

proposed by A.J. Hoffman in 1963 [113], allows to solve the transportation problem

whenever d(·, ·) satisfies the so called Monge property [114], that is when:

d(i, j) + d(r, s) ≤ d(i, s) + d(r, j), (5.22)

∀(i, j, r, s) such that 1 ≤ i < r ≤ |X | and 1 ≤ j < s ≤ |Y|.
It is easy to verify that the Monge property is satisfied by any cost function of the

form d(i, j) = |i− j|p, and, more in general, by any convex function of the quantity

|i− j|. The iterative procedure proposed by Hoffman to solve the optimal transport

problem is known as north-west corner (NWC) rule [113] and works as follows: take

the bin of X with the smallest value and start moving its elements into the bin with

the smallest value in Y. When the smallest bin of Y is filled, go on with the second

smallest bin in Y. Similarly, when the smallest bin in X is emptied, go on with the

second smallest bin in X . The procedure is iterated until all the bins in X have

been moved into those of Y. Let ilow (iup) and jlow (jup) denote the lower (upper)

non-empty bins of X and Y respectively. A pseudocode description of the NWC rule

is given below.

1. Initialize: i := ilow, j := jlow.

5This is the discrete version of the Monge-Kantorovich mass transportation problem [105].
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2. Set SXY (i, j) := min{PX(i), PY (j)}.

3. Adjust the ‘supply’ distribution PX(i) := PX(i)− SXY (i, j) and the ‘demand’

distribution PY (j) := PY (j)− SXY (i, j).

If PX(i) = 0 then i := i+ 1 and if PY (j) = 0 then j := j + 1.

4. If j < jup or PY (jup) > 0 go back to Step 2).

The above procedure is described graphically in Figure 5.2. In the figure, we chose two

distributions with disjoint supports for sake of clarity, however the procedure is valid

regardless of how the two distributions are spread along the real line. Interestingly,

the NWC rule does not depend explicitly on the cost matrix, so the transportation

map obtained through it is the same regardless of the Monge cost. According to

Hoffman’s greedy algorithm, when the cost function satisfies Monge’s property, the

EMD can be computed in linear running time: the number of elementary operations,

in fact, is at most equal to |X | + |Y| 6. This represents a dramatic simplification

with respect to the complexity required to solve a general Hitchcock transportation

problem (see [115]).

As detailed below, in some cases, it is also possible to derive a closed form ex-

pression for the Security Margin.

Uniform sources with different cardinalities

Let X and Y be two uniform pmf’s with alphabets X and Y such that |X | = α|Y|,
with α ∈ N. In this case, thanks to Hoffman’s algorithm we can express SM(PX , PY )

as:

SMLpp(PX , PY ) =
1

|Y|

|X |−1∑

i=0

α−1∑

j=0

(|ilow − jlow| − j − (α− 1)i)p, (5.23)

The formula implicitly assumes that jlow > ilow, the extension to the case in which

such a relationship does not hold being immediate.

Security Margin under the L1 distance

If the distortion function corresponds to the L1 distance, the EMD (and hence the

Security Margin) assumes a particularly simple form. Specifically, by applying the

flow decomposition principle [116], the Security Margin between P and Q can be

6For sake of simplicity, the iterative algorithm described by the pseudocode spans all the bins

between the minimum and the maximum non-empty bins. However, in principle, only the values

i ∈ X and j ∈ Y must be considered given that for all the empty bins i and j we have SXY (i, j) = 0.



108 5. Limiting Performance of the Adversarial Detection: Source Distinguishability

PX

PY

X Y

SNWC
XY (i, j)

Figure 5.2: Graphical representation of the north-west corner rule for the earth

mover transportation problem (Monge problem). PX and PY are two generic earth

piles (source and sink) X and Y, while SNWC
XY (i, j) denotes the amount of soil moved

from location i to j.

calculated as follows:

SML1
(P,Q) =

max{iup,jup}∑

i=min{ilow,jlow}

∣∣∣∣∣
i∑

s=1

(P (s)−Q(s))

∣∣∣∣∣ . (5.24)

5.2.2 Security Margin for continuous sources

The analysis carried out in the previous sections is limited to discrete sources. When

continuous sources are considered, we can quantize the probability density functions

of the sources and apply the analysis for discrete sources. By letting the quantization

step tend to zero, the EMD between PX and PY can still be regarded as the Security

Margin between the two sources. In this case, a general expression for the SM can

be derived by considering the continuous transportation problem (CTP), known as

Monge-Kantorovic formulation of the mass transportation problem, [105], which is

formulated as follows:

SM(PX , PY ) = min
SXY (x,y)

∫ ∫
c(x, y)SXY (x, y)dxdy, (5.25)

subject to the constraints
∫
SXY (x, y)dx = PY (y) (5.26)

∫
SXY (x, y)dy = PX(x)

SXY (x, y) ≥ 0 ∀x, y,
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where c(x, y) is a continuous cost function, c : X × Y → R If c(x, y) satisfies the

continuous Monge property, [114], that is if

c(x, y) + c(x′, y′) ≤ c(x′, y) + c(x, y′), (5.27)

for all x ≤ x′, y ≤ y′, the optimum transportation map is defined as follows. Let

CX(x) and CY (y) be the cumulative distributions of X and Y respectively, and let

CXY (x, y) be the cumulative transportation map, that is:

CXY (x, y) =

∫ x

−∞

∫ y

−∞
SXY (u, v)dudv. (5.28)

The optimum cumulative transportation map is obtained by letting:

C∗XY (x, y) = min{CX(x), CY (y)}, ∀(x, y) ∈ R2, (5.29)

which corresponds to the Hoeffding distribution [107]. The continuous map in (5.29)

generalizes the NWC rule. Therefore, one can compute SM(PY , PX) by evaluating

the mean value EXY [c(x, y)] over the continuous distribution C∗XY (x, y). In general,

however, finding a closed form expression is not an easy task.

A particularly simple and insightful formula can be obtained when the cost func-

tion corresponds to the squared Euclidean distance. Let us assume, then, that

c(x, y) = (x − y)2 and let X and Y be two continuous sources with means µX and

µY , variances σX and σY and covariance covXY . As shown in [117] (decomposition

theorem), the expectation in (5.2) can be rewritten as follows:

EXY [(X − Y )2] =(µX − µY )2 + (σX − σY )2 + 2[σXσY − covXY ], (5.30)

where the three terms express, respectively, the difference in location, spread and

shape between the variables X and Y [118]. Interestingly, the covariance covXY is

the only term in (5.30) which depends on the joint pdf of X and Y . Then, in order

to find the Security Margin, we only need to compute the maximum covariance over

all the possible joint pdf’s:

SML2
2
(PX , PY ) = (µX − µY )2 + (σX − σY )2 + 2[σXσY − max

PXY :
∑
y PXY =PX∑
x PXY =PY

covXY ].

(5.31)

Since 0 ≤ covXY ≤ σXσY , the Security Margin can be bounded as follows:7

(µX − µY )2 + (σX − σY )2 ≤ SML2
2
(PX , PY ) ≤ (µX − µY )2 + σ2

X + σ2
Y . (5.32)

7We point out that relation (5.30), as well as the bounds in (5.32), holds for the discrete case

too.
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Accordingly, given two sources X and Y with means µX and µY and variances σ2
X

and σ2
Y , whenever the distortion introduced by the Attacker is less than the quantity

on the left-hand side of (5.32), X and Y are distinguishable asymptotically, regardless

of their specific distribution. Instead, if the distortion is above this value, the dis-

tinguishability of the two sources depends on their specific probability distributions.

Finally, for distortions greater than the quantity on the right-hand side of (5.32),

there is no way to distinguish X and Y . When PX and PY have the same form, for

instance when the random variables X and Y are both distributed according to a

Gaussian or a Laplacian distribution, the Security Margin takes the minimum value

and the lower bound in (5.32) holds with equality. In this case, in fact, it is possible to

turn PX into PY by imposing a deterministic relationship between X and Y , namely

Y = σY
σX
X + (µY − σY

σX
µX); in this way, the covariance term is equal to σXσY , and

hence the contribution of the shape term in the Security Margin vanishes. This is a

remarkable result stating that the distinguishability of two sources belonging to the

same class depends only on their means and variances, regardless of their particular

pdf.

5.3 The Security Margin with L∞ distance

So far, we have restricted the analysis to the case of additive distortion measures. In

this section, we extend the definition of the Security Margin to the case in which the

distortion introduced by the Attacker is measured by relying on the L∞ distance,

due to its relevance in practical applications. In our analysis, we will refer to the

binary detection game with known sources (DTks game), the extension to the case

with training data being immediate.

By following the same steps of the previous, we study the behavior of the in-

distinguishability region of the test when λ → 0 to determine the smallest indistin-

guishability region. It is interesting to notice that, even if the adoption of the dL∞
distance prevents a direct formulation of the problem in terms of mass transport, the

distinguishability between two sources X and Y is still closely related to the optimal

transportation map between PX and PY . The basis for such a connection is rooted

in the following property.

Property 4. Given two distributions P and Q, the transportation map SNWC
PQ ob-

tained by applying the NWC rule to P and Q is a solution of the problem

min
SY Z :SY =P,SZ=Q

(
max

(i,j):SY Z(i,j)6=0
|i− j|

)
. (5.33)

Proof. Let S∗ 6= SNWC
PQ be a generic transformation mapping P into Q. Given that

S∗ 6= SNWC
PQ there exists at least one quadruple of bins (t, r, v, s), with t < r and
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v < s, for which, S∗(t, s) > 0 and S∗(r, v) > 0. Let us assume, without loss of

generality, that S∗(t, s) ≤ S∗(r, v). We now define a new map S′ which is obtained

from S∗ by letting:

S′(t, v) = S∗(t, v) + S∗(t, s) (5.34)

S′(t, s) = 0

S′(r, v) = S∗(r, v)− S∗(t, s)
S′(r, s) = S∗(r, s) + S∗(t, s).

Since max{|t− s|, |r−v|} > max{|t−v|, |r− s|}, the maximum distortion introduced

by S′ is lower than or equal to that introduced by S∗, that is:

max
(i,j):S∗(i,j)6=0

|i− j| ≥ max
(i,j):S′(i,j)6=0

|i− j|. (5.35)

We now inspect S′, if there is another quadruple of bins (t′, r′, v′, s′) satisfying the

same properties of (t, r, v, s), we let S∗ = S′ and iterate the above procedure. The

process ends when no quadruple of bins with the required properties exists and hence

when S′ = SNWC
PQ . Since at each step the distortion introduced by the new map does

not increase, the above procedure proves that SNWC
PQ introduces a distortion lower

than or equal to that introduced by any other S∗ mapping P into Q, thus proving

that SNWC
PQ achieves the minimum in (5.33).

Thanks to Property 4, the set ΓL∞(PX , λ, L) in (3.50) can be rewritten as follows:8

ΓL∞(PX , λ, L) = {P ∈ P : ∃ Q ∈ Λ∗(PX , λ) s.t

max
(i,j):SNWC

PQ (i,j) 6=0
|i− j| ≤ L}. (5.36)

By letting λ tend to 0, we obtain the smallest indistinguishability region, thus ex-

tending Theorem 7 to the DTks game with dL∞ distance.

Theorem 9. Given two sources X ∼ PX and Y ∼ PY and a maximum allowable

per-letter distortion L, and given:

Γ(PX , L) = {P ∈ P : max
(i,j):SNWC

PPX
6=0
|i− j| ≤ L}, (5.37)

the maximum achievable false negative error exponent ε for the DTks game with L∞
distance is

lim
λ→0

lim
n→∞

− 1

n
logPfn = min

P∈ΓL∞ (PX ,L)
D(P ||PY ). (5.38)

8The same arguments hold for both the ks and tr cases, so we do not specify the game in the

notation of the acceptance region.
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Proof. The proof relies on the extension of Property 2 and Lemma 10 to the L∞
case. The extension of Property 2 is immediate since, once again, the indistinguisha-

bility region depends on λ only through Λ∗(PX , λ), whose form does not depend on

the particular norm adopted to express the distortion constraint. The extension of

Lemma 10 requires some more care and is proven in Appendix C.2 (Lemma 11). For

the rest, the theorem can be proven by reasoning as in the proof of Theorem 7.

As a consequence of Theorem 9, the distinguishability of two sources depends

again on the optimum transportation map between the pmf’s of the two sources.

Specifically, given the sources X and Y , the Defender is able to distinguish between

them if and only if

max
(i,j)∈SNWC

PY PX
(i,j) 6=0

|i− j| > L. (5.39)

Condition (5.39) can be used to determine the maximum attacking distortion for

which D is able to distinguish the two sources X and Y , i.e. the Security Margin.

Definition 10 (Security Margin for the L∞ case). Let X ∼ PX and Y ∼ PY be two

discrete memoryless sources. The maximum distortion for which the two sources can

be reliably distinguished in the DTks setting with L∞ distance is given by

SML∞(PY , PX) = max
(i,j):SNWC

PY PX
(i,j)6=0

|i− j|, (5.40)

where SNWC
PY PX

is obtained by applying the NWC rule to map PY into PX .

It is easy to see that, even if we proved Theorem 9 for the case of known sources,

it is possible to extend it to the DTtr game, yielding the same ultimate indistin-

guishability region.

5.4 Concluding remarks

By interpreting the Attacker’s optimum strategy as the solution of an optimum trans-

port problem, in this chapter we have analyzed the ultimate performance of the game,

obtained through symmetrization of the decision setup. Then, we have introduced the

concept of Security Margin, which is a powerful concept which permits to summarise

into a single quantity the the distinguishability of two sources under adversarial con-

ditions. We also described an efficient algorithm to compute the Security Margin

between several classes of sources. By relying on the Security Margin concept, we

can understand who between the Attacker and the Defender is going to asymptoti-

cally win the binary detection game. Some insights into the practical use of the SM
in the multimedia forensic scenario are given in Chapter 12.
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It is interesting to observe that the analysis carried out in this chapter can be

extended in several directions, with different difficulty levels. As a first extension,

we mention a scenario in which the system under analysis is observed through a

noisy (memoryless) channel. If the Attacker acts after the channel, then SM can be

calculated both at the input and the output of the channel, to measure the security

loss caused by the channel. In case the Attacker acts before the channel, the situation

is slightly more involved, since the Attacker must take into account the presence of the

channel when devising the optimum attack. To calculate the Security Margin, then,

we must consider the backward channel having at the input the sequence observed

by the Defender and at the output the attacked sequence (a similar approach is used

in [119] for biometric identification). As an alternative setup we could consider the

effect that the maximum transmission rate allowed by the channel has on source

distinguishability, linking the Security Margin to the degradation introduced by the

channel in a typical rate distortion setup.





Chapter 6

Detection Games with Corruption of the
Training Data

In this chapter, we extend the analysis of the detection game with training data

by considering a situation in which the Attacker interferes with the learning phase

by corrupting part of the training sequence. Adversarial learning is a rather novel

concept, which has been studied for some years from a machine learning perspective

[17, 7]. Due to the natural vulnerability of machine learning systems, in fact, the

Attacker may take an important advantage if no countermeasures are adopted by the

Defender. The use of a training sequence to gather information about the statistics

of the to-be-distinguished sources can be seen as a very simple learning mechanism,

and the analysis of the impact that an attack carried out in such a phase has on the

performance of a decision system, may help shedding new light on this important

problem.

More specifically, we extend the game-theoretic framework introduced in Chapter

4 to model a situation in which the Attacker is given the possibility of corrupting

part of the training sequence. After providing a rigorous definition of the game,

we derive the optimal strategy for the Defender and the optimal corruption strat-

egy for the Attacker when the length of the training and the observed sequences

tend to infinity. Then, we compute the payoff at the equilibrium and analyse the

best achievable performance when the Type I and II error probabilities tend to zero

exponentially fast. Specifically, we study the distinguishability of the sources as a

function of the percentage of training samples corrupted by the Attacker and when

the test sequence can be modified up to a certain distortion level. The results of the

analysis are summarised in terms of blinding percentage, defined as the percentage

of corrupted samples making a reliable distinction between the two sources impos-

sible, and Security Margin, i.e., the maximum distortion of the observed sequence

for which a reliable distinction is possible (see Chapter 5). The analysis is applied

to two different scenarios wherein the Attacker is allowed respectively to add some

fake samples to the training sequence and to replace some samples of the training

sequence with fake ones. As we will see the second case is more favourable to the

Attacker, since a lower distortion and a lower number of corrupted training samples
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are enough to prevent a correct decision.

The organization of the chapter is the following: we formalize the detection prob-

lem with addition of corrupted training samples to the original training set and define

the game in Section 6.1; the game is solved in Section 6.2. Then, Section 6.3 investi-

gates the ultimate achievable performance of the game. The analysis is extended to

the case in which the Attacker replaces part of the training set in Sections 6.4 and

6.5.

6.1 Formalization of the detection game with addi-

tion of training samples

In this section, we give a rigorous definition of the detection game with addition of

corrupted training samples.

Given a discrete and memoryless source X ∼ PX and a test sequence zn, the

goal of the Defender is to decide whether zn has been drawn from X (hypothesis

H0) or not (alternative hypothesis H1). By adopting a Neyman-Pearson perspective,

we assume that D must ensure that the false positive error probability of rejecting

H0 when H0 holds (Type I error) is lower than a given threshold. Similarly to the

previous versions of the game, we assume that D relies only on first order statistics

to make a decision. For mathematical tractability, likewise in the previous cases, we

study the asymptotic version of the game when n→∞, by requiring that PFP decays

exponentially fast when n increases, with an error exponent at least equal to λ, i.e.

PFP ≤ 2−nλ. On its side, the Attacker aims at inducing a Type II error. Specifically,

A takes a sequence yn drawn from a source Y ∼ PY and modifies it in such a way

that D decides that the modified sequence zn has been generated by X. In doing so,

A must respect a distortion constraint requiring that the average per-letter distortion

between yn and zn is lower than L.

Players A and D know the statistics of X through a training sequence, however

the training sequence can be partly corrupted by A. Depending on how the training

sequence is modified by the Attacker, we can define different versions of the game.

We focus on two possible cases: in the first case, hereafter referred to as source

identification game with addition of corrupted samples DT ac-tr, the Attacker can add

some fake samples to the original training sequence. In the second case, analysed in

Section 6.5, the Attacker can replace some of the training samples with fake values

(source identification game with replacement of training samples, namely DT rc-tr). It

is worth stressing that, even if the goal of the Attacker is to increase the false negative

error probability, the training sequence is corrupted regardless of whether H0 or H1

holds, hence, in general, this part of the attack also affects the false positive error
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probability. As it will be clear later on, this forces the Defender to adopt a worst

case perspective to ensure that PFP is surely lower than 2−λn.

As to Y , we assume that the Attacker knows PY exactly. For a proper definition

of the payoff of the game, we also assume that D knows PY . This may seem a too

strong assumption, however we will show later on that the optimum strategy of D

does not depend on PY thus allowing us to relax the assumption that D knows PY .

With the above ideas in mind, we are now ready to give a formal definition of the

DT ac-tr game.

6.1.1 Structure of the DT ac-tr game

A schematic representation of the scenario addressed by the DT ac-tr game is given in

Figure 6.1.

Let τm1 be a sequence drawn from X. We assume that τm1 is accessible to A,

who corrupts it by concatenating to it a sequence of fake samples τm2 . He then

reorders the overall sequence in a random way so to hide the position of the fake

samples. Note that reordering does not alter the statistics of the training sequence

since the sequence is supposed to be generated from a memoryless source1. In the

following, we denote by m the final length of the training sequence (m = m1 +m2),

and by α = m2

m1+m2
the portion of fake samples. The corrupted training sequence

observed by D is indicated by tm. Eventually, we hypothesize a linear relationship

between the lengths of the test and the corrupted training sequence, i.e. m = cn,

for some constant value c. The goal of D is to decide if an observed sequence zn

has been drawn from the same source that generated tm (H0) or not (H1). We

assume that D knows that a certain percentage of samples in the training sequence

are corrupted, but he has no clue about the position of the corrupted samples. The

Attacker can also modify the sequences generated by Y so to induce a decision error.

The corrupted sequence is indicated by zn. With regard to the two phases of the

attack, we assume that A first corrupts the training sequence, then he modifies the

sequence yn. This means that, in general, zn will depend both on yn and tm, while

tm (noticeably τm2) does not depend on yn. Stated in another way, the corruption

of the training sequence can be seen as a preparatory part of the attack, whose goal

is to ease the subsequent camouflage of yn.

6.1.2 Definition of the DT ac-tr game

Let us define the set of strategies available to D and A (respectively SD and SA) and

the corresponding payoffs.

1By using the terminology introduced in [7], the above scenario can be referred to as a causative

attack with control over training data.
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A

X

Y
yn

xn

τm1

zn (d(zn, yn) < nL)

D
H0/H1

zn

A
tm = σ(τm1 ||τm2)

Figure 6.1: Schematic representation of the DT ac-tr game. Symbol || denotes con-

catenation of sequences and σ is a random permutation of sequence samples. Under

H0, zn = xn, whereas, under H1, zn is a distorted version of yn.

Defender’s strategies

The basic assumption behind the definition of the space of strategies available to D is

that to make his decision, D relies only on the first order statistics of zn and tm. This

assumption is equivalent to requiring that the acceptance region for hypothesis H0,

hereafter referred to as Λn×m, is a union of pairs of type classes2, or equivalently, pairs

of types (P,R), where P ∈ Pn and R ∈ Pm. To define Λn×m, D follows a Neyman-

Pearson approach, requiring that the false positive error probability is lower than

a certain threshold. Specifically, we require that the false positive error probability

tends to zero exponentially fast with a decay rate at least equal to λ. Given that

the pmf PX ruling the emission of sequences under H0 is not known and given that

the corruption of the training sequence is going to impair D’s decision under H0, we

adopt a worst case approach and require that the constraint on the false positive

error probability holds for all possible PX and for all the possible strategies available

to the Attacker. Given the above setting, the space of strategies of D is defined as

follows:

SD = {Λn×m ⊂ Pn × Pm : max
PX∈P

max
s∈SA

PFP ≤ 2−λn}, (6.1)

where the inner maximization is performed over all the strategies available to the

Attacker. We will refine this definition at the end of the next section, after the exact

definition of the space of strategies of the Attacker (SA).

2We use the superscript n ×m to indicate explicitly that Λn×m refers to n-long test sequences

and (m = cn)-long training sequences.
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Attacker’s strategies

With regard to A, the attack consists of two parts. Given a sequence yn drawn from

PY , and the original training sequence τm1 , the Attacker first generates a sequence

of fake samples τm2 and mixes them up with those in τm1 producing the training

sequence tm observed by D. Then he transforms yn into zn, trying to generate a pair

of sequences (zn, tm)3 whose types belong to Λn×m. In doing so, he must ensure that

d(yn, zn) ≤ nL for some proper distortion function d.

Let us consider the corruption of the training sequence first. Given that the

Defender bases his decision only on the type of tm, we are only interested in the

effect that the addition of the fake samples in τm2 has on Ptm . By considering the

different length of τm1 and τm2 , we find that:

Ptm = (1− α)Pτm1 + αPτm2 , (6.2)

where Ptm ∈ Pm, Pτm1 ∈ Pm1 and Pτm2 ∈ Pm2 . The first part of the attack, then,

is equivalent to choosing a pmf in Pm2 and mixing it up with Pτm1 . By the same

token, it is reasonable to assume that the choice of the Attacker depends only on

Pτm1 rather than on the single sequence τm1
. Arguably, the best choice of the pmf in

Pm2 will depend on PY , since the corruption of the training sequence is instrumental

in letting the Defender think that a sequence generated by Y has been drawn by the

same source that generated tm.

To describe the part of the attack applied to the test sequence, we follow the usual

approach based on transportation theory. Let SnY Z(i, j) = n(i, j)/n be the relative

frequency with which a move from i to j occurs; for any additive distortion measure,

we know that the distortion introduced by the attack can be expressed in terms of

n(i, j) and SnY Z as follows:

d(yn, zn) =
∑

i,j

n(i, j)d(i, j), (6.3)

d(yn, zn)

n
=
∑

i,j

SnY Z(i, j)d(i, j). (6.4)

where d(i, j) is the distortion introduced when symbol i is transformed into symbol

j.

By remembering that Λn×m depends only on the type of the test sequence, and

given that the type of the attacked sequence depends on Pyn only through SnY Z , we

can define the second phase of the attack as the choice of a transportation map among

3While reordering is essential to hide the position of fake samples to D, it does not have any

impact on the position of (zn, tm) with respect to Λn×m, since we assumed that the Defender bases

its decision only on the first order statistic of the observed sequences.
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all admissible maps, where the set of admissibility maps is defined as in Section 3.4

(equation (3.19)).

With the above ideas in mind, the set of strategies of the Attacker can be defined

as follows:

SA = SA,T × SA,O, (6.5)

where SA,T and SA,O indicate, respectively, the part of the attack affecting the train-

ing sequence and the observed sequence, and are defined as:

SA,T =

{
Q(Pτm1 ) ∈ Pm2

}
, (6.6)

SA,O =

{
SnY Z(Pyn , Ptm) ∈ An(L,Pyn)

}
. (6.7)

Note that the first part of the attack (SA,T ) is applied regardless of whether H0 or

H1 holds, while the second part (SA,O) is applied only under H1. We also stress

that the choice of Q(Pτm1 ) depends only on the training sequence τm1 , while the

transportation map used in the second phase of the attack depends both on yn and

τm1 (through tm). Finally, we observe that with these definitions, the set of strategies

of the Defender can be redefined by explicitly indicating that the constraint on the

false positive error probability must be verified for all possible choices of Q(·) ∈ SA,T ,

since this is the only part of the attack affecting PFP. Specifically, we can rewrite

(6.1) as

SD = {Λn×m⊂Pn×Pm :max
PX

max
Q(·)∈SA,T

PFP ≤ 2−λn}. (6.8)

Payoff

The payoff is defined in terms of the false negative error probability, namely:

u(Λn×m, (Q(·), SnY Z(·, ·))) = −PFN, (6.9)

where PFN is the false negative error probability. Of course, D aims at maximising u

while A wants to minimise it.

6.1.3 DT ac-tr game with targeted corruption (DT a,tc-tr game)

The DT ac-tr game is difficult to solve directly, because of the 2-step attacking strategy.

We will work around this difficulty by tackling first with a slightly different version

of the game, namely the source identification game with target corruption of the

training sequence, DT a,tc-tr, depicted in Figure 6.2.

Whereas the strategies of the Defender remain the same, for the Attacker, the

choice of Q(·) is targeted to the counterfeiting of a given sequence yn. In other
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A

X

Y
yn

xn

τm1 zn (d(zn, yn) < nL)

tm = σ(τm1 ||τm2)

D
H0/H1

zn

Figure 6.2: DT ac-tr game with targeted corruption of the training sequence, named

DT a,tc-tr game.

words, we will assume that the Attacker corrupts the training sequence τm1 to ease

the counterfeiting of a specific sequence yn rather than to increase the probability

that the second part of the attack succeeds. This means that the part of the attack

aiming at corrupting the training sequence also depends on yn, that is:

SA,T =

{
Q(Pτm1 , Pyn) ∈ Pm2

}
. (6.10)

Even if this setup is not very realistic and is more favourable to the Attacker which

can exploit the exact knowledge of yn, rather than its statistical properties, also for

the corruption of the training sequence, it is possible to show a posteriori that, at least

for large n, the DT a,tc-tr game depicted in Figure 6.2 is equivalent to the non-targeted

version of the game (see Figure 6.1).

With the above ideas in mind, the DT a,tc-tr game is formally defined as follows.

Defender’s strategies.

SD = {Λn×m⊂Pn×Pm :max
PX

max
Q(·,·)∈SA,T

PFP ≤ 2−λn}. (6.11)

Attacker’s strategies.

SA = SA,T × SA,O (6.12)

with:

SA,T =

{
Q(Pτm1 , Pyn) ∈ Pm2

}
(6.13)

SA,O =

{
SnY Z(Pyn , Pτm1 ) ∈ An(L,Pyn)

}
, (6.14)

We notice that, in this game, contrarily to the non-targeted case, the two phases

of the attack are coupled.

Payoff.

u(Λn×m, (Q(·, ·), SnY Z(·, ·))) = −PFN. (6.15)
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6.2 Asymptotic equilibrium and payoff of the DT a,tc-tr and

DT ac-tr games

In this section, we derive the asymptotic equilibrium point of the DT a,tc-tr and the

DT ac-tr games when the length of the test and training sequences tends to infinity

and evaluate the payoff at the equilibrium.

For the evaluation of the false positive probability, we will see that it is immaterial

that the strategy of corruption of the training is targeted or non-targeted, then the

optimum strategy for the Defender is the same for both versions of the game.

6.2.1 Optimum defender’s strategy

To start with, we look for an explicit expression of the false positive error probability.

Such a probability depends on PX and on the strategy used by A to corrupt the

training sequence. In fact, the mapping of yn into zn does not have any impact

on D’s decision under H0. In the following derivations, we focus on the game with

targeted corruption; by showing that the dependence on yn has no impact on PFP,

we deduce, a posteriori, that the same result holds for the game with non-targeted

corruption.

For a given PX and Q(·, ·), PFP is equal to the probability that Y generates a

sequence yn and X generates two sequences xn and τm1 , such that the pair of type

classes (Pxn , αQ(Pτm1 , Pyn) + (1 − α)Pτm1 ) falls outside Λn×m. Such a probability

is equal to

PFP =
∑

Pyn∈Pn
PY (T (Pyn))

∑

(Pxn ,Ptm )∈Λ̄n×m

PX(T (Pxn))· (6.16)

·
∑

Pτm1∈Pm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 )),

where Λ̄n×m is the complement of Λn×m, and where we have exploited the fact

that under H0 the training sequence τm1 and the test sequence xn are generated

independently by X. Given the above formulation, the set of strategies available to

D can be rewritten a:

SD =

{
Λn×m : max

PX
max
Q(·,·)

∑

Pyn∈Pn
PY (T (Pyn)) ·

∑

(Pxn ,Ptm )∈Λ̄n×m

(6.17)

PX(T (Pxn)) ·
∑

Pτm1∈Pm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 )) ≤ 2−λn
}
.
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We are now ready to prove the following lemma, which describes the asymptoti-

cally optimum strategy for the Defender for both versions of the game.

Lemma 6. Let Λn×m,∗ be defined as follows:

Λn×m,∗=

{
(Pzn , Ptm) : min

Q∈Pm2
h

(
Pzn ,

Ptm − αQ
1− α

)
≤λ− δn

}
(6.18)

with

δn = |X | log(n+ 1)((1− α)nc+ 1)

n
, (6.19)

where |X | is the cardinality of the source alphabet and where the minimisation over

Q is limited to all the Q’s such that Ptm − αQ is nonnegative for all the symbols in

X . Then:

1. max
PX

max
s∈SA

PFP ≤ 2−n(λ−νn), with lim
n→∞

νn = 0,

2. ∀Λn×m ∈ SD, we have Λ̄n×m ⊆ Λ̄n×m,∗,

for both the DT a,tc-tr and DT ac-tr games.

Proof. To prove the first part of the lemma we rewrite the false positive error prob-

ability as in equation (6.16). We have:

max
PX

max
Q(·,·)

PFP = max
PX

max
Q(·,·)

∑

Pyn∈Pn
PY (Pyn) ·

∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

PX(T (Pxn))·

∑

Pτm1∈Pm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))

≤ max
PX

∑

Pyn∈Pn
PY (Pyn) ·

∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

PX(T (Pxn))·

max
Q(·,·)

∑

Pτm1∈Pm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 )). (6.20)

Let us consider the term within the inner summation. For each Pτm1 such that

αQ(Pτm1 , Pyn) + (1− α)Pτm1 = Ptm , we have:4

PX(T (Pτm1 )) ≤ max
Q∈Pm2

PX

(
T

(
Ptm − αQ

1− α

))
, (6.21)

4It is easy to see that the bound (6.21) holds also for the non-targeted game, when Q depends

on the training sequence only (that is, Q = Q(Pτm1 )).
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with the understanding that the maximisation is carried out only over the Q’s such

that Ptm − αQ is nonnegative for all the symbols in X . Thanks to this observation,

we can upper bound the false positive error probability as follows:

max
PX

max
Q(·,·)

PFP ≤ max
PX

∑

Pyn∈Pn
PY (Pyn) ·

∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

PX(T (Pxn)) · |Pm1 |·

max
Q∈Pm2

PX

(
T

(
Ptm − αQ

1− α

))

= max
PX

∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

PX(T (Pxn))|Pm1 | max
Q∈Pm2

PX

(
T

(
Ptm − αQ

1− α

))

≤ |Pm1 |
∑

(Pxn ,Ptm )

∈Λ̄n×m,∗

max
Q∈Pm2

max
PX

PX(T (Pxn)) · PX
(
T

(
Ptm − αQ

1− α

))
,

(6.22)

where in the equality we exploited the fact that the inner summation does not depend

on yn. It is straightforward to see that the same steps can be repeated for the non-

targeted case. From this point, the proof goes along the same line of the proof of

Lemma 4 in Chapter 4, by observing that maxPX PX(T (Pxn))PX

(
T
(
Ptm−αQ

1−α

))

is upper bounded by 2−nh(Pxn ,
Ptm−αQ

1−α ), and that for each pair of types in Λ̄n×m,∗,
h(Pxn ,

Ptm−αQ
1−α ) is larger than λ− δn for every Q.

We now pass to the second part of the lemma. Let Λn×m be a strategy in SD,

and let (Pxn , Ptm) be a pair of types contained in Λ̄n×m. Given that Λn×m is an
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admissible decision region, we have (admissibility constraint)

2−λn ≥ max
PX

max
Q(·,·)

∑

Pyn∈Pn
PY (Pyn) ·

∑

(Pxn ,Ptm )∈Λ̄n×m

PX(T (Pxn))· (6.23)

∑

Pτm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))

≥ max
PX

max
Q(·,·)

∑

Pyn∈Pn
PY (Pyn) ·


PX(T (Pxn)) ·

∑

Pτm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))




= max
PX

∑

Pyn∈Pn
PY (Pyn) ·


PX(T (Pxn)) · max

Q(·,·)

∑

Pτm1 :
αQ(Pτm1 ,Pyn )+(1−α)Pτm1 =Ptm

PX(T (Pτm1 ))




≥ max
PX

PX(T (Pxn)) max
Q∈Pm2

PX

(
T

(
Ptm − αQ

1− α

))
,

where the maximization over Q is restricted to the Q’s for which Ptm − αQ ≥ 0 for

all the symbols in X 5. Since the expression in brackets in the second to the last

line is the same for all Pyn , for any Pτm1 the maximizing Q∗(·, Pyn) is independent

of Pyn . Then, the same lower bound also holds for the non targeted case.

