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Abstract

In the digital and interconnected world we live in, establishing the identity

of any individual is a pressing need. Home banking, on line shopping, and

social care web sites are only few examples of services where proof of iden-

tity is fundamental. Such a process can be based on what you know (i.g. a

password), on what you posses (i.g. the key of a house or an ID card) or on

what you are(ID-based, i.g. biometrics). In this thesis we focus on biomet-

rics. Biometric recognition, or simply biometrics, refers to “the automated

recognition of individuals based on behavioral and biological characteristics”

(ISO/IEC JTC1 SC37). This method of recognition has the advantage that it

does not need the memorisation of any password or the possess of any token,

at the same time, however, biometrics cannot be changed if compromised in

any way, hence calling for the adoption of suitable protection mechanisms.

In this thesis we study the development of privacy preserving protocols

for biometric recognition. This is a new research field for which a number

of solutions have been proposed in recent years. For efficiency reasons, the

majority of those solutions are secure only against a passive adversary, that

is an adversary that does not deviate from the protocol, yet tries to infer as

much information as possible from the data exchanged during the protocol.

On the contrary, in this thesis we look for protocols which are secure

against active adversaries, that is adversaries that deliberately and arbitrarily

deviate from the recognition protocol. Specifically, we propose two possible

solutions using signal processing in the encrypted domain’s tools.

First we use a cryptographic scheme belonging to the somewhat homomor-
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Abstract

phic scheme’s family and we propose both an identification and an authen-

tication non-interactive scheme. The first protocol focuses on a one-to-many

recognition task: the biometric probe of a specific individual is compared

with all the probes contained in a database looking for a positive match. The

second protocol, instead, considers a one to one comparison. The new probe

of an enrolled individual is compared with the probe of the same individual

stored during the enrollment phase.

As a second contribution, we propose SEMBA: a protocol secure against

active adversary for multibiometric recognition. In this case we look for a

trade-off between efficiency and accuracy by combining information from two

biometric traits instead of only one. The protocol relies on SPDZ, a new

framework proposed by Damg̊ard et al. which is secure also in the presence

of an active adversary.
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Chapter 1

Introduction

1.1 Biometric recognition

In the digital and increasingly interconnected world we live in, individuals’

identity verification is a pressing need. It is becoming more and more im-

portant to establish if someone is in some government watch list (i.g. when

requiring a VISA) or if he is authorized to use some facilities. Home banking,

on line shopping, and social care web sites are only few examples of services

where proof of identity is fundamental.

By identity recognition in the following we mean the process of verifying

the identity of a user, a device or another entity in a computer network or

system [4]. Passwords, security tokens, and biometrics are collectively called

authenticators and can be used in a recognition protocol. If someone (let’s

say Alice) wants to log into a system, she has three possible ways to demon-

strate her identity. First, identification can be based on what Alice knows

(knowledge-based recognition). This modality includes passwords and PINs

(Personal Identification Numbers). A drawback of this solution is that pass-

words can be stolen or forgotten and, if shared with someone, become less

secure. Moreover an individual usually chooses a password easy to remember

but at the same time easy to guess. Second, the system can authorize Alice

on the basis of what she posseses (object-based). Everyday examples are the

key of a house or an ID card. On one hand those items (e.g. house’s key)

can be lost and whoever found them can enter the service (i.e the house); on

the other hand when the owner is aware of the loss, he can change the token

(in our example, the lock). Lastly, the system can verify Alice’s identity on

the base of what she is (ID-based). An example is biometric recognition but

also driver’s license, passport, credit card; those last examples are not directly

Alice but are based on what she is. The security of those authenticators is
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based on the difficulty to forge them [4].

Biometric recognition or simply biometrics [5] refers to “the automated

recognition of individuals based on behavioral and biological characteristics”

(ISO/IEC JTC1 SC37). Many physical traits (e.g. iris, fingerprints, face,

etc.) or behavior characteristic (e.g. gait, signature, etc.) have been used for

identity recognition [6]. Even if at the beginning biometrics had been mainly

used by law enforcement for identifying criminals (e.g. secure identification of

convicts, security clearance for particular jobs, forensics, etc.), in recent years,

biometric recognition systems inspired an increasing interest also for civilian

applications, since in this way it is possible to establish an identity based on

who you are, rather than on what you possess or what you can remember [5,7].

Virtually, any human characteristic can be chosen as biometrics but it

should respect some requirements like universality (every one should have it),

distinctiveness (it should be different enough to distinguish one person from

another), permanence (the characteristic should not change over time), etc.

(more details in Section 3.1). In summary the trait should be at the same

time easy to acquire, enough different from a person to another and everyone

should have it [5].

Any biometric recognition system starts with the acquisition of biometric

rough data, then the raw data is processed, and a template is extracted.

Then it is possible to match two templates of the same biometric by using

a decision function. A match score, usually using Hamming or Euclidean

distance, is calculated and then the resulting score is then compared with a

certain threshold depending on the function and on the biometrics.

There are two possible scenarios. In the first one, named identification,

the system, possibly run by a government authority, is interested to know who

the biometric template’s owner is between all the individuals in a database of

people (for example the database of most wanted criminals, or in the AFIS,

Automated Fingerprint Identification System). In identification mode the sys-

tem validates the person’s identity conducting a one-to-many research in the

database. The system looks for a positive match by comparing the new probe

with all the others in its database. Identification is particularly important in

negative recognition applications where the systems establishes whether the

person is who denies to be. In this way it is possible to prevent a single
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person from using multiple identies. In the second mode, authentication or

verification, the system validates the person identity by comparing the new

probe with the one associated to the person and stored into its database. In

such scenario an individual claims to be someone using a username, an ID

card, or something else, and the system conducts a one-to-one comparison in

order to decide if the user is who he claims to be [5].

In an intermediate task, we would only know if someone is or not in a

database of people. This modality differs from identification because it has a

yes or not answer, while identification’s output is the identity of the client.

Using biometrics as recognition token, requires that we also consider bio-

metric errors. Any user can forget or mistype a password, this is an incon-

venient resolvable by typing again or requesting a new password. If the error

is not due to user fault and he is unable to solve the problem, the situa-

tion is more upsetting. In biometric protocols, a dirty capture device, poor

lightning, environmental factors are only few example of possible causes of

biometric errors [4]. Such errors are usually quantified by two metrics: False

Acceptance Rate (FAR) and False Rejection Rate (FRR). FAR is the likeli-

hood that the biometric recognition system will incorrectly grant an access

to an unauthorized user, i.e. it measures the number of false positive errors.

FRR is the number of authorized user’s instances the system fails to verify,

i.e. the number of times the system denies access to a legitimate user. Both

errors represent the vulnerability of the system. In a verification task, FRR

represents the inconvenience of being incorrectly rejected by the system, while

FAR measures how easily an attacker can impersonate a legitimate user [4].

On the contrary, if we want only to know if someone is listed in a database

and not who he is, for example in oder to grant access to a certain service,

FRR measures the vulnerability of the system due to not identify someone

in the database while FAR indicates the inconvenience of been misidentified

[4]. To determine the accuracy of a biometric system, the Equal Error Rate

(EER) is also used, it correspond to the error rate when FAR is equal to the

FRR. The lower the equal error rate value, the higher the accuracy of the

biometric system.
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1.2 Privacy and security

An authenticator (biometric or not) is effective, beside its relevance to a par-

ticular application, if it can resist various types of attacks. Even the more

secure system can be attacked by exploiting a human mistake, like writing

the password on a piece of paper or choosing a password easy to guess [4].

More in general, authenticators can be attacked at three locations: at the

client (i.e. guessing the password), in the transmission channel and at the

authentication server.

A biometrical authenticator has the advantage that it does not need to

be memorized, but the resulting template (usually a numeric vector) can be

guessed as any other password. Moreover biometrics cannot be replaced an

unlimited number of times if they are compromised, since they are inherent

parts of a person body. At the same time biometrics security does not depend

on secrecy [4]. For example face and voice are not secret, while it is difficult

to keep fingerprints and iris hidden from anybody. Biometric recognition

systems are like the number on a driver’s license. What’s make it secure is

not the number itself but the difficulty to forge the original document [4].

So the security of a biometric system relies on how hard it is to forge a

template. Anyway, those systems can incur in several attacks, some of them

can be overcome by using cryptography, while others require some security

standards of the system.

An attacker (Eve) might try to gain the biometric of a legitimate user

(Alice) by attaching a fake biometric capture device to the system. This

fake reader, instead of measuring the traits, will only save the biometric and

therefore, in the future, Eve could be able to input Alice’s captured data as

it were her own [8]. If templates are transmitted from a location to another

one through an exposed communication link, Eve could masquerade as Alice

by simply replacing Alice’s template, by intercepting the signal, or by tam-

pering with the templates, if Eve can access directly to them. This kind of

violations could be prevented by resorting to cryptography. For example, the

capturing device and the system can be provided with a secret value that can

authenticate the source of information, or by signing the template in order to

prevent any modification during the transmission.

In a different attack, Eve may forge a duplicate of the real user’s biomet-
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rics. As we have already said, it is hard to hide biometric traits, e.g. it is

relatively easy for an attacker to collect fingerprints from a glass and use the

information to create a fake finger. Obviously encryption is not the solution in

this situation, but biometric readers can be designed so that they can detect

fake biometrics [8].

A further possible attack can be engaged by exploiting collision. A bio-

metric collision occurs when the template vector of one user, lets call it A, is

“close enough” to another user’s template, B, so that A’s template can be be

used to authenticate B instead. This possibility can be exploited to infiltrate

the system. Any biometrics is vulnerable to this attack, because any system

of this kind has FAR greater than zero. Non zero false acceptance rate means

than there will be somewhere two individuals whose biometric trait are very

similar and therefore they can verify against each other’s templates. In a form

of this violation Eve attempts to verify her biometric traits against any one

of the templates into the database, or Eve can take control of the database

and choose the most similar, or she can pursue a trial-and-error attack [8].

Especially for the scenario in which the attacker takes control of the system

or obtains a copy of the database, encryption can be a solution to ensure

security.

Finally, habits, movements, position and also personal believes can be

tracked by observing when and where the biometrics traits are used to iden-

tify someone, putting at risk the privacy of the owner. Even worse, if com-

promised by an adversary, biometrics data can be used to access sensitive

information, and to impersonate the victim for malicious purposes, compro-

mising the security of other systems based on the same biometrics.

To protect the system from all the threats, the security of biometric-based

systems has recently become a very active research area, due to the necessity

of impeding newly emerging cybercrimes like identity theft, privacy violation,

unauthorized access to sensitive information and so on [9]. Privacy has to

be guaranteed not only versus eavesdroppers but also between the parties to

avoid any tracking and logging activity of the user presence. A dishonest

party may use the knowledge acquired during the computation to gain some

advantage, or worst he may sell those information to someone else. This

problem has raised the necessity to process data in a privacy preserving way,
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so that the client does not learn anything about the templates stored into the

database except for the output, but at the same time the database owner or

the server should learn nothing from the new submitted biometric template.