By exploiting the usual lower bound on the probability that a memoryless source

X generates a sequence belonging to a certain type class, we can continue the above

chain of inequalities as follows

2−λn ≥
max
PX

max
Q∈Pm2

2−n
[
D(Pxn ||PX)+

m1
n D
(
Ptm−αQ

1−α ||PX
)]

(n+ 1)|X |(m1 + 1)|X |
(6.24)

≥ 2
−n min

Q∈Pm2
min
PX

[
D(Pxn ||PX)+

m1
n D
(
Ptm−αQ

1−α ||PX
)]

(n+ 1)|X |(m1 + 1)|X |

(a)
=

2
−n min

Q∈Pm2
h
(
Pxn ,

Ptm−αQ
1−α

)

(n+ 1)|X |(m1 + 1)|X |
,

5The last inequality follows from the fact that the summation over Pτm1 in the second last line

may consists of more than one element.
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where (a) derives from the minimization properties of the generalised log-likelihood

ratio function h (see Lemma 3 in Chapter 4). By taking the log of both terms we

have:

min
Q∈Pm2

h

(
Pxn ,

Ptm − αQ
1− α

)
≥ λ− |X | log2(n+ 1)(m1 + 1)

n
,

thus completing the proof of the lemma.

Lemma 1 shows that the strategy Λn×m,∗ is asymptotically admissible (point 1.)

and optimal (point 2.), regardless of the attack. From a game-theoretic perspective,

Λn×m,∗ is a dominant strategy for D and then the game is dominance solvable.

Despite the existence of a dominant strategy for the Defender, the identification

of the optimum Attacker’s strategy for the DT ac-tr game is not easy due to the 2-step

nature of the attack. In the following sections, we will focus on the targeted version

of the game, which is easier to study; then, we will use such a result to analyze the

performance in the case of non non-targeted attack.

6.2.2 The DT a,tc-tr game: asymptotic equilibrium

Given the dominant defense strategy, it is easy to show that, for any given τm1 and

yn, the optimum Attacker’s strategy for the DT a,tc-tr game boils down to the following

double minimisation:

(Q∗(Pτm1 , Pyn), Sn,∗Y Z(Pyn , Pτm1 )) = (6.25)

arg min
Q∈Pm2

SnY Z∈An(L,Pyn )

(
min
Q′

h

(
Pzn ,

(1− α)Pτm1 + αQ− αQ′
1− α

))
,

where Pzn (i.e. SnZ) is obtained by applying the transformation map SnY Z to Pyn . As

usual, the minimisation over Q′ is limited to the Q′ such that all the entries of the

resulting pmf are nonnegative.

As a remark, for L = 0 (corruption of the training only), we get:

Q∗(Pτm1 , Pyn) = arg min
Q∈Pm2

min
Q′

h

(
Pyn , Pτm1 +

α

1− α (Q−Q′)
)
, (6.26)

while, for α = 0 (classical setup, without corruption of the training sequence) we

have:

Sn,∗Y Z(Pyn , Ptm) = arg min
SnY Z∈An(L,Pyn )

h(Pzn , Ptm), (6.27)
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and we fall back to the known case of detection game with uncorrupted training,

studied in Chapter 4. Given the optimum strategies of both players, it is immediate

to state the following:

Theorem 10. The DT a,tc-tr game is a dominance solvable game, whose only rational-

izable equilibrium corresponds to the profile (Λn×m,∗, (Q∗(Pτm1 , Pyn), Sn,∗Y Z(·, ·))).

Proof. the theorem is a direct consequence of the fact that Λn×m,∗ is a dominant

strategy for D.

Given the optimum attack strategy in (6.25), it is straightforward to define the

set of pairs (Pyn , Pτm1 ) for which, as a consequence of A’s action, D accepts H0:

Γn(λ, α, L) = {(Pyn , Pτm1 ) : ∃SnY Z ∈A(L,Pyn) and ∃Q ∈ Pm2 (6.28)

s.t. (Pzn , (1− α)Pτm1 + αQ) ∈ Λn×m,∗}.

By fixing the type of the non-corrupted training sequence (Pτm1 ) we get:

Γn(Pτm1 , λ, α, L) =
{
Pyn ∈ Pn : ∃SnY Z ∈ A(L,Pyn) and ∃Q ∈ Pm2 (6.29)

s.t. Pzn ∈ Λn,∗((1− α)Pτm1 + αQ)
}
,

where Λn,∗(P ) denotes the acceptance region for a fixed training type P in Pm. It is

interesting to notice that, since in the current setting A has two degrees of freedom,

the attack has a twofold effect: the sequence yn is modified in order to bring it inside

the acceptance region Λn,∗(Ptm), for a given Ptm , and the acceptance region itself is

modified so to facilitate the former action.

6.2.3 The DT a,tc-tr game: payoff at the equilibrium

In this section we study the asymptotic payoff of the DT a,tc-tr game at the equilibrium,

thus trying to understand who and under which conditions is going to win the game.

To do so, we first reformulate the set in (6.29) in a more convenient way. We rewrite

region Γn(Pτm1 , λ, α, L) as follows:

Γn(Pτm1 , λ, α, L) = {P ∈ Pn : ∃SnPV ∈ A(L,P ) s.t. V ∈ Γn0 (Pτm1 , λ, α)}, (6.30)

where

Γn0 (Pτm1 , λ, α) = {P ∈ Pn : ∃Q ∈ Pm2 s.t. P ∈ Λn,∗((1− α)Pτm1 + αQ)} , (6.31)

is the set containing all the test sequences (or, equivalently, test types) for which it is

possible to corrupt the training set in such a way that they fall within the acceptance

region. As the subscript 0 suggests, this set corresponds to the set in (6.30) when A
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cannot modify the sequence drawn from Y (i.e. L = 0) and then tries to hamper the

decision only by corrupting the training sequence.

By considering the expression of the acceptance region, the set Γn0 (Pτm1 , λ, α) can

be expressed in a more explicit form as follows:

Γn0 (Pτm1 , λ, α) = {P ∈ Pn : ∃Q,Q′ ∈ Pm2 s.t. (6.32)

h

(
P, Pτm1 +

α

(1− α)
(Q−Q′)

)
≤ λ− δn

}
,

where the second argument of h denotes the generic type in Pm1 obtained from the

original training sequence τm1 by first adding m2 samples and later removing (in a

possibly different way) the same number of samples. Note that in this formulation Q

accounts for the fake samples introduced by the Attacker and Q′ for the worst case

guess made by the Defender. It is worth observing that since we are treating the

DT a,tc-tr game, in general Q will depend on Pyn . As usual, we implicitly assume that

Q and Q′ are chosen in such a way that Pτm1 + α
(1−α) (Q − Q′) is nonnegative and

smaller than or equal to 1 for all the alphabet symbols.

We are now ready to derive the asymptotic payoff of the game by following a path

similar to that used in the analysis of the DTks and DTtr game in Chapter 3 and

4, respectively. First of all we generalize the definition of the sets Λn×m,∗, and then

Γn0 , so that set Γncan be evaluated for generic pmf’s in P (that is, without requiring

that the pmf is induced by sequences of a given length).

This step passes through the generalization of the h function. Specifically, given

any pair of pmf’s (P, P ′) ∈ P × P, we define:

hc(P, P
′) = D(P ||U) + cD(P ′||U); (6.33)

U =
1

1 + c
P +

c

1 + c
P ′.

where c ∈ [0, 1]. The asymptotic versions of Γn is then obtained from (6.30) and

(6.31) (or (6.32)) by considering hc and letting n→∞ as follows:

Γ(R,λ, α, L) = {P ∈ P : ∃SPV ∈ A(L,P ) s.t. V ∈ Γ0(R, λ, α)}, (6.34)

where6

Γ0(R, λ, α) = {P ∈ P : ∃Q ∈ P s.t. P ∈ Λ∗((1− α)R+ αQ)}

={P ∈ P : ∃Q,Q′ ∈ P s.t. hc

(
P,R+

α

(1− α)
(Q−Q′)

)
≤ λ}. (6.35)

We now have all the necessary tools to prove the following theorem.

6We remind that the definitions of SPV (i, j) ad A(L,P ) derive from those of SnPV (i, j) and

An(L,P ) by relaxing the requirement that the terms SPV (i, j) and P (i) are rational number with

denominator n.
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Theorem 11 (Asymptotic payoff of the DT a,tc-tr game). For the DT a,tc-tr game, the

false negative error exponent at the equilibrium is given by

ε = min
R

[(1− α)cD(R||PX) + min
P∈Γ(R,λ,α,L)

D(P ||PY )]. (6.36)

Accordingly,

1. if PY ∈ Γ(PX , λ, α, L) then ε = 0;

2. if PY /∈ Γ(PX , λ, α, L) then ε > 0.

Proof. Let us consider

PFN =
∑

(Pyn ,Pτm1 )∈Γn(λ,α,L)

PX(T (Pτm1 ))PY (T (Pyn))

=
∑

R∈Pm1

PX(T (R))
∑

P∈Γn(R,λ,α,L)

PY (T (P )) (6.37)

=
∑

R∈Pm1

PX(T (R))PY (P ∈ Γn(R, λ, α, L)). (6.38)

We start by deriving an upper-bound of the false negative error probability. We can

write:

PFN ≤
∑

R∈Pm1

PX(T (R))
∑

P∈Γn(R,λ,α,L)

2−nD(P ||PY )

≤
∑

R∈Pm1

PX(T (R))(n+ 1)|X |2
−n min

P∈Γn(R,λ,α,L)
D(P ||PY )

≤
∑

R∈Pm1

PX(T (R))(n+ 1)|X |2
−n min

P∈Γ(R,λ,α,L)
D(P ||PY )

≤ (n+ 1)|X |(m1 + 1)|X |

·2
−n min

R∈Pm1
[
m1
n D(R||PX)+ min

P∈Γ(R,λ,α,L)
D(P ||PY )]

≤ (n+ 1)|X |(m1 + 1)|X |

·2
−n min

R∈P
[(1−α)cD(R||PX)+ min

P∈Γ(R,λ,α,L)
D(P ||PY )]

, (6.39)

where the use of the minimum instead of the infimum is justified by the fact that

Γn(R, λ, α, L) and Γ(R, λ, α, L) are compact sets. By taking the log and dividing by

n we find:

− logPFN

n
≥ min
R∈P

[
(1− α)cD(R||PX) + min

P∈Γ(R,λ,α,L)
D(P ||PY )

]
+ βn, (6.40)
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with βn = |X | log(n+1)((1−α)nc+1)
n tending to 0 when n tends to infinity.

We now turn to the analysis of a lower bound for PFN. Let R∗ be the pmf achieving

the minimum in (6.36). Due to the density of rational numbers within real numbers,

we can find a sequence of pmf’s Rn ∈ Pn that tends to R∗ when n tends to infinity.

By remembering that m1 = (1 − α)nc, the subsequence Rm1
= R(1−α)cn will also

tend to R∗ when n (and hence m1) tends to infinity 7. We can write:

PFN =
∑

R∈Pm1

PX(T (R))PY (Γn(R, λ, α, L))

≥ PX(T (Rm1
))PY (Γn(Rm1

, λ, α, L)),

≥ 2−m1D(Rm1 ||PX)

(m1 + 1)|X |
PY (Γn(Rm1

, λ, α, L)), (6.41)

where in the first inequality we have replaced the sum with the single element of the

subsequence Rm1 defined previously, and where the second inequality derives from

the usual lower bound on the probability of a type class [90]. From (6.41), by taking

the log and dividing by n we obtain

− logPFN

n
≤ (1− α)cD(Rm1

||PX)− 1

n
logPY (Γn(Rm1

, λ, α, L)) + β′n, (6.42)

where, as in (6.40), β′n = |X | log((1−α)cn+1)
n tends to 0 when n tends to infinity. In

order to compute the probability term PY (P ∈ Γn(Rm1 , λ, α, L)) in (6.42), we resort

to the extension of Sanov limit given by Theorem A8 (see Appendix A). To do so,

we must show that Γn(Rm1 , λ, α, L)
H→ Γ(R∗, λ, α, L).

By exploiting the continuity of the hc function and the density of rational numbers

into the real ones, it is not difficult to see that Γn0 (Rm1
, λ, α, L)

H→ Γ0(R∗, λ, α, L).

The Hausdorff convergence of Γn(Rm1
, λ, α, L) to Γ(R∗, λ, α, L) follows from the reg-

ularity property of the admissibility set (see Appendix B). Therefore, we can apply

the generalized Sanov theorem and obtain:

− lim
n→∞

1

n
logPY (Γn(Rm1 , λ, α, L)) = min

P∈Γ(R∗,λ,α,L)
D(P ||PY ). (6.43)

Then we have

− 1

n
logPY (Γn(Rm1 , λ, α, L)) ≤ min

P∈Γ(R∗,λ,α,L)
D(P ||PY ) + α′n, (6.44)

7Similarly to what we did in the case of uncorrupted training data studied in Chapter 4, we

assume that αc (an then also (1 − α)c), is a non-null integer value. The analysis can be extended,

with some care, to the case in which such an assumption does not hold.
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where α′n → 0 as n → ∞. By exploiting the continuity of the divergence function,

we can write

D(Rm1 ||PX) ≤ D(R∗||PX) + α′′n, (6.45)

where α′′n is arbitrarily small for large enough n. Then, going on from (6.42), we get

− logPFN

n
≤ (1− α)cD(R∗||PX) + (1− α)α′′n + min

P∈Γ(R∗,λ,α,L)
D(P ||PY ) + α′n + β′n,

(6.46)

where the quantity (1− α)α′′n + α′n + β′n tends to zero when n tends to infinity.

By coupling equations (6.40) and (6.46) and by letting n → ∞, we eventually

obtain:

− lim
n→∞

logPFN

n
= min

R
[(1− α)c · D(R||PX) + min

P∈Γ(R,λ,α,L)
D(P ||PY )], (6.47)

thus proving the theorem.

As an immediate consequence of Theorem 11, the set Γ(PX , λ, α, L) defines the

indistinguishability region of the test, that is the set of all the sources for which A is

able to induce D to decide in favour of H0 even if H1 holds.

We conclude this section by observing that the asymptotic version of the optimum

Attacker’s strategy does not depend anymore on the to-be-attacked sequence yn. In

fact, the Attacker needs only to find a pmf Q′ which modifies the acceptance region

Λn(PX) in such a way that it is possible to find an admissible transportation map

moving PY within it. Accordingly, the optimum corruption strategy depends on PY
rather than Pyn . In hindsight, the reason for such a result is that, due to the law of

large numbers, the type of the sequences generated by Y will tend to PY in probability

hence making it possible to the Attacker to rely only on the knowledge of PY . This

suggests that the asymptotic performance of the game remains the same in the case

of non-targeted attack (depicted in Figure 6.1). Therefore, the indistinguishability

region of the game DT ac-tr game and DT a,tc-tr game are the same. The rigorous proof

of such argument is very technical and is omitted.

In the other version of the game with corrupted training studied in Section 6.5, we

will focus on the case of targeted attack only, keeping in mind that the performance

of the game in the non-targeted case are asymptotically equivalent.
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6.3 Source distinguishability for the DT ac-tr (and

DT a,tc-tr ) game

In this section we study the behaviour of the game when we vary the decay rate of

the false positive probability, that is λ. In this way, we derive the best achievable

performance of the Defender, by requiring only that PFP tends to zero exponentially

fast. Then, we use such a result to derive the limit conditions for which the reli-

able distinction between two sources is possible in terms of percentage of corrupted

training samples α and maximum allowed distortion L.

We point out that, since the DT ac-tr and DT a,tc-tr games have the same indis-

tinguishability region, the arguments of this section hold for both versions of the

game.

6.3.1 Ultimately achievable performance of the game

As we said, the goal of this section is to study the limit of the indistinguishability

region when λ → 0. As we know from Chapter 5, this limit determines all the

pmf’s PY that cannot be distinguished from PX ensuring that the two types of error

probabilities tend to zero exponentially fast (with vanishingly small, yet positive,

error exponents).

To this aim, we first observe that optimal transport theory permits us to rewrite

the indistinguishability region Γ(PX , λ, α, L) as:

Γ(PX , λ, α, L) ={P : ∃V ∈ Γ0(PX , λ, α) s.t. EMD(P, V ) ≤ L}, (6.48)

where EMD is the Earth Mover Distance, i.e., the minimum transportation cost (see

Chapter 5), that is

EMD(P, V ) = min
SPV :SP=P,SV =V

∑

i,j

SPV (i, j)d(i, j). (6.49)

With this definition, the main result of this section is stated by the following

theorem.

Theorem 12. Given two sources X ∼ PX and Y ∼ PY , a maximum allowed average

per-letter distortion L and the fraction α of training samples provided by the Attacker,

the maximum achievable false negative error exponent ε for the DT ac-tr game is:

lim
λ→0

lim
n→∞

− 1

n
logPFN = min

R
[D(R||PX) + min

P∈Γ(R,α,L)
D(P ||PY )], (6.50)

where Γ(R,α, L) = Γ(R, λ = 0, α, L). Then the ultimate indistinguishability region is

Γ(PX , α, L) = {P : ∃V ∈ Γ0(PX , α) s.t. EMD(P, V ) ≤ L} , (6.51)
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where Γ0(PX , α) = Γ0(PX , λ = 0, α). Moreover, such a region can be rewritten as

Γ(PX , α, L) =

{
P : min

V :EMD(P,V )≤L

∑

i

[V (i)–PX(i)]+ ≤
α

(1− α)

}

=

{
P : min

V :EMD(P,V )≤L
dL1

(V, PX) ≤ 2α

(1− α)

}
.

(6.52)

Proof. The proof of the first part goes along the same steps used in the proof of

Theorem 8 in Chapter 5 and is not repeated here. Instead, we show that the set

Γ(PX , α, L) in (6.51) can be rewritten as in (6.52). From the previous analysis, by

observing that hc(P,Q) = 0 if and only if P = Q, it is easy to argue that the set

Γ0(PX , α) takes the following expression:

Γ0(PX , α) = {P : ∃Q,Q′ ∈ P s.t. P = PX +
α

(1− α)
(Q−Q′)}. (6.53)

Equation (6.53) can be rewritten by avoiding the reference to the auxiliary pmf’s Q

and Q′. To do so, we observe that Q(i) must be larger than Q′(i) for all the bins i

for which P (i) > PX(i) (and vice versa). Since Q and Q′ must be valid pmf’s, we

must have
∑
i[Q(i) −Q′(i)]+ =

∑
i[Q
′(i) −Q(i)]+ ≤ 1. Then, it is easy to see that

(6.53) is equivalent to the following definition:

Γ0(PX , α) =

{
P :

∑

i

[P (i)− PX(i)]+ ≤
α

(1− α)

}
(6.54)

=

{
P : dL1(P, PX) ≤ 2α

(1− α)

}
,

where dL1
denotes the L1 distance. Equation (6.52) follows immediately from this

way of writing Γ0(PX , α).

According to Theorem 12, Γ(PX , α, L) provides the ultimate indistinguishability

region of the test, that is the set of all the pmf for which D will be defeated. Before

going on, we discuss the geometrical meaning of the set Γ0(PX , α) in (6.53). To do

so, we rewrite Γ0(PX , α) as follows:

Γ0(PX , α) = {P : ∃Q ∈ P s.t. P ∈ Λ∗λ→0((1− α)PX + αQ)}, (6.55)

where Λ∗λ→0(P ) plays the role of the ultimate acceptance region of the test and derives

from the asymptotic version of the acceptance region Λ∗(P ) by letting λ go to 0:

Λ∗λ→0(P ) =

{
P ′ : ∃Q′ ∈ P s.t. P ′ =

P − αQ′
(1− α)

}
. (6.56)
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Λ∗λ→0(P )

(1− α)PX + αQ

Q

PXP

Q′

Γ0(PX , α)

P ′

Λ∗λ→0((1− α)PX + αQ)

Q

PX

Γ0(PX , α)

(1− α)PX + αQ

Figure 6.3: Geometrical interpretation of Λ∗λ→0(P ) (left) and geometrical construc-

tion of Γ0(PX , α) (right). The size of the sets are exaggerated for graphical purposes.

PX

Γ0(PX , α)

P

V

EMD(P, V ) < L

Γ(PX , α, L)

Figure 6.4: Geometrical interpretation of Theorem 12.

By referring to Figure 6.3 (left part) we can geometrically interpret Λ∗λ→0(P ) as the

set of the points P ′ such that P is a convex combination (with coefficient α) of P ′

with a point Q′ of the probability simplex. Then, according to (6.55), Γ0(PX , α)

is geometrically obtained as the union of the acceptance regions built starting from

the points which can be written as a convex combination of PX with some point Q

in the simplex; this corresponds to an hexagonal region around PX which, in the

probability simplex, is equivalent to the set of the points whose L1 distance from PX
is constrained to 2α/(1− α) (as stated in (6.52)). Obviously, only the points which

lie inside the simplex are valid pmf’s and then must be accounted for. The geometric

interpretation of set Γ0(PX , α) in (6.55) is given in the right part of Figure 6.3. A

pictorial representation of Γ(PX , α, L) is given in Figure 6.4 for a smaller value of α.
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6.3.2 Security margin and blinding corruption level (αb)

By a closer inspection of the ultimate indistinguishability region Γ(PX , α, L), we can

derive some interesting parameters characterizing the distinguishability of two sources

in adversarial setting (both with or without corrupted training, the latter case cor-

responding to α = 0.). Let X ∼ PX and Y ∼ PY be two sources. Let us focus

first on the case in which the Attacker cannot modify the test sequence (L = 0).

In this situation, the ultimate indistinguishability region boils down to Γ0(PX , α).

We conclude that D can tell the two sources apart if dL1
(PY , PX) > 2α

(1−α) . On the

contrary, if dL1
(PY , PX) ≤ 2α

(1−α) , A is able to make the sources indistinguishable by

corrupting the training sequence. Clearly, the larger the α the easier is for A to win

the game. By adopting a different perspective, we can define the blinding corruption

level αb, that is the corruption percentage for which two sources X and Y cannot be

distinguished. Specifically, we have:

αb(PX , PY ) =

∑
i [PY (i)− PX(i)]+

1 +
∑
i [PY (i)− PX(i)]+

=
dL1

(PY , PX)

2 + dL1
(PY , PX)

. (6.57)

Since dL1
(P,Q) ≤ 2 for any pair of pmf’s (P,Q), from (6.57) it is easy to see that

αb is always lower that 1/2. The limit situation αb = 1/2 corresponds to a case in

which PX and PY have completely disjoint supports (and hence, dL1
(P,Q) = 2). As

a result, for α ≥ 1/2, that is when A corrupts more than half of the training samples,

there is always a choice of the pmf in Pm2 (m ≥ m/2) for which no original sample

remains in the training subsequence analyzed by D, hence making a reliable decision

impossible (because of the worst case approach adopted by D over the strategies of

corruption of A).

Let us now consider the more general case in which L 6= 0. For a given α < αb,

we look for the maximum attacking distortion for which it is possible to reliably dis-

tinguish between the two sources. By inspection of the ultimate indistinguishability

region in (6.51), it is easy to argue that the Defender is able to distinguish X and

Y , despite the attack, if minV :EMD(PY ,V )≤L dL1(R,PX) > 2α
(1−α) . This leads to the

following definition, which extends the concept of Security Margin, introduced in

Chapter 5, to the more general setup considered here.

Definition 11 (Security Margin in the DT ac-tr setup). Let X ∼ PX and Y ∼ PY be

two discrete memoryless sources. The maximum distortion for which the two sources

can be reliably distinguished in the DT ac-tr setup is called Security Margin and is

given by

SMα(PX , PY ) = L∗α, (6.58)



136 6. Detection Games with Corruption of the Training Data

PX

Γ0(PX , α) =


P : dL1

(P, PX) ≤ 2α
(1−α)





PY

{R :EMD(PY , V ) ≤ L∗α}

L∗α

Figure 6.5: Geometrical interpretation of the Security Margin between two sources

X and Y .

where L∗α = 0 if PY ∈ Γ0(PX , α)8, whereas, if PY /∈ Γ0(PX , α), L∗α is the quantity

which satisfies

min
V :EMD(PY ,V )≤L∗α

dL1
(V, PX) =

2α

(1− α)
. (6.59)

A geometric interpretation of the Security Margin is given in Figure 6.5.

By focusing on the case PY /∈ Γ0(PX , α), since the left-hand side of (6.59) is a

monotonic non-increasing function of Lα, the Security Margin SMα(PX , PY ) can be

expressed in explicit form as

arg min
Lα

min
V :EMD(PY ,V )≤Lα

∣∣∣∣dL1(V, PX)− 2α

(1− α)

∣∣∣∣ . (6.60)

When L > SMα(PX , PY ), it is not possible for D to distinguish between the two

sources with positive error exponents of the two kinds.

By looking at the behavior of the Security Margin as a function of α, we see that

SMαb(PX , PY ) = 0, meaning that, whenever the corrupted percentage of samples

reaches the critical value, the sources cannot be distinguished even if the Attacker

does not introduce any distortion. On the contrary, setting α = 0 corresponds to

study the distinguishability of the sources with uncorrupted training, in which case

we have SM0(PX , PY ) = EMD(PX , PY ), in agreement with (5.10).

8The corruption of the training with parameter α already makes the sources undistinguishable.
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1

Γ0(q, α) = {v : |v − q| ≤ α
1−α}

0 p qr∗

SMα = (r∗ − p)

Figure 6.6: Geometrical interpretation of the Security Margin between X and Y .

When α = 0, Γ0(q, α) boils down to point p and SM = (q − p) (see Section 5.1).

With reference to Figure 6.5, it is easy to see that when α = 0 the hexagonal

set (i.e., the indistinguishability region determined by the corruption of the train-

ing) boils down to the single point PX and the Security Margin corresponds to the

Earth Mover Distance between Y and X. Moreover, we notice that, for any α > 0,

the Security Margin in (6.60) is less than EMD(PX , PY ). This is also an expected

behavior since the general setting considered here is more favorable to the Attacker,

with respect to the setting considered in the previous chapters.

Bernoulli sources

In order to get some insights about the practical meaning of the analysis carried out

in the previous sections and the parameters αb and SMα, we consider the simple case

of two Bernoulli sources with parameter q = PX(1) and p = PY (1). Assuming that

no distortion is allowed to the Attacker, the (minimum) percentage of samples that A

has to modify for inducing a decision error is, according to (6.57), αb = |p−q|
1+|p−q| . As

suggested by intuition, when |p− q| = 1, in order for A to win the game, the number

of fake samples should be equal to the number of samples of the correct training

sequence (i.e. α = 0.5). When some distortion is allowed (L 6= 0), we have

SMα(p, q) =

{
|q − p| − α

1−α α < αb
0 α ≥ αb

. (6.61)

The geometrical meaning of (6.61) is illustrated in Figure 6.6 for two generic Bernoulli

sources with p > q (w.l.o.g.). If α = 0, we get the same expression of the Security

Margin for the uncorrupted training case, derived in Chapter 5, Section 5.1. Figure

6.7 depicts the behavior of the SMα(p, q) as a function of α when p = 0.3 and

q = 0.7.

6.4 The DT ac-tr game: an alternative perspective

In the adversarial setup considered in the previous section (and depicted in Figure

6.1), the Attacker adds a sequence of m2 fake samples, τm2 , to an existing sequence
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Figure 6.7: Security margin as a function of α for Bernoulli sources with parameters

p = 0.3 and q = 0.7 (αb = 0.286).

of m1 training sample, τm1 , and produce (after a random reordering σ) the corrupted

training sequence tm: formally, tm = σ(τm1 ||τm2). It is worth noting that, due to

the memoryless nature of the source X, such a scenario is equivalent to the following:

the Attacker observes a training sequence τm and replaces a certain number m2 of

samples randomly chosen to produce the final corrupted sequence tm. As before we

assume that the Defender does not know the position of attacked samples

Let M denote the subset of m2 indexes corresponding to the positions of the

samples which the Attacker may corrupt. We indicate with τm2

M the subsequence

formed by the samples indexed by M. Hence, τm = σ∗(τm1

M ||τ
m2

M ) for some permu-

tation σ∗, where M indicates the complementary set of M. Let νm2 the sequence

of the corrupted samples which the Attacker replace to the original samples in the

positions indicated byM. Therefore, the corrupted training sequence observed by D

is tm = σ∗(τm1

M ||ν
m2). This setup is represented by the general scheme illustrated in

Figure 6.8.

It is straightforward to be convinced that, when the Attacker cannot choose the

indexing setM, the game with addition of fake samples and the one with replacement

of random samples with fake ones are indeed equivalent. In fact, in both cases, the

resulting sequence that the Defender observes is composed by m1 original samples

drawn from X and m2 corrupted samples in unknown positions. Assuming that the

Defender has no hint on how the Attacker replace the samples, it is easy to argue

that the decision strategy does not change with respect to the previous case. On the

other side, since the goal of the Attacker is to induce a decision error, it is reasonable

to assume that νm2 = Q(τm) = Q(τm1

M ), that is, the original value of the replaced
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A

X

Y
yn

xn

τm zn (d(zn, yn) < nL)

tm = σ∗(τm1

M ||ν
m2)

D
H0/H1

zn

Figure 6.8: General block diagram of the adversarial setup considered in this chapter

(targeted corruption case). In the DT rc-tr game, addressed in Section 6.5, given the

original training sequence τm, the adversary has the possibility of choosing which

samples to replace with fake ones (i.e., A chooses set M). Clearly, we have that

σ∗(τm1

M ||τ
m2

M ) = τm.

samples does not matter. Therefore, the same analysis performed in Section 6.1, as

well as the results we got, remain the same in the case of game with random replace-

ment of the training samples. Such a view of the DT ac-tr game opens the way to the

definition of a more general adversarial setup, which is studied in Section 6.5.

6.5 Detection game with selective replacement of

training samples

In this section we study a variant of the game with corrupted training, in which

A observes the training sequence and can replace a certain fraction of samples. To

be consistent with the notation introduced so far, we denote with τm the sequence

drawn from X which A modifies by replacing a portion α of samples. With respect

to the previous case, now the adversary can choose which samples to corrupt in the

original training sequence, that is, he has, as an additional degree of freedom, the

choice of the index set M.

More formally, given an original training sequence τm, the training sequence

observed by the Defender is tm = σ∗(τm1

M ||ν
m2), where M and νm2 are determined

by the Attacker. Figure 6.8 illustrates the adversarial setup considered in this section.

Arguably, this scenario is more favorable to the Attacker with respect to the previous

one.

6.5.1 Formal definition of the DT rc-trgame

In the sequel, we formally define the source identification game with replacement of

training samples, namely the DT rc-trgame.
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Defender’s strategies.

From the point of view of the Defender, the additional difficulty of this setup is

that, even if the he knew the m2 corrupted samples in the training sequence, simply

throwing them away does not guarantee that the remaining part of the sequence

follows the same statistics of X, since the Attacker may have deliberately changed it

by selectively choosing the samples to replace. Similarly as before, in order to be sure

that the false positive error probability is lower than 2−nλ, the Defender adopts a

worst case strategy and considers the maximum of the false positive error probability

over all the possible PX and over all the possible attacks that the training sequence

may have undergone, yielding

SD = {Λn×mr ⊂ Pn × Pm : max
PX∈P

max
s∈SA,T

PFP ≤ 2−λn}, (6.62)

where Λn×mr denotes the acceptance region of the test in the DT rc-tr setup and SA,T
indicates the set of corruption strategies.

Attacker’s strategies.

With regard to the Attacker, the part of the attack working on the test sequence

yn is the same as for the DT ac-tr case, while the corruption strategy of the training

sequence must be redefined. To this purpose, we observe that the corrupted training

sequence tm may be any sequence for which dH(tm, τm) ≤ αm, where dH denotes

the Hamming distance. Given that the Defender bases his decision on the type of

tm, it is convenient to rewrite the constraint on the Hamming distance between se-

quences as a constraint on the L1 distance between the corresponding types. In fact,

by looking at the empirical distributions of the corrupted sequence, searching for a

sequence tm s.t. dH(tm, τm) ≤ αm is equivalent to search for a pmf Ptm ∈ Pm for

which dL1
(Ptm , Pτm) ≤ 2α (see the proof of Lemma 2 in Chapter 3).

Therefore, the set of strategies of the Attacker is defined by SA = SA,T × SA,O,

where

SA,T = {Q(Pτm , Pyn) ∈ Pm such that dL1(Q(Pτm , Pyn), Pτm) ≤ 2α} (6.63)

SA,O = {SnY Z(Pyn , Ptm) ∈ An(L,Pyn)}. (6.64)

Note that, in this case, the functionQ(·, ·) gives the whole corrupted training sequence

observed by D (not only the fake subpart, as it was in the DT ac-tr game); that is,

tm = Q(τm, Pyn). Clearly, due to the specific corruption procedure, there will be m1

samples in tm which do not change with respect to the original training sequence.

In the following, we will find convenient to express the attacking strategies in

SA,T in an alternative way. Since the Attacker replaces the samples of a subpart

of the training sequence (i.e., the amount of modification he can introduce in the
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samples he corrupts is unconstrained), the corruption strategy is indeed equivalent

to first removing a subpart of the training sequence τm2

M and then adding a synthetic

subpart νm2 to the remaining m1-length sequence. Then, the sequence is reordered

according to σ∗. Hence, by focusing on the type of the observed training sequence,

we can write:

Ptm = Pτm − α(QR −QA). (6.65)

where QR(Pτm , Pyn) and QA(Pτm , Pyn) are the types’s of the removed and injected

subsequences (QR(·, ·), QA(·, ·) ∈ Pm2). By varying QR and QA we obtain all the

pmf’s that can be produced from Pτm by first removing and later adding m2 samples.

The set of corruption strategies can then be rewritten as

S ′A,T = {(QR(Pτm , Pyn), QA(Pτm , Pyn)) ∈ Pm2 × Pm2 s. t.

Pτm − α(QR −QA) ∈ Pm and Pτm − αQR ∈ R|X |+

}
, (6.66)

where R+ denotes the set of non-negative real numbers. To clarify the meaning of

the constraint we put in (6.66), we observe that not all the pairs (QR, QA) which

result in a valid pmf Ptm (where Ptm = Pτm − α(QR −QA)) are valid strategies for

the removal and addition. In fact, given a difference (QR − QA) producing a valid

pmf in Pm, in order to find the admissible pairs (QR, QA), we have to impose that

after the removal, Pτm − αQR > 0 for all the alphabet symbols.

Choosing a pmf Q(Pτm , Pyn) in SA,T is indeed equivalent to choose a pair of

pmf’s (QR(Pτm , Pyn), QA(Pτm , Pyn)) in S ′A,T and then consider the pmf Ptm = Pτm−
α(QR −QA) (see also the proof of Theorem 12 in Section 6.3.1).

Payoff function.

As usual, the payoff function is defined as

u(Λn×mr , (Q(·, ·), SnY Z(·, ·))) = −PFN. (6.67)

6.5.2 Equilibrium point and payoff at the equilibrium

We need to make explicit the expression for the false positive probability by consid-

ering the possible strategies used by the Attacker to corrupt the training sequence.

Similarly to the previous case, for a fixed attacking strategy Q(Pτm , Pyn) the De-

fender cannot do better than ignore the fake samples, since he has no hint about

how these samples have been corrupted by the Attacker. Now, differently from the

previous case, because of the memory introduced by the Attacker, a test sequence

xn (drawn from X) and the remaining part of the (original) training sequence τm1

M
may possibly belong to different sources. Hence, to state whether X has been drawn

by the same source that generated the uncorrupted training, the Defender has to

reconsider the part of the training which has been destroyed by the Attacker.
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In order to ensure that PFP is always lower than 2−λn , it is convenient to use

the attack formulation given in (6.66). For a given PX and (QR(·, ·), QA(·, ·)), PFP

is the probability that X generates xn and τm, such that the pair of type classes

(Pxn , Pτm − α(QR − QA)) falls outside Λn×mr . Accordingly, the set of strategies

available to D can be rewritten as:

SD =

{
Λn×mr : max

PX∈P
max

(QR(·,·),QA(·,·))∈Pm2×Pm2

∑

Pyn∈Pn
PY (T (Pyn))· (6.68)

∑

(Pxn ,Ptm )∈Λ̄n×mr

PX(T (Pxn)) ·
∑

Pτm∈Pm:
Pτm−α(QR(Pτm ,Pyn )−QA(Pτm ,Pyn ))=Ptm

PX(T (Pτm)) ≤ 2−λn
}
.

By following the same steps as in Section 6.2.1, it is easy to show that the asymp-

totically optimum strategy for the Defender corresponds to the following:

Λn×m,∗r =

{
(Pzn , Ptm) : min

(QR,QA)∈Pm2×Pm2
h (Pzn , Ptm + α(QR −QA))≤λ− δn

}
,

(6.69)

where δn tends to 0 as n → ∞ and the minimization is limited to the pairs in

Pm2 ×Pm2 such that Ptm +α(QR−QA) is a valid pmf (nonnegative and lower than,

at most equal to, 1 for all the alphabet symbols).

Consequently, the optimum attacking strategy is given by:

(Q∗(Pτm , Pyn), Sn,∗Y Z(Pyn , Ptm)) = arg min
Ptm :dL1

(Ptm ,Pτm )≤2α

SnY Z∈An(L,Pyn )

(6.70)

min
QR,QA

h (Pzn , Ptm + α(QR −QA)) .

Then, the following theorem holds.

Theorem 13. The DT rc-tr game is a dominance solvable game, whose only rational-

izable equilibrium corresponds to the profile (Λn×m,∗r , (Q∗(·, ·), Sn,∗Y Z(·, ·))).

For the case L = 0, we get the optimum strategy of corruption of the training,

which is

Q∗(Pτm , Pyn) = arg min
Ptm s.t. dL1

(Ptm ,Pτm )≤2α
(6.71)

min
QR,QA

h (Pyn , Ptm + α(QR −QA)) .

Since the corruption of the test sequence works the same as in the DT ac-tr case, in the

sequel, we focus on the case L = 0 (corruption of the training only). Let us define
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the set of pairs of types for which D will finally accept H0 as a consequence of the

attack:

Γn0,r(λ, α) = {(Pyn ,Pτm) : ∃Ptm s.t. dL1
(Ptm , Pτm) ≤ 2α and (Pyn , Ptm) ∈ Λn×m,∗r }.

(6.72)

Given the type of the original training sequence, we define

Γn0,r(Pτm , λ, α) ={Pyn : ∃Ptm s.t. dL1(Ptm , Pτm) ≤ 2α and Pyn ∈ Λn,∗r (Ptm)}
={Pyn : ∃Q,Q′ ∈ Pm2 , Ptm ∈ Pm s.t. dL1

(Ptm , Pτm) ≤ 2α

and h(Pxn , Ptm − αQ′ + αQ) ≤λ− δn
}
.

(6.73)

The asymptotic counterpart of the above set, for a generic R ∈ P, takes the following

expression:

Γ0,r(R, λ, α) =
{
P : ∃Q,Q′, P ′ ∈ P s.t. dL1(P ′, R) ≤ 2α

and hc(P, P
′ − αC ′ + αC) ≤ λ

}
. (6.74)

The set can be easily generalized to the case L 6= 0 as follows

Γr(R, λ, α, L) = {P : ∃V ∈Γ0,r(R, λ, α)s.t. EMD(P, V ) ≤ L}. (6.75)

With the above definitions, it is straightforward to extend Theorem 11 to the

DT rc-tr case, thus proving that the set in (6.75), evaluated in R = PX , corresponds

to the indistinguishability region for the DT rc-tr game.

6.5.3 Security margin and blinding percentage

As a last contribution, we are interested in studying the ultimate distinguishability

of two sources X and Y in the DT rc-tr setting and compare it with the corresponding

results for the DT ac-tr case. To achieve this goal, we consider the indistinguishability

region for the game and study the behavior of such a region when λ tends to 0. We

have:

Γr(PX , α, L) = {P : ∃V ∈Γ0,r(PX , α) s.t. EMD(P, V ) ≤ L}, (6.76)

where

Γ0,r(PX , α) =
{
P : ∃Q,Q′, P ′ ∈ P s.t. dL1

(P ′, PX) ≤ 2α and P = P ′ + α(Q−Q′)
}

=
{
P : ∃P ′ ∈ P s.t. dL1(P ′, PX) ≤ 2α and dL1(P, P ′) ≤ 2α

}
. (6.77)

It is easy to prove the following:
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Theorem 14. Set Γ0,r(PX , α) can be equivalently rewritten as

Γ0,r(PX , α) =
{
P : dL1

(P, PX) ≤ 4α
}
. (6.78)

Proof. Let us show that the set (6.77) is contained in the set (6.78). From the trian-

gular inequality we have that, for any P ′ ∈ P, d(P, PX) ≤ dL1
(P, P ′) + dL1

(P ′, PX).

Then, if P belongs to Γ0,r(PX , α) in (6.77), it also belongs to the set in (6.78). To see

that the sets are indeed equivalent, it is sufficient to show that the reverse implication

holds. To this purpose, we observe that, whenever dL1(P, PX) ≤ 4α, a type P ∗ can

be found such that its distance both from P and PX is less or at most equal to 2α.

By letting P ∗ = P+PX
2 , we have

dL1
(P, P ∗) + dL1

(P ∗, PX) =
∑

i

∣∣∣∣
P (i)− PX(i)

2

∣∣∣∣+
∑

i

∣∣∣∣
PX(i)− P (i)

2

∣∣∣∣

= dL1
(P, PX). (6.79)

Since P ∗ has the same L1 distance from the pmf’s P and PX , we have that dL1
(P, P ∗) =

dL1(P, PX)/2 ≤ 2α, and the same holds for dL1(P ∗, PX). This implies that any P

inside the set in (6.78) is also within the set in (6.77). Then, the sets in (6.77) and

(6.78) are indeed equivalent.

Upon inspection of equation (6.78), we can deduce that, as expected, the indis-

tinguishability region for L = 0 (and hence, also for the case L 6= 0) is larger than

that of the DT ac-tr game, in which case the L1 distance was constrained to the value

2α/(1 − α) (see equation (6.54)), thus confirming that the game with selective re-

placement of the samples is more favourable to the Attacker. In fact, the quantities

4α and 2α/(1 − α) are, respectively, a linear and a convex function of α: they take

the same value in α = 0 and α = 1/2 while, for any α ∈ (0, 1/2), 2α/(1−α) < 4α. A

graphical comparison between the indistinguishability regions for the two setups is

shown in Figure 6.9. The difference between the regions reduces as α gets close to the

critical value 1/2 and they coincide for α = 1/2. In this case, in fact, the Attacker

always wins, being able to bring any pmf inside the acceptance region regardless of

the game version.

It is worth noting that the relation between Vol(Γ0) and Vol(Γ0,r) depends on

α; that is, the gain of choosing the samples to replace with respect to selecting

them at random depends on α. For small α (α ≈ 0) and α close to the critical

value 1/2 we have that Vol(Γ0)/Vol(Γ0,r) ≈ 1, set Γ0,r is much larger than Γ0 for

intermediate values of α (the maximum difference between the sets being achieved

for α ≈ 0.3). In fact, when α is close to 1/2, starting from any PX , A is able to make

impossible to distinguish most of the pmf’s from PX even by choosing the samples at
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PX

Γ0(PX , α) =


P : dL1

(P, PX) ≤ 2α
(1−α)





Γ0,r(PX , α) = {P : dL1
(P, PX) ≤ 4α}

Figure 6.9: Comparison of the indistinguishability regions for the DT ac-tr and

DT rc-tr game with L = 0 for a generic α (α < 1/2).

random. Similarly, when α ≈ 0 very few pmf’s can be made indistinguishable from

PX by corrupting the training samples and choosing the samples does not give any

significant advantage. Arguably, intermediate values α are those for which the choice

of the samples gives the maximum gain with respect to a random choice.

Given two sources X and Y , the blinding value takes the expression:

αb =
dL1

(PY , PX)

4
. (6.80)

Since dL1(PY , PX) ≤ 2 for any pair (PY , PX), the blinding value in the current setting

is always lower than the blinding value for the previous one (the same value is reached

when the two sources yield non-zero values over different symbols).

When the Attacker can also corrupt the test sequence, the ultimate indistinguisha-

bility region of the DT rc-trgame is the following

Γr(PX , α) =
{
P : min

V :EMD(P,V )≤L
dL1(V, PX) ≤ 4α

}
. (6.81)

Starting from (6.81) we can defining the Security Margin in the DT rc-tr setup.

Definition 12 (Security Margin in the DT rc-tr setup). Let X ∼ PX and Y ∼ PY be

two discrete memoryless sources. The maximum distortion for which the two sources

can be reliably distinguished in the DT rc-tr setup is given by

SMα(PX , PY ) = L∗α, (6.82)

where L∗α satisfies

arg min
Lα

min
V :EMD(PY ,V )≤Lα

|dL1(V, PX)− 4α| (6.83)
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Figure 6.10: Security margin as a function of α for Bernoulli sources with parameters

p = 0.3 and q = 0.7 (αb = 0.1).

if PY /∈ Γ0,r(PX , α), and it is 0 otherwise.

Considering again the case of two Bernoulli sources and by adopting the same

notation of Section 6.3.2, we have that αb = |p − q|/4, while the Security Margin

takes the expression

SMα(p, q) =

{ |q − p| − 2α α < αb
0 α ≥ αb

. (6.84)

Figure 6.7 plots SMα as a function of α when p = 0.3 and q = 0.7.



Chapter 7

Multiple-Observations (Multivariate)
Detection Games

In this chapter, we extend the framework introduced in Chapter 3 to deal with binary

detection under multiple observations.

The scenario with multiple observations is relevant in various problems of data

fusion and distributed detection [120] and in several applications, including sensor

networks [121], cognitive radio networks [122] and multimedia forensics [123]. In all

these cases, a Fusion Center (the Defender) has to take a decision about the status

of a system (that can be in two states) by relying on a number of observations made

available by different sensors (as in [120]) or a number of traces detected by different

investigation tools (as in [123]). In many situations, it is possible, in fact probable,

that an attacker, or more attackers, corrupts the observations or deliberately provide

misleading data to induce a decision error at the fusion center.

In this chapter, we introduce a general information-theoretic framework to analyze

the above situations and devise the optimal strategies for both the Defender and the

Attacker in a game-theoretic sense, that is by determining the equilibrium point of

the game. We will do so for several versions of the game, thus encompassing a large

number of scenarios addressing many diverse applications.

The chapter is organized as follows. In Section 7.1, we introduce the general

Multiple-Observation Hypothesis Testing setup. In Section 7.2, we adopt the point of

view of the Defender and derive the optimum decision strategies in some different data

fusion scenario. In Section 7.3, we consider the optimum attacking strategy under

some different adversarial conditions. The results are summarized and discussed in

Section 7.4.

7.1 Adversarial Multiple-Observation Decision

The Multiple-Observation Binary Decision (MO-DT) problem studied in this chap-

ter is schematized in Figure 7.1. The status of a system is observed by k nodes

which gather k observation sequences, xn1 , x
n
2 . . . x

n
k , each of which consists of n sam-

ples, i.e., xnl = (xl,1, xl,2 . . . xl,n), l = 1 . . . k. The nodes summarize their observa-
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Figure 7.1: The multiple-observation decision scheme.

tions into k feature sequences of length m (m ≤ n), fm1 , f
m
2 . . . fmk , with fml =

(fl,1, fl,2 . . . fl,m), l = 1 . . . k. The summaries are sent to a fusion center which has to

either accept or reject the hypothesis that the state is in a safe or normal condition

(H0).

This is a very general setup that can be used to model a wide variety of situa-

tions. The most obvious application regards distributed hypothesis testing [120]. As

an example, the nodes may be part of a sensor network and the observed sequences

xn1 . . . x
n
k may describe the physical state of the system over time, e.g., the temper-

ature, measured at different locations. In more complex situations, the observed

sequences may correspond to complex signals like a video or an audio sequence. As

to the summaries, in the simplest case they coincide with the observed sequences.

More often, they are obtained by extracting a number of features from the observed

sequences, or by taking a local decision on the system status. In the latter case,

m = 1 and fml = 0 or 1 depending on the local decision on the validity of hypothesis

H0 taken by node l.

A less obvious instantiation of the setup reported in Figure 7.1 regards the use of

data fusion techniques for multimedia forensics. In this case, the observed system is

a document, for instance an image or a video, which is analyzed by means of different

tools (identified here by N1, N2 . . . Nk). Each tool analyzes a different aspect of the

document. In the case of still images, for instance, the tools may analyze different

color bands, or different frequency coefficients, in the case of video, the observables

may refer to the audio and video tracks and so on. The tools extract a number

of features and send them to a data fusion center, that is in charge of making the

final decision on a certain aspect of the analyzed document (e.g., its origin). As in
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the distributed hypothesis testing scenario, two extreme cases are obtained when the

features correspond to the entire set of observables, and when each tool makes a local

decision and fusion is carried out at the decision level.

When MO-DT is framed in an adversarial setting, we must take into account

the possibility that an adversary corrupts part of the system so to induce a decision

error. We consider two main possibilities. As a first case, we assume that the Attacker

corrupts h out of k summaries. This is possible if the Attacker seizes h nodes or if he

controls h links between the nodes and the fusion center (see for instance [124]). Two

sub-cases are possible depending on whether the Attacker can choose which nodes

he is going to attack or not. For the rest, we do not put any further limitation on

the Attacker’s actions. In the following, we will refer to this setting as MO-DT with

(chosen) corrupted nodes1. In a second scenario, the nodes and the links between

the nodes and the fusion center are under the full control of the analyst and hence

the Attacker can only modify h out of k observed sequences. This is typically the

case in applications wherein the system is analyzed from different points of view by

using different analysis tools and the decision on system status is taken by fusing the

output of the tools. As an example, we mention data fusion for multimedia forensics

analysis, in which an analyst studies various aspects of the document at hand, and

takes a decision on the provenance or integrity of the document by fusing the results

of the different analyzes. The Attacker, on his side, modifies the document so to hide

its true origin or its previous history. In these cases, it makes sense to require that

the amount of modification the Attacker can introduce into the document is limited.

In the following, we will refer to this scenario as MO-DT with corrupted observations.

A graphical representation of the two kinds of attacks is given in Figure 7.2.

Several versions of the two general settings described above are obtained depend-

ing on the actions allowed to the Attacker and the analyst, their specific goals, the

knowledge they have about the system, including its status and its statistical charac-

terization, the knowledge that the Attacker has on the links and nodes that he does

not control and so on. In the next sections, we will analyze some of these variants,

by framing them into a rigorous game-theoretic setting. As we will see, game-theory

provides a natural and flexible way to take into account all the above information

and to study the optimal strategies of the two players in terms of game equilibrium

and achievable payoff.

1In principle we should distinguish between an adversary that takes full control of the nodes and

an adversary that controls only the links between the nodes and the fusion center, since in the former

case the Attacker can observe the sequences xnl of the corrupted nodes, thus acquiring information

about the system status. In this paper we consider an omniscient Attacker, hence making the

distinction between the two cases irrelevant.
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MO-DT with 
corrupted 
observations 

MO-DT with 
corrupted nodes 

Figure 7.2: Multiple-observation decision under adversarial conditions.

7.1.1 Some notation

Before going on, we introduce further notation necessary to formalize the multiple

observations scenario. In our framework the observed system is modeled by a vector

of discrete random variables X = X1, X2 . . . Xk taking values in the same alphabet

X . Being related to the same system, the random variables are not independent and

hence they are described by means of the joint probability mass function (pmf), say

PX(x1, x2 . . . xk) = PX(x).2 We indicate by xi = (x1,i, x2,i . . . xk,i) the vector with

the observations of all the nodes at the time instant i, and with xn = x1,x2 . . .xn the

sequence with all the observed vectors xi. Similarly to the single observation case, we

use the notation Pxn to indicate the empirical joint pmf (i.e., the type) induced by

the sequence xn and with T (P ) the type class with all the vector sequences having

the empirical pmf equal to P . Finally, we indicate with Pn the set of all the types

for vector sequences of size k and length n3.

7.1.2 Formalization of the adversarial multiple-observations

test

We adopt a Neyman-Pearson perspective according to which D is interested to accept

or reject the hypothesisH0 that the state is in a safe or normal condition characterized

by a pmf PX. In doing so D must ensure that the false positive error probability (PFP)

of rejecting H0 when H0 holds stays below a threshold. On his side, the Attacker

2PX(x) is the joint pmf of the vector X.
3We remind that Pn denotes the types of sequences of length n for the scalar case (k = 1).
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Figure 7.3: The adversarial multiple-observation hypothesis testing setup with cor-

rupted observations considered in this chapter.

aims at inducing a Type II error, i.e., to hide the fact that the system exited its

normal status.

To induce a false negative error, he corrupts either the observation sequences

(MO-DT with corrupted observations), or the summaries sent by the nodes to the

fusion center (MO-DT with corrupted nodes). In the former case, A must satisfy a

distortion constraint specifying to which extent the sequences can be modified. In

both cases, A may be allowed to attack all the sequences or only h of them. We denote

by PY the pmf when H0 does not hold (H1 holds). In the following, we indicate with

ynl the observed sequences when H1 holds and with vml the corresponding feature

sequences. The action of the Attacker corresponds to applying a function g(·) either

to ynl or vml to produce k attacked sequences znl (wml in the case of corrupted nodes).

The hypothesis testing setup for the case of multivariate detection with corrupted

observations and corrupted nodes are depicted in Figure 7.3 and 7.4 respectively.

As in Chapter 3, we consider an asymptotic version of the problem (by letting

n go to infinity) and require that PFP decays exponentially fast with error exponent

at least equal to λ. In addition, we force D to rely on first order statistics only,

i.e. to neglect the possible dependence between consecutive observations (we know

from Chapter 3 that this assumption is sometimes referred to as limited resources
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Figure 7.4: The adversarial multiple-observation hypothesis testing setup with cor-

rupted nodes considered in this chapter.

assumption).

7.2 Dominant fusion strategies for the Defender

As anticipated, we use game-theory to give a formal definition of the MO-DT prob-

lems outlined in the previous section. In this section we adopt the perspective of the

Defender, defining his goals, his possible actions and deriving the optimum fusion

strategies under some general assumptions.

7.2.1 MO-DT with full knowledge

As a first scenario, we consider a simplified case in which the nodes take the observed

sequences and pass them to the data fusion center as they are, i.e., fml = xnl ,∀l under

H0, and vnl = ynl ,∀l under H1 (vnl = znl for the corrupted sequences). Even if the

above condition is rarely verified in practice, this scenario represents a kind of most

favorable case for the Defender since he can base his decision on all the available

information. In addition, the analysis is rather simple since it is a straightforward

extension of the game considered in Chapter 3. In the following, we will refer to this
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scenario as the MO-DT game with full knowledge. Let us, then, define the strategies

and payoff of the Defender. By adopting the Neyman-Pearson criterion, the possible

strategies for D are all the acceptance regions ensuring a given false positive error

probability. In formulas:

SD = {Λn ∈ 2Pn s.t. PFP ≤ 2−λn}, (7.1)

where Λn is seen as a union of types (a subset of the power set of Pn) due to the

limited resources assumption. Thanks to this assumption, in fact, if an observed

vector sequence stays in Λn, all the other sequences in the same type class must

belong to Λn, hence permitting to define Λn as a union of type classes and hence a

union of types.

As to the payoff, the Defender wishes to minimize the Type II error probability,

which, when no Attacker is present under H1, takes the expression:

uD = −PFN = −
∑

yn:Pyn∈Λn

PY(yn), (7.2)

where with a light abuse of notation PY(yn) indicates the probability that Y emits

the vector sequence yn. When an Attacker is present, we should consider Pg(yn)

in place of Pyn (similarly, for the more general case in which A takes control of

only a subset h of the links). It is worth observing that, in the MO-DT setup

with full knowledge considered in this section, distinguishing between corruption of

the observations or of the summaries is unnecessary (the only difference being the

distortion constraint the Attacker is subject to in the former case). Our main result

regarding the MO-DT game with perfect knowledge is the following.

Theorem 15. The strategy

Λn,∗ =

{
P ∈ Pn : D(P ||PX) < λ− |X |k log(n+ 1)

n

}
(7.3)

is a dominant strategy for D.

Proof. The proof is identical to the proof of Lemma 1 in Chapter 3 and then is

omitted.

In practice the fusion center gathers all the observations and verifies if their joint

empirical pmf is in accordance with the expected statistics of X when H0 holds.

7.2.2 Marginal-based MO-DT

As a second scenario we consider a situation in which the nodes summarize their

observations by passing to the fusion center the first order statistics of the observed
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sequences. In other words, we assume that m = |X | and f
|X |
l = Pxnl , under H0, and

v
|X |
l = Pynl (or v

|X |
l = Pznl for the case with corrupted observations) under H1. As

an example in which such a scenario applies, we may consider the case of a sensor

network in which the nodes observe the system but their link to the fusion center has

a very low transmission rate (hypothetically tending to 0). The nodes, then, transmit

only the empirical pmf of the observed sequences, i.e., the number of times that each

symbol of X appears in the sequence xnl (res. ynl , or znl , under H1 in the case with

corruption of the observations). The number of necessary bits to transmit such an

information is upper bounded by |X | × log2 n, since each symbol may appear in the

sequence at most n times. The rate necessary to code this information is hence
|X |×log2 n

n , which tends to 0 when n → ∞. Another possible justification for this

scenario is the practical difficulty of getting a reliable estimate of the empirical joint

pmf. It makes sense, then, for the Defender to rely only on the empirical marginal

pmf’s, but still exploit the knowledge he has on the joint pmf of X.

Given that decision fusion is carried out by considering only the empirical marginal

distribution of xn, the Defender is forced to choose a region for H0 which is a subset

of the Cartesian product among the marginal types, i.e. Pkn = Pn ×Pn . . .Pn. More

precisely we have:

SD = {Λn ∈ 2P
k
n s.t. PFP ≤ 2−λn}. (7.4)

As to the payoff, it is easy to deduce that D still aims at minimizing the same term

PFN in (7.2). When an Attacker is present, depending on the adversarial scenario

(corrupted observations or nodes), he may corrupt the vector of observations yn or

directly the node summaries v
|X |
l , i.e., the probability distributions Pynl . However,

due to the limit resources assumption, the optimum strategy for D will be the same

regardless the attacking behavior, so we do not need to explicitly focus on a specific

attacking scenario.

Finding the optimal acceptance region requires that we compute the probability

that a source with a joint pmf PX emits a sequence having certain marginals. This

can be done by considering the probability, under PX, of all the joint type classes

having the desired marginals. To elaborate, let us indicate by Mn(P1, P2 . . . Pk) the

set with all joint types with marginals P1, P2 . . . Pk, that is:

Mn(P1 . . . Pk) = {P ∈ Pn :
∑

−i
P (x1 . . . xk) = Pi ∀i}, (7.5)

where
∑
−i indicates summation over all variables xj but xi. Given that the prob-

ability of a generic type class Q under PX decays exponentially fast with exponent

D(Q||PX) and given that the number of types increases polynomially with n, we can

proceed as in Lemma 1 in Chapter 3 to prove the following theorem.
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Theorem 16. The strategy

Λn,∗ =

{
(P1 . . . Pk) ∈ Pkn : (7.6)

min
P∈Mn(P1...Pk)

D(P ||PX) < λ− |X |k log(n+ 1)

n

}

is a dominant strategy for D.

Proof. The proof follows by proceeding as in the proof of Lemma 1 in Chapter 3.

One may wonder how the above result changes when the Defender does not know

PX but only its marginals. This is the case, for instance, of JPEG forensic tools

that analyze separately the DCT coefficients of an image without considering the

dependencies between them. In this case it makes sense to adopt a worse case per-

spective and require that PFP ≤ 2−λn for all joint pmf’s with assigned marginals.

The dominant strategy then includes a double minimization as follows:

Λn,∗ =

{
(P1 . . . Pk) ∈ Pkn : (7.7)

min
PX∈M(PX1

...PXk )
min

P∈Mn(P1...Pk)
D(P ||PX) < λ−|X |k log(n+ 1)

n

}
.

Therefore, given the set of source marginals (PX1
. . . PXk), for any set of observed

marginals (P1 . . . Pk), the Defender considers the closest pair of joint pmfs (in diver-

gence terms) in order to decide if accepting or not H0.

7.2.3 MO-DT based on local decisions

The last scenario we are going to consider assumes that the nodes can send to the

fusion center only one bit of information: formally, m = 1 and f1
l ∈ {0, 1} under

H0 and v1
l ∈ {0, 1} under H1. This is a common situation, occurring, for instance

but not only, when the nodes make their own decision about the state of the system

and data fusion is carried out at the decision level. This scenario also models a

multimedia forensic analysis in which the analyst applies several tools each of which

provides a binary output regarding the origin or the authenticity of the analyzed

document. It is the task of the fusion center to make a final decision by considering

the output of all the tools. In principle we would like to derive the optimal decision

strategies at the nodes and the optimal fusion strategy. This is a complex task, so

we make the simplifying assumption that D adopts an AND fusion strategy, that

is H0 is accepted only if all the nodes accept it. Assuming an AND-based decision

rule is equivalent to imposing that the the overall acceptance region is the Cartesian
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product of the acceptance regions adopted by the nodes, i.e., Λn = Λn1 × Λn2 . . .Λ
n
k .

As in the previous sections, we assume that the nodes can rely only on the first order

statistics of the observed sequences.

According to the above scenario, the space of strategies of the Defender consists

of all k-uple of local acceptance regions, that is:

SD = {(Λn1 . . .Λnk ) : Λni ∈ 2Pn and PFP ≤ 2−λn}. (7.8)

The payoff function is again the false negative error probability. We now prove the

following theorem.

Theorem 17. The strategy

Λn,∗i =

{
Pi ∈ Pn : D(Pi||PXi) < λ− |X | log(n+ 1)

n

}
∀i (7.9)

is a dominant strategy for D.

Proof. The proof consists of two steps. First, we prove that the acceptance region

Λn,∗ resulting from the local decision rules defined in (7.9) is an asymptotically

admissible choice for D (i.e. it satisfies the constraint on Type I error probability).

Then we show that, under the assumption that D adopts an AND fusion rule, the

local acceptance regions in (7.9) minimize the overall Type II error probability. Let

Λ̄∗,ni be the rejection region of H0 at node i. We have:

PFP = PX(xn ∈ Λ̄n,∗) (7.10)

= PX(xn1 ∈ Λ̄n,∗1 OR xn2 ∈ Λ̄n,∗2 OR . . . OR xnk ∈ Λ̄n,∗k )

≤
k∑

i=1

PXi(x
n
i ∈ Λ̄n,∗i ).

Due to the first-order assumption, the acceptance region at each node is a union of

type classes (or equivalently a union of types with denominator n), hence we can

write:

PFP ≤
k∑

i=1

∑

P∈Λ̄n,∗i

PXi(T (P )) (7.11)

a
≤

k∑

i=1

(n+ 1)|X | max
P∈Λ̄n,∗i

PXi(T (P ))

b
≤

k∑

i=1

(n+ 1)|X |2
−nmin

P∈ ¯
Λ
n,∗
i
D(P ||PXi )

c
≤ k(n+ 1)|X |2−n(λ−|X| log(n+1)

n )
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where a and b derive from known upper bound on the number of types with denom-

inator n and on the probability of a type class under a probability measure PXi [90],

and c is a consequence of (7.9). We have thus shown that PFP ≤ 2−n(λ−δn) with

δn → 0 for n→∞, and hence Λn,∗ asymptotically satisfies the constraint on PFP.

We now pass to the second part of the proof to show that the strategy in (7.9) is

indeed optimal. Let Λn be an AND-based acceptance region resulting from any other

set of local regions Λni satisfying the constraint on false positive error probability.

Finally, let xn,∗ belong to Λ̄n. This means that xn,∗i ∈ Λ̄ni for at least one i, say j.

We have:

2−nλ ≥ PX(xni ∈ Λ̄ni , for some i) (7.12)
a
≥ PXj (xnj ∈ Λ̄nj )

=
∑

P∈Λ̄nj

PXj (T (P ))

b
≥ PXj (T (Pxn,∗j ))

c
≥ 1

(n+ 1)|X |
2
−nD(P

x
n,∗
j
||PXj )

,

where a is obtained by observing that the probability of a union of events is always

larger than the probability of one such event, b holds since we have assumed that

Λ̄nj contains at least xn,∗j (and the corresponding type class), and c derives from the

usual lower bound on the probability of a type class [90]. By considering the first and

the last term in (7.12), we see that xn,∗ ∈ Λ̄n,∗ and hence Λn,∗ ⊆ Λn. This shows

that any other acceptance region Λn satisfying the false positive constraint results in

a higher false negative probability, thus proving the optimality of Λn,∗.

In practice, according to Theorem 17, H0 is accepted only if the empirical marginals

of the sequences observed by the nodes are in accordance with the system model un-

der H0. Moreover, somewhat expectedly, D does not exploit the knowledge of the

joint pmf PX, the optimum decision rule depending only on PXi .

A unifying, and very important, characteristic of all the scenarios considered in

this section, is that the requirement that PFP tends to zero exponentially fast with

decay exponent λ and the adoption of a decision rule based on first order statistics

already define the optimum Defender’s strategy regardless of the strategy chosen by

Attacker, thus resulting in the existence of a dominant strategy for D. Moreover, the

dominant strategy does not depend on PY, that is the statistical characterization of

the system when H0 does not hold, making such a knowledge un-necessary.
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7.3 Optimal Attacker’s strategies

Having derived the optimal strategies for the Defender, we now adopt the perspective

of the Attacker. As for the DT game in Chapter 3, the existence of a dominant

strategy for D makes it possible to study the optimal Attacker’s strategy by knowing

that the acceptance region adopted by D is equal to Λn,∗. Together with Λn,∗, A’s

optimum strategy defines the equilibrium point of the game, which, because of the

dominance of D’s strategy, is the only rationalizable equilibrium of the game.

7.3.1 Strategy space of the Attacker

As a first step, we must define the space of strategies of A and the information he

has access to. As detailed in Section 7.1, A acts only when H1 holds (H0 does not

hold) with the aim of inducing a Type II error. In order to do so, he corrupts either

the observation sequences (MO-DT with corrupted observations), or the summaries

sent by the nodes to the fusion center (MO-DT with corrupted nodes), as depicted

in Figure 7.3 and 7.4 respectively.

SA for MO-DT with corrupted observations

The set of strategies available to A for the MO-DT game with corrupted observations

is given by:

SA = {g(·) : d(zn,yn) ≤ nL}, (7.13)

where L is the maximum allowed average distortion for the vector of observations

at each time instant. Alternatively, we can impose independent constraints on the

distortion introduced in each of the observed sequences:

S ′A = {g(·) : d(znj , y
n
j ) ≤ nLj ∀j}, (7.14)

where Ll is the maximum allowed average per letter distortion at node l.

Similar definitions hold when A can corrupt up to h sequences.