1.3 Signal processing in the encrypted domain

Processing data while they are encrypted provides an elegant solution to the

problems mentioned before (Section 1.2) [10, 11]. Signal processing in en-

crypted domain (usually referred as s.p.e.d.) indicates the wide range of

techniques allowing to process encrypted signals. As example, let us consider

an identification scenario where a service provider has a list of enrolled indi-

viduals (the clients who can access a certain service or the criminals contained

in a police record). The client would like to know if some biometrics are in

the server’s database or not, without reveling the result of the query to the

database owner. Alternatively the biometric owner desires to access a service

without reveling his identity. According to the s.p.e.d. paradigm, the goal

mentioned above can be achieved by letting the server carry out the matching

process directly on encrypted values. Even if the task seems impossible, a

functionality like the one mentioned before can be implemented by resort-

ing to Homomorphic Encryption (HE) and Secure Multi Party Computation

(SMPC) techniques. SMPC techniques are a set of protocols built with the

only goal to allow two or more individuals or parties to jointly compute a

function without revealing each others the inputs. Virtually, any computable

function or algorithm can be computed on encrypted data [11]. In a general

SMPC setting one party, the client C, owns a signal that must be processed

in some way by the other party, hereafter referred to as the server S. S must

process C’s signal without getting any information about it, in some cases not

even the result of the computation. At the same time, S is interested to pro-

tect the information he uses to process the signal. Using SMPC techniques,

it is possible to carry out the match between any two biometric templates

and even between a biometric query and the templates stored in a database,

by working only on encrypted data. Moreover, it is also possible to construct

the underlying matching protocol in such a way that only the intended party

knows the final result of the match without revealing any information about
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the identity of the biometric owner.

SMPC tools such as oblivious transfer [12], garbled circuit [13] and ho-

momorphic encryption [14, 15] are among the most used in literature. In

a nutshell (more details can be find in Chapter 2) oblivious transfer (Sec-

tion 2.2.1) is a method to exchange secrets in a secure way, garbled circuit

(Section 2.2.2) is a protocol for computing encrypted functions, while ho-

momorphic encryption schemes (Section 2.3) allow to compute some specific

operations, usually addition or multiplication, on encrypted values. Recently

a new set of encryption schemes that can perform both addition and multipli-

cation on encrypted data have been developed. Those systems are indicated

as fully homomorphic encryption schemes (Section 2.3). Any s.p.e.d. tool has

its strong and weak points, and therefore it is better suited for some specific

subprotocols. To better exploit the main strength of each technique, more

than one tool is sometimes used in the a system. Each one is used to imple-

ment the specific subprotocol for which it is more efficient. Those systems are

usually called hybrid (Section 2.5). The main challenge in those situations is

to find an appropriate and efficient link function between the used modalities.

Any SMPC tool can be implemented in order to deal with active or pas-

sive adversaries. The first group of attackers actively try to infiltrate the

system by corrupting data and cheating, the second ones passively try to

gain as much information as possible only observing and participating to the

protocol. Usually SMPC tools secure against active adversary require com-

plex and time consuming implementations. Therefore the majority of works

studying privacy preserving recognition protocols tools are secure in a semi-

honest setting (Section 2.1). Nevertheless, protocol guaranteeing security in

the semi-honest model can be always modified to be make them secure under

more stringent threat models but at the cost of higher complexity [16–18].

1.4 State of the art

To overcome the privacy issues presented in Section 1.2, while at the same

time retaining the advantages of biometric recognition systems, many works

have recently focused on the privacy protection of biometric signals [10,11]

relying on SMPC techniques. A general recognition protocol is composed of
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a few basic blocks, feature extraction, distance computation comparison and

minimum selection. Since feature extraction involves only data provided by

one party, it is usually implemented in plain domain. On the contrary dis-

tance computation, comparison and minimum selection must be implemented

resorting to s.p.e.d., since these operations involve private data owned by C
and S. To be implemented using s.p.e.d., a biometric trait should be repre-

sented through a vector of features of constant length so that a simple distance

measure (e.g. Hamming or Euclidean distance) can be used to measure the de-

gree of similarity between two vectors. Any biometrics satisfying the previous

conditions can be developed using simple s.p.e.d. blocks [11,19,20].

Despite many recent advances and the introduction of more efficient cryp-

tographic primitives, the complexity of s.p.e.d. based biometric recognition

protocols is usually high, preventing their use in real life applications. In fact

the most common approach used so far has been taking a biometric matching

algorithm and transforming it into a protocol that can be implemented in the

encrypted domain. For example in [2, 21–23] authors used multiplicative Ho-

momorphic Encryption to protect recognition protocols, while in [24,25] and

[26] garbled circuits have been used. It is worth mentioning also the works by

Yasuda et al. [27] and Troncoso-Pastoriza [28] for biometric recognition using

fully homomorphic encryption.

In all the papers cited before authors had to deal with complexity and

security. The majority of previous works on the topic are secure only against

passive adversaries in order to keep complexity low. It would be better to be

able to guarantee security against an active attacker trying to fool the system

deviating from the protocol, such as in [29,30].

The search for efficiency is not limited to the choice of a suitable matching

algorithm, biometrics representation should be consider as well. In a s.p.e.d.

protocol, the complexity of s.p.e.d. primitives depends on the number of fea-

tures involved in the matching function and on the number of bits used to

represent them. By decreasing the number of features, the efficiency of the

implementation increases at the expense of accuracy. It is necessary to find

a balance between accuracy and efficiency. For example, in [24] the authors

proved that the use of a common mask for iris recognition, dramatically sim-

plifies the implementation of the s.p.e.d. protocol [11]. This last approach
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is the one we used in Chapter 5 to find a trade off between accuracy and

efficiency in malicious setting. A more detailed review of the state of art can

be found in Chapter 3.