With the exception of the case of MO-DT with full knowledge, in which the

fusion center receives the whole sequence of observed vectors xn, res. yn (or zn),

and then looks at the joint pmf of the observations xi, res. yi (or zi), in the case

of MO-DT based on summaries (marginals or local decisions), the information on

the joint relations between the observations is lost in the data received by the fusion

center. For these setups, we can (equivalently) adopt the ‘transportation’ perspective

and rephrase the attacking strategy as a vector of transportation maps SnY Z,j(·, ·; ynj ),

j = 1, .., k 4. Accordingly, the set of attacking strategies in (7.15) can be rewritten

4We are (reasonably) assuming that the distance d is an additive pair-wise distance, that is

d(zn,yn) =
∑
j d(znj , y

n
j ) =

∑
j

∑
i d(zj,i, yj,i).
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as

SA = {(SnY Z,1(·, ·), ...., SnY Z,k(·, ·)), s.t. SnY Z,j(·, ·) ∈ A(Pynl , Lj), j = 1, ..., k

∀(L1, ..Lk) s.t.
∑

j

Lj = L},

(7.15)

In the case of independent distortion constraints, the set in (7.16) rephrased in terms

of transportation maps takes the following expression:

S ′A = {(SnY Z,1(·, ·), ...., SnY Z,k(·, ·)), s.t. SnY Z,j(·, ·) ∈ A(Pynj , Lj), ∀j}. (7.16)

SA for MO-DT with corrupted nodes

In the case of corrupted nodes the Attacker has much more freedom, since in this

case he can work directly on the feature sequences vml . All the more that, due to

the absence of the distortion constraint, he can replace the feature sequences of the

attacked nodes at will. The only applicable constraint is that he can substitute up to

h sequences. In the case of chosen corrupted nodes, the space of strategies includes

also the choice of the to-be attacked nodes.

Having defined SA, we must specify the information available to A. To do so,

we adopt a worst case assumption and consider an omniscient Attacker, who knows

the system status (this is implicit in the Neyman-Pearson setup) and can observe all

observation and feature sequences, even those that he is not allowed to modify.

As to the payoff, arguably, the Attacker’s goal is to maximize the Type II error

probability, that is uA = −uD = PFN, thus leading to zero-sum games.

7.3.2 Optimum attack for MO-DT with full knowledge

Let us consider the case of corrupted observations first. Given the optimal Defender’s

strategy in (7.3), it is easy to realize that the optimum strategy for A is to modify

the observed sequences so that the divergence between their empirical joint pmf and

PX is as small as possible while satisfying the distortion constraint, that is:5

g∗(yn) = arg min
zn:d(zn,yn)≤nL

D(Pzn ||PX). (7.17)

This result is analogous to Theorem 1 in Chapter 3 (see equation (16)), the only

difference being that vector sources are involved instead of scalar ones. We point

5Only the case of global distortion constraint is considered, the extension to the case of indepen-

dent constraints being straightforward.
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out that, in principle, A could reach the same goal by using a lower D, stopping as

soon as the pmf gets inside the acceptance region. Given our definition of the game,

however, such a situation would not result in a higher payoff. This is the way to

save as much distortion as possible which however, in our case, is unnecessary. A

similar result holds when the distortion constraint applies to each observed sequence

separately. Note that, even if theoretically simple, solving the minimization in (7.17)

may be computationally very expensive, as already pointed out in Chapter 3 for the

scalar case.

In the case of MO-DT with corrupted nodes, the situation is by far more favor-

able to the Attacker, since he has to solve the minimization problem without any

constraint. It is obvious, then, that A can pass to the fusion center completely fake

sequences for which the divergence between the empirical joint pmf and PX is arbi-

trarily small. Such sequences will pass the test in (7.3), thus always resulting in a

false negative error.

The situation is different when A can attack only h out of k nodes. Even in the

most favorable case of corrupted nodes, A can not control the empirical marginals of

the non-attacked nodes and the joint pmf between them. If such marginals, or joint

pmf, under H1 are different from those under H0, it may still be possible for the

Defender to reliably distinguish between the two hypothesis (though with a higher

PFN). It is also evident that, in the case of chosen corrupted nodes, A will attack the

nodes for which the pmf’s of the observations under H0 and H1 differ most in terms

of divergence.

7.3.3 Optimum attack for Marginal-based MO-DT

Even in this case the optimal attacking strategy follows directly from the knowledge of

D’s dominant strategy. In fact, for the case of corrupted observations, from equation

(7.6), it follows that the optimum attacking strategy is given by

g∗(yn) = arg min
zn:d(zn,yn)≤nL

min
P∈Mn(Pzn1

...Pzn
k

)
D(P ||PX). (7.18)

In this case of MO-DT based on marginals, we can adopt the alternative view of

the attacking strategy in terms of vector of transportation maps, and rephrase the

optimal attack as

(Sn,∗Y Z,j(·, ·))kj=1 = arg min
(Sn,∗Y Z,1(·,·),....,Sn,∗Y Z,k(·,·))∈SA

min
P∈Mn(Pzn1

...Pzn
k

)
D(P ||PX). (7.19)

A similar result holds when equation (7.7) is applied instead of (7.6).

The situation is more favorable when the Attacker can corrupt the output of the

nodes, since in this case he has no distortion constraint to fulfill and then he can
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choose directly the pmf’s P1 . . . Pk that minimize minP∈Mn(P1...Pk)D(P ||PX). In

fact, by letting w
|X |,∗
i = Pi = PXi for all i, we have a perfect attack, since in this

case minP∈Mn(P1...Pk)D(P ||PX) is equal to 0. Of course, this is not possible when

the Attacker controls only h nodes, in which case the optimum attack boils down to

the following minimization (w.l.o.g. we assume that A attacks the first h nodes):

P ∗ = arg min
P∈Mn(...,Pyn

h+i
...Pyn

k
)
D(P ||PX), (7.20)

where Mn(. . . , Pynh+i
. . . Pynk ) denotes the set with all joint pmf’s with only the last

n−h marginals fixed. Once the minimization is solved, A sets w
|X |,∗
i = P ∗i , ∀i = 1...h.

Finally, when the Attacker chooses which nodes to attack, a further minimization

is required to minimize (7.20) over all possible subsets of attacked nodes.

7.3.4 Optimum attack for MO-DT based on local decisions

Once again, the optimum Attacker’s strategy follows directly from the knowledge of

the dominant strategy of the Defender. By considering Theorem 17, in fact, it is easy

to conclude that the optimum strategy for A in the case of corrupted observations is:

g∗(yn) = arg min
zn:d(zn,yn)≤nL

max
i
D(Pzni ||PXi). (7.21)

or, equivalently, in terms of transportation maps

(Sn,∗Y Z,j(·, ·))kj=1 = arg min
(Sn,∗Y Z,1(·,·),....,Sn,∗Y Z,k(·,·))∈SA

max
i
D(Pzni ||PXi). (7.22)

As before, the derivation of the optimum attack may be computationally expensive

due to the presence of the distance constraint. If the squared Euclidean distance is

adopted, a kind of waterfilling approach [125] can be applied. The Attacker, in fact,

can operate as follows: choose i such that D(Pyni ||PXi) is maximum, and compute

zni such that D(Pzni ||PXi) = λ− |X | log(n+ 1)/n− ε (with ε arbitrarily small), and

the squared Euclidean distance between zni and yni is minimum. If the distortion is

lower than nL, go on with the next i such that D(Pyni ||PXi) is maximum, and iterate

the above procedure until all D(Pyni ||PXi) are lower than the decision threshold or

when the maximum distortion is reached.

A considerably simpler situation is obtained when separate distortion constraints

apply to the different sequences. In this case in fact, the Attacker has to solve at

most k independent scalar minimizations.

To conclude, we consider the case of corrupted nodes. In this case the optimum

attack is trivial, since the Attacker needs only to set the output of all the nodes
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under his control to 0, namely w1,∗
i = 0,∀i = 1 . . . h. Note however that, if A does

not control all the nodes, this may not be enough to make the final decision fail, since

the fusion center accepts H0 only if all the nodes accept it.

In the case of chosen attacked nodes, A will attack the nodes for which the

marginals under H1 differ most (in terms of divergence) from those under H0.

We point out that this scenario is somewhat different from the usual case of de-

cision fusion in the presence of Byzantines [124]. In that case, in fact, the Byzantine

nodes do not have a full knowledge of system status (which they know only through

the observation of xn) and flip the output of the local decisions with a certain prob-

ability. In addition they usually act both when H0 holds and when it doesn’t.

7.4 Discussion and conclusions

Having derived the equilibrium point of several versions of the MO-DT game, we

now draw some conclusions and summarize the main lessons that we learnt from the

analysis developed in this chapter.

Inspired by the theoretical analysis of Chapter 3, we devised a theoretical frame-

work for the problem of multiple observation binary detection in presence of adver-

saries with the taxonomy of several kinds of scenarios referring to different practical

applications. With regard to the specific results we have proven, the most interesting

one regards the existence of a dominant strategy for the Defender. Accordingly, the

Defender may choose its strategy without caring about the Attacker: for instance,

he would get no advantage from the knowledge of the attacked nodes, let alone from

any attempt to discover them. This marks an important difference with respect to

previous works in the field in which the Defender tries to distinguish between honest

and malicious nodes (for some examples of such an approach see [126, 127]). In hind-

sight, the reason for such behavior, is again (as it was for the case of the DT game

studied in the previous chapter) the adoption of a Neyman-Pearson setup wherein

the Attacker acts only when H0 does not hold, while the Defender is asked to satisfy

a requirement on PFP. Coupled with the adoption of an asymptotic setup, this results

in the existence of a dominant strategy for D that does not need to know whether

a node (or an observation) is controlled by the adversary or not. It goes without

saying that in some applications the assumptions we made may not be reasonable,

thus opening the way to different formulations of the MO-DT game.

Having determined the equilibrium point of the various games, the next step would

be to evaluate the payoff at the equilibrium so to know who is going to win the game.

Given the pmf’s under H0 and H1 (res. PX and PY), and a distortion constraint

L (in the corrupted observations setup), this corresponds to determine whether the

probability of a Type II error ultimately tends to 0 or 1 when n → ∞, in a similar
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way to the case of DT game in Chapter 3. Doing so for λ→ 0 would finally permit

us to decide whether the two hypothesis H0 and H1 are ultimately distinguishable or

not, when the Attacker is allowed to attack h observation sequences (or nodes) with

a maximum per letter distortion L.





Chapter 8

Detection Games in a Two-Side Attack
Scenario

In the previous chapters we studied many variants of the attack-detection game under

the one-side attack scenario. There are many situations in which it is reasonable to

assume that the Attacker is active under both hypotheses with the goal of confusing

the Defender and inducing a wrong decision, that is, causing both false positive and

false negative decision errors. For instance, in applications of camera fingerprint

detection, an adversary might be interested to remove the fingerprint from a given

image so that the generating camera would not be identified and, at the same time,

to modify the specific fingerprint to frame an innocent victim, [98, 128].

In this chapter, we focus on a scenario in which the Attacker acts under both

hypotheses, namely the two-side attack scenario, and address both the case in which

the underlying hypothesis is known to the Attacker and the case in which it is not.

We define and solve two versions of the game, corresponding to two different decision

setups: in the former, we assume that the Defender bases its decision on an adversary-

aware N-P test; in the latter, a Bayesian approach is adopted, where the role of the

two error probabilities is symmetrized, and the decision is based on the minimization

of a Bayesian risk function.

To be able to study the Defender-Attacker interaction in the two-side attack sce-

nario, we focus on an asymptotic version of the games for which we prove the existence

of an attacking strategy which is both dominant (i.e., optimal no matter what the

defence strategy is) and universal (i.e., independent of the underlying sources).

This also marks a significant difference with respect to the previous analyses,

where, by focusing on finite (non-asymptotic) setups, the existence of a dominant

strategy was proven only with reference to the Defender.

The chapter is subdivided into two main sections: in the first one (Section 8.1) we

generalize the analysis developed in Chapter 3 for the one-side attack by considering

the possibility for the players to randomize the decision strategies and solving the

asymptotic version of the game. Then, in the second section (Section 8.2) we define

and study the binary detection game under two-side attack.
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xn

yn
H1/PY

H0/PX A0

A1

zn HT [D(H0|zn), D(H1|zn)]

Figure 8.1: Schematic representation of the general adversarial setup with two-

sided attack considered in this chapter. In the case of one-sided attack, channel A0

corresponds to the identity channel, i.e. A0 = I.

8.1 Randomized detection games with one-side at-

tack

Here we generalize the analysis of the detection game with known sources studied in

Chapter 3, where the Attacker is active under H1 only, by considering randomized

detection and attack strategies and focusing on the asymptotic version of the game.

Such analysis introduces new interesting results with respect to Chapter 3; moreover,

it represents the basis for studying the version of the game with two-side attack, which

is the purpose of this chapter. We refer to the generalized version of the detection

game with known sources and randomization of the players’ strategies simply as

detection game with one-side attack, to distinguish it from the case of two-side attack.

As to notation, we use the acronym A-DT to denote such game, where the letter A

stands for ‘asymmetric’ (namely, one-side), as opposed to the symmetric (i.e. two-

side) version defined in the sequel1.

Figure 8.1 illustrates the general two-side attack framework considered in this

chapter. The sequences emitted by discrete memoryless sources PX and PY pass

through two attack channels defined by conditional probability distributions A0 and

A1 respectively.

For the one-side scenario, given a sequence zn observed by the Defender, we have

that zn = xn under H0 (no attack occurs), whereas under H1, zn is obtained as

the output of an attack channel defined by a conditional probability distribution

A1(zn|yn). We denote by Qi(·) the probability distribution of zn under hypothesis

Hi; then, we have QX(zn) = PX(zn) and QY (zn) =
∑
yn PY (yn)A1(zn|yn).

With regard to the Defender, we assume a possibly randomized decision strategy,

where D(Hi|zn) designates the probability of deciding in favor of Hi, i = 0, 1, given

1We leave implicit in the notation the fact that the sources are fully known, as the case with

training data is not considered in this chapter.
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the observed sequence zn 2.

The adoption of randomized strategies calls for a redefinition of the expression of

the error probabilities. In particular, the probability of a false positive decision error

is given by

PFP(D) =
∑

zn

PX(zn)D(H1|zn), (8.1)

whereas the false negative error probability assumes the form:

PFN(D,A1) =
∑

yn,zn

PY (yn)A1(zn|yn)D(H0|zn). (8.2)

According to the analysis in Chapter 3, due to the limited resources assumption,

the Defender makes a decision based on first order empirical statistics of zn, which

implies that D(·|zn) depends on zn only via its type class T (Pzn). Concerning the

attack, in order to limit the amount of distortion introduced, as in the previously

studied games, we consider a distortion constraint. Specifically, for some chosen

permutation-invariant distortion function d(·, ·) and maximum per-symbol distortion

L, we define the class of admissible channels C as the class of channels A that assign

zero probability to output sequences such that the distance from the input is larger

than the prescribed maximum value; i.e., A(wn|vn) = 0 ∀wn ∈ Xn s.t. d(vn, wn) >

nL, ∀vn ∈ Xn. Hence, we require that the attack channel A1 belongs to C.

8.1.1 Definition of the A-DT game

We now define the generalized detection game with one-side attack.

Definition 13. The A-DT(SD,SA,u) game is a zero-sum, strategic game, played by

a Defender and an Attacker, defined as follows:

• The set of strategies of the Defender is the class SD of randomized decision

rules D(·|·) that satisfy the following properties:

(i) D(H0|zn) = D(H0|zn′) whenever zn′ ∈ T (zn), i.e. zn′ is a permutation of

zn 3.

(ii) PFP(D) ≤ 2−λn for a given prescribed λ > 0.

• The set of strategies for the Attacker is the class SA of attack channels A1 with

the property that d(yn, zn) > nL implies A1(zn|yn) = 0; that is SA ≡ C.

2With a slight abuse of notation, we use letter D, already adopted for indicating the Defender,

to denote the probabilistic decision; however, the meaning is always recoverable form the context.
3Limiting the decision to the first order statistics corresponds to assume that D(·|zn) is invariant

to permutations of zn.
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• The payoff function: u(D,A) = PFN(D,A), where the Attacker’s perspective is

adopted (the Attacker is in the quest for maximizing u(D,A) while the Defender

wishes to minimize u(D,A)).

Discussion

We point out again that the A-DT game is an extension of the DTks game, since

in the A-DT both players are allowed to employ randomized strategies, while in the

DTks only deterministic strategies were considered. Specifically, in the definition of

the DTks game, the Defender’s strategies were confined to deterministic decision rules

whereas for the attack we considered deterministic functions of the to-be-attacked

sequence (or, equivalently, deterministic transportation maps). As already pointed

in Chapter 3, considering only deterministic strategies for the Attacker is not a lim-

itation. In fact, because of the existence of a dominant strategy for the Defender

(which then corresponds to a deterministic test function, see Lemma 3.12), even by

allowing the Attacker to play randomized attacking strategies, the optimum strategy

for the Attacker would be the same. Then, the randomization of the defence strategy

is the only real difference between the DTks and the A-DT setup.

8.1.2 Asymptotic solution of the A-DT game

Studying the A-DT game is a cumbersome task; so, we focus on the asymptotic

behavior of the A-DT game, that is, the behavior when the length of the sequence n

tends to infinity.

Regarding the notation, for two positive sequences {an} and {bn}, we use the

compact notation an
·
= bn to indicate that limn→∞ 1/n log (an/bn) = 0. Similarly,

an
·
≤ bn designates that lim supn→∞ 1/n log (an/bn) ≤ 0.

We start by asserting the following lemma:4

Lemma 7. The strategy

D∗(H1|zn)
4
= 2−n[λ−D(Pzn‖PX)]+ , (8.3)

is an asymptotically dominant strategy for the Defender.

Proof. The asymptotic optimality of D∗(·|zn) follows directly from the false positive

4We say that a strategy is asymptotically optimum (or dominant) strategy if the strategy is

optimum (dominant) with respect to the exponent of the payoff, that is, the false negative error

exponent.
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constraint:

e−λn ≥
∑

zn′

PX(zn′)D(H1|zn′) ≥ |T (zn)| · PX(zn)D(H1|zn)

·
≥2−nD(Pzn‖PX)D(H1|zn), ∀zn, (8.4)

where, in the second inequality, we have exploited the permutation–invariance of

D(H1|zn) and the memoryless nature of PX , which implies PX(zn) = PX(zn′) when-

ever zn′ is a permuted version of zn. It follows that

D(H1|zn)
·
≤ min{1, 2−n[λ−D(Pzn‖PX)]} = D∗(H1|zn).

By using the method of types [89], it is easy to see that D∗ satisfies the false positive

constraint within a polynomial factor. Since D∗(H1|zn)
·
≥ D(H1|zn), obviously,

D∗(H0|zn)
·
≤ D(H0|zn), and so, PFN(D∗, A1)

·
≤ PFN(D,A1) for every attack channel

A1.

According to Lemma 7, the best strategy for D is dominant, and then it is the

optimum strategy regardless of the attacking channel. Furthermore, we observe that

the optimum decision function asymptotically tends to a deterministic function which

essentially corresponds to the Hoeffding test [92], in line with the results obtained

in Chapter 3, where the analysis is confined to deterministic decision rules. As the

optimum strategy D∗ depends only on PX , but not on PY (this was also the case for

the optimum acceptance region in the DTks setup), it is said to be semi–universal.

We now move on to the analysis of the attack. One of the most interesting results

of this chapter is stated by the following theorem.

Theorem 18. For any sequence yn, let cn(yn) denote the reciprocal of the total

number of conditional type classes T (zn|yn) that satisfy the constraint d(yn, zn) ≤
nL, namely, admissible conditional type classes5. The attack channel

A∗(zn|yn) =

{
cn(yn)
|T (zn|yn)| d(yn, zn) ≤ nL
0 elsewhere

, (8.5)

is an asymptotically dominant strategy for the Attacker.

Proof. Let us take an arbitrary admissible channel A. For a fixed yn, let us consider

the probability that the channel assign to the sequences zn in T (zn|yn), that is

5From the method of the types, 1 ≥ cn(yn) ≥ (n+ 1)−|A|·(|A|−1) for any yn (the total number

of type classes is polynomial in n) [90].
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A{zn ∈ T (zn|yn)|yn}. We can define a channel Ā which spreads out uniformly this

quantity among all the zn ∈ T (zn|yn):

Ā(zn|yn) =
A{zn′ ∈ T (zn|yn)|yn}

|T (zn|yn)| . (8.6)

Then,

PFN(D,A) =
∑

yn

PY (yn)
∑

zn

D(H0|zn)A(zn|yn)

=
∑

yn,zn

PY (yn)
∑

T (zn|yn)

∑

zn′∈T (zn|yn)

D(H0|zn′)A(zn′|yn)

=
∑

yn,zn

PY (yn)
∑

T (zn|yn)

D(H0|zn)
∑

zn′∈T (zn|yn)

A(zn′|yn)

=
∑

yn,zn

PY (yn)
∑

T (zn|yn)

D(H0|zn)A{zn ∈ T (zn|yn)|yn}

=
∑

yn,zn

PY (yn)
∑

T (zn|yn)

D(H0|zn)|T (zn|yn)| · Ā(zn|yn)

=
∑

yn,zn

PY (yn)
∑

T (zn|yn)

D(H0|zn)
∑

zn′∈T (zn|yn)

Ā(zn′|yn)

=
∑

yn,zn

PY (yn)
∑

zn

D(H0|zn)Ā(zn|yn)

= PFN(D, Ā). (8.7)

Then, for any probability density A(zn|yn), the flattened density Ā(zn|yn) achieves

the same PFN.

From (8.6) we argue that, for every admissible T (zn|yn)

Ā(zn|yn) ≤ 1

|T (zn|yn)| = A∗(zn|yn)/cn(yn), (8.8)

which implies that, for every permutation–invariant strategy D, PFN(D,A) ≤ (n +

1)|A|·(|A|−1)PFN(D,A∗), or equivalently

PFN(D,A∗) ≥ (n+ 1)−|A|·(|A|−1)PFN(D,A). (8.9)

We conclude that A∗ minimizes the error exponent of PFN(D,A) among all the chan-

nels A ∈ SA and for every D ∈ SD.

According to the theorem, given a sequence yn, in order to generate an attacked

sequence zn which undermines the detection (with the prescribed maximum allowed
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yn
T (zn1 |yn)

zn2

T (zn2 |yn)

zn1

(D(H0|zn)= cost)

PX

set of admissible conditional
type classes

(zn : d(yn, zn) ≤ nL)

Figure 8.2: Graphical interpretation of the idea behind Theorem 18.

distortion), the best way is to choose an admissible conditional type class according

to the uniform distribution (i.e., at random) and then select at random a sequence

zn within this class.

Figure 8.2 should help to get the intuition behind the optimum attack behavior:

since the number of conditional type classes is only polynomial in n, the random

choice of the conditional type class does not affect the exponent of the error proba-

bilities; besides, since the decision is the same for all sequences within a conditional

type class (because of the limited resources assumption), the choice of the sequence

inside this set is also immaterial.

It is worth stressing that, according to Theorem 18, strategy A∗ is dominant for

the Attacker, and so the optimum attacking channel does not depend on the decision

strategy D(·|zn). As a further result, Theorem 18 states that the optimum attacking

strategy is universal, i.e., it depends neither on PX nor on PY . The existence of

dominant strategies for both players is a strong result which directly leads to the

following result.

Theorem 19. The profile (D∗, A∗) is an asymptotically dominant equilibrium for

the A-DT game.

We observe that the price to pay for the generalization with respect to the DTks
setup (Theorem 1 and Corollary 1) is that the optimality of the strategies and then

the equilibrium point holds only asymptotically.

Finally, we remark that the attack channel in (8.5) is an asymptotically opti-

mum channel even in the setup with deterministic decision considered in Chapter 3.

However, in that case, the optimum attack can be found for finite n.
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8.2 Detection games with two-side attack

We now consider the detection game when the Attacker is active under both hypothe-

ses. This is the case when the goal of the Attacker is to distort the given sequence, no

matter whether it has emerged from PY or not, in order to induce a decision error.

In principle, we must distinguish between two cases: in the first one, the Attacker

is aware of the underlying hypothesis (hypothesis-aware attacker), whereas in the

second case, he is not (hypothesis-unaware attacker).

In the hypothesis-aware case, the attack strategy is defined by two attack channels:

A0 (carried out when H0 holds) and A1 (carried out under H1), whereas, in the

hypothesis-unaware case, the attack strategy consists of only an attack channel A,

which is ’blindly’ played under both hypothesis.

By focusing for the moment on the hypothesis-aware case, the attack induces the

following distributions on the observed sequence zn: QX(zn) =
∑
xn PX(xn)A0(zn|xn)

and QY (zn) =
∑
yn PY (yn)A1(zn|yn). The false positive probability becomes:

PFP(D,A0) =
∑

xn,zn

PX(xn)A0(zn|xn)D(H1|zn), (8.10)

while for the false negative probability, equation (8.2) continues to hold.

The schematic representation of the adversarial binary detection with two-side

(or symmetric) attack is given in Figure 8.1. Clearly, the one-side (or asymmetric)

case is a degenerate case of the two-side one (where A0 is the identity channel).

By reasoning as in the proof of Theorem 18, we now show that the asymptot-

ically optimum attack strategy is independent on the underlying hypothesis. As a

consequence, the best attack under the fully active regime is to apply the same A∗

regardless of which hypothesis holds. Due to this property, it becomes immaterial

whether the Attacker is aware or unaware of the true hypothesis.

To be more specific, let u denote a generic payoff function of the form

u = γPFN(D,A1) + βPFP(D,A0), (8.11)

where β and γ are given positive constants, possibly dependent on n. The follow-

ing theorem asserts the asymptotic dominance of the channel A∗ w.r.t. the payoff

function u for every choice of β and γ.

Theorem 20. Let A∗ denote the attack channel in (8.5). Among all pairs of channels

in C, the pair (A∗0, A
∗
1) with A∗0 = A∗1 = A∗ minimizes the asymptotic exponent of u

for any γ, β ≥ 0 and any permutation–invariant decision rule D(·|·).



8.2. Detection games with two-side attack 173

Proof. Due to the memorylessness of PY and the permutation-invariance of D(H0|·),
and by reasoning as we did in Theorem 18, we know that, for every A1 ∈ C, we have:

PFN(D,A∗) ≥ (n+ 1)−|A|·(|A|−1)PFN(D,A1), (8.12)

and then A∗ minimizes the error exponent of PFN(D,A1).

A similar argument can be applied to the FP probability; that is, from the mem-

orylessness of P0 and the permutation–invariance of D(H1|·), we have:

PFP(D,A∗) ≥ (n+ 1)−|A|·(|A|−1)PFP(D,A0), (8.13)

for every A0 ∈ C. Accordingly, A∗ minimizes the asymptotic exponent of PFP(D,A0)

as well. We then have:

γPFN(D,A1) + βPFP(D,A0)

≤ (n+ 1)|A|·(|A|−1)(γPFN(D,A∗) + βPFP(D,A∗))
.
= γPFN(D,A∗) + βPFP(D,A∗), (8.14)

for every A0 ∈ C and A1 ∈ C. Notice that, since the asymptotic equality is defined

in logarithmical scale, relation (8.14) holds whichever is the dependence of γ and

β on n. Hence, A0 = A1 = A∗ minimizes the asymptotic exponent of u for any

permutation–invariant decision rule D(H0|·) and for any γ, β > 0.

We point out that, whenever γ (res. β) is equal to 0, all the attacking strategies

A1 (res. A0) are equivalent, in the sense that all the pairs (A∗, A1) for every A1 (res.

(A0, A
∗), for every A0) lead to the same asymptotic payoff.

From Theorem 20 we deduce that, whenever an adversary aims at maximizing a

payoff function of the form (8.11), and as long as the Defender’s strategy is confined to

the analysis of the first order statistics, A∗ is the asymptotically optimal attack under

either hypothesis. As a consequence, as anticipated, we do not need to distinguish

between hypothesis-aware and unaware attackers. In the sequel, without any loss of

generality, we confine our analysis to the case of hypothesis-aware Attacker.

As a final notice, it is worth pointing that the result stated by Theorem 20 gener-

alizes the one stated by Theorem 18 in the previous section, where the optimality of

A∗ was proved for the case u = PFN (which correspond to definition 8.11 with γ = 1

and β = 0).

Turning the attention to the Defender, the main difficulty of the two-side attacking

scenario is that, not only PFN , but also PFP depends on the attack, thus forcing us

to reconsider the constraint on PFP .

In the sequel, we consider two different decision setups which lead to different

formulations of the detection game with two-sided attack, namely the S-DT game.
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8.2.1 The S1-DT game: Neyman-Pearson approach

As first case, we consider the Neyman-Pearson test. To define the S-DT game in this

setup, we assume that the Defender adopts a conservative approach by imposing a

false positive constraint pertaining to the worst case attack under H0. Specifically,

we define the game as follows.

Definition 14. The S1-DT(SD,SA,u) game is a zero-sum, strategic game defined as

follows

• The set of strategies for the Defender is the the class SD of randomized decision

rules that satisfy

(i) D(H0|zn) = D(H0|zn′) whenever zn′ ∈ T (zn).

(ii) maxA0∈C PFP(D,A0) ≤ 2−nλ for a prescribed λ > 0.

• The set of strategies for the Attacker is the class SA of the pairs of attack

channels (A0, A1) such that A0, A1 ∈ C.

• The payoff function is u(D,A) = PFN(D,A1).

Having already determined the best attacking strategy, we focus on the best

Defender’s strategy. We can prove the following lemma:

Lemma 8. The strategy

D∗(H1|zn)
4
=2
−n[λ−minxn:d(xn,zn)≤nLD(Pxn ||PX)−|A|2 log(n+1)

n ]
+ (8.15)

is asymptotically dominant for the Defender.

Proof. Before providing the (very technical) full proof, we first explain the intuition

behind the lemma. We know from Lemma 7 that for the case of no attack under

H0, the asymptotically optimal detection rule is based on D(Pxn‖PX). In the setup

of the A-DT game, where the Attacker is active also under H0, the Defender is

subject to a constraint on the maximum false positive probability over SA. We know

from Theorem 20 that, in the asymptotic exponent sense, this maximum value is

achieved when A0 = A∗. From (8.5), we see that A∗ assigns a probability which

is the reciprocal of a polynomial term at each conditional type class that satisfies

the distortion constraint (admissible conditional type class). Then, in order to be

compliant with the constraint, for a given sequence zn, the Defender has to consider

the minimum of D(Pxn‖PX) over all the type classes T (xn|zn) which satisfy the

distortion constraint, or equivalently, all the sequences xn such that d(xn, zn) ≤ nL.

The proof goes along the following lines: we first show that PFN(D∗, A1)
·
≤

PFN(D,A1) for every D ∈ SD; then, by proving that maxA PFP(D∗, A) fulfills the
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false positive constraint, it follows that D∗(·|zn) is the optimum defence strategy

(asymptotically). By exploiting the memorylessness of PX and the permutation in-

variance of D(H1|zn), we can write:

2−λn ≥max
A

∑

xn,zn

PX(xn)A(zn|xn)D(H1|zn)

≥
∑

zn

(∑

xn

PX(xn)A∗(zn|xn)

)
D(H1|zn)

=
∑

zn


 ∑

xn:d(xn,zn)≤nL
PX(xn) · cn(xn)

|T (zn|xn)|


D(H1|zn)

≥(n+ 1)−|X|·(|X |−1)
∑

zn


 ∑

xn:d(xn,zn)≤nL
· PX(xn)

|T (zn|xn)|


D(H1|zn)

(a)

≥ (n+ 1)−|X|·(|X |−1)|T (zn′)|
(

max
xn:d(xn,zn′)≤nL

|T (xn|zn′)| · PX(xn)

|T (zn′|xn)|

)
D(H1|zn′)

=(n+ 1)−|X|·(|X |−1)D(H1|zn′) max
xn:d(xn,zn′)≤nL

PX(xn) · |T (xn)|

≥D(H1|zn′) max
xn:d(xn,zn′)≤nL

1

(n+ 1)|X |2·(|X |−1)
2−nD(Pxn ||PX)

=
D(H1|zn′)

(n+ 1)|X |2·(|X |−1)
2−nminxn:d(xn,zn′)≤nLD(Pxn ||PX), (8.16)

where in (a) we exploited the permutation invariance of the distance function d. Since

the inequality holds for any zn′, we argue that

D(H1|zn) ≤ 2−n[λ−minxn:d(xn,zn)≤nLD(Pxn ||PX)] (8.17)

and then

D(H1|zn)
·
≤ min

{
1, 2−n(λ−minxn:d(xn,zn)≤nLD(Pxn ||PX))

}
= D∗(H1|zn). (8.18)

Consequently, D∗(H0|zn)
·
≤ D(H0|zn) for every zn, and so, PFN(D∗, A1)

·
≤ PFN(D,A1)

for every A1. For convenience, let us name kn(zn) the expression at the exponent

in (8.18); so, D∗(H1|zn) = min{1, 2−n·kn(zn)}. Below we show that D∗(H1|zn) sat-

isfies the constraint, up to a polynomial term in n, i.e., it satisfies the constraint
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asymptotically.

max
A
PFP(D∗, A)

≤ (n+ 1)|X |·(|X |−1)PFP(D∗, A∗)

= (n+ 1)|X |·(|X |−1)
∑

xn,zn

PX(xn)A∗(zn|xn)D∗(H1|zn)

= (n+ 1)|X |·(|X |−1)
∑

(xn,zn):d(xn,zn)≤nL
PX(xn) · cn(xn)

|T (zn|xn)| ·D
∗(H1|zn)

≤ (n+ 1)|X |·(|X |−1)
∑

(xn,zn):d(xn,zn)≤nL

PX(xn)

|T (zn|xn)| ·D
∗(H1|zn)

≤ (n+ 1)2|X |·(|X |−1)
∑

zn

(
max

xn:d(xn,zn)≤nL
|T (xn|zn)| · PX(xn)

|T (zn|xn)|

)
D∗(H1|zn)

= (n+ 1)2|X |·(|X |−1)


 ∑

Pzn :kn(zn)≥0

2−n·kn(zn)

(
max

xn:d(xn,zn)≤nL
|T (xn)| · PX(xn)

)

+
∑

Pzn :kn(zn)<0

(
max

xn:d(xn,zn)≤nL
|T (xn)| · PX(xn)

)


≤ (n+ 1)2|X |·(|X |−1)


 ∑

Pzn :kn(zn)≥0

2−nλ+

+
∑

Pzn :kn(zn)<0

2−nminxn:d(xn,zn)≤nLD(Pxn ||PX)




≤ (n+ 1)(|X |2+2|X |)·(|X |−1)+|X |2−nλ. (8.19)

Lemma 8 asserts the dominance and the semi-universality of the defence strategy,

which depends only on the source PX .