For completeness we present other methods for template protection, used

as alternative solutions to s.p.e.d. tools. These methods are usually catego-

rized as biometric cryptosystems and cancellable biometrics.

Biometric cryptosystems (BC) were originally developed to secure a cryp-

tographic key using biometric or to generate a key from a biometric template,

however they can also be used for template protection [31]. The basic idea is

that the biometric is used to authenticate the user and release the secret key,

while a standard cryptosystem can secure the information or the communica-

tion [32]. Comparing two biometrics therefore means verifying keys validity,

while the authentication output could be either a key or a failure message

[31].

A solution related to the previous method but not equivalent is cancellable

biometrics. In this method the original biometric signal is transformed using

a one way function. The distortion can be applied to the original domain

or to the feature [33]. It preserves privacy since it is computationally hard

to recover the original data from the template and it has also the advantage

of revocability, because a template can be re-enrolled using a different trans-

formation [33]. Moreover cancellable biometrics does not compromise the

accuracy of a matching algorithm as the statistical characteristics of features

are maintained after the distortion [33].

In this thesis we focus on s.p.e.d. methods because we believe that it is

possible to reduce the complexity of the resulting protocols.

1.5 Contributions

The aim of this thesis is to find a compromise between the accuracy of the

biometrics recognition system and the complexity of the resulting privacy

preserving protocol.

To design our solutions, we follow two different paths. In the first one, we

use a particular cryptosystem belonging to family of Somewhat Homomorphic

Encryption schemes (SHE) (Chapter 4). This particular set of cryptosystems
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allows to operate on encrypted data obtaining the same result obtained work-

ing on the plaintexts (more details in Section 2.3). The resulting protocols are

two privacy preserving biometrics identification and authentication schemes,

based on iris and fingerprint in which all the computation is moved on the

server side, without any interaction with the client, except for the input en-

cryption and output decryption on the client side. Our main contribution

consists in the application of the SHE scheme proposed by Pisa et al. in [34]

to the biometrics recognition problem. It is worth noting that in this work

we also deal with the problem of negative numbers, which was not addressed

in [34] (Section 4.1). Concerning the proposed biometrics recognition proto-

col, we devised a solution allowing to compute the match score (Figure 3.1)

between iris or fingerprint templates with the lowest possible amount of multi-

plications (the most complex operation) in the encrypted domain. Moreover,

the distance is computed by means of parallelization in such a way to decrease

the time complexity of the system (Section 4.3, Section 4.4). We also design

a blinding method to obfuscate the outputs in the authentication framework

and prevent C to learn the exact distance from the template stored into the

database (Section 4.5).

As we said, most of previous works on the topic are secure only against a

passive attacker. In fact, despite the recent advances of SMPC in the mali-

cious setting and the introduction of more efficient cryptographic primitives,

the complexity of a protocol secure against an active attacker can be very

high (Chapter 3). The second main contribution of the thesis (Chapter 5)

exploits the strength of the SPDZ protocol, introduced by Damg̊ard et al. in

[35, 36], to provide a protocol secure in the malicious setting. Since we are

looking for a trade off between complexity and accuracy, we propose SEMBA ,

a multimodal biometric system that combines face and iris templates. It is

known that a multimodal biometric authentication protocol can reach better

accuracy than algorithms based on single biometric. By using a simplified

representation of the two biometric traits, the multimodal protocol can reach

the same accuracy of the corresponding systems based on more accurate rep-

resentation of iris or face templates, but keeping computational complexity

low. It is up to system designers the decision to exploit the superior perfor-

mance allowed by multimodal authentication to improve accuracy, instead,
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without increase the complexity. In the resulting proposal, all the computa-

tion is carried out in a privacy preserving way and the output is revealed only

if all the parties act honestly during the protocol. Our contribution in this

case is mainly focused on the search for a good balance between efficiency and

complexity. For this reason we analyze several possible configurations.

1.6 Publication list

G. Droandi, and R. Lazzeretti. ”SHE based non interactive privacy preserving

biometric authentication protocols.” In Intelligent Signal Processing (WISP),

2015 IEEE 9th International Symposium IEEE. Siena, Italy, May 2015.

G. Droandi, Non-interactive privacy preserving protocol for biometric recogni-

tion based on somewhat homomorphic encryption”, in ECCWS2015-Proceedings

of the 14th European Conference on Cyber Warfare and Security 2015: EC-

CWS 2015. Academic Conferences Limited, 2015, p. 355.

M. Barni, G. Droandi, and R. Lazzeretti, “Privacy protection in biometric-

based recognition systems: A marriage between cryptography and signal pro-

cessing”, in IEEE Signal Processing Magazine, vol. 32, no. 5, pp. 66–76,

2015.

G. Droandi, M. Barni, R. Lazzeretti, T. Pigata. ”SEMBA: SEcure Multi-

Biometric Authentication”, In ArXiv e-prints, 1803.10758, 2018.

1.7 Outline

The rest of this thesis is organized as follows: in Chapter 2 we introduce the

general SMPC tools, we analyze thier security Section 2.1, and present a brief

excursus of the most used privacy preserving techniques Section 2.2. Being

directly related to our work, in Section 2.3 we describe more in detail the

homomorphic encryption cryptosystems (especially the one used in Chapter

4) and in section Section 2.4 the SPDZ system of Chapter 5.

In Chapter 3, we report the state of art of secure biometric recognition
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systems. We first recall the principal characteristic of biometrics in plain

domain Section 3.1; then we present the state of art of privacy preserving

biometric recognition, paying attention to the ones used in our research (iris

Section 3.2, face Section 3.3, and fingerprint Section 3.4).

In Chapter 4 we present the privacy preserving fingerprint and iris biomet-

ric recognition systems for both authentication and identification published

in [37] and [38]. In Section 4.1 we present our extension of the cryptosys-

tem introduced in [34] to negative numbers, while Section 4.2 summarizes the

general authentication and identification protocols. In sections Section 4.3,

Section 4.4 and Section 4.5 we respectively describe our implementation of

secure Hamming distance, Euclidean distance and the blinding method. Fi-

nally we analyze the protocol’s complexity Section 4.6 and the experiments

outputs Section 4.7.

In Chapter 5 we present our protocol for multimodal authentication based

on SPDZ system, by using face and iris. First we analyze the stand alone iris

Section 5.1 and face authentication protocols Section 5.2. Then in Section 5.3

we present SEMBA and tests results in plain Section 5.4 and encrypted Sec-

tion 5.5 domain.

Finally, in Chapter 6 we sort out our conclusions.



Chapter 2

Cryptographic Tools

The basic problem in cryptography is providing secure communication over

an insecure channel, whenever two parties desire to exchange a private mes-

sage over a channel that can be compromised. This is usually done through

encryption schemes, consisting of two main functions: encryption and decryp-

tion. Before sending a message, the sender encrypts the message obtaining

the ciphertext. Once received the ciphertext, the other party decrypts the

message using the decryption algorithm.

Since 1970s, following the introduction of problems like unforgeable digi-

tal signature and fault-tolerant protocols, cryptography has been redefined as

everything concerned with the design of a system capable to withstand ma-

licious attempts to abuse it, and not only the art of designing and analyzing

encryption schemes [39].

In this thesis, we consider a Secure Multiparty Computation scenario,

where two or more parties, for example a client and a server, are interested

in jointly computing the same task without revealing each other their inputs.

This scenario is also known as secure distributed computing [40]. The aim of

secure multiparty computation (SMPC) is to enable all the parties to sort out

a distributed computing task without any leak of informations.

In this chapter, we present the main characteristics of SMPC. First, in Sec-

tion 2.1, we outline the general properties of SMPC and the corresponding

security models. Second, in Section 2.2, we describe the most used cryp-

tographic tools for SMPC: oblivious transfer (Section 2.2.1), garbled circuit

(Section 2.2.2), secret sharing (Section 2.2.3). Then we describe a particular

set of cryptographic systems known as homomorphic encryption ( Section 2.3)

and more in detail: somewhat homomorphic encryption (Section 2.3.1) and

a new SMPC tool for secret sharing, known as SPDZ ( Section 2.4) recently

proposed by D̊amgard et al. Finally, for completeness, we briefly describe
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hybrid protocols (Section 2.5).

Since in our implementations we use somewhat homomorphic encryption

(SHE), in Chapter 4, and SPDZ, in Chapter 5, in this chapter we describe

them in a more detailed way with respect to the other cryptographic tools.

2.1 Security Models

In secure multiparty computation, n participants P1 . . . Pn want to compute

jointly the same function without share their inputs. Security treats can be

not only an external adversary, but also one or more of the n participants. A

subset of corrupted players may try to gain as much information as possible

about the inputs of the others, sometime also deviating from the protocol.

For this reason, any SMPC protocol should respect the security properties

described below [40].

• Privacy. Each party Pi should learn only the output.

• Correctness. The received output should be correct for each Pi.

• Independence of inputs. Each party must choose its inputs indepen-

dently from the others, be them corrupted or honest.

• Guaranteed output delivery. Corrupted parties should not be able to

prevent honest ones from receiving their output.

• Fairness. Corrupted parties should receive their output if and only if

also honest parties receive theirs.

First of all we must define what security means regarding our scenario. In

[40] Hazay and Lindell define SMPC’s security as a mental experiment. Let us

consider an “ideal world” where an external, trusted and incorruptible party

T exists. T , called third party, helps the other players to carry out their com-

putation. In this ideal world, each Pi can only send inputs and receive outputs

from/to T , by using perfect private channels. The third party computes the

function, and gives the output back to P1, . . . Pn. For this reason, the only

action that an adversary can perform is choosing the corrupted parties’ inputs

[40]. In “real world”, obviously, a trusted party T does not exist. Hence a
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real protocol is said to be secure if in the real execution, a corrupted party

cannot do more harm than in the ideal world. The previous definition is too

ideal and needs to be simplified to work in situations when it is impossible to

guarantee both delivery and fairness. For this reason the definition is relaxed

and the participants can also abort the computation [41–44].

We can define the adversaries models according to the actions they are

allowed to take [40]:

1. Semi-honest (passive) adversaries. In this model, all the parties, even

the corrupted ones, follow the protocol without deviating from it. How-

ever the adversary knows the status of the corrupted parties and use

those information to obtain as much information as possible on the

honest parties’ inputs; attackers under this model are also referred as

passive or honest-but-curious attackers or adversaries.

2. Malicious (active) adversaries. In this model, the corrupted parties

may deviate from the protocol, following adversary’s instructions. This

kind of adversary tries actively to infiltrate the system. We will refer to

this kind of adversary or attacker as active. To ensure security under

malicious model, the computation is more complex than in the previous

case.

The behavior of the adversary can also be classified according to the dy-

namic of the corruption. From this point of view we may distinguish the

following cases [40]:

1. Static corruption model. A adversary has already corrupted a fixed

number of parties. Honest parties remain honest and the adversary can

not corrupt anyone else.

2. Adaptive corruption model. In this model the adversary has the ability

of corrupting parties during the computation. Who and when can be de-

cided by the adversary. Once a party is corrupted, it remains corrupted

until the end of the protocol.