With regard to the attack, since the payoff of the game is a special case of (8.11)

with γ = 1 and β = 0, the optimum pair of attacking channels is given by Theorem

20 and is (A∗, A∗). We point out that, as a consequence of Theorem 20, the optimum

attacking strategy is fully universal: the Attacker does not need to know either

sources (PX and PY ) or the underlying hypothesis.

We observe that, since the Defender adopted a conservative approach to ensure

the constraint on the false positive, the pairs (A0, A
∗), for every A0 ∈ SA, are all

equivalent, that is, they lead to the same payoff, and then the Attacker does not even
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need to carry out the attack under the null hypothesis. Therefore, if the Attacker

is aware of the true hypothesis, then he could play any channel under H0. 6 In the

N-P decision setup, the sole fact that the Attacker is allowed to attack under H0

forces the Defender to take countermeasures that ultimately make the attack under

H0 useless.

Due to the existence of dominant strategies for both players, we can immediately

state the following theorem:

Theorem 21. Profile (D∗, (A∗, A∗)) is an asymptotically dominant equilibrium for

the S1-DT game.

8.2.2 The S2-DT game: Bayesian approach

In this section, we study another version of the S-DT game.

Specifically, we assume that the Defender follows a less conservative approach

and consider a Bayesian decision setup. This is a quite natural approach to follow

for dealing with the symmetric attack scenario7. Accordingly, the Defender tries to

minimize a particular Bayes risk function. The resulting game is defined as follows:

Definition 15. The S2-DT(SD,SA,u) game is a zero-sum, strategic game defined by

• The set of strategies for the Defender is the class SD of randomized decision

rules that satisfy D(H0|zn) = D(H0|zn′) whenever zn′ ∈ T (zn).

• The set of strategies for the Attacker is the same set as before;

• The payoff function:

u = PFN(D,A1) + 2anPFP(D,A0), (8.20)

for some positive a.

We observe that, in the definition of the payoff, the parameter a controls the

tradeoff between the two error exponents; we anticipate that the optimum strategy

D will be the one making the difference between the two error exponents exactly

equal to a. Notice also that, with definition (8.20), we are implicitly considering

for the Defender only the strategies D(·|zn) such that PFP(D,A0)
·
≤ 2−an. Indeed,

any D(·|zn) which does not satisfy this constraint cannot be the optimum strategy,

6We remind that the set of strategies available to the Defender is defined by considering the

worst case on the attack channel A0.
7It is also worth observing that, for the games with one-side attack studied in the previous

chapters, the Neyman-Pearson setup was a quite natural choice.
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yielding a payoff u > 1 which can be improved by always deciding in favor of H0

(u = 1).

Let us define:

D̃(Pzn , PX)
4
= min
{Pxn|zn :Exnyn (d(X,Y ))≤L}

D(Pxn‖PX), (8.21)

where Exnyn(·) defines the empirical expectation and the minimization is carried out

for a given empirical distribution of zn, Pzn . A similar definition can be given for

D̃(Pzn , PY ).

Our solution for the S2-DT game is given by the following theorem.

Theorem 22. Let

D#,1(H1|zn) = U

(
1

n
log

QY (zn)

QX(zn)
− a
)
, (8.22)

where U(·) denotes the Heaviside step function,8 and let A∗ be defined as usual.

Strategy D#,1 is an optimum strategy for the Defender.

If, in addition, the distortion measure is additive the strategy

D#,2(H1|zn) = U
(
D̃(Pzn , PX)− D̃(Pzn , PY )− a

)
(8.23)

is asymptotically optimum for the Defender.

Proof. Since (8.20) is a special case of (8.11) (with γ = 1 and β = 2αn), for any

defence strategy D(H0|·) ∈ SD, the asymptotically optimum attack channel under

both hypotheses is the same and corresponds to the channel A∗ defined in (8.5), see

Theorem 20. Then, we can determine the best defence strategy by assuming that

the Attacker will play (A∗, A∗) and evaluating the best response of the Defender.

Given the probability distributions QX(zn) and QY (zn) induced by A∗, the optimum

decision rule is deterministic and is given by the likelihood ratio test (LRT):

1

n
log

QY (zn)

QX(zn)

H1

≷
H0

a, (8.24)

which proves the optimality of the decision rule in (8.22). In fact, let PX and PY
be two any probability distributions of the test and let R be the the Bayes risk with

general costs function C10 and C01, i.e.,

R = C10PFP + C01PFN. (8.25)

8The Heaviside step function or unit step function U(x) is equal to 1 for x ≥ 0, 0 otherwise.
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Given a test sequence zn, the optimum decision is the one which minimizes (8.25)

(optimality criterion), i.e.

D∗(·|zn) = arg min
D(·|zn)

R. (8.26)

We have

R =C10

∑

zn

PX(zn)D(H1|zn) + C01

∑

zn

PY (zn)D(H0|zn),

=C01

∑

zn

PY (zn) +
∑

zn

D(H1|zn) (C10PX(zn)− C01PY (zn)) . (8.27)

It is easy to deduce that the decision rule which minimizes R is the one for which

D(H1|zn) is equal to 1 for all the sequences zn such that C10PX(zn) < C01PY (zn)

and 0 for the sequences zn such that C10PX(zn) ≥ C01PY (zn). Therefore, the

optimum detector for random decision rules is deterministic and works according to

the following rule:
PZ(zn)

PV (zn)

H1

≷
H0

C10

C01
. (8.28)

In our case, C10 = 2an and C01 = 1; then, by considering the log, we get exactly the

ratio test in (8.24).

Let us now pass to the second part. To prove the asymptotic optimality of the

decision rule in (8.23) for the case of additive distortion measure, we approximate

QX(zn) and QY (zn) using the method of types as follows:

QX(zn) =
∑

xn

PX(xn)A∗(zn|xn)

·
=

∑

xn: d(xn,zn)≤nL
2−n[Hxn (X)+D(Pxn‖PX)] · 2−nHxnzn (Z|X)

·
= max

xn: d(xn,zn)≤nL
2nHxnzn (X|Z) ·

(
2−n[Hxn (X)+D(Pxn‖PX)] · 2−nHxnzn (Z|X)

)

= max
xn: d(xn,zn)≤nL

2−n[Hzn (Z)+D(Pxn‖PX)]

(a)
·
= 2

−n
[
Hzn (Z)+min{Pxn|zn :Exnzn (d(X,Z))≤L}D(PX‖P0)

]
= 2−n[Hzn (Z)+D̃(Pzn ,PX)],

(8.29)

where in (a) we exploited the additivity of the distortion function d. Similarly,

QY (y)
·
= 2−n[Hzn (Z)+D̃(Pzn ,PY )]. (8.30)
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Thus, we have the following asymptotic approximation to the LRT:

D̃(Pzn , PX)− D̃(Pzn , PY )
H1

≷
H0

a, (8.31)

which corresponds to the expression in (8.23), thus concluding the proof of the second

part of the theorem.

The reason why it is meaningful to provide also the asymptotical optimum strat-

egy, is the following: although strategy D#,1 is preferable for the Defender in a game

theoretical sense (being optimal for finite n), it requires the non trivial computation

of the two probabilities QY (zn) and QX(zn). Strategy D#,2, instead, is easier to im-

plement because of its single-letter form, and leads to the same payoff asymptotically.

Given the above, we can state the following:

Theorem 23. The profile (D#,1, (A∗, A∗)) and (D#,2, (A∗, A∗)) are asymptotic ra-

tionalizable equilibria for the S2-DT game.

As final remark, we observe that the analysis in this section can be easily gener-

alized to any payoff function defined as in (8.11), i.e., for any γ, β ≥ 0. It is straight-

forward to argue that in the general case the best defence strategy corresponds to

(8.22) with log β/ log γ in place of a.
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Abstract

The authenticity and the integrity of multimedia documents can be investigated

through the tools provided by Multimedia Forensics. However, each improvement

in forensic methods is followed by an opposite effort to devise more powerful

techniques that leave less and less evidence into the forged documents in the at-

tempt to impair the detection. This leads to the so called ‘cat & mouse’ loop. In

this part of the thesis, we apply our theoretical findings to the multimedia foren-

sic scenario. The theoretical analysis developed in the first part of the thesis, in

fact, provides a sound framework to study the interplay between forensic analyst

and counterfeiter (adversary). Within this framework, in which the analyst is

limited to a first order analysis, we are able to investigate the ultimate limits of

forensic (and counter-forensic) analysis, thus definitely interrupting the loop.





Chapter 9

Our Take on the Forensic (and
Counter-Forensic) Problem

N
owadays, with the widespread diffusion of powerful, user-friendly software, edit-

ing digital media (image, video, audio) does not longer require professional skills.

Typically, media are edited in order to improve their quality, e.g. by enhancing image

contrast, denoising an audio track or re-encoding a video to reduce its size. However,

altering a digital media can serve less ‘innocent’ purposes, such as to remove or im-

plant evidence or to distribute fake content. Since creating a deceiving forgery is now

a matter of few clicks, the truthfulness of the message conveyed by media contents

must be questioned. Therefore, “seeing is not believing” [129] and a photographic

image can not be considered anymore a strong evidence supporting a fact. Multi-

media Forensics is a relatively new research field whose mission is to tackle with

this growing problem. Multimedia Forensics is based on the observation that any

processing tends to leave traces (some very thin, others quite evident) that can be

exploited to expose the occurrence of manipulations. By looking for such footprints,

it is possible to gather information on the life cycle of a digital media and to deter-

mine for example, which device acquired it, whether it is a authentic or what kind

of processing did it undergo. The final, ambitious aim, is to restore the credibility of

digital image.

In the last years, however, several counter-measures have been devised to bypass

the forensic analysis by hiding or falsifying traces of illegal processing so that the

counterfeited content is deemed authentic. All the solutions in this sense fall into the

so called Counter-forensics discipline. So far, any attempt to improve the reliability

of the forensic analysis has been followed by the dual effort to devise more powerful

counter-forensic techniques that leave less and less evidence into the forged docu-

ments. Even though this unavoidable and possibly virtuous iterations (the so called

‘cat & mouse’ game) has led to improved forensic and counter-forensic tools, it is

clearly necessary to investigate the ultimate limits of forensic (and counter forensic)

analysis, thus definitely breaking the loop.

By adapting the adversarial detection game in order to cope with the multimedia

forensic scenario, in this chapter we present the multimedia forensic game. Casting
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the interaction between the Forensic Analyst and the Adversary (Counterfeiter) into

a rigorous theoretical framework, we are able to study their interplay and determine

their optimum strategies, thus avoiding the ‘cat & mouse’ loop.

This chapter is organized as follows: in Section 9.1 we briefly review the basics of

Multimedia Forensics; then, in Section 9.2 we introduce the Counter-forensics, and

we explain its importance and the challenges it poses. Finally, in Section 9.3, we

present our view of the forensic and counter-forensic problem as a competitive game

that can then be investigated through the theoretical tools derived in the first part

of the thesis (as long as theoretical assumptions are met in practice).

9.1 A brief introduction to Multimedia Forensics

Multimedia Forensics (MMF) emerged as a discipline whose aim is to retrieve infor-

mation on the history of multimedia documents by searching for the subtle traces

left by processing operators. The investigation is performed using a blind approach,

meaning that no other information is available, apart for the content itself. Unlike ac-

tive techniques like digital watermarking [130], Multimedia Forensics does not assume

that the content is generated or controlled by the subject that will have to ensure its

authenticity. The idea at the basis of MMF is that almost every step of the digital life

cycle typically undergone by a digital content, e.g. acquisition, coding, editing and,

more in general, any application of processing operators, leaves a number of traces

in the media. By leveraging these traces, several methods have been proposed in the

literature to reach some conclusions on the past history of the object under analysis.

Different kinds of investigation are possible; among those which received the greatest

attention we mention: source identification, whose goal is to determine which kind of

device generated the content (i.e., whether an image comes from a camera, a scan-

ner, or it is computer-made) [131] or to identify the specific device used to acquire

the content (e.g., [132]); techniques for integrity verification, to understand whether

the content has been manipulated in order to alter its semantic content (e.g. image

slicing, ‘cut & paste’, cloning, or ‘copy-move’ [133]); reverse engineering of processing

operators, to detect if a specific chain of processing operators has been applied.

9.2 What is Counter-Forensics?

We now first briefly review the state-of-the-art on Counter-forensics and introduce

the ‘cat & mouse’ paradigm.
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9.2.1 A brief overview

The origins of Counter-forensics (CF) trace back to a seminal work by Kirchner and

Böhme [134] where the concept of fighting against Image Forensics was introduced.

Besides, a simple yet important taxonomy was also introduced in [134] (and later

on in [44]) that distinguishes between post-processing and integrated techniques, and

between targeted and universal ones. In a nutshell, a counter-forensic technique which

belongs to the post-processing class consists of two steps: first the Attacker performs

the tampering, thus obtaining a desired modified content, then he processes the

content so to conceal the traces left during the first step. In doing so, the Attacker

must satisfy some distortion constraint so that the perceptual quality of the content

is preserved. On the contrary, an integrated counter-forensic technique modifies the

image so that by construction it does not introduce detectable traces. It is easy

to guess that developing integrated methods is much harder in most cases. The

second distinction focuses on the target of the counter forensic method: if it aims at

removing the trace searched for by a specific detector, then it belongs to the family

of targeted attacks. A universal method, instead, attempts to maintain as many

statistical properties as possible, so to make the processed image hard to detect also

with tools unknown to the adversary.

An example of targeted technique is the one proposed in [135] to hide the traces

left in the image histogram by contrast enhancement, so to deceive the detector

developed in [136]. Since the method in [135] introduces a local random dithering in

the enhancement step, it can be classified as an integrated attack. Nevertheless, the

authors also mention the possibility of turning this attack into a post-processing one.

Targeted approaches were also proposed to delete the traces left by the acquisition

devices [137]. Stamm et al. proposed several post-processing CF techniques to hide

both traces of JPEG compression [138, 139], and some kinds of tampering that are

revealed thanks to JPEG compression side effects [140]. The basic idea underlying

these works is to remove an important trace left by JPEG compression into the image,

namely the quantization of DCT coefficients. Since the goal is pursued by introducing

additive noise to remove discontinuities in DCT coefficients, these methods can be

thought of as post-processing CF attacks. Counter-forensics has also been applied to

video: [141] proposed a targeted method that allows to remove/add frames from a

MPEG video without introducing statistical artifacts in the prediction error, which

are traces exploited in the detector introduced by Wang and Farid to detect video

doctoring [142].

So far, the majority of the proposed methods have adopted a targeted approach,

whose idea is to exploit the knowledge of the forensic algorithm and of its weaknesses

to erase the traces it looks for, while limiting the impact of the modifications on
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the perceptual quality of the forgery. However, the imperfections of the counter-

forensic techniques introduce new artifacts detectable by developing new detectors

or by improving existing ones. For instance, in an attempt to re-establish the va-

lidity of forensic analysis, researchers has started building new tools to detect the

traces left by anti-forensic algorithms, as in [103], where a so called triangle-test is

introduced to prevent the possibility of transplanting the acquisition traces left by

a photocamera into an image taken by a different source. In [143], Valenzise et al.

presented a detector which is able to detect the anti-forensic technique in [139, 140]

by measuring the noisiness after recompression with different quality factors. An-

other targeted detectors capable to counter the anti-forensic algorithm by Stamm et

al. [139] by exploring the features of the high-frequency AC coefficients were pro-

posed in [144]. However, in turn, the refined detectors can be defeated by improved

counter-forensic algorithms [144]. This leads to the series of iterations of the forensic

and counter-forensic moves researchers usually refer to as ‘cat & mouse’ game. While

this iterative loop will finally lead to powerful forensics and anti-forensics tools, the

need to investigate the ultimate limits of forensics (and anti-forensics) techniques

clearly exists. In this respect, it would be interesting, instead, to devise universal

counter-forensic methods that could guarantee to the Attacker the undetectability of

the processing he carries out, by means of any forensic tool, at least under some

(reasonable) assumptions. To this aim, when designing a counter-forensic method,

it is always necessary to simultaneously consider the presence of a Forensic Analyst

which is able to react to the Attacker’s attempts.

9.2.2 The anti-counter forensic problem as a game theory

problem

In the attempt to develop universal counter-forensic tools, research has started mov-

ing towards more theoretical approaches; in [44], Böhme and Kirchner cast the foren-

sic problem in a hypothesis testing framework. Several versions of the problem are

defined according to the particular hypothesis being tested, including distinction

between natural and computer-generated images, tampering detection and source

identification. Counter-forensics is then defined as a way to degrade the performance

of the hypothesis test envisaged by the analyst. By relying on arguments similar to

those used in steganography and steganalysis [9], Böhme and Kirchner argue that a

proper way to measure the effectiveness of the attack does not depend on the par-

ticular investigation technique adopted by the analyst. Even if Böhme and Kirchner

do not explicitly use a game-theoretic formulation, their attempt to decouple the

counter-forensic attack from a specific forensic strategy can be seen as a first step to-

wards the definition of the equilibrium point of a general multimedia forensic game.
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A work where the game-theoretic framework is explicitly introduced, to evaluate

the effectiveness of a given attacking strategy and derive the optimum countermea-

sures, is [145]. However, in such a work, the Attacker’s strategy is fixed and the

game-theoretic framework is used only to determine the optimum parameters of the

forensic analysis and the attack, thus failing to provide a complete characterization

of the game between the Attacker and the Analyst. A first attempt to lay the ba-

sis for the construction of a game theoretical framework where casting forensic and

anti-forensic technique was made in [146], were a rigorous framework is proposed to

model the source identification problem.

9.3 The multimedia forensic game

In order to try to stop the multimedia forensic ‘cat & mouse’ loop, we exploit the

theoretical analysis of the adversarial detection problem developed in the first part

of this thesis, and then study the interplay between the Forensic Analyst (FA) and

the Adversary (AD), i.e., the counterfeiter, as a zero-sum game: on one hand, the

task of the FA is to perform an hypothesis test on a certain document; on the other

hand, the AD wants to carry out the attack in such a way to deceive the FA.

With specific reference to the image forensic scenario, the goal of the FA is to

tell apart untouched images from those that have undergone some (usually very

specific) processing. In a realistic scenario, it is reasonable to assume that the FA

has limited resources for performing measurements over the signal. To meet the

theoretical assumptions, we focus on the case where the FA considers only the first

order statistics of the observed signal, such as the image histogram in pixel domain

or the histograms of the DCT coefficients in the frequency domain (the limitation

provided by such an assumption in real forensic scenarios is discussed in Section

9.3.1). On the opposite side, the AD will first produce a tampered image having

some desired characteristics and then modify the image in such a way to bring it as

close as possible to an original, unprocessed image, while respecting some distortion

constraints to preserve the visual quality.

Within this framework, the theoretical analysis developed in Part I allows us

to derive optimal strategies for both the FA and the AD. Thanks to the adopted

game theoretical approach, the counter-forensic strategy derived in this way is ‘uni-

versal’, in that the AD does not need to know anything about the FA detection

algorithms (apart from the fact that they are based on first-order statistics), and

‘post-processing’, since the AD can use the proposed technique as is to hide the

traces introduced by any kind of processing tool.

We now discuss how the theoretical analysis can be applied to the multimedia
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forensic case, and then exploited to develop a universal attack.

First of all, it is reasonable to assume that, in devising a test to distinguish

between untouched and processed images, the FA can only rely on the knowledge of

‘examples’ coming from both classes. In fact, when a statistical model for the two

classes does not exists, as it is often the case in image forensic applications (and more

in general in all those applications involving multimedia signals), the best solution for

the Forensic Analyst is to adopt a data-driven approach, usually based on machine

learning techniques, wherein the characteristics of the image classes are derived from

a number of examples (the training set).

Let, then, C be a class of images (e.g., the class of the never processed images).

Given a test image I, the goal of the Forensic Analyst is to accept or reject the

hypothesis that I belongs to C. To make his decision, the FA can rely on a set

of sample images belonging to C, let us call it S. Moreover, by assuming that the

Defender relies only on the first order statistics of I, that is the image histogram, the

goal of the AD is to take an image J belonging to another class C′ and modify it in

such a way that the Defender classifies it as belonging to C.
Since the FA knows the training sequences but not the ‘real’ probability distribu-

tion for class C, we argue that the FA-AD interplay can be modeled as a detection

game with training data (DTtr game), studied in Chapter 4. The equilibrium point

for such a game is given by Theorem 3: while the optimum test function for the

analyst is the h function, computed between the attacked sequence and the training

sequence (see equation (4.17)), the optimum strategy for the AD is to minimize such

a function.

In contrast to the scenario where the decision of the Defender is based on the

observation of a single training sequence, here the Forensic Analyst relies on a set of

samples images to make a decision. Nevertheless, substantially there are no differ-

ences: in fact, it is easy to argue that, for an analyst who relies on more than one

training sequence (image), the optimum log-likelihood function is the minimum of

the h function over the entire training set.

Therefore, by taking the role of the Adversary, we can implement the optimum

counter-forensic strategy against first-order based forensics, which is the purpose of

the next chapter. It is worth stressing that the optimality holds in a game theoretical

sense, that is, with respect to the best possible first order detector. Clearly, an AD

with deeper knowledge of the forensic tools used by the analyst could resort to more

powerful attacks. However, such attacks would be ‘targeted’ to the specific features

the forensic detector looks for, thus risking to fall again into the ‘cat & mouse’ loop.

Indeed, it is not surprising that the gain in generality and applicability of universal

CF tools comes at the price of reduced performance with respect to tailored schemes.



9.3. The multimedia forensic game 191

9.3.1 Impact of theoretical assumptions on practical setups

The two main assumptions behind the theoretical analysis developed in the first part

of the thesis are that the sources are memoryless, and that the Defender relies only

on first order statistics to make his decision. We fall into this category whenever

the Defender relies on statistics that can be derived from the analysis of the relative

occurrences of the symbols within the observed sequence, including higher order

moments like, for instance, the empirical skewness and the kurtosis of the sequence.

On the other hand, the joint statistics among samples, like transition probabilities

and co-occurrence matrices [147] are not included in this category.

From a practical point of view, the main problem with the memoryless assumption

is that it may not be met in real-world applications. Real signals, such as images,

for instance, cannot be assimilated to memoryless sources and consequently, the

Defender could decide to go beyond first order statistics to make his decision. In some

cases, the memoryless assumption can be justified because the Defender operates in

a transformed domain, e.g., the DCT domain, or in a random projections domain

[148]. However, since even in the case of sources with memory, by the law of large

numbers, the sources will end up generating sequences with a type arbitrarily close

to the marginal pmf, we conjecture that our analysis remains valid for sources with

memory, as long as the FA decides to rely only on the empirical marginal distributions

for his analysis. Clearly, such an assumption can be very restrictive (and then make

less sense) when dealing with the memory case. In any event, the use of first order

detectors is quite common in practical applications even when dealing with correlated

sources (often due to the complexity of higher-order statistical analysis...). In the

case of Image Forensics, for instance, several techniques rely only on the analysis of

the image histogram or a subset of features derived from it. As an example, this is the

case of the detection of contrast enhancement operations [136, 149] or the detection of

cut and paste based on image noisiness [150, 151]. Double JPEG forensics is another

example where detection is often accomplished by looking only at the histograms

of block-DCT coefficients [152], or first digits occurrences in block-DCT coefficients

[153], which again is an information that depends only on DCT histograms. A similar

analysis based on first digits occurrences has also been adopted for the detection of

single [154] and multiple [155] JPEG compression (we refer to Section 11.1 for a

state-of-the-art on related JPEG forensic methods).

Another assumption underlying the theoretical analysis which may not be valid

in practice is that X and Y are stationary sources. Time varying sources are encoun-

tered in many practical applications. In PRNU-based camera identification [98], for

instance, images produced by a specific camera are detected due to the presence of a

distinctive time varying signature, the Photo Response Non-Uniformity noise, intro-
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duced by the camera during image acquisition. Other examples can be drawn from

biometric recognition, where the biometric templates used for identity verification

can not be assimilated to stationary signals [11] and steganalysis, where the residual

noise of the cover image is often modelled as a sequence of independent Gaussian

variable with different variance [156, 36, 35, 37]. In principle, the analysis of these

situations requires a different theoretical analysis with respect to the one derived in

Part I of the thesis. Yet, even when dealing with time varying signals, the use of first

order statistics obtained by a global analysis of the analysed signal is sometime com-

mon practice. Related to this, it is interesting observing that, first order statistics

are sometimes used instead of more powerful joint statistics in biometrics, e.g., in

[157], where the adoption of the arbitrarily varying sources (AVS) model [158] per-

mits to account for a (slightly) time variant behavior of the sources and still resort

to a memoryless formulation.
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Universal Attacks in the Pixel Domain

In this chapter, we exploit the results of the theoretical analysis of the decision game

with training sequence studied in Chapter 4, to derive a universal image counter-

forensic scheme that is able to counter any detector based on the analysis of the

image histogram. Being universal, the scheme does not require the knowledge of

the specific detection algorithms used by the Forensic Analyst, and can be used to

conceal the traces left in the histogram of the image by any processing tool.

From the theoretical analysis we know that, for the general case of multi-valued

sources, the analytic computation of the optimum adversarial strategy is not possi-

ble and then we need to resort to numerical analysis. Then, before delving into the

analysis of the counter-forensic algorithm, in Section 10.1 we describe the constrained

optimization problem that the Attacker has to solve to determine its optimum strat-

egy for both the DSks and DTtr games and discuss the resolution methodologies.

An extensive description of our universal counter-forensic algorithm in all its steps

is provided in Section 10.2. Finally, in Section 10.3 the validity of the scheme is as-

sessed through experimental validation by focusing on a specific forensic applications,

namely the contrast-enhancement detection.

10.1 Numerical evaluation of the optimum attack

for the DTks (and DTtr) game

Here we describe the numerical analysis for deriving the optimum adversarial strategy

for the detection game with known sources (DTks game) studied in Chapter 3. The

same arguments holds for the case of detection game with training data (DTtr game)1.

While the formula defining the optimum acceptance region in (3.23) can be easily

implemented by the Defender, the task of the Attacker is more complex due to

the necessity of solving the minimization problem in (3.24)2. Such a minimization

1We remind that the main difference between the DTtr and DTks game relies on the adoption

of the h function in place of the D function as log-likelihood function for the test.
2The formulation in terms of transportation map is more convenient for the numerical analysis

than the one in (3.17).
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resembles some instances of the optimal transport problem [93, 105], however here we

are interested in minimizing the divergence between a source pmf and a target one,

subject to a distortion constraint, whereas, classically, Optimal Transport faces with

the somewhat-dual problem of minimizing the distortion needed to make the two

pmf’s equal. This is exactly the case with the analysis of the limiting performance

developed in Chapter 5, where the minimum transportation cost, i.e., the Earth

Mover Distance (EMD) to move a pmf into an other is evaluated, as a measure of

the Security Margin between two sources.

Let yn be the to-be-attacked sequence. We introduce the displacement map

N = {n(i, j)}i∈X ,j∈X , whose (i, j)-th element tells how many elements should be

moved from the i-th to the j-th bin. Accordingly, N = n · SnY Z , where SnY Z is the

transportation map defined in (3.4). By expressing the divergence term D(Pzn ||PX)

as a function of the displacement map N , the minimization problem in (3.24) can be

formulated in terms of the n(i, j) variables as follows:

min
n(i,j)

|X |∑

j=1

∑
k n(k, j)

n
· log

(∑
k n(k, j)

nPX(j)

)
(10.1)

subject to the constraints (i.e., the admissibility set A(L,Pyn)):





∑
j n(i, j) = nPyn(i) ∀i∑
i,j n(i, j)d(i, j) ≤ nL

n(i, j) ≥ 0

n(i, j) ∈ N,

(10.2)

where we considered a generic additive distortion function with per-letter distortion

d(i, j).

The optimization problem in (10.1)–(10.2) belongs to the MINLP (Mixed integer

nonlinear problems) class [159]. Besides, the objective function is convex in the

optimization variables n(i, j), and then in N (see Appendix D for the proof). Since

the constraint functions defining the feasible set are also convex in the n(i, j) variables

and upper bounded, the problem is actually a convex MINLP, for which a global

optimum solution exists. To be more specific, the feasible region of the problem is

described by linear functions, that is, the constraint matrix is linear, then the set of

the possible solutions, namely, the admissibility set, is a limited polyhedron, i.e., a

polytope.

For convex MINLPs there are several efficient solvers yielding the optimum so-

lution [160]. Among the most common algorithms for solving convex MINLPs, a

remarkable candidate is the branch-and-bound method, according to which we solve

the NLP (nonlinear programming) relaxation of the problem obtained by removing
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the constraint that the n(i, j) variables must assume integer values [161]. Given the

convexity of the objective function, the relaxed problem can be solved efficiently by

resorting to steepest gradient method [162]. In our applications, we used the BON-

MIN3 solver in the BB mode [160] which implements the NLP-based branch and

bound algorithm. By default, it resorts to the software package IPOPT [163] to solve

the NLP relaxation.

As to the computational complexity, we notice that the number of optimization

variables is quadratic in |X |. It is proper to remark that, in practical applications,

such number can be quite large: e.g., for imaging applications in the pixel domain,

we have |X | = 256 (i.e., the possible values assumed by a pixel in the image), whereas

for applications in the frequency domain, X is given by all the possible values of the

DCT coefficients, which, especially at low frequencies, fall in a very large range.

By considering the L∞ distortion measure in the constraint matrix (10.2) in place

of Lpp, we can drastically reduce the number of optimization variables and make the

optimization viable also for very large values of |X | (see Section 10.2.2).

As a final observation, we point out that, in principle, it makes sense to consider

only solutions for which one between n(i, j) and n(j, i) is equal to 0. However, it

is not necessary to explicitly express this constraint, since the solutions for which

this condition does not hold can be easily pruned after the optimization problem is

solved.4

Before concluding this section, we notice that in the case of the DTtr game the

optimization problem the Attacker must solve is the same with the only difference

that the objective function is the h function instead of D. The convexity of the

h function in the n(i, j) variables can be derived by the same arguments used for

proving the convexity of D.

10.2 A universal counter forensic algorithm

By expliciting the arguments in Section 9.3, we derive a universal (and post process-

ing) counter-forensic algorithm that works against any forensic detector based on the

analysis of the image histogram, whatever is the trace it looks for.

As regards the notation, from now on, all images will be denoted with the un-

derline notation, e.g., x, where x(i) ∈ I is the value of the i-th pixel of the image.

Accordingly, x is a vector of size r×c, where r and c denote, respectively, the number

3Basic Open-source Nonlinear Mixed Integer programming.
4A transportation map with n(i, j) = a and n(j, i) = b, where a ≥ b (w.l.o.g.), corresponds to

the same solution of the map where n(i, j) = a− b and n(j, i) = 0, which has a lower contribution

to the overall distortion.
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Figure 10.1: A schematic representation of the proposed universal counter forensic

approach. Notice that, being a post-processing approach, we are not interested about

the specific processing carried out by AD.

of rows and columns of the image5. We denote with I the set of possible values for

the pixel, i.e., I = {0, 1, 2, ..., 255}. Finally, we use hx to indicate the histogram of

x6.

A sketch of the proposed counter-forensic scheme is depicted in Figure 10.1. To

begin with, let us assume that the AD has already created the processed image y,

and that he has access to a set S of histograms of non-processed images. Then, the

AD proceeds as follows:

1. Histogram retrieval (Section 10.2.1): among all histograms in S, find the one

that is most similar to hy, denote it with hx.

2. Histogram mapping (Section 10.2.2): find the best way to modify hy so to bring

it as close as possible to hx, while satisfying some constraints on the maximum

distortion incurred by y;

3. Implementation of the mapping (Section 10.2.3): change pixels in the image

according to the histogram mapping, keeping the perceptual distortion as low

as possible.

10.2.1 Histogram retrieval phase

The goal of this phase is the following: given a processed image y with histogram

hy find the most “similar” histogram hx among in set S. We use the h function as

similarity measure between a processed histogram and a target one. Hence, the search

for the target histogram can be carried out by performing the following minimization:

min
hx∈S

h(νx, νy), (10.3)

5Due to the first order assumption, we do not need to consider the matrix notation for the image
6With a slight abuse of notation, letter h, without the pedex, denotes the generalized log-

likelyhood function.
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where νx and νy denote the normalized versions of the histograms hx and hy, i.e.,

the empirical pmf of images x and y.

We observe that the histogram resulting from (10.3) could not be the one that

minimizes the h function after the histogram mapping phase is performed, which is

the final goal of the AD. This is in contrast with the fact that the optimum attack

has to guarantee the achievement of the minimum possible value for h among all the

possible training sequences and mappings. To face this problem, we retrieve the best

K matching histograms from the database, and run the histogram mapping on all of

them. Among these K candidates, the one resulting in the best mapping (based on

the value assumed by the objective function) will actually be used. Strictly speaking,

the number of K which ensures to obtain the minimum at the end of the mapping

stage is not known a priori and, above all, it usually depends on the shape of the

modified histogram hy. From a theoretical point of view, for ensuring the optimality

of the procedure, we should consider all the histograms in the database. Although

this is possible, it would be computationally too expensive, so we retain the first K

histograms for the mapping phase7.

Notice that, the use of the h function allows to retrieve, in this phase, a histogram

hx that is near to hy even from the “shape” point of view. By looking at the behav-

ior of the h function, which is similar to that of the divergence, histograms having

many bins with considerably different occurrences lead to large values for both terms

in (4.8) and then they will not be chosen among the best K target histograms. We

stress that the use of other frequently used histogram distance functions, like the Chi-

Square distance, or the use of cross-bin histogram distances, like the Quadratic-Chi

[164], designed to improve the search results for retrieval applications, is also possible.

However, according to the theoretical results, in the absence of other knowledge, the

use of the h function corresponds to the best choice.

As a last consideration about histogram retrieval, we point out two facts. The

first is that the search is carried out directly on histograms, and not on images. This

considerably reduces the size of the dataset (10.000 histograms can be represented

with less than 10MB) and the complexity of the search routine, since only the his-

togram of the processed image must be computed on-line. The second observation

is that the goal of this phase has nothing to do with content-based retrieval: since

the FA relies on first order statistics only (and then he does not care of the image

content), the AD simply wants to know if an original image exists (no matter what

its content is) whose histogram is not far from that of the processed one, but he is

not interested in what is actually represented in the image.