3. Proactive model. In this model, parties may be corrupted only for a

limited period of time [45,46].
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The majority of the secure biometric protocols proposed in literature (see

Chapter 3, [11, 20] ) and those we propose in Chapter 4, are safe in a static

corruption model and against a semi-honest adversary while the protocol in

Chapter 5 is secure against n−1 malicious parties (n is the number of parties)

also in a static model.

2.2 Basic SMPC Primitives

In our biometric protocols, two parties, called server S and client C are in-

terested to evaluate a biometric recognition protocol without revealing infor-

mation to each other. This is possible thanks to many SMPC tools proposed

in the past. In the next sections, we focus on the most basic cryptographic

primitives used in secure two party computation (STPC).

2.2.1 Oblivious transfer

Oblivious transfer (OT) [12,47] is a protocol that allows the server S, to send

one out of n messages (x1, x2, . . . , xn) to the client C. On his side, C chooses

an index i to learn xi. At the end of the protocol S gets no information

on the index i and C knows nothing about the other messages xj , i 6= j.

OT is critical to implement some of the most efficient protocols for secure

computation, such as garbled circuits [13] or GMW [48]. To the best of

our knowledge, the best OT protocol [49] in both malicious and semi-honest

case, achieves around 10000 1-out-2 OTs per second using only one thread.

However, in many frameworks millions of OT protocols should be performed,

making computation expensive in terms of complexity and time (for example

for the privacy preserving evaluation of an AES circuit [50] or the protocols

for private set intersection of [51] and [52]). The computational time cost can

be reduced by using the OT extension method proposed by Beaver in [53,54].

Basically, the protocol runs a small number of base OT that are then used to

obtain many OTs, through only “cheap” symmetric cryptographic operations.

OT extensions can be implemented with extraordinary efficiency in the case of

passive adversaries. The protocol described in [55] after the base OT, requires

only three hash functions for each OT, while the framework presented in [54]

can carry out 107 OTs in less than three seconds, using four threads over a



2.2. Basic SMPC Primitives 17

LAN [54, 56] with a bandwidth of km, that corresponds to about 256MB for

k = 128 bit; k is the security parameter and m the number 1-out-of-2 OT

extension. In [54], the authors also observe that any other optimization that

targets only runtime complexity has no effect. The OT extension protocol is

so fast that this makes communication the bottleneck of the protocol. On the

contrary, for malicious adversaries OT extensions are more expensive, in fact,

with respect to [55], the run time of the most efficient framework is of 7.3s

for 224 random OT extensions [57] on LAN, with communication complexity

of 378MB, that is about 150% more than the corresponding passively secure

protocol in [54]. To improve the efficiency, part of the computation can be

moved offline and be precomputed [58].

2.2.2 Garbled circuits

In his revolutionary paper, Yao [13] introduced for the first time the possibility

to evaluate securely any binary circuit. In Yao’s garbled circuit protocol (GC),

computation is distributed between two parties, the server S and the client

C. In the simplest scenario, S and C are interested to jointly evaluate a

function represented by a binary circuit. Let us consider a circuit having

only one gate with two input wires w1, w2 and one output wire w3. S knows

only the input i1 to w1, while C only its input i2 to w2. The garbled circuit

allows to evaluate the circuit on the inputs so that S learns nothing about i1,

while C can determine nothing about i2, except what he can deduce from the

output and its own input. With G(i1, i2) ∈ {0, 1} we indicate the output of

the gate. In practice, S first encrypts (garbles) each input and output wire

of the gate, generating two different keys k0j , k
1
j of t-bits each. A random

permutation π is associated to each wire. Given cj = π(ij), k
ij
j ‖cj represents

the garbled values of the wire and is completely independent from the input

ij . Then the gate is replaced by a table in which each entry contains the

encryption of the corresponding garbled output of the wire; the encryption

key is obtained as a combination of the input wires, and entries are sorted

according the input permutation bits. Extending the procedure to a set of

gates composing a binary circuit, the set of all the tables is called garbled

circuit. After garbling, S sends the GC and his secret inputs to C, while C
receives the secrets associated to his inputs through OT. Finally, C decrypts
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the gates one by one by using the input secrets and the secrets obtained as

output of previously evaluated gates, until the final output is obtained [13,59].

Considered to be impractical until few years ago, GC has recently gained

more and more popularity, thanks to several efficiency improvements (sum-

marized in [60]). The majority of the improvements are provided in the semi-

honest model. However, many papers [61–66] have been focused on mak-

ing the protocol secure against malicious attackers, through Zero Knowledge

proof [67], cut and choose[65] and other computationally expensive techniques.

These implementations can be used in biometric recognition, but the complex-

ity cost is so high to make them un-practical in real world applications.

In a garbled circuit the complexity is distributed between the two parties.

Even if great part of the computation is performed on S’s side, C must perform

several computations. It is important to underline that circuit garbling does

not depend on the actual inputs and in some particular scenarios where the

functionality to be evaluated is known in advance, circuit encryption and

transmission can be precomputed, so that only evaluation is carried out online

by the client.

The computational complexity of GC operating in the semi-honest model

depends linearly on the number of non-XOR gates composing the circuit,

which in turn depends on the input bitlengths. In fact, thanks to the im-

provement proposed in [68], XOR gates can be evaluated with negligible com-

putational and communicational complexity.

Given that, GCs are suited for operations such as sums and comparisons,

for which the number of gates composing the circuit depends linearly on the

input bitlength. On the contrary, GCs are less efficient for other operations,

e.g. for the computation of products or divisions, since in this case the number

of gates depends quadratically on the input bitlength.

As far as we know, the best GC protocol secure in the malicious model

needs about O(s · C) symmetric encryptions, where C is the number of non-

XOR gates and s the number of circuits necessary for the cut-and-choose pro-

tocol [65,66]. It is worth nothing that in semi-honest model O(C) symmetric

encryptions are required. The other malicious protocols are still impractical,

for example, the one proposed in [62] is based on zero-knowledge proofs and

it can be extended with a constant number of large modulus exponentiations,
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but for short circuits the protocol is not yet practical and for big circuit it is

not realistic at all. The LEGO protocol [61] is more efficient then [62], the

number of exponentiations in this case is of O(s · |D|/ log |D), where s is a

security parameter and D the size of the circuit.

2.2.3 Secret sharing

A secret-sharing scheme is a method allowing to distribute a secret among

a group of n participants. Each party receives a share of the secret. Only

when a certain number of participants put together their shares, the secret

can be reconstructed. Therefore an individual’s share alone does not reveals

any information on the secret. Secret sharing schemes were introduced by

Blakley [69] and Shamir [70] for secure information storage, but they have

found many applications in cryptography and SMPC. In Blakley and Shamir

schemes, the participants’ subsets that can reconstruct the secret are all the

sets whose cardinality is at least equal to a certain threshold t, system with

this property are usually referred to as (t, n)-threshold scheme. In [71] Ito

et al. presented secret-sharing schemes for a more general access structure

to the secret. Most of the known secret-sharing schemes are linear, i.e. the

secret is an element of a finite field, and the shares are obtained by applying

a linear function and several independent random elements to the secret. An

interested reader can found in [72] a summary of secret sharing schemes.

In this thesis, we focus on a new secret-sharing scheme proposed by

Damg̊ard et al. in [35, 36] and usually referred to SPDZ. Since one of the

privacy preserving biometric protocols we implemented use SPDZ, we are

going to describe SPDZ in more details in Section 2.4.

2.3 Homomorphic encryption

A cryptosystem is called homomorphic [73] if it enables the computation over

encrypted data. In other words, given an operation ⊕ on the plain texts, an

operation ⊗ on ciphertexts exists such that the application of ⊗ to any pair

of ciphertexts corresponds to the application of ⊕ to the corresponding plain

texts, that is:

Dec(Jm1 ⊕m2K) = Dec(Jm1K⊗ Jm2K). (2.1)
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for any pairs of plain messages m1 and m2. In Equation 2.1, JaK indicates the

encryption of the message a and Dec() the decryption operation.

Basically, a homomorphic encryption system (HE) allows to carry out

some operations on the encrypted data. Once decrypted the output, the

result of the operations should be the same as if all the corresponding oper-

ations were performed on the plain texts. The most common homomorphic

cryptosystems, such as Paillier’s cryptosystem [14], are additive and allow

to evaluate the sum between encrypted values or the product between an

encrypted value and a plain value. Such schemes are based on asymmetric

cryptosystems, wherein a party, said C, owns the public (pk) and private (sk)

encryption keys while the other party, said S, knows only the public key.

Given one or more inputs x1 . . . xn represented as integers, C encrypts them

with the public key obtaining the corresponding ciphertexts Jx1K , . . . JxnK and

sends them to S that carries out the computation by also using his part of

the inputs. The final result is provided to C that discovers it after decryp-

tion. Thanks to additive property of the cryptosystem, linear operations can

be evaluated by S without interacting with C. On the contrary, non-linear

operations, such as products between encrypted values or comparisons, are

more complex and require interaction between the parties.

The computational complexity of HE-based protocols can be measured by

counting the number of the most expensive operations or by measuring the

runtime for the two parties involved in the protocol. Communication complex-

ity is measured in terms of number of communication rounds and bandwidth.

The bandwidth can be estimated by counting the number of ciphertexts that

must be transmitted. Multiplicative homomorphic cryptosystems exist as

well, allowing the evaluation of products between encrypted values, but they

have a lower practical utility with respect to additive HE.

Fully homomorphic encryption schemes (FHE), allowing both the evalu-

ation of additions and products between ciphertexts, are very useful, even if

really expensive. FHE schemes are a cryptographic recent discovery. The

first one has been presented by Gentry [74] in 2009. From this breakthrough

many others have followed such those described in [15, 75–77]. We analyze

FHE more in depth in the following section.
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2.3.1 Somewhat and fully homomorphic encryption

An encryption scheme is defined fully homomorphic if it allows to perform

both plain-text addition and multiplication manipulating only ciphertexts.

As we said in the previous section, the first construction of a secure somewhat

homomorphic encryption (SHE) and fully homomorphic encryption (FHE)

schemes has been provided by Gentry [74]. SHE allows the evaluation of a

limited number of operations, especially multiplications, while FHE extends

SHE to overcame such a restriction but at the cost of incrementing even

further the computational complexity.

A FHE scheme is the result of three steps. The first step consists in

constructing a somewhat homomorphic encryption scheme. This scheme can

perform only a limited number of operations before incurring into decryption

errors due to the noise that grows after each operation. The noise is a random

elements that the encryption function adds to the message and which ensures

that the ciphertext cannot be decrypted without knowing the secret key. To

decrypt correctly, noise must be under a certain threshold, depending on the

scheme and the parameters. The second step is the so called squash, that

consists in modifying the decryption function in such a way that can be ex-

pressed as a low degree polynomial in the encrypted data and secret key bits.

After each operation, noise grows and, when it is too large, the decryption

becomes impossibile. The innovative Gentry’s idea was to introduce a third

step, bootstrapping, which consists in the homomorphic evaluation of such a

polynomial decryption on ciphertexts and additional encrypted key bits. In

simple terms, thank to the squashed decryption function, a ciphertexts can

be decrypted and re-encrypted with a new secret key and no additional noise.