7In practice, it turned out in our experiments that taking K equal to 10 is usually sufficient.
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10.2.2 Histogram mapping phase

Given the processed image y and an original histogram hx belonging to the reference

histogram database, the AD aims at creating an attacked image z that is similar to

y but has an histogram which is as close as possible to hx.

For sake of generality, we assume that the image of the database from which the

histogram hx has been drawn, let us name it x, has a different number of pixels than

that of the processed image y (for any image of the database the number of pixels of

the image is preserved, by storing the histogram instead of its normalized version).

Let m be the number of pixels of image x, and let n indicate the number of pixels of

the processed image y, which reasonably will be the same of the attacked one z.

The goal of the AD is to find the displacement matrixN∗ = {n∗(i, j)}i=0...255,j=0...255

that minimizes the h function between the normalized versions of the histograms,

namely νz and νx while satisfying some distortion constraint between z and y. Ac-

cording to (4.8), the h function is defined as

h(νz, νx) =D(νz||νr) +
m

n
D(νx||νr)

=

|I|∑

i=1

νz(i) log
νz(i)

νr(i)
+
m

n

|I|∑

i=1

νx(i) log
νx(i)

νr(i)
, (10.4)

where νr(i) = n
n+mνz(i) + m

n+mνx(i) ∀i. To simplify the notation, we define c = n
n+m

and d = m
n+m where c+ d = 1, and rewrite explicitly (10.5) as follows

h(νz, νx) =

|I|∑

i=1

νz(i) log
νz(i)

cνz(i) + dνx(i)

+
d

c

|I|∑

i=1

νx(i) log
νx(i)

cνz(i) + dνx(i)
. (10.5)

Since, reasonably, the distortion should measure the perceptual similarity between

the images, then the L∞ distance is used. Specifically, we impose a maximum value

L for the pixel absolute distortion (large pixel changes would almost surely lead to

annoying artifacts): 8

max
i
|y(i)− z(i)| ≤ L. (10.6)

By expressing constraint (10.6) as a function of the n(i, j) variables, the optimization

8We stress that, in the case of the infinity distance, the maximum value for the distortion L is

not an average (as it is with the Lpp distortion constraint), but it is defined on a per-pixel basis

(point-wise).
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problem the Attacker has to solve is the following:

min
n(i,j)

|I|∑

i=1

(
∑
k n(k, i)

n
· log

(
∑
k n(k, i)/n

c(
∑
k n(k, i)/n+ dνx(i)

+
d

c

|I|∑

i=1

νx(i) · log
νx(i)

c(
∑
k n(k, i)/n+ dνx(i)

(10.7)

subject to




∑
j n(i, j) = hy(i) ∀i

n(i, j) = 0, ∀(i, j) ∈ I × I : |i− j| > L

n(i, j) ≥ 0 ∀i, j
n(i, j) ∈ N.

(10.8)

Some further considerations can be done regarding the formulation (10.7)–(10.8).

First of all, we can remove the second constraint in (10.8) by properly restricting the

sums in the objective function and in the first constraint. For notational simplicity

let us define ∀i ∈ I the set A(i, L) = {k ∈ I : |k − i| ≤ L}. Accordingly, we can

rephrase the optimization problem in the following equivalent form:

min
n(i,j)

|I|∑

i=1

(∑
k∈A(i,L) n(k, i)

)

n
· log

(
∑
k∈A(i,L) n(k,i))

n

c(
∑
k∈A(i,L) n(k,i))

n + dνx(i)

+
d

c

|I|∑

i=1

νx(i) · log
νx(i)

c(
∑
k∈A(i,L) n(k,i))

n + dνx(i)
. (10.9)

subject to




∑
j∈A(i,L) n(i, j) = hy(i) ∀i

n(i, j) ≥ 0 ∀i, j
n(i, j) ∈ N

(10.10)

obtaining a slightly simplified set of constraints. Furthermore, by looking at the

first constraint in (10.8) (and (10.10)), we notice that all the optimization variables

n(i, j) describing displacements from empty bins to any other bin will have a zero

value, that is hy(i) = 0 implies n(i, j) = 0 for all j. Let E be the set of the empty

bins, with E ⊂ I. It is easy to argue that the actual complexity of the problem

is 2L · (|I| − |E|) which is often much less than |I|2. By referring to the problem

rewritten as in (10.9)–(10.10), the optimization is very fast and, on average, the time

taken by the solver to find the optimum mapping is less than one second9.

9Tests have been performed on a computer equipped with a Intel i7 CPU, 8GB RAM, under the

Windows 7 operating system.
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10.2.3 Pixel remapping phase

After the target histogram hz has been obtained, the AD needs to actually modify

y into z. All the operations performed in this phase will not affect the result of FA’s

forensic tools, since we assumed that they only consider the histogram of the image.

Nevertheless, the AD is not interested in obtaining an attacked image z that is per-

ceptually distant from the processed one y. In this section we describe an approach

that allows the AD to implement the pixel mapping defined by the displacement

matrix N∗ in a perceptually convenient way. Others, even more sophisticated ap-

proaches to implement the modifications (mapping) into the pixel domain could be

used. It is worth noting that this phase does not have any impact on the result of

the forensic analysis.

We begin by recalling that the human visual system (HVS) is known to be less

sensitive to noise when this affects highly textured regions. On the contrary, noise

in uniform regions, like the sky or a flat wall, is usually much more evident to the

observer [165]. Therefore, the first intuition is that, whenever a choice is possible,

regions of the image having high variance should be modified first.10 Furthermore

it is useful to iteratively determine which parts of the image are more insensitive

to noise through all the computation, using a kind of similarity map between the

image at the current iteration and y. To compute this map, we adopt the Structural

Similarity (SSIM) metric introduced by Wang et al. in [165]. This metric quantifies

and localizes the structural similarity between two images, and provides a similarity

value for each pixel; to determine this value, the system considers the contrast,

brightness and other perceptually relevant information in the region surrounding the

pixel. Since the image changes during pixel mapping, the map is evaluated several

times in order to allow a better (i.e., less perceptible) distribution of noise throughout

the image.

Then, we propose the following scheme:

1. Set all pixels as admissible

2. Compute a map of local variance11 of y;

3. For each couple (i, j):

(a) find admissible pixels location having value i;

(b) scan them selecting the first n(i, j) with highest values in the map;

10Notice that this is similar to how embedding changes are made in content adaptive steganog-

raphy in order to increase the steganographic security [166]. Here, instead, the modifications are

made so to minimize the visual distortion.
11SSIM cannot be evaluated before the first modification (see comments).
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(c) substitute them with j;

(d) remove selected pixels from the admissible ones12;

(e) if no more pixels of value i must be remapped, compute the SSIM map

between the current image and y;

One first comment regards multiple computations of the similarity map: there

is a clear tradeoff between computational complexity and perceptual fidelity. If we

compute the map only once, then we do not take into account the distortion that is

progressively introduced, experimental results show that this can lead to annoying

false-contouring artifacts. On the other hand, computing the SSIM after each single

pixel substitution is clearly prohibitive (and useless). A good tradeoff is obtained

by computing the map |I| times, specifically when no more pixels from the i-th

level are left to move. Notice that for the first iteration we cannot resort to SSIM

(which is a full-reference metric) to get a similarity map, because no changes have

been performed yet. Considering the HVS properties introduced before, we simply

compute a map of the local variance of the image (working block-wise, with block

size 5×5) and use it just for the first step.

While postponing a rigorous experimental validation to Section 10.3, Figure 10.2

shows an example of output image for each of the steps described so far, while Figure

10.3 reports the histograms for the same example: the histogram of a contrast-

enhanced image (notice the peak-and-gap artifacts) is fed to the histogram retrieval

module, which returns the K histograms yielding the lowest h distance in the dataset.

After pixel remapping (L = 4), the histogram of the attacked image is close to that

of the original one, and the perceptual similarity between the processed and attacked

images is satisfactory.

12This avoids multiple substitutions of the same pixel.
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(a) Original image (b) Processed image

(c) Remapped image (d) SSIM map between (b) and (c)
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(e) Enhanced difference between (b) and (c)

Figure 10.2: An example of application of the universal counter-forensic algorithm:

(a) an original non-processed image; (b) its processed (contrast stretched) version,

and (c) the image resulting from the proposed C-F technique; (d) structural similarity

(SSIM) map obtained at the end of the application of the C-F algorithm; (e) difference

between processed and remapped image.
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(a) Histogram of the processed image
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(b) Best matching histogram retrieved

from the database
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(c) Histogram of the remapped image

Figure 10.3: Histograms for the example in Figure 10.2: (a) histogram of the pro-

cessed image, which is compared to those in the database to find the best match (b).

The histogram mapping problem is solved yielding (c); notice that the peak-and-gap

artifacts in the left histogram have been removed.

10.3 Experimental results

In this section we evaluate the performance of the proposed counter forensic tech-

nique against contrast enhancement detection, where the goal of the FA is to discover

whether an image has been globally enhanced with some processing operator or not.

By playing the role of the AD, we apply a histogram-based enhancement to a given

image and then use the proposed technique to remove the traces left within the

processed histogram.

In order to test the effectiveness of the proposed scheme, we implemented a state-

of-the-art algorithm for the detection of histogram based image enhancement [136].

This tool exploits the fact that most histogram-enhancement techniques leave a char-

acteristic fingerprint in the image histogram, namely the peak-and-gaps artifact. This

effect is easily exposed in the frequency domain, where the mentioned behavior results

in an anomalous amount of high-frequency components. Therefore, by investigating

the Fourier transform of the image histogram, the authors devised a very reliable

detector. Since this detector considers only the histogram of the image, the proposed

universal counter-forensic scheme should be able to defeat it. To check if this is

the case, we used that algorithm for distinguishing processed and attacked images

from untouched ones. Performances are measured in terms of the Area Under Curve
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(AUC) of the detector before and after the attack, while the quality of the attacked

images is evaluated using PSNR and Structural Similarity (SSIM).

To generate the enhanced images, we employed two different techniques: one

based on γ-correction and one based on histogram stretching. γ-correction enhance-

ment is very simple, being fully described by the following equation:

y(i) = 255×
(
x(i)

255

)γ
(10.11)

where y denotes the enhanced image and x denotes the original one. Since values of

γ very near to 1 would not result in a sensible modification, in our experiments γ is

randomly chosen from the set [0.5; 0.8] ∪ [1.2; 2].

To formally define the histogram stretching operation, let us denote with lmin the

gray level at the 1st percentile of the histogram and with lmax the gray level at the

99th percentile: then, we perform histogram stretching as:

y(i) = 255× x(i)− lmin
lmax − lmin

. (10.12)

Comparing Figure 10.2 (a) and (b), the effect of histogram stretching in improving

image quality is evident. Since, while performing the CF algorithm, the AD wants

to preserve the benefits obtained by processing the image y, in the search phase, he

would like to prevent the selection of target histograms having lower contrast than

the one obtained with processing. However, such a filtering is implicitly done by

searching for the histograms with the minimum value of the h function, as target

histograms having different ranges with respect to hy are discarded.

We conducted our experiments by using images from the UCID dataset [167],

which is made of 1338 images of size 512 × 384. We also used another independent

dataset, MIRFLICKR [168], composed of 25.000 images of size 330 × 500, to prepare

the database of non-processed histograms S. Throughout the experiments, all color

images are converted to grayscale. The only parameters the Attacker has to choose

are the number of candidates for which the optimization problem is solved (we used

K = 10) and the maximum per-pixel distortion; of course, allowing a higher distortion

will yield a more precise mapping of the attacked histogram into the one selected

from the database, but will also result in a lower quality of the attacked image. We

repeated the experiments with L = 2, 4 and 6 in order to investigate the relationship

between distortion and effectiveness of the approach.

We performed, separately, contrast enhancement and histogram stretching over

all pictures in the UCID dataset and run Stamm’s detector on the resulting images;

then, we applied the proposed counter-forensic scheme on each processed image, for
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various L, and run again the detector. Figures 10.4 and 10.5 show, respectively, the

results obtained by hiding traces of contrast-enhancement and histogram stretching

operations with the proposed scheme. In both figures, ROC curves obtained for

different values of maximum per-pixel distortion are plotted: we can state that the

forensic detector no longer distinguishes untouched images from attacked ones even

for L = 2. Experiments also confirm that, by allowing higher distortion, the AD can

further hinder the performances of the detector.

The sole fact that the proposed method successfully deceives a specific detec-

tor does not prove its universality. In order to better highlight the fidelity of the

remapped histogram hz to the histogram coming from the database hx, we calcu-

lated for each experiment the χ2 distance between their normalized versions, defined

as:

χ2(νx, νz) =
1

2

255∑

i=0

(νx(i)− νz(i))2

νx(i) + νz(i)
,

and reported its average and worst case value in Table 10.3. We chose the χ2 distance

to show that the remapped histogram is similar to the untouched one also according

to measures that were not directly considered in our scheme. We see that, on average,

the χ2 distance between the histograms takes values in the order of 10−2, which can

be considered definitely small. This fact strongly supports the universality claim,

because devising an histogram-based forensic detector capable of discriminating be-

tween such similar histograms would be extremely difficult.

Of course, the above performance measures would be meaningless if we do not

investigate the fidelity of the attacked images to the processed ones: this information

is reported in Tables 10.4 and 10.5 for contrast enhanced and histogram stretched

images respectively. Notice that PSNR is sufficiently high even for L = 6, and the

SSIM index confirms an extremely low perceptual distortion. This confirms that

the counter-forensic attack does not produce annoying artifacts, nor it removes the

benefits introduced by the processing carried by the AD.

L Average χ2 95thperc χ2 Average χ2 95thperc χ2

2 0.092 0.27 0.060 0.16

4 0.058 0.19 0.032 0.11

6 0.040 0.15 0.019 0.07

Table 10.1: Average and maximum χ2 distance between the remapped histogram

and the one coming from the database for γ-correction (left) and histogram stretching

(right) counter-forensics.

In the next chapter, we will investigate how the proposed method can be extended

to remove traces left in the histograms of DCT coefficients, thus widening the ap-
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(a)

PSNR SSIM AUC

L mean min 95th perc mean min 95th perc

2 44.8 43.0 45.9 0.993 0.951 0.997 0.605

4 39.2 36.7 40.8 0.979 0.917 0.992 0.556

6 36.2 33.4 38.0 0.962 0.881 0.987 0.532
(b)

Figure 10.4: Results for γ-correction counter-forensics. (a): ROC curves for Contrast

Enhancement Detector running on γ-corrected images (solid line) and on attacked

ones (marked lines); (b): mean value, worst case value and 95th percentile for PSNR

and SSIM between processed and attacked images, along with the Area Under Curve

obtained by the forensic detector. The values are computed on the 1338 images of

the UCID dataset.

plicability of the approach to a broader set of forensics tasks, and in particular to

JPEG forensics.
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(a)

PSNR SSIM AUC

L mean min 95th perc mean min 95th perc

2 44.8 43.3 45.6 0.994 0.977 0.998 0.587

4 39.2 37.3 40.4 0.981 0.938 0.993 0.541

6 36.1 34.1 37.6 0.964 0.908 0.989 0.521
(b)

Figure 10.5: Results for histogram stretching counter-forensics. (a): ROC curves for

Contrast Enhancement Detector running on histogram-stretched images (solid line)

and on attacked ones (marked lines); (b): mean value, worst case value and 95th

percentile for PSNR and SSIM between processed and remapped images, along with

the Area Under Curve obtained by the forensic detector. The values are computed

on the 1338 images of the UCID dataset.





Chapter 11

Universal Attacks in the DCT Domain

Detection of multiple JPEG compression of digital images has attracted an increasing

interest in the field of multimedia forensics. At the same time, techniques to conceal

the traces of multiple compression are being proposed as well. Motivated by the quest

for universal approaches, in this chapter we extend the universal counter forensic

scheme developed in the previous chapter to the frequency (DCT) domain and devise

a counter-forensic technique that aims at making multiple compression undetectable

for any forensic detector based on the analysis of the histograms of quantized DCT

coefficients.

From a forensic point of view, JPEG compression is one of the most important

stages in the processing chain of a digital image, because it leaves peculiar statistical

footprints that can be used as a telltale of tampering. In particular, traces left by

multiple JPEG compressions are usually a powerful tool in analyzing the authenticity

of an image. Most of the state-of-the-art multiple JPEG forensic detectors rely on the

analysis of features extracted from the histograms of the DCT coefficients. Leveraging

on the theoretical results of the first part of this thesis, the universal attack strategy

proposed here is optimum against any (forensic) detector within the class of first

order-based detectors i.e., detectors based on the analysis of the DCT histograms.

In this way, the proposed method establishes a new challenge for future forensic

detectors.

The chapter is organized as follows: Section 11.1 briefly reviews the state-of-the-

art on JPEG Forensics and Counter-Forensics of multiple JPEG compression. A

summary of the effects of multiple JPEG compressions in the frequency domain is

given in Section 11.2. In Section 11.3 we discuss the theoretical framework behind the

proposed universal technique, while Section 11.4 is devoted to a detailed description of

all the phases of the algorithm. Experimental validation is finally reported in Section

11.5 where we show the effectiveness of our approach in removing the artifacts of

double and also triple compression, while maintaining a good quality of the image.
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11.1 Related works on Forensics and Counter-

Forensics of multiple JPEG compression

The interest of forensic researchers in the detection of multiple compressions is mo-

tivated by the fact that when JPEG images are manipulated by a photo-editing

software and later re-saved in JPEG format, artifacts are introduced in the image.

Popescu et al. [169] showed that double quantization entailed by double JPEG com-

pression leaves peculiar artifacts in the histograms of DCT coefficients, especially

at low and medium frequencies. Inspired by this fact, the most frequent approach

for detecting double JPEG compression consists in analyzing the histograms of the

block-DCT coefficients. In this way, the possible correlation between DCT coef-

ficients at different frequencies is discarded thus meeting the assumption that the

Defender relies only on first order statistics (in the DCT domain). In [169], Popescu

et al. proposed a technique examining the Fourier transform of the histograms of the

DCT coefficients. A method for estimation of primary quantization matrix from a

double compressed JPEG image that can be used to detection purposes is proposed

in [170]. The paper discusses three different approaches: two of them are based on

matching the histograms of individual DCT coefficients of the inspected image with

the histograms calculated from estimates obtained by calibration [171, 172, 173] fol-

lowed by simulated double-compression. In [152], Pevný et al. proposed a detector

based on Support Vector Machine (SVM) classifiers with feature vectors formed by

histograms of low-frequency DCT coefficients. Another method based on histograms

of DCT coefficient and SVM is proposed in [174].

Many, recently proposed, forensic techniques rely on the analysis of the first sig-

nificant digits (FSD) of the DCT coefficients, i.e., a statistic derived from the DCT

histograms. Specifically, in [175] the authors found that the distribution of the first

significant digit of DCT coefficients in single-compressed images follows a generalized

Benford’s law. Specifically, the distribution of the FSDs in the frequency domain is

investigated in order to tell apart single compressed images from double compressed

[153] and, more in general, multiple compressed ones [155]. On the other hand,

counter-forensic schemes have been developed in order to remove or disguise the ar-

tifacts of multiple compression in the FSD distributions, like in [176] and [177]. A

unifying characteristic of these anti-forensic methods is that they are targeted to

deceive a specific forensic detector. As such, they do not guarantee that a possible

different detector, even based on the analysis of the same class of statistics, would be

defeated in turn: the analyst may develop a modified version of the detector that is

robust to the counter-forensic approach, thus pushing forward the cat&mouse game.

Recently, it is shown that FSD restoration has a strong impact on the distribution of

the second significant digits (SSDs) which may be exploited to detect FSD restoration
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[178]. To overcome this limitation, that is inherent in the use of targeted counter-

forensic techniques, we should turn to universal approaches, for which the optimality

at least for a certain class of detection methods is guaranteed.

It is proper to say that, many powerful techniques for detecting JPEG recompres-

sion go beyond the first order analysis of DCT coefficients. Among them, we mention

the work by Chen [179], where the transition probability matrices derived from the

differential JPEG 2-D array along various direction are used to reveal the presence

of JPEG recompression. Lai and Böhme [180] studied the properties of block conver-

gence during the repeated JPEG compressions with quality factor 100 that can be

exploited to estimate the number of recompressions and also uncover local tamper-

ing. Based on higher order analysis of DCT coefficients, methods have been derived

for detecting aligned double JPEG compression with the same quantization matrix

[181, 182].

In the next section, we give some details about JPEG compression to better

understand the reason for the artifacts and how they can be used to detect manipu-

lations.

11.2 Basics of JPEG compression

The JPEG standard is today the most widely used method for storing digital im-

ages [183]. Despite its lossy nature, JPEG compression is designed not to introduce

annoying artifacts in the compressed image, at least for reasonable compression ra-

tios. On the other hand, appreciable artifacts are introduced in the Discrete Cosine

Transform (DCT) domain. This fact fostered the development of a whole branch of

image forensic techniques. For this reason, we find it worthy to introduce the basic

concepts of JPEG coding and briefly describe how JPEG-based forensic algorithms

work.

To begin with, we revisit the procedure of compression of a gray-scale image

according to the JPEG standard. As regards the notation, the capital letter X is

used to denote image x in the transformed domain and Xq to indicate the quantized

version. In addition, X(i, j), res. Xq(i, j), indicates the transformed coefficient, res.

its quantized version, at frequency (i, j) of a generic block; when a particular block

k is addressed we denote it by Xq(i, j; k).

As a first operation, the input is divided into blocks of 8 × 8 pixels each. For

each block, the two dimensional DCT is computed. Let X(i, j), 1 ≤ i, j ≤ 8, denote

the DCT coefficient at frequency (i, j) of the block. The DCT coefficients are then

quantized into integer-valued levels Xq(i, j) as follows:

Xq(i, j) = sign(X(i, j))round

( |X(i, j)|
q(i, j)

)
, (11.1)
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where the quantization steps q(i, j) are given by a predetermined quantization matrix

Q = {q(i, j)}8i,j=1. After quantization, the values Xq(i, j) of the block are ordered

by zig-zag scanning and finally compressed by a lossless encoder.1 Viceversa, in the

decompression procedure, the bit stream is first decoded, and the integer coefficients

Xq(i, j) are rearranged back into blocks. Then, the de-quantized DCT coefficients are

recovered by multiplying the coefficients with the corresponding entry of the quanti-

zation matrix, i.e., Xq(i, j) · q(i, j). Due to quantization, the compression procedure

is not invertible and the dequantized coefficients assume only values which are integer

multiples of the corresponding quantization step. Finally, the inverse DCT of each

block is computed and the result is rounded and truncated so that the pixel values

assume integer values in the range [0, 255]. The quantization factor is the parameter

which determines the amount of approximation introduced by the compression, thus

affecting both the compression ratio and the quality of the reconstructed image. Typ-

ically, the quantization matrix is fixed by selecting a quality factor (QF), in [0, 100];

a high quality factor corresponds to a high quality of the reconstructed image, which

also means lower values of the quantization step.

Now let us suppose that an image is compressed twice. Let Xq1(i, j) denote the

quantized value at frequency (i, j) after the first encoding with quantization step

q1(i, j). When the image goes through a second compression stage, the resulting

quantization level is:

Xq2(i, j) = sign(Xq1(i, j))round

( |Xq1(i, j) · q1(i, j)|
q2(i, j)

)
, (11.2)

where q2(i, j) is the quantization step of the second encoding. Popescu et al. [169]

observed that double quantization, and more in general consecutive quantizations,

introduce periodic artifacts in the histogram of DCT coefficients. Such a periodic

pattern depends on the ratio between the quantization steps, that is, on the ratio

between the quality factor of the first and second compressions. More specifically,

when the step size decreases (i.e., QF increases) some bins in the histograms are

empty, whereas when it increases (i.e., QF decreases) some bins contain a large

number of samples and some other bins only a few. It is worth observing that

forensic analysers have usually to deal with the first kind of artifacts, since in many

applications the goal of the Attacker is to pass off a lower quality image as an image

of higher quality. For this reason, we consider the case of multiple compression with

increasing quality factors; however it is proper to stress that, being universal, our

technique can equivalently be applied in the other case.

Below, we give a brief description of the Watson’s model that we will use to char-

acterize the distortion constraint of the DCT coefficients, that is for the estimation

1Strictly speaking, DC and AC’s coefficients are treated separately by the JPEG standard.
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of the Just Noticeable Difference (JND) of the block-based DCT coefficients [184].

Watson’s DCT-based visual model

This model establishes a link between modifications in the unquantized DCT domain

and their impact in the pixel domain. To account for the sensitivity of the Human

Visual System (HVS) to different frequencies, the model defines a sensitivity table,

which is an 8× 8 matrix W whose element W (i, j) gives the amount of modification

for coefficient (i, j) that produces a JND in the pixel domain, i.e., the maximum

modification of the DCT coefficient (i, j) which is visually undetectable. Lower values

in the matrix correspond to higher sensibility for the HVS to that frequency. For

our experimental evaluations, we use the matrix of standard values provided in [185].

The sensitivity table is the simplest estimation of the JND, as it does not take into

account the local properties of the image. To obtain a more accurate evaluation of

the JND for a DCT coefficient we need to consider two additional effects: luminance

masking and contrast masking.

Luminance masking is due to the fact that, according to the HVS, a bright back-

ground hides more noise that a dark background [186]. To account for such an effect,

Watson’s model modifies the matrix for each block of the image on the basis of the

value of the DC coefficient (mean luminance intensity of the block). The refined

threshold for the (i, j) DCT coefficient of the k-th block is given by

TL(i, j; k) = W (i, j) ·
[
C(1, 1; k)

C

]α
, (11.3)

where C(1, 1; k) is the DC value of the k-th block, C is the mean intensity of the

image, and α is a constant. The value suggested by Watson is α = 0.649.

Watson’s model further refines the estimation of the JND by considering also the

contrast masking effect. This is done by evaluating the influence that the AC energy

has in the DCT coefficients. The threshold for the DCT coefficient (i, j) of the k-th

block is then given by:

T (i, j; k) = max{TL(i, j; k), |C(i, j; k)|η · TL(i, j; k)1−η}, (11.4)

where η is a constant between 0 and 1 (Watson suggests η = 0.7).

11.3 The multiple JPEG compression game

Before introducing the proposed scheme, we need to specify the theoretical framework

behind it outlining the differences with respect to the case in which the forensic

analysis takes place in the spatial domain (see Chapter 10).
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Although the problem here is similar to the one addressed in the spatial domain,

working in the DCT domain poses several new challenges that need to be solved.

With a reference to the JPEG forensic problem, the FA/AD interplay can be

described as follows: on the one hand, the FA wants to tell apart single compressed

from multiple compressed images while, on the other hand, AD aims at hiding the

effect of multiple compressions so that the image looks like a single compressed one.

We assume that, as an extension of the previous case, the Forensic Analyst bases

its decision on the analysis of the histograms of the DCT coefficients; as discussed

in Section 11.1, this hypothesis actually holds for many existing forensic tools aimed

at detecting double (multiple) JPEG compression. The main difference with respect

to the previous case is that now the forensic analyst has to combine the information

conveyed by 64 histograms, one for each DCT frequency (i, j). At the same time, the

AD has 64 histograms to act upon in order to fool the detection, while preserving

the constraint on the visual distortion of the image in the spatial domain.

It should now be evident that, although similar to the analogous problem in the

pixel domain, the DCT case cannot be treated with the theoretical tools derived in

Chapter 4. Instead, the detection of JPEG multiple compression in the frequency

domain finds an appropriate background in the analysis of Chapter 7, where the

case of multiple observations is considered, and the Defender bases the decision on

a number of features (or summaries) each one extracted from an observed sequence

describing the status of the system. This is exactly the case with JPEG forensic

methods that separately analyse coefficients belonging to different DCT frequencies

(see, for instance, [152, 174, 153, 155]). Let X be a reference single compressed image

in the DCT domain; we denote by hXij the histogram of the quantized DCT coeffi-

cients at frequency (i, j) and with vXij the normalized versions, where each value of

the histogram is divided by the total number of blocks in the image. Moreover, we

indicate with vij , for 1 ≤ i, j ≤ 8, the normalized DCT histograms of the image under

analysis. Because of the decorrelation property of the DCT transform, the depen-

dence among DCT coefficients in different subbands is low (intrablock dependence),

and then we can approximately assume them to be independent.

With reference to the analysis in Chapter (7), it is interesting to observe that,

if we consider independent sources, the expression for the optimum strategy of the

Defender in the case of marginal-based detection given in (7.6) (Theorem 16) can be

noticeably simplified. In fact, in the case of independent sources, i.e., when PX =∏s
i PXi (with s, number of observations), given the set of marginal distributions

estimated on the observed sequences (P̂1, ..., P̂s), the optimum log-likelihood function
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of the Neyman-Pearson test performed by D becomes:

min
P∈A(P̂1,...,P̂s)

D(P ||PX1
· PX2

· ... · PXs)

= min
P∈A(P̂1,..,P̂s)

D(P ||P̂1 · P̂2 · ... · P̂K) +D(P̂1 · P̂2 · ... · P̂s||PX1
· PX2

· ... · PXs)

=

s∑

i=1

D(P̂i||PXi), (11.5)

where A is the set of all the joint distributions with marginals P̂i.

Then, in case of approximately independent observations, as the DCT coefficients

in different sub-bands are, the optimum log-likelihood test function for the FA can be

approximated by the sum of the divergence functions between the normalized DCT

histograms, that is:2
8∑

i,j=1

D(vij ||vXij ), (11.6)

From the game theoretical analysis (see Chapter 7), we know that expression (11.6) is

the optimum objective function that the AD must minimize in producing the forgery.

Similarly to the previous case, due to the lack of a proper statistical model for

multiple JPEG compression, the forensic analysis may follow a data-driven approach

(see discussion in 9.3). Then, the overall scheme of the attack proposed in 10.2 is

preserved and the universal JPEG counter-forensic method works as follows: starting

from the multiple compressed image Y , AD produces the attacked image Z in three

steps: retrieval of a target histogram from a database of untouched single compressed

histograms, computation of the optimum mapping and application of the mapping to

the image.

11.4 A universal JPEG counter-forensic algorithm

In this section we describe in detail each phase of the proposed universal counter-

forensic algorithm. The Attacker has an image which has been compressed two or

more times with increasing quality factor, i.e., with QFk > QFk−1, where k denotes

the number of times that the image has been compressed. In order to pass off the

image as a single compressed image, the Attacker runs the universal counter-forensic

scheme illustrated in Figure 11.1.

2It is worth pointing out that, strictly speaking, the analysis of Chapter 7 has been made for the

case of known sources only and then the D function is the optimum log-likelihood test function in

that case. We argue that, as it happens for the single observation decision setup, the analysis of the

training data case would lead to a more refined (generalized) log-likelihood function (with respect

to D).



216 11. Universal Attacks in the DCT Domain

Figure 11.1: The block diagram of the proposed universal JPEG counter-forensic

algorithm.

11.4.1 Retrieval phase

We assume that the Attacker has access to a database (DB) of images that have

been JPEG compressed only once. Given the multiple compressed image Yq with

quantization matrix QY = {qY (i, j)}8i,j=1, AD searches in the DB of images the

one whose vector of DCT histograms is most similar to the histogram vector ~hY =

(hY11
, hY12

, ..., hY88
).

For any frequency (i, j), the similarity between an histogram hXij and hYij is mea-

sured by the chi-square distance χ2, defined as follows:

χ2(hXij , hYij ) =
1

2

∑

m∈C

(hXij (m)− hYij (m))2

(hXij (m) + hYij (m))
,

where C denotes the set of all the values taken by the DCT coefficients.3 While in

the spatial domain these values range from 0 to 255 (pixel values), in the frequency

domain the DCT coefficients vary in [−1024, 1023].

We can distinguish between two methods for performing the choice of the 64 DCT

target histograms, depending on how the overall χ2 distance is computed:

• joint search: for each image X in the DB the Attacker sums each contribution

χ2(hXij , hYij ) provided by each couple of histograms and chooses the vector

of 64 DCT histograms minimizing the overall distance. That is, the Attacker

looks for the vector of histograms ~hX which minimizes
∑

(i,j) χ
2(hXij , hYij );

3Experiments show that using χ2 in place of D in this phase lightens the computation without

significantly affecting the results.
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• disjoint search: for each DCT subband, AD searches in the DB the histogram

associated with the minimum of the χ2 distance; i.e., for each (i, j), AD chooses

the hXij which minimizes χ2(hXij , hYij ).

It is evident that, in the second case, the target DCT histograms retrieved from the

DB probably belong to different images, i.e., different histogram vectors of the DB.

However, in our model, which is confined to the analysis of first-order statistics, this

fact does not arise any contradiction, being consistent with the optimum strategy for

AD. Besides, it must be stressed that performing the choice in the second way allows

to find, for each subband, target histograms which are closer to the source ones with

respect to those found in the first way. There are some important considerations

we need to do about the retrieval phase. First, we notice that the Attacker can

hardly resort directly to a DB of single compressed images, since the corresponding

quantization matrices would be probably different from the input quantization matrix

QY . Instead of storing thousands of versions of the same image quantized with all

possible tables, the Attacker can more practically consider a DB of never-compressed

images and, depending on the quantization matrix of the Yq under analysis, adapt the

DB “on-the-fly”. This means that, for a given input image Yq, the Attacker simulates

the single JPEG compression by quantizing the DCT coefficients according to the

input quantization matrix QY . The second observation still concerns practicality:

since the search is conducted on the vector of DCT histograms and not on images,

only the histograms of unquantized DCT coefficients need to be stored in the DB.

This allows to reduce both the size of the dataset and the execution time.

11.4.2 Mapping phase

According to our previous discussion, in this phase the Attacker has to determine

the histograms vZi,j which minimizes the quantity
∑

(i,j)D(vZij ||vXij ), subject to

a distortion constraint imposed in order to maintain the final image visually sim-

ilar to the initial one. In order to characterize this constraint in the frequency

domain we rely on the concept of Just Noticeable Distortion (JND). It is reason-

able to take the JND as maximum value for the distortion that AD can introduce

in the coefficients of the transformed image Y . A commonly used model for the

JND is Watson’s model [184], described in Section 11.2, which provides a 8 × 8

sensitivity matrix W = {W (i, j)}8i,j=1. Each entry of the matrix Wq(i, j) pro-

vides the maximum amount of distortion which can be introduced in the quantized

DCT coefficients of the subband (i, j) without generating annoying artifacts. Let

Wq = {round (W (i, j)/qY (i, j))}8i,j=1 denote the quantized Watson’s matrix, approx-
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imated to integer values4.5 The maximum distortion for the (i, j) coefficient is given

by K(i, j) = Wq(i, j) · L for some L ≥ 1 (larger L allow to obtain more accurate

mapping at the price of a higher visual distortion). Interestingly, since distortion

constraints are defined per subband, the problem can be solved as 64 separate mini-

mizations:

min
|Z(i,j)−Y (i,j)|≤K(i,j)

D(vZij ||vXij ), ∀(i, j), 1 ≤ i, j ≤ 8. (11.7)

Let us focus on a single DCT subband and analyze the corresponding problem. It

is useful to introduce the transportation matrix Nij = {nij(m, r)}|C|m,r=1, where each

term nij(m, r) indicates the number of elements in hYij which must be moved from

the m-th to the r-th bin. Let nij be the total number of blocks in the image (i.e., the

number of DCT coefficients for each frequency (i, j)). Each constrained optimization

problem in (11.7) is quite similar to the one in Section 10.2.2 and, similarly, can be

rephrased in function of the nij(m,n) variables as follows:

min
nij(m,r)

|C|∑

r=1

(
∑
m nij(m, r))

n
· log

(
∑
m nij(m, r))

nvXij (r)
, (11.8)

subject to





∑
r nij(m, r) = hYij (m) ∀i

nij(m, r) = 0, ∀(m, r) ∈ I : |m− r| > K(i, j)

nij(m, r) ≥ 0 ∀m, r
nij(m, r) ∈ N

(11.9)

where the histogram hYij and the distortion constraint were rewritten in terms of

nij(m, r) variables. Solving problem (11.8)–(11.9) provides the optimum map N∗ij ,
from which we obtain the final attacked histogram hZij by computing

∑
m n
∗
ij(m, r)

for each r. Problem (11.8)–(11.9) is a convex mixed integer non-linear problem

(MINLP) [161] for which a global optimum solution exists and efficient solvers are

available for the resolution. It is worth observing that the number of optimization

variables is given by |C|, that is the cardinality of the alphabet of the DCT coefficients

(|C| = 2048), and it does not depend on the size of the image. This value seems to

be significantly larger compared to the one in the pixel domain (i.e., 256); however,

since the statistics of the DCT coefficients are usually peaked around the mean value

[187], the number of variables can be noticeably reduced by cutting off the bins below

4Performing the rounding for computing Wq may cause a slight violation of the JND constraint,

but it is preferable for the remapping operation.
5In this phase, we do not account for the refined model of the sensitivity matrix, which would

complicate significantly the analysis, by introducing a block-wise dependence.
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mmin (where mmin is s.t. hYij (m) = 0 ∀m < mmin) and above mmax (where mmax is

s.t. hYij (m) = 0 ∀m > mmin). Let E be the set of the empty bins within the interval

[mmin,mmax]. It is easy to argue that the actual number of variables of the (i, j)-th

minimization is 2K(i, j) ·((mmax−mmin)−|E|), which is usually much lower than |C|.
Moreover, since JPEG compression quantizes more heavily the high-frequency DCT

coefficients, the complexity of the minimizations will decrease at higher frequencies,

because histograms will tend to cluster around zero.

Similarly to the optimization problem (10.7)–(10.8), the problem in (11.8)–(11.9)

has very close ties with the classical transportation problem: the difference is that,

according to the definition of the attacker’s strategy, the Attacker is satisfied with

any distortion less than K(i, j), that is, he/she is not concerned about minimizing

the distortion provided that it is less that K(i, j). In this way, the optimum attacking

strategy in (11.8)–(11.9) provides a distortion-limited mapNij even when the classical

transportation problem, which moves vYij exactly into vZij , would introduce too much

distortion into the image (i.e., more than K(i, j)).

To sum up, the mapping phase provides the Attacker with the 64 matrixes N∗ij ,
1 ≤ i, j ≤ 8; each matrix N∗ij defines the modifications that must be made on

the DCT coefficients at freqeuncy (i, j) in order to obtain the optimum attacked

histogram hZij .

11.4.3 Implementation of the mapping

After obtaining the transportation matrices, it is necessary for the Attacker to imple-

ment the mapping in such a way to reduce as much as possible the visual distortion

introduced in the image. Notice that, since the forensic detector relies on the his-

tograms of the DCT coefficients, the result of the attack in terms of detectability

of the produced forgery depends only on the results of the mapping phase, and it

is not affected by the modifications performed in this phase. In the following, we

describe an approach that allows the Attacker to implement the modifications set

by the matrixes N∗ij ’s in a perceptually convenient way. The basic idea is to exploit

the different sensitivity of the Human Visual System to the DCT coefficients of the

different blocks in order to first modify the coefficients in those blocks where the

HVS is less sensitive. To do so, we exploit the values of the JND provided by Wat-

son’s model which, as described in Section 11.2, are indeed block-dependent. Again,

modifications are implemented separately on the DCT coefficients of each frequency

subband.

Below, we describe the main steps of the proposed scheme for the implementation

of the transportation matrix N∗ij in the generic subband (i, j):

1. Set all the coefficients as “admissible”;
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2. Rank the blocks based on the value of the threshold T (i, j) in decreasing order:

block k such that T (i, j; k) is maximum is ranked first, and so on;

3. For each couple of values (m, r) such that nij(m, r) 6= 0 proceed as follows:

(a) find the blocks with admissible DCT coefficients having value m;

(b) select the first nij(m, r) according to the order established by the ranking;

(c) substitute them with r;

(d) remove selected coefficients from the admissible ones6;

The procedure is applied to all the 64 DCT subbands.

Notice that, according to the above scheme, the Attacker computes the thresholds

of the JND only once, without updating them to account for the variations caused

by incremental modifications. In principle, lower distortion can be introduced by

iteratively updating the thresholds. However, since Watson’s model is mainly con-

cerned with the average luminance and energy of each block, the benefit obtained

by iterative updates is not relevant enough to justify the increased computational

complexity, and for this reason this feature was not implemented.

At the end of the procedure, the adversary gets the transformed image Zq with the

quantized ‘remapped’ DCT coefficients, whose DCT histograms are, by construction,

the 64 target histograms hZij , 1 ≤ i, j ≤ 8, obtained in the mapping phase. Com-

puting the de-quantized coefficients and applying the inverse DCT transform yields

the final attacked image z in the pixel domain. The image will appear visually close

to the input one, but its histograms will show traces of just one compression step.

11.5 Experimental validation

In this section we put the technique described in the previous sections at work, in

order to show that it actually conceals the traces of multiple compression in the his-

tograms of the DCT coefficients. To test the effectiveness of the proposed scheme,

we implemented a simple and common double compression detector based on the

so-called calibration technique, borrowed from steganalysis [171]. Calibration is a

procedure allowing to estimate the original distribution of the quantized DCT co-

efficients by removing a small number of rows/column (in the spatial domain) to

disrupt the block structure of JPEG images. The calibration-based detector simply

works by calculating the “expected” histograms for quantized DCT coefficients and

6This avoids multiple substitutions of the same coefficients.
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comparing them to the histograms of observed DCT coefficients in the given image.7

If the image was compressed only once, the expected histogram is quite similar to

the observed one (the χ2 distance is used to compare histograms); on the other hand,

if multiple compressions were performed, the expected histogram differs significantly

from the observed one. We limit the detector to consider the first 12 DCT coefficients

(in the JPEG zig-zag ordering), because higher frequency coefficients are not reliable

for this kind of analysis, due to the sparsity of histograms induced by quantization.

To enforce the fact that the proposed scheme is universal, we also consider two data-

driven detectors which work on first order statistics of the DCT coefficients. Notice

that, with respect to the detector based on calibration, these detectors works exclu-

sively with first-order statistics of the DCT coefficients, thus belonging to the class

of detectors considered in the theoretical analysis. Specifically, the undetectability

of our method is validated against the detector in [155], based on the analysis of the

distribution of the first significant digit (FSD) of DCT coefficients absolute values,

and an SVM-based detector directly fed with the histograms of the block-DCT co-

efficients, inspired by the detector in [152]. The idea behind the latter detector is

simple: rather than considering specific features derived from the first order statistics

of DCT coefficients, we can directly feed the SVM with a feature vector formed by

the histograms of block-DCT coefficients. To build the feature vector, before con-

catenating the DCT histograms, each of them is arranged on a reference support

which is determined so to be large enough to accommodate the histogram content,

for all the quality factors considered. Specifically, or the DC histogram, we consider

the range determined by the JPEG 100% (4096 bins), whereas, to save the length of

the feature vector, a worst-case range extent for the histograms of the AC coefficients

is determined experimentally.

Besides, we evaluate the perceptual similarity between the input image and the

one obtained after the implementation of the mapping.

To generate the reference database for the Attacker, we computed the histograms

of each DCT coefficient from more than 2000 grayscale uncompressed images, obtain-

ing 64 histograms per image. The database is generated from the UCID database

(1338 images of sizes 512 × 384) and images from a personal database of images in

raw format (700 images) of sizes 1072 × 712.8

Then, 25 grayscale uncompressed images were chosen from different sources (a

7The expected histogram is obtained by estimating the histograms of unquantized coefficients

(using calibration), then quantizing them according to the quantization factors available in the

JPEG header of the file.
8We built a personal dataset of images in tiff format in order to increase the size of the database,

due to the little availability of image datasets in uncompressed format at the time of these experi-

ments.
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different personal dataset of images of the same size) to perform the tests. Both

the database and the test images are available in the website (http://clem.dii.

unisi.it/~vipp/index.php/download/imagerepository). For a multiple com-

pressed image, consistently with the notation introduced in Section 11.4, we denote

by {QF1,QF2,...,QFk} the quality factor used for the first, second, . . . , k-th com-

pression step. Each test image was used to generate, using the imwrite function

of Matlab, the following images: three double-compressed versions of the image,

with quality couples {65, 85}, {75, 90} and {85, 95}; five triple-compressed versions,

with quality triplets {65, 85, 90}, {70, 75, 95}, {70, 80, 95}, {75, 85, 95}, {80, 85, 95};
for each of the above multiple-compressed images, one single-compressed image with

quality given by QFk (these images serve to test the discrimination capability of a

forensic detector).

Then, we applied the JPEG counter-forensic scheme to each of the above images,

using L = 4; the experiment was performed using both the disjoint and joint search

(as defined in Section 11.4.1) in order to compare the performance.

We now describe the experiments we did to validate our method against the

calibration-based detector. In the first experiment, the detector was used to dis-

criminate between double-compressed and single-compressed images, generated as

detailed above, whereas in the second experiment we tried to discriminate between

single- vs. triple- compressed images. To measure the performance, we computed

the Receiver Operating Characteristic (ROC) curve of the detector before and after

the application of our JPEG counter-forensic attack, along with the Area Under the

Curve (AUC). As we can see in Figure 11.2, the detector behaves reasonably well

in absence of counter-forensic attacks, while its performance dramatically drops af-

ter the proposed scheme is applied. Moreover, we see that both the disjoint and

joint search methods lead to reasonably good performance in terms of deceiving the

calibration-based detector, with the former slightly favored at small probabilities of

false alarm. It is worth pointing that, the joint search approach would be preferable

to the disjoint one because it is forensically more secure; however, it suffers more the

limited size of the database. Then, quite expectedly, when the joint search approach

is adopted, the algorithm needs significantly larger DB for getting good performances.

The results for the case of single- vs. triple- compressed images are plotted in

Figure 11.2: we see that good CF performance are obtained in the leftmost part of

the ROC, corresponding to low false alarm probability. For false alarm probabilities

over 0.4, the detector manages to distinguish between single- and triple- compressed

images even in the presence of counter forensic attacks. This fact is mainly due

to the different distribution of quality factors between triple compressed and single

compressed images in the considered experiments; from a forensic point of view,

however, false alarm probabilities as high as 0.4 are not of interest.

http://clem.dii.unisi.it/~vipp/index.php/download/imagerepository
http://clem.dii.unisi.it/~vipp/index.php/download/imagerepository
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Figure 11.2: ROC curve for the calibration-based detector for single-vs-double (a)

and single-vs-triple (b), before and after application of the proposed method.

Experiment Mean SSIM Std. dev. SSIM

Double compression - Disjoint 0.920 0.033

Double compression - Joint 0.903 0.046

Triple compression - Disjoint 0.945 0.025

Triple compression - Joint 0.935 0.027

Table 11.1: Performance of the proposed method in terms of perceptual quality.

Each row shows the mean and the standard deviation of the SSIM obtained for a

given experiment. For double compression a total of 75 images were processed, 125

for triple compression.

Let us now turn to consider the perceptual quality of the attacked images. We

evaluated the quality by means of the Structural Similarity (SSIM) index [165], com-

puted between the original image and the image at the output of the proposed scheme.

Results are given in Table 11.1. We can confirm that using the disjoint search on the

database (as defined in Section 11.4.1) allows the Attacker to obtain better results

in terms of perceptual quality of the produced image. It may seem counter-intuitive

to the reader that a better similarity was obtained in the case of triple compression:

this is actually not surprising if we keep in mind that the similarity is computed

between the input and the output of the CF scheme, and it is easier to keep fidelity
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to an image whose quality was not so high from the beginning (as it is a triple com-

pressed images). A practical comparison between a multiple-compressed image and

the counter-forensic version is shown in Figure 11.3; the DCT histograms at some

frequency are showed in Figure 11.4.

(a) (b)
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Figure 11.3: Example of an application of the JPEG counter forensic algorithm:

(a) triple-compressed image with qualities {70, 80, 95} and (b) its counter-forensic

version; (c) absolute difference between (a) and (b).

Experiments were also conducted against the first significant digit (FSD) features-

based detector [155] for the case of single-vs-double compression and the SVM-based
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Figure 11.4: DCT Histograms for the example in Figure 11.3: (a) histogram of DCT

coefficients at frequency (1,2) coming from the multiple-compressed image, (b) the

corresponding target histogram from the DB and (e) the remapped version obtained

with the proposed scheme. (g) - (i), histograms of DCT coefficients at frequency

(3,4), ordered as in the previous line.

detector fed with the histograms of the block-DCT coefficients. To test our method

against these detectors, we enlarged the set of grayscale never-compressed images to

40. A random subpart (about 70%) of these images in these two sets are then used for

training the SVM. Specifically, the set of single and double-compressed images were

generated as above; then, the feature vectors were computed from the images of both

classes and used to train the classifiers. The remaining images (about 30%) were used

as test set; we first produced the single and double compressed images, then we ran

the universal C-F attack with L = 3 to hide the traces of recompression in the double

compressed images. Cross validation was performed by repeating the experiments 10

times. The result of the classification against the detector in [155] is shown in Table

11.2 for the case of detection of double compression:9 whereas the detector is able to

perfectly tell apart double compressed images from single compressed ones, its per-

formance drops after the application of the counter-forensic algorithm. The average

9This detector only consider the first 15 DCT coefficients taken in zig-zag order in the feature

vector.
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perceptual quality of the final attacked images is also reported. These experiments

show that the proposed method is able to fool the detector in [155], although not

tailored for this purpose: This is expected due to the universality of the method (as

long as first-order statistics are considered).

Even the second, more general data-driven detector based on the block-DCT

histograms, inspired by [152], is fooled by the universal C-F attack. To assess the

validity of the attack against this detector, we used grayscale images from the RAISE

dataset [188]. This dataset consists of 8156 high-resolution images (of sizes (3008 ×
2000, 4288 × 2848 and 4928 × 3264), uncompressed and guaranteed to be camera-

native, belonging to various categories (e.g., outdoor, landscape,..).10

Specifically: a subset of 2000 images were used as database for the Attacker; in

addition, 1000 images were selected for evaluating the performance of the detector.

We built the training set by randomly selecting 900 images (100 of which were used

for 5-fold cross validation), while the remaining 300 images were used for the test. We

considered the following pairs of quality factors for the first and second compression:

(QF1, QF2) ∈ {(65; 85); (70; 85); (75, 90); (85; 95)}. The images in the training set

were compressed once with QF2 to build the set of single compressed and twice with

(QF1, QF2) to build the double compressed set. From the test set, single and double

compressed images were generated as above. Then, for the images in the double

compressed set we ran the C-F scheme with L = 4, to build the set of the attacked

images for both the joint and disjoint search case.11

As a result, while the double compressed images are correctly classified (AUC

≈ 0.99), the classification of the attacked images fails both in the case of joint and

disjoint search. The AUC is about 0.51 and 0.42 respectively. Figure 11.5 shows the

ROC curves before (single vs double compressed images) and after (single compressed

vs attacked images) the application of the algorithm for the case of joint search.

We also verified that, not surprisingly, the SVM-based detector makes ineffective

the attacks in [177] and [176], focused on the FSD domain, yielding almost ideal

detection performance. The concealment of the traces in the FSD domain, in fact,

leaves traces back in the histograms of the DCT coefficients that the SVM classifier

is able to recognize.

10The RAISE dataset was not yet available at the time of our previous experiments.
11As before, cross validation is performed by repeating the experiment 10 times.
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Test AUC PSNR SSIM

No CF 1 inf 1

JOINT CF 0.52 31.78 0.88

DISJOINT CF 0.49 32.48 0.91

Table 11.2: Performance of the proposed method against the FSD features-based

detector. When no CF scheme is applied, by default, PSNR= inf and SSIM = 1.
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Figure 11.5: ROC curve for the detector based on block-DCT histograms before

and after application of the proposed CF method. The joint search approach is

considered.





Chapter 12

The Security Margin Concept in Image
Forensics

The Security Margin (see Chapter 5) is a powerful concept which permits to sum-

marise into a single quantity the asymptotic behaviour of the game between the

Attacker and the Defender. Its practical application, however, poses a number of

problems due to the assumptions behind the definition. In this chapter, we first dis-

cuss a possible practical meaning of the Security Margin concept (Section 12.1) and

present its possible use within a multimedia forensics scenario (Section 12.2).

12.1 Practical meaning of the SM
Binary detection is one of the most common problems in image and multimedia

forensics. In fact, gathering information about the device that was used to produce

a certain image plays a crucial role in many investigations. In a similar way, the

analyst may be interested to decide if a certain processing operator has been applied

to a given image, that is to distinguish between the class of images that underwent a

certain processing and those which did not. Within this framework, according to the

theoretical analysis, estimating the SM between the classes of original and processed

images may help to understand how difficult it is for the adversary to completely

delete the traces left by the processing operator and to answer the following question:

who, between the FA and the AD, is going to win the multimedia forensic game?

In practice, a large SM means that if the adversary wants to be sure to make

the forensic analysis fail, he has to introduce a large distortion (L > SM), thus

possibly compromising the visual quality of the forgery. By adopting the opposite

(defender’s) perspective, the SM provides a qualitative measure of the goodness of

the performance of a detector: a detector which is able to distinguish well between

two classes, should not be fooled if the adversary introduces a distortion less than

the SM.

As already discussed in Section 9.3, when a statistical model for the two classes

of images is not available, as it is often the case in multimedia signal processing ap-

plications, the theoretical analysis developed in the first part of this thesis cannot be
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applied straightforwardly, but needs to be adapted so to fit the practical scenario.

Similarly, the concept of the SM between the two classes cannot be directly calcu-

lated as detailed in Chapter 5 and needs to be readapted. Such adaptation should

consider the data-driven approach followed by the analyst, usually based on machine

learning techniques, whereby the characteristics of the image classes are derived from

a number of examples.

12.2 SM in data-driven Image Forensics

By sticking to the notation introduced in Section 9.3, let C and C′ be two classes of

images, for instance images acquired by a scanner and images produced by a camera.

Given that the statistical model of the two classes is unknown, the analyst relies on

two sets of training images belonging to C and C′, let us call such sets S and S ′.
Given a test image I, the goal of the Defender is to accept or reject the hypothesis

that I belongs to C, by relying on the first order statistics of I, that is the image

histogram hI ; on the other hand, the goal of the Attacker is to take an image J

belonging to C′ and modify it in such a way that the Defender classifies it as belonging

to C. From the theoretical definition of SM (see Section 5.1), we can argue that

in some sense the Security Margin between J and S (which is the only available

representation of C) is the minimum EMD between hJ and the histograms of the

images in S, namely

SM(J,S) = min
I∈S

EMD(hJ , hI). (12.1)

In fact, if the distortion allowed to the Attacker is larger than SM(J,S), A can

modify J in such a way that its histogram is equal to the histogram of one of the

images in S, thus making a reliable distinction impossible. In the same way, we could

define the SM between two classes of images as the average minimum EMD between

the histograms of the images in one class and those of the images in the other class:

SM(S ′,S) =
1

|S ′|
∑

J∈S′
min
I∈S

EMD(hJ , hI). (12.2)

A similar analysis can be applied when the distinction between the classes C and C′
is carried out in a transformed domain, e.g., the block DCT domain.

In the next paragraph, we exemplify the above ideas by applying them to two well-

known problems in image forensics: detection of contrast enhancement and double

JPEG compression.
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12.2.1 Histogram-based detection of contrast enhancement

As already pointed out, given that most contrast enhancement operators work di-

rectly on the image histogram, forensic tools for contrast-enhancement detection

usually rely on the analysis of the image histogram and hence fit well the theoret-

ical setup considered in this thesis (e.g., [149, 136]). In this framework, estimating

the SM between the classes of original and contrast-enhanced images as specified

in equations (12.1) and (12.2) may help to understand how difficult is to make the

enhancement operation undetectable.

To exemplify the above ideas we considered the images contained in the MIR-

FLICKR dataset [189]. These are 25,000 JPEG images of size 333 × 500.1 We

randomly split the images in two sets S containing 24,000 images and S ′ with 1,000

images2. We use set S as evidence for the class of never processed images. Then, we

contrast-enhanced the images in S ′ by applying a gamma correction operator with

various γ [190]. Eventually, we used equation (12.1) to compute the SM between

the images in S ′ and S. The results we obtained are reported in Figure 12.1 where

we show the distribution of the SM across all the images in S ′ for both the cases

of squared Euclidean distance and maximum distance for γ = 0.8. The SM ranges

from a minimum of 1.6 to a maximum of 195.3 for the square Euclidean distance,

and from 5 to 85 for the L∞ case. By looking at the figures we see that the images

for which the SM takes large values are very few. In fact, the 95th percentile is 24.5

and 64 respectively in the two cases. It is worth noticing that such outliers corre-

spond to very bright images which are actually not suited to be γ-corrected with a

low γ (resulting in a restriction rather than in an expansion of the histogram). In

such a case, unless S is very large and contains also some almost saturated images,

it is plausible that a larger distortion is needed to map the histogram into the closest

histogram retrieved from S. Figure 12.2 shows the original image with the maximum

SM (SM = 85) for the case of L∞ distance and the corresponding histograms before

and after gamma correction. For the same motivation, large SM’s are also obtained

with very dark images when we perform the enhancement with a large γ.

In Table 12.1, we show the average SM, computed as stated in (12.2), for different

values of γ. The values in the table suggest that, for instance, with a strength of the

enhancement of 1.8, the Attacker must introduce an average square distortion in the

order of 26 and a maximum (non-squared) distortion in the order of 15 for a perfect

concealment of the traces left by the γ correction operator.

Figure 12.3 reports the distribution of the SM across all the images in S ′ for the

1We consider the MIRFLICKR dataset because of its very large size.
2The reason for the unbalanced sizes of the sets is the following: in order to have a good estimate

of the value of the SM between a processed image J ∈ S′ and the class of the never processed

images S, we need a descriptive characterization of S.
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Figure 12.1: Distribution of the SM across the images in S ′ for the case of L∞
(above) and L2

2 (below) distance. The strength of the enhancement operator is γ =

0.8.

Table 12.1: Average SM between S and S ′ for various values of γ.

γ

0.3 0.8 1.3 1.8 2.3 2.8

SML∞ 27.3 13.8 13.8 14.9 16.1 17.4

SML2
2

48.8 27.4 25.8 26.1 26.3 26.8
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Figure 12.2: Image in S ′ which yields SM = 85 for the case of γ correction. Original

image (top). Histogram of the original and γ-corrected image with strength 0.8

(bottom).

case of maximum distance when the images are enhanced through histogram stretch-

ing to build S ′. Even in this case, we notice the presence of some large SM values

corresponding to images with bright (almost white) areas in dark backgrounds or

viceversa, which are not suited to be enhanced with stretching of the histogram. The

original image corresponding to the maximum SM (SM = 76) and the histograms

before and after the histogram stretching are shown in Figure 12.4.

We conclude this section by observing that the values given Figure 12.1 and

Table 12.1, as well as those in Figure 12.3, must be interpreted with care. First of

all, the results depend on the used database and in particular on its size; the values
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Figure 12.3: Distribution of the SM across the images in S ′ for the case of L∞
distance. The enhancement is performed trough histogram stretching.

of the SM may decrease by considering larger database. Secondly, introducing a

distortion equal to the SM ensures the success of the attack asymptotically and in

the presence of an optimum detector. Deceiving practical forensic operators may be

significantly easier, and hence may require a considerably lower distortion. This is

exactly the case when the optimum attack is pursued against the detector in [136],

as the experimental results in Chapter 10 show. Secondly, the visual impact of the

attack can not be measured only in terms of L2
2 or even L∞ distance, since it also

depends on how the attack is implemented in the pixel domain, that is on which

specific pixels are chosen to implement the mapping defined by the NWC rule (the

practical implementation of histogram mapping proposed in Section 10.2.3 provides

insights on the visual impact. However, the proposed method is only a possibility

of performing the remapping in the pixel domain and in principle other solutions

leading to a smaller visual impact could be found).

12.2.2 Detection of double JPEG compression

Here we focus on the distinction between images which have been JPEG-compressed

once from those which have been compressed twice, which, as discussed in the pre-

vious chapter, is another common problem in image forensics. The most frequent

approach consists of analysing the histogram of block-DCT coefficients, since the

double quantization entailed by double JPEG compression leaves peculiar artifacts
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Figure 12.4: Image in S ′ which yields SM = 76 for the case of histogram stretching.

Original image (top). Histogram of the original and enhanced image (bottom).

in the histogram of low-to-medium frequency coefficients. When such an approach is

adopted, the possible correlation between DCT coefficients of different image blocks

and between coefficients at different frequencies is discarded thus justifying the as-

sumption that the Defender relies only on first order statistics. As many examples of

detectors of double JPEG compression are based on the analysis of the histograms

of block-DCT coefficients, finding an estimation of the SM between the single and

double compressed class is a worth investigation.

Then, in this setting, we use equations (12.1) and (12.2) to estimate the dis-

tortion that the Attacker needs to introduce at each frequency to make the DCT

histograms of double compressed images equal to those of single-compressed im-

ages. We used again the images in the MIRFLICKR dataset to exemplify the above

ideas. In our experiments, we considered the following pairs of quality factors:
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Figure 12.5: Distribution of the SM with the L∞ distance at the DCT frequencies

(1,1), above, and (2,1), below. The plot refers to the case of double JPEG compression

with first and second quality factor 85 and 95 respectively.

(QF1, QF2) ∈ {(65, 85), (70, 85), (75, 90), (85, 95)}. For any given pair (QF1, QF2),

the images are compressed once with QF2 to build set S, and twice, first with QF1,

secondly with QF2) to build S ′ 3. Figure 12.5 shows the distribution of the SM
3We verified experimentally that for a double compressed histogram with a given QF2, the closest
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17.362 66.375 50.09 21.094 18.188 8.083 5.523 4.35

63.284 46.516 37.525 15.613 9.202 4.313 3.773 3.434

50.624 36.206 16.076 13.91 6.389 3.968 3.18 3.117

40.784 16.182 13.776 8.755 5.094 2.751 2.81 3.109

18.177 13.358 6.138 4.133 3.39 2.518 2.412 2.555

15.774 6.193 3.897 3.909 2.841 2.535 2.233 2.333

5.451 3.579 2.85 2.591 2.452 2.216 2.086 2.13

3.792 2.805 2.394 2.397 2.245 2.219 2.128 2.029

Table 12.2: Average SML∞ between the set of never processed and double com-

pressed images in the DCT domain. The images in S ′ are double compressed with

quality factors 85 and 95 respectively.

across the images in S ′ for the case (85, 95) for two DCT frequencies when the L∞
norm is adopted. Table 12.2 and 12.3 show the average SM for all the 64 DCT

frequencies for the pairs of quality factors (85, 95) and (65, 85) when the L∞ dis-

tance is considered (the values taken by SM with the other pairs of quality factors

are intermediate between these two), whereas Table 12.4 and 12.5 report the 95th

percentile of the values assumed by the SM for the same pair of quality factors.

Quite expectedly, in both cases, the SM is lower at high frequencies, because of

the lower range extent of the distribution of the DCT coefficients, which becomes very

picked around 0. Notice that the values of the SM are smaller for the case (65, 85).

This is due to the fact that the value of QF2 is smaller and then the quantized

histograms take values on smaller supports. Finally, the average values of the SM
when the L2

2 is adopted are reported in Tables 12.6–12.7 for two pairs of quality

factors. Even in this case, the values taken by the SM are larger at low frequencies

and pretty small at the very high frequencies.

We remark that, in this case, the values of the SM refer to the mapping among

DCT histograms; quantifying the visual distortion entailed in the spatial domain is

not easy and needs to account for the peculiarity of the HVS.

To conclude, we notice that, as for the case of contrast enhancement detection,

deceiving practical detectors of double JPEG compression may be easier in practice

(see Chapter 11). On the other hand, i.e., from the analyst’s perspective, this means

that the forensic detection (based on first order statistics) has rooms for improve-

ments, as attacks introducing a distortion (significantly) less than the SM should be

detected in principle.

single compressed one is the one corresponding to the same original image quantized with QF2.
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7.426 22.555 16.905 8.535 5.411 3.026 2.194 1.853

16.053 11.742 9.478 5.259 3.608 2.043 1.662 1.583

12.721 9.025 6.508 4.166 2.424 1.919 1.528 1.471

10.228 6.629 4.073 3.043 2.089 1.463 1.338 1.443

7.485 3.943 2.62 1.829 1.632 1.223 1.161 1.244

4.744 2.571 1.763 1.641 1.407 1.213 1.116 1.114

2.235 1.58 1.421 1.357 1.174 1.089 1.044 1.057

1.639 1.329 1.205 1.202 1.101 1.084 1.027 1.031

Table 12.3: Average SML∞ between the set of never processed and double com-

pressed images in the DCT domain with (QF1, QF2) = (65, 85).

56 154 126 54 50 23 15 11

152 120 92 40 25 10 10 8

124 83 40 38 17 10 7 7

105 41 35 22 14 6 6 7

50 34 15 10 8 5 5 5

43 16 9 10 6 5 4 4

13 8 6 5 5 4 3 4

9 6 4 4 4 4 3 3

Table 12.4: 95th percentile of the values taken by the SML∞ at the various frequen-

cies when (QF1, QF2) = (85, 95).

22 51 42 22 14 8 5 4

38 30 23 13 9 4 3 3

31 21 16 11 6 4 3 3

26 17 10 7 5 2 2 3

20 10 6 4 3 2 2 2

12 6 3 3 2 2 2 2

5 3 2 2 2 2 2 2

3 2 2 2 2 2 2 2

Table 12.5: 95th percentile of the values taken by the SML∞ at the various frequen-

cies when (QF1, QF2) = (65, 85).

0.56 0.62 0.54 0.44 0.59 0.52 0.43 0.34

1.12 1.04 0.98 0.53 0.62 0.38 0.36 0.38

1.03 1.1 0.43 0.59 0.51 0.37 0.31 0.38

0.99 0.43 0.58 0.53 0.44 0.35 0.34 0.32

0.43 0.59 0.58 0.45 0.54 0.28 0.29 0.36

0.60 0.57 0.45 0.4 0.36 0.30 0.24 0.31

0.45 0.39 0.45 0.33 0.29 0.22 0.20 0.21

0.33 0.38 0.27 0.26 0.23 0.23 0.22 0.18

Table 12.6: Average SML2
2

between the set of never processed and double com-

pressed images in the DCT domain with (QF1, QF2) = (85, 95).



12.2. SM in data-driven Image Forensics 239

0.51 0.61 0.43 0.36 0.34 0.24 0.21 0.16

0.45 0.40 0.38 0.31 0.28 0.21 0.18 0.11

0.41 0.38 0.34 0.33 0.24 0.19 0.15 0.11

0.41 0.36 0.33 0.24 0.22 0.14 0.11 0.13

0.46 0.33 0.28 0.16 0.16 0.11 0.1 0.11

0.34 0.29 0.16 0.18 0.13 0.1 0.08 0.06

0.23 0.18 0.15 0.13 0.11 0.07 0.062 0.063

0.15 0.1 0.10 0.09 0.07 0.07 0.06 0.05

Table 12.7: Average SML2
2

between the set of never processed and double com-

pressed images in the DCT domain with (QF1, QF2) = (65, 85).





Chapter 13

Conclusion

I
n this thesis we provided a general theoretical framework for the study of the

Adversarial Binary Decision. With specific reference to the multimedia forensic

field, we also put some of the theoretical findings into practice. In this chapter, we

summarise the main contributions of our work and outline some possible paths for

future research.

13.1 Summary

When we began our research activity, a multitude of techniques had been developed,

in different security-oriented areas, to address different security threats. In hindsight,

in all the research fields, the problems addressed were often the same in disguise, but

because of the lack of a unifying view, some similar solutions were often re-invented

many times and basic concepts misunderstood.

The need for a general theory which allows to retrieve a global view of the prob-

lems had just been claimed in [6], where a unifying framework for Adversarial Signal

Processing (Adv-SP) was proposed.

Motivated by this need, in the first part of the thesis we have studied one of

the most prominent problems in adversarial signal processing, that is, binary detec-

tion or Hypothesis Testing. As a first attempt in this sense, we have introduced a

general framework to analyze the achievable performance of binary decision in an

adversarial setting, i.e., in the presence of an adversary with the explicit goal of de-

grading the performance of the test. We did so by casting the detection problem

into a game-theoretic framework. In this way, in fact, we have been able to define

rigorously the goals and constraints of the two contenders, namely the Defender and

the Attacker. More specifically, we addressed several versions of the binary decision

game, depending on: i) the specific decision setup: decision based on one single ob-

servation or on multiple observations (decision fusion setup); ii) the knowledge of the

system available to the Defender and the Attacker: full knowledge of the statistical

model of the system under the two hypotheses or partial knowledge of the statistics
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achieved by means of training data; iii) the possibility for the Attacker to interfere

with the learning phase by corrupting the training data on which the Defender bases

the decision.

From a more technical point of view, for the various versions of the DT game, we

derived the asymptotic equilibrium point and analyzed the achievable payoff at the

equilibrium. The analysis of the limiting performance of the various games allowed

us to summarize in a single quantity, named Security Margin, the distinguishability

of two information sources under adversarial conditions; the Security Margin pro-

vides a measure of the ‘vulnerability’ of a system to the attacks, quantifying how

difficult attacking the system is. For the adversarial settings in which the training

data are also corrupted, we derived another interesting parameter, i.e., the blinding

corruption percentage, which, together with the Security Margin, characterizes the

distinguishability of two sources.

In addition to shedding a new light on the achievable performance of binary de-

tection in an adversarial environment, the analysis we carried out has the merit to

show the potentiality of the use of game-theoretic concepts coupled with typical tools

of information theory and statistics; essentially, the method of types.

In the second part of the thesis, we applied the theoretical findings to some prac-

tical problems in a real scenario, namely Image Forensics. Due to the lack of the

statistical models, we considered the theoretical tools developed under partial knowl-

edge of the statistics (i.e., knowledge based on training samples), which could be

easily adapted to model the real image forensic scenarios based on a data-driven ap-

proach. By playing the role of the Attacker, leveraging on the theoretical results, we

were able to devise universal counter-forensic techniques for both spatial and trans-

formed domain forensic methods. The performance of these universal techniques has

been validated against targeted state-of-the-art detectors in two specific application

scenarios, namely contrast enhancement and multiple JPEG compression detection.

Overall, the analysis provided in the second part of the thesis contributes to fill

the gap between the simplicity of theoretical models and the complexity of real life

applications.

13.2 Open issues

With the work of this thesis, we laid the basis for the study of Adversarial Signal

Processing, by addressing several variants of the binary detection problem. The study

of signal processing in adversarial setup, though, is an open research field and several

directions for future research can be pointed out.

From a more focused perspective, relaxing the assumptions behind the theoretical
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analysis would represent a significant contribution. As discussed in the final section of

Chapter 3, efforts can be made to remove the memoryless assumption for the sources,

by considering more realistic models, e.g., Markov sources. Relaxing the other main

assumption behind the analysis, i.e., the assumption that the detection is based on a

first-order statistical analysis, would allow to extend the applicability of the theory to

a wider variety of practical applications where, because of the inherent dependence

among the observation samples, looking at higher order statistics helps in making

a correct decision. We also mention the opportunity of extending the analysis to

the case of continuous sources, which is actually an ongoing work of our research.

While the general ideas would remain the same, passing from discrete to continuous

sources is not a trivial step, since our analysis relies heavily on the method of types,

whose extension to continuous sources, though possible, comes with a number of

additional difficulties. Finally, a main characteristic of our analysis is its asymptotic

nature; the strategic interaction between Defender and Attacker for finite n would

be also worth studying, since it would better fit with the practical requirements in

application scenarios.

More in general, adversarial classification or multiple hypothesis testing is another

interesting problem which is worth studying under a unified framework. The ex-

tension of our analysis to this case is then an interesting research directions, which

would extend the applicability of the theory to a large number of practical applica-

tions where the detector must distinguish among different classes including biometric

recognition, fingerprinting, multimedia forensics (multiple-camera identification, mul-

tiple JPEG compression,....), and many others.

We expect that in the near future a general framework for Adv-SP will be de-

veloped, by combining elements of game, detection, machine learning, optimization

and complexity theories. We envisage that Adv-SP will become a stimulating and

challenging field whose developments will find a significant number of applications.
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Appendix A

Generalization of Sanov’s theorem

In this appendix, we generalize the classical Sanov’s theorem, so to be able to apply it to

more general sequences of sets, like the ones considered in this thesis in the computation of

the payoff at the equilibrium for the DTks, DTtr and DTc-tr games in Chapter 3, 4 and 6

respectively.

Let us consider a sequence of n i.i.d. random variables drawn according to a distribution

P . We denote with P̂n the empirical pmf of the sequence Let E ⊆ P be a set of probability

distributions. Sanov’s theorem [90, 191, 192] states that

− inf
Q∈int E

D(Q||P ) ≤lim inf
n→∞

1

n
logP (P̂n ∈ E)

≤lim sup
n→∞

1

n
logP (P̂n ∈ E)

≤− inf
Q∈E
D(Q||P ), (A1)

where int X denotes the interior part of the set X.

When cl(E) = cl(int(E)) 1, or equivalently, E ⊆cl(int(E)), the left and right-hand side

of (A7) coincide and we get the exact rate:

lim
n→∞

1

n
logP (P̂n ∈ E) = − inf

Q∈E
D(Q||P ). (A2)

Obviously, if we define the set En = E ∩ Pn, we have that P (P̂n ∈ E) = P (P̂n ∈ En) and

we can rewrite Sanov’s theorem accordingly,

− inf
Q∈int E

D(Q||P ) ≤lim inf
n→∞

1

n
logP (P̂n ∈ En)

≤lim sup
n→∞

1

n
logP (P̂n ∈ En)

≤− inf
Q∈E
D(Q||P ), (A3)

Clearly, by construction, in Sanov’s theorem we have that cl(E) = cl(∪nEn).

In the following, we extend Sanov’s theorem to more general sequences of sets En for

which, by letting E = cl(
⋃
nEn), it does not necessary hold that En = E ∩ Pn.

1cl(X) denotes the closure of the set X. Clearly, cl(X) ≡ X if X is a closed set.
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We start by introducing the notion of convergence for sequences of subsets due to Ku-

ratowsky, which is a more general notion of convergence with respect to the one based on

Hausdorff distance (see Section 3.1). Let (S, d) be a metric space. We first provide the

definition of lower closed limit or Kuratowski limit inferior [193].

Definition 16. A point p belongs to the lower limit Li
n→∞

Kn (or simply LiKn) of a sequence

of sets K1,K2, ...., if every neighborhood of p intersects all the Kn from a sufficiently great

index n onward.

The formula p ∈ Li
n→∞

Kn is equivalent to the existence of a sequence of points {pn} such

that:2

p = lim
n→∞

pn, pn ∈ Kn. (A4)

Then,

Li
n→∞

Kn = {p ∈ S s.t. lim sup
n→∞

d(p,Kn) = 0}. (A5)

Similarly, we have the following definition of upper closed limit or Kuratowski limit

superior [193].

Definition 17. A point p belongs to the upper limit Ls
n→∞

Kn (or simply LsKn) of a sequence

of sets K1,K2, ...., if every neighborhood of p intersects an infinite set of the terms Kn.

The formula p ∈ Ls
n→∞

Kn is equivalent to the existence of a sequence of points {pkn}
such that

k1 < k2 < ..., p = lim
n→∞

pkn , pkn ∈ Kkn .

Then,

Li
n→∞

Kn = {p ∈ S s.t. lim inf
n→∞

d(p,Kn) = 0}. (A6)

It can be proved that the Kuratowski limit inferior and superior are closed sets (see

[193]). Given the above, we can state the following.

Definition 18. The sequence of sets {Kn} is said to converge to K in the sense of Kura-

towski, that is Kn
K→ K if LiKn = K = LsKn, in which case we write K = LimKn.

It is worth noting that Kuratowski convergence is weaker than convergence in Hausdorff

metric; that is, given a sequence of closed sets {Kn}, Kn
H→ K implies Kn

K→ K [194]. For

compact metric spaces, the reverse implication also holds and the two kinds of convergence

coincide.

In our arguments, we are interested in the space of probability distributions P defined

over X , i.e., the probability simplex in R|X|. Being P a closed subset of R|X|, P is complete

for any metric d. Be d such that P ∈ L(R|X|), that is, P is bounded with the metric d. The

metric space (P, d) is a compact metric space. Accordingly, for our purposes, Kuratowski

and Hausdorff convergence are equivalent.

We now have all the necessary tools to prove the following theorem.

2LiKn is the set of the accumulation points of sequences in Kn.
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Theorem 24 (Generalized Sanov’s theorem). Let {E(n)} be a sequence of sets of probability

distributions in P (E(n) ⊆ P), defined over X . Then:3

− min
Q∈ Li (E(n) ∩ Pn)

D(Q||P ) ≤lim inf
n→∞

1

n
logP (Pn ∈ E(n))

≤lim sup
n→∞

1

n
logP (Pn ∈ E(n))

≤− min
Q∈ LsE(n)

D(Q||P ). (A7)

If, in addition, LsE(n) = Li(E(n) ∩ Pn), the generalized Sanov’s limit exists as follows:

lim
n→∞

1

n
logP (Pn ∈ E(n))→ − min

Q∈LimE(n)
D(Q||P ). (A8)

Proof. We first prove the expression for the lower bound. Let En = E(n) ∩ Pn. We have:

P (E(n)) =
∑
Q∈En

P (T (Q))

≤ (n+ 1)|X|2−nminQ∈En D(Q||P )

≤ (n+ 1)|X|2
−n inf

Q∈E(n) D(Q||P )

= (n+ 1)|X|2
−nmin

Q∈cl(E(n))
D(Q||P )

. (A9)

In the last inequality we exploited the fact that, being each E(n) a bounded subset of P,

and D lower bounded in P, the infimum over E(n) corresponds to the minimum over its

closure.

By taking the logarithm of each side in (A9) and dividing by n, we get:

1

n
logP (E(n))≤− min

Q∈cl(E(n))
D(Q||P ) +

log(n+ 1)|X|

n
, (A10)

We now prove that, if n is sufficiently large, we have

min
Q∈cl(E(n))

D(Q||P ) ≥ min
Q∈LsE(n)

D(Q||P ). (A11)

Firstly, according to the properties of the limit superior, LsE(n) = Ls(cl(E(n))) [193]. By

contradiction, let us assume that the left-hand side of (A11) is strictly lower than the right-

hand side. Let Qn be a point achieving the minimum of the left-hand side of (A11). Because

of the strict inequality, it must be Qn /∈ LsE(n). This means that there exists a value δ,

such that the neighborhood B(Qn, δ) intersects only a finite number of E(n), that is, there

exists a finite value n′ such that B(Qn, δ)∩cl(E(n)) = ∅ ∀n ≥ n′. Hence, Qn can not belong

to cl(E(n)) for n ≥ n′, thus raising an absurd.

3We are assuming that E(n) ∩ Pn 6= ∅.
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Hence, by exploiting equation (A11) in (A10), we have that, for large n,

1

n
logP (E(n))≤− min

Q∈LsE(n)
D(Q||P ) +

log(n+ 1)|X|

n
, (A12)

and hence

lim sup
n→∞

1

n
logP (E(n)) ≤ − min

Q∈LsE(n)
D(Q||P ). (A13)

Let us pass to the upper bound. We have:

P (E(n)) =
∑
Q∈En

P (T (Q))

≥ P (T (Qn))

≥ 2−nD(Qn||P )

(n+ 1)|X|
, (A14)

for any Qn in En. Let Q∗ be a point achieving the minimum of the divergence over the set

LiEn. By definition of limit inferior, there exists a sequence of points {Qn}, Qn ∈ En such

that Qn → Q∗ as n→∞. Then, by exploiting the continuity of D, it follows that

D(Qn||P ) ≤ D(Q∗||P ) + γ, (A15)

where γ can be made arbitrarily small for large n. Hence, we get

1

n
logP (E(n)) ≥ −D(Qn||P )− |X | log(n+ 1)

n
,

≥ −D(Q∗||P )− γ − |X | log(n+ 1)

n
,

= − inf
Q∈LiEn

D(Q||P )− γ − |X | log(n+ 1)

n
, (A16)

and then

lim inf
n→∞

1

n
logP (E(n)) ≥ − inf

Q∈LiEn
D(Q||P ), (A17)

which concludes the proof of the first part (relation (A7)).

For the proof of the second part, we observe that, when LsE(n) = Li(E(n) ∩ Pn),

the two bounds in (A7) coincides. Moreover, in such conditions, the following chain of

inclusions holds, LiE(n) ⊆ LsE(n) = Li(E(n) ∩ Pn) ⊆ LiE(n), and then we have that

LiE(n) = LsE(n) = LimE(n), yielding (A8).

We observe that, in general, the Kuratowski convergence of E(n) is a necessary condition

for the existence of the generalized Sanov limit in (A8), but it is not sufficient (in fact, it

could be LiE(n) ⊇ Li(E(n) ∩ Pn), in which case the lower and upper bound in (A7) do not

coincide). Theorem 24 has the following interesting corollary.
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Corollary 4. When E(n) is a sequence of subsets of Pn, the generalized Sanov’s limit holds

whenever E(n) K→ E for some set E, or equivalently, by exploiting the compactness of space

P, E(n) H→ E.

Proof. The corollary follows immediately by observing that when E(n) ⊆ Pn, En = E(n) ∩
Pn = E(n).

The generalization of Sanov’s theorem finds applications in the computation of the error

exponent of the Type II error probability of the decision of the hypothesis test in the pres-

ence of adversary. The proof of Theorem 2 in Chapter 3, as well as the proof of Theorem 6

in Chapter 4 and the one of Theorem 4 in Chapter 6, can be regarded as a straightforward

application of this theorem.

We conclude with the following observation.

Observation. When the sequence {E(n)} = E ∀n (or from a certain n onwards), the gener-

alized Sanov’s theorem corresponds to the classical Sanov’s theorem. In fact, we have that

LsE(n) = LsE = E, while the set Li(En) coincides with Li(E ∩ Pn), i.e., the set of all the

accumulation points of sequences in E∩P. Since Li(E∩Pn) ⊇ intE4, we can write Sanov’s

bounds:

inf
Q∈E
D(Q||P ) ≤− lim sup

n→∞

1

n
logP (Pn ∈ E)

≤− lim inf
n→∞

1

n
logP (Pn ∈ E)

≤ inf
Q∈ Li (E ∩ Pn)

D(Q||P ),

≤ inf
Q∈intE

D(Q||P ). (A18)

4It is easy to show that every p ∈ int(E) is an accumulation point for a sequence in E ∩ Pn.





Appendix B

Regularity properties of the admissibility
set

To prove the theorems on the asymptotic behavior of the payoff in the various versions of

the detection game, we need the following result, which holds under the assumption that

the set of admissible maps A in (3.19) is determined by a set of linear constraints.

To derive our results we need to define a distance measure between transportation maps,

that is a function ds : R|X|×|X|×R|X|×|X| → R+. Let us (arbitrarily) choose the L1 distance;

then, given two maps (SPV , SQR), ds(SPV , SQR) =
∑
i,j |SPV (i, j)− SQR(i, j)|.

Lemma 9. Let P ∈ P and let P ′ be any pmf in the neighborhood of P of radius τ , for

some τ > 0, i.e. P ′ ∈ B(P, τ). Then, δH(A(L,P ′),A(L,P )) ≤ |X |2 · τ 1, implying that

δH(A(L,P ′),A(L,P ))→ 0 as τ →∞, uniformly in P.

Furthermore, if we take P ′ ∈ Pn, the following result holds: for any ε > 0, there exists

τ∗ and n∗ such that ∀ τ < τ∗ and n > n∗, δH(An(L,P ′),A(L,P )) ≤ ε, ∀P ′ ∈ B(P, τ)∩Pn,

and ∀P ∈ P.

Proof. The lemma follows from the fact that A(L,P ) is built by intersecting a finite number

of half-spaces and is also limited, i.e. is a convex polytope [195, 196]. By considering a P ′

close to P , we are perturbing the vector of the known terms of the linear constraints of the

system which defines the admissibility set.

Given P ∈ P and P ′ ∈ B(P, τ), for any map in A(L,P ) we can choose a map SP ′V ′ that

works as follows: for the bins i such that P ′(i) ≥ P (i), the same mass SPV (i, j) is moved

from bin i to j, ∀j 6= i, while for j = i, SP ′V ′(i, j) = SPV (i, j) + (P ′(i) − P (i)). For the

bins i such that P ′(i) < P (i), first the index set {j : SPV (i, j) 6= 0} is sorted in decreasing

order with respect to the amount of distortion introduced per unit of mass delivered d(i, j).

Then, the mass is moved from bin i to the first j in the ordered list, until the amount

SPV (i, j) is reached. Then, we pass to the second bin j in the list and go on until all the

mass is moved from bin i. It is easy to argue that the map built in this way satisfies the

distortion constraint (by construction, the distortion associated to SP ′V ′ is less than that

introduced by the admissible map SPV ) 2 both in the case of additive distortion constraint

(see 3.20) and L∞ distortion constraint (see 3.49), which are the cases we focus on in this

thesis. Then, SP ′V ′ ∈ A(L,P ′). Besides, by construction |SP ′V ′(i, j) − SPV (i, j)| ≤ τ ,

1We remind (Section 3.1) that |X | corresponds to the cardinality of the space the simplex P lives

in.
2Remember that any move from a bin to itself does not increase the distortion.
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∀i, j. Accordingly, maxSPV ∈A(L,P ) d(SPV ,A(L,P ′)) ≤ ds(SPV , SP ′V ′) ≤ |X |2 · τ and then

δH(A(L,P ′),A(L,P )) ≤ |X |2 · τ , thus concluding the proof of the first part 3.

Let us now take P ′ ∈ Pn. By exploiting the density of the rational numbers within

the real ones, for any given map SP ′V ∈ A(L,P ′), we can find a map SnP ′V ′ ∈ An(L,P ′)

(i.e., having the same input marginal P ′ and satisfying the distortion constraint), such that

|SnP ′V ′(i, j)− SP ′V (i, j)| ≤ 1/n. In fact, for any fixed i, we can define SnP ′V ′ as:

SnP ′V ′(i, j) = max{k : k/n ≤ SP ′V (i, j)}/n, ∀j 6= i, (A1)

SnP ′V ′(i, i) =1−
∑
j 6=i

SP ′V (i, j), (A2)

where SnP ′V ′(i, i) ∈ Qn by construction (since the input distribution belongs to Pn). It

is easy to argue that the map defined in (A2) belongs to An(L,P ′). By observing that

SP ′V (i, j) − 1/n ≤ SnP ′V ′(i, j) ≤ SP ′V (i, j), ∀i, j, j 6= i, and SP ′V (i, i) ≤ SnP ′V ′(i, i) ≤
SP ′V (i, i) + (|X | − 1)/n, ∀i, we argue that ds(S

n
P ′V ′ , SP ′V ) ≤ 2|X |2/n. Therefore, by

considering the discrete set An, we can write

δH(An(L,P ′),A(L,P )) ≤ δH(An(L,P ′),A(L,P ′)) + δH(A(L,P ′),A(L,P ))

≤ δH(An(L,P ′),A(L,P ′)) + |X |2 · τ
≤ 2|X |2/n+ |X |2 · τ. (A3)

Then, for a fixed ε, by choosing τ∗ and n∗ such that |X |2 ·(2/n∗+τ∗) = ε, we obtain that for

any τ smaller than τ∗ and n larger than n∗, δH(An(L,P ′),A(L,P )) ≤ ε, thus concluding

the second part of the proof.

From the above lemma, it is easy to prove the following theorem.

Theorem 25. Let SPV ∈ A(L,P ) for some P ∈ P. For any point P ′ ∈ B(P, τ), for some

τ > 0, we can find a map SP ′V ′ ∈ A(L,P ′) such that V ′ ∈ B(V, ε), with ε ≤ |X |2 · τ .

Similarly, for any ε′ > 0, there exists τ∗ and n∗ such that ∀ τ < τ∗ and n > n∗, we

have the following: for any map SPV ∈ A(L,P ) a map SnP ′V ′ in An(L,P ′) can be found

such that V ′n ∈ B(V, ε′), ∀P ′ ∈ B(P, τ) ∩ Pn, and ∀P ∈ P.

Proof. It is easy to see that for any map SPV ∈ A(L,P ) we can choose a map SP ′V ′ ∈
A(L,P ′) such that, ∀j

V ′(j) =
∑
i

SP ′V ′(i, j) <
∑
i

(SPV (i, j) + |SP ′V ′(i, j)− SPV (i, j)|)

≤ V (j) + ds(SP ′V ′ , SPV )

≤ V (j) + δH(A(L,P ′),A(L,P )), (A4)

3We are implicitly exploiting the symmetry of the problem w.r.t. P and P ′, according to which

maxSPV ∈A(L,P ) d(SPV ,A(L,P ′)) = maxSP ′V ′∈A(L,P ′) d(SP ′V ′ ,A(L,P )) (see the definition of the

Hausdorff distance, Section 3.1).
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and, similarly, V ′(j) ≥ V (j) − δH(A(L,P ′),A(L,P )). Accordingly, if P ′ ∈ B(P, τ), by

exploiting Lemma 9, we get

|V ′(j)− V (j)| < δH(A(L,P ′),A(L,P )) < |X |2 · τ, (A5)

and hence V ′ ∈ B(V, |X |2 · τ). Similarly, for the second part, we observe that, from Lemma

9, for a proper choice of the admissible map SnP ′V ′ , we have

|V ′n(j)− V (j)| < δH(An(L,P ′),A(L,P )) ≤ 2|X |2/n+ |X |2 · τ. (A6)

Then, for a fixed ε, we can choose τ∗ and n∗ such that 2|X |2/n∗ + |X |2 · τ∗ = ε.





Appendix C

Asymptotic behavior of the
indistinguishability regions

C.1 Behavior of set Γks and Γtr for λ→ 0.

We start by studying the behavior of Γks(PX , λ, L) when λ→ 0. More specifically, we show

that for small values of λ the set Γks(PX , λ, L) approaches Γ(PX , L) smoothly.

As a first step, we highlight the following property.

Property 5. EMD(P,Q) is a continuous and convex function of P and Q.

Proof. Property 5 follows immediately if we look at the EMD as the solution of a Linear

Programming (LP) problem (see Section 5.2.1), wherein P and Q are the known terms of

the linear constraints. In fact, it is a known result in operations research that the minimum

of the objective function of an LP problem is a continuous and convex function of the known

terms of the linear constraints [162].

By exploiting the continuity of the divergence and the continuity and convexity of the

EMD, we now show that when λ tends to 0, the set Γks(PX , λ, L) tends to Γ(PX , L) regularly.

More precisely, the following lemma holds.

Lemma 10. Let X ∼ PX be an information source and L the maximum allowable average

per-letter distortion in the DTks game. The set Γks(PX , λ, L), defined in (5.3), satisfies the

following property:

∀τ > 0,∃λ > 0 s.t. ∀P ∈ Γks(PX , λ, L) ∃P ′ ∈ Γ(PX , L) s.t. P ∈ B(P ′, τ),

where Γ(PX , L) is defined as in (5.4) and B(P ′, τ) is a ball centered in P ′ with radius τ .

Proof. Throughout the proof we will refer to Figure C.1 where all the sets and quantities

involved in the proof are sketched. For any τ > 0, we consider the set:

Γτ (PX , L) = {P : ∃P ′ ∈ Γ(PX , L) s.t. P ∈ B(P ′, τ)}. (A1)

With such a definition, we can rephrase (A1) as follows:

∀τ > 0, ∃λ > 0 s.t. Γks(PX , λ, L) ⊆ Γτ (PX , L). (A2)
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Γ(PX , L)

τ

PX

P ′

P ′′
Γτ (PX , L)

Figure C.1: Graphical representation of the set Γτ (PX , L).

For sake of simplicity, we will prove a slightly stronger version of the lemma by means

of the following two-step proof. First, we will show that a subset of Γτ (PX , L) exists having

the following form:

Γsubτ (PX , L) = {P : EMD(P, PX) ≤ L+ δ(τ)}, (A3)

for some δ(τ) > 0. Then, we will prove that for small enough λ, any P ∈ Γ(PX , λ, L) belongs

to Γsubτ (PX , L).

To start with, let P ′ be any point on B(Γ(PX , L)), the boundary of Γ(PX , L). Among all

the the points on the boundary of the ball of radius τ and centered in P ′, consider the one,

name it P ′′, lying along the direction given by the line joining PX and P ′ and falling outside

Γ(PX , L) (see Figure C.1). By the convexity of the EMD (Property 5) and since EMD =

0 if and only if P = PX , we conclude that EMD(P ′′, PX) > EMD(P ′, PX). Since P ′ lies

on the boundary of Γ(PX , L) we know that EMD(P ′′, PX) = L + µ, where µ = µ(P ′, τ)

is a strictly positive quantity. We now show that the first part the proof holds by letting

δ(τ) = minP ′∈B(Γ(PX ,L)) µ(P ′, τ). To this purpose, let P be any point in set Γsubτ (PX , L) for

the above choice of δ(τ). If P ∈ Γ(PX , L), then, by definition, P also belongs to Γτ (PX , L).

On the other side, if P lies outside Γ(PX , L), let us denote by P ∗ the point lying on the

boundary of the set Γ(PX , L) along the line joining P and PX , and let P ∗∗ be the point where

the same line crosses the ball B(P ∗, τ) outside Γ(PX , L). Now, EMD(P, PX) ≤ L+ δ(τ) ≤
EMD(P ∗∗, PX) by construction. Because of the convexity of EMD, then P ∈ B(P ∗, τ) as

required.

Let us now pass to the second part of the proof. First, we notice that set Γks(PX , λ, L)

depends on λ only through the acceptance region Λ∗(PX , λ). If λ is small, due to the

continuity of the divergence, for any Q ∈ Λ∗(PX , λ) we will have Q ∈ B(PX , κ(λ)) for some

κ(λ) such that κ(λ)→ 0 when λ→ 0. Let, then, P be a pmf in Γ(PX , λ, L). By definition,

a Q ∈ Λ∗(PX , λ) exists s.t. EMD(P,Q) ≤ L. If λ is small, due to the proximity of Q to PX
and the continuity of the EMD we have that EMD(P, PX) <EMD(P,Q) + η(λ) ≤ L+ η(λ)

with η(λ) approaching 0 when λ → 0. In particular, if λ is small enough η(λ) < δ(τ) and

hence P ∈ Γsubτ (PX , L) which in turn is entirely contained in Γτ (PX , L) thus completing the
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proof.

In the same way, we can prove that Lemma 10 holds also when Γks(PX , λ, L) is replaced

by Γtr(Q,λ, L) and Γ(PX , L) by Γ(Q,L) with a generic Q instead of PX . To be convinced

about that, it is sufficient to note that the only difference between Γks and Γtr relies on the

test function which defines the acceptance region, respectively the divergence and the hc
function. Since the hc function is still a continuous and convex function and, likewise D, is

equal to zero if and only if its arguments are identical, the proof that we used for Lemma

10 still holds.

C.2 Behavior of ΓL∞ for λ→ 0.

We prove that when λ → 0, ΓL∞(PX , λ, L) approaches ΓL∞(PX , L) regularly, in the sense

stated by the following lemma.

Lemma 11 (Extension of Lemma 10 to the L∞ case). Let X ∼ PX be an information source

and L the maximum per-sample distortion allowed to the Attacker. The set ΓL∞(PX , λ, L),

defined in Section 5.3, satisfies the following property:

∀τ > 0, ∃λ > 0 s.t., ∀P ∈ ΓL∞(PX , λ, L) ∃P ′ ∈ ΓL∞(PX , L) s.t. P ∈ B(P ′, τ), (A4)

where B(P ′, τ) is a ball centered in P ′ with radius τ .

Proof. We will prove the lemma by assuming that the distance defining the ball B(P ′, τ) is

the L1 distance, extending the proof to other distances being straightforward.

For a fixed τ > 0, let P be a pmf in ΓL∞(PX , λ, L) for some λ. This means that at least

one pmf Q ∈ Λ∗(PX , λ) exists, such that P can be mapped into Q with maximum shipment

distance lower than or equal to L. From equation (3.28) and by exploiting the continuity of

the divergence function, we argue that Q ∈ B(PX , γ(λ)) for some positive γ(λ), and where

γ(λ) → 0 as λ → 0. Accordingly, PX can be written as PX(j) = Q(j) + γ(j), ∀j, where∑
j∈X |γ(j)| < γ(λ). Note that, by construction,

∑
j γ(j) = 0 and γ(j) → 0 when λ → 0.

Let SPQ be an admissible map bringing P into Q (such a map surely exists by construction).

We prove the lemma by explicitly building a pmf P ′ and a new admissible transportation

map S′, such that, P ′ is arbitrarily close to P (for a small enough λ) and S′ maps P ′ into

PX . We start by introducing two new quantities, namely γ+(j), defined as follows:

γ+(j) = γ(j) if PX(j)−Q(j) ≥ 0 (A5)

γ+(j) = 0 if PX(j)−Q(j) < 0,

and γ−(j) defined as

γ−(j) = −γ(j) if PX(j)−Q(j) < 0 (A6)

γ−(j) = 0 if PX(j)−Q(j) ≥ 0.
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Q

PX
γ− γ+

j

D

Figure C.2: Geometric interpretation of γ+, γ− and D(j).

A graphical interpretation of γ+ and γ− is given in Figure C.2. Clearly,
∑
j γ
−(j) =∑

j γ
+(j). With the above definitions, we can look at the demand distribution Q as con-

sisting of two amounts: the mass distribution D, with D(j) = min{PX(j), Q(j)}, and γ−.

According to the superposition principle, the map SPQ can then be split into two sub-maps:

one which satisfies the demand of D (let us call it SDPQ), and one that satisfies the demand

of γ− (let us call it SγPQ). The same distinction can be made in the source distribution:

P (i) =
∑
j

SDPQ(i, j) +
∑
j

SγPQ(i, j) = PD(i) + Pγ(i), (A7)

where PD and Pγ are the masses in the source distribution which are used to satisfy the

mass demand pertaining to D and γ− according to mapping SPQ. Then,
∑
i PD(i) = D and∑

i Pγ(i) = γ−. In order to construct the pmf P ′ we are looking for, we simply remove from

P the amount of mass Pγ used to fill γ− and redistribute it according to γ+. Specifically,

we have

P ′(i) = PD(i) + γ+(i) (A8)

S′(i, j) = SDPQ(i, j) + γ+(j)δ(i, j), (A9)

where δ(i, j) is equal to 1 if i = j and 0 otherwise. It is easy to see that applying the

transportation map S′(i, j) to P ′ yields PX . Besides, from the procedure adopted to build

S′, it is evident that

max
(i,j):S′(i,j)6=0

|i− j| ≤ max
(i,j):SPQ(i,j) 6=0

|i− j| ≤ L, (A10)

(the only new shipments introduced are from a bin to itself). In addition, the distance

between P ′ and P is, by construction, lower than γ(λ), which can be made arbitrarily small

by decreasing λ, thus completing the proof of the lemma.



Appendix D

Convexity of D as a function of the
displacement map

Let yn be a n-length sequence. Let N = {n(i, j)}i∈X ,j∈X be a displacement map, where

n(i, j) indicates the number of elements that should be moved from the i-th bin to the j-th

bin. Let zn denote a n-length sequence which results by applying the displacement map.

We want to show that the objective function of the optimization problem expressed in (10.1)

(corresponding to the divergence function D(Pzn ||PX), for some pmf PX ∈ P), is convex in

N . Let us indicate it by g(N). Then, for any two maps (matrices) N1 and N2 and any two

values α ∈ [0, 1] and β = 1− α, we have to prove that

g(αN1 + βN2) ≤ αg(N1) + βg(N2). (A1)

Let N j be the j-th column of N and let gj(N
j) be defined as:

gj(N
j) =

(∑
k

n(k, j)

)
· log

(
∑
k n(k, j))

nPX(j)
. (A2)

We clearly have:

g(N) =

|X|∑
j=1

(
∑
k n(k, j))

n
· log

(
∑
k n(k, j))

nPX(j)

=
1

n

|X|∑
j=1

gj(N
j). (A3)

By definition gj does not depend on n(k, i) ∀i 6= j, hence, if relation (A1) holds for each gj ,

then it also holds for the overall function g(N). We have

gj(αN
j
1 + βN j

2 ) =
∑
k

(αn1(k, j) + βn2(k, j))

· log

∑
k(αn1(k, j) + βn2(k, j))

nPX(j)
, (A4)

that we conveniently rewrite as:

gj(αN
j
1 + βN j

2 ) =

(
α
∑
k

n1(k, j) + β
∑
k

n2(k, j)

)

· log
α
∑
k n1(k, j) + β

∑
k n2(k, j)

αnPX(j) + βnPX(j)
. (A5)
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Being n(k, j) nonnegative, we can apply the log-sum inequality [90] to (A5), obtaining

gj(αN
j
1 + βN j

2 ) ≤ α
∑
k

n1(k, j) · log
α(
∑
k n1(k, j))

αnPX(j)

+ β
∑
k

n2(k, j) · log
β(
∑
k n2(k, j))

βnPX(j)

= αgj(N
j
1 ) + βgj(N

j
2 ), (A6)

which completes the proof.



Every day we share our personal information with digital systems which are 

constantly exposed to threats. Security-oriented disciplines of signal processing 

have then received increasing attention in the last decades:  multimedia forensics, 

digital watermarking, biometrics, network intrusion detection, steganography and 

steganalysis  are just a few examples.  Even though each of these fields has its own 

peculiarities,  they all have to deal with a common problem: the  presence of  

adversaries aiming at making the system fail. It is the purpose of Adversarial Signal 

Processing to lay the basis of a general theory that takes into account  the impact 

of an adversary on the design of effective signal  processing tools.   

By focusing on the most prominent problem  of  Adversarial Signal Processing, 

namely binary detection or Hypothesis Testing,  we contribute to the above mission 

with a general theoretical framework for the binary detection problem in the 

presence of an adversary. We resort to Game Theory and Information Theory 

concepts to model and study the interplay between the decision function 

designer, a.k.a. Defender, and the adversary, a.k.a. Attacker. We analyze different 

scenarios depending on the adversary’s behavior, the decision setup and the 

players’ knowledge about the statistical characterization of the system.  Then, we 

apply some of the theoretical findings to specific problems in multimedia forensics: 

the detection of contrast enhancement and  multiple JPEG compression. 
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