So a new (refreshed) ciphertext of the same bitlength, but with reduced noise,

is produced. Consequently the new ciphertext can undergo more operations

before incurring again into errors. By repeating the bootstrapping stage be-

fore the noise becomes too large, the number of possible operations becomes

virtually unlimited, thus allowing the construction of a fully homomorphic

scheme.

Unfortunately, using FHE in real world applications is still impractical

even if many improvements have been made. Starting from Gentry’s scheme,

five main families of FHE schemes have been proposed:
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• schemes based on integers [76,78–80];

• schemes based on ideal lattices [81–84];

• schemes based on Learning With Error (LWE) and Ring Learning With

Error (RLWE) [75,77,85,86];

• schemes based on the approximated eigenvector method [87,88];

• the NTRU based schemes, that simplify the previous RLWE method

because they can obtain ciphertexts of only one ring element [89,90].

With regard to biometric recognition, the number of required operations is

usually known in advance. Therefore the full strength of FHE is not necessary,

and a SHE scheme is enough to guarantee security [27,28,91,92]. This is the

solution we adopted in [37,38] and that we will describe in Chapter 4.

In the next section, we are describing the SHE schemes used in our appli-

cations to biometrics.

2.3.2 Somewhat homomorphic encryption on integers

We now present the somewhat homomorphic scheme over the integer, pro-

posed by Pisa et al. [34] that we use in our protocols for iris and finger

recognition, which will be presented in Chapter 4. The scheme we use is an

extension of the DGHV cryptosystem proposed in [76]. The advantage of

Pisa’s SHE scheme, is the possibility to encrypt integer values in ciphertexts

having size in the order of the kilobits and compute any function expressed

as a combination of sums and multiplications.

We first introduce some useful notation. Given two integer numbers x

and p, we indicate with [x]p or (x mod p) the reduction of x modulo p. The

notation [x]p indicates the remainder in the interval [0, p), while x mod p

refers to the integer in the interval (−p/2, p/2].

Let λ be an integer referred to as the security parameter; η be the bit

length of the secret key p; τ be the number of elements composing the public

key, each of which has bit length γ; finally, let ρ and ρ′ be respectively the bit

length of the noise in the public key and in a fresh ciphertext (Table 2.1).
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For a given η-bit odd integer p, we use the following distribution over γ-bit

integers:

Dγ,ρ = {choose q ∈ Z ∩ [0, 2γ/p), r ∈ Z ∩ (−2ρ, 2ρ) : outputx = q · p+ r}

To explain how the scheme proposed in [34] works, we first present a

symmetric scheme and then we modify it to obtain an asymmetric scheme.

In DGHV scheme the message is encrypted by hiding it with additional noise

of a multiple of an odd integer p. A message m ∈ {0, 1} can be hidden in a

integer c such that its residue modulo p has exactly the same parity of m. In

other words, the ciphertext c can be represented as c = m + p · q + 2 · r for

some q, r ∈ Z. Namely a ciphertext is a near multiple of p and the message is

hidden into the noise m+ 2r. If r is not too large and m+ 2r does not exceed

p/2, the message can be recovered with two modulus operations.

Starting from this symmetric scheme, Pisa et al. adapted the encryption

function as c = m + p · q + b · r, with m ∈ [0, b), where the integer p must

be equivalent to 1 mod b and q must be odd, so that [[c]p]b = m. The above

symmetric scheme can be modified into an asymmetric one where the secret

key is still the integer p, while the public key is a set of τ near multiples of p,

namely for i = 0, . . . τ , xi = p · qi + ri where ri, qi ∈ Z are randomly chosen.

We now describe in details the scheme presented in [34] by Pisa et al.:

KeyGen(λ). The secret key is an integer p ∈ [bη−1, bη) ∩ Z such that p is not

divisible by b. The public key is a set of τ elements obtained as xi = qi ·p+ ri
for all 0 ≤ i ≤ τ , with ri ∈ (−bρ, bρ) randomly chosen noise and qi ∈ [0, bγ/p).

The element x0 should be greater than every other xi, it should be odd and

the noise should be even. The public key is pk = {x0, x1, . . . , xτ}.

Encrypt(pk,m). Given an integer message m ∈ [0, b), the encryption func-
tion chooses a random integer r ∈ (−bρ′ , bρ′) and a sparse subset S of indexes
in {0, 1, . . . , τ}. The ciphertext c is

c =

[
m+ b · r + b ·

∑
i∈S

xi

]
x0

. (2.2)



24 2. Cryptographic Tools

Decrypt(p, c). Given a ciphertext c, the decryption function is m = [c]p
mod b.

evaluate(pk, C, c1, . . . , ct). To perform addition and multiplication between

two given ciphertexts c1, c2, just sum or multiply the ciphertext modulus x0.

It is worth noting that this scheme can also encode negative numbers, it

is our small contribution to the cryptosystem (Section 4.1). Clearly, if the

base b consists of k-bit, we can encrypt integers in the interval (−b/2, b/2]. In

this case the decryption function is performed as ([c]p mod b) and returns a

positive number if [[c]p]b < b/2, negative otherwise ([[c]p]b− b). In the case of

negative numbers, the base should be twice the maximum integer that needs

to be computed.

Table 2.1: Parameters recap

Symbol Definition

b base
λ security
η bit length of sk η = λ2

ρ bit length of the noise in pk ρ = λ

ρ
′

bit length of the noise in ciphertext ρ
′

= 2 · λ
γ ciphertext’s length γ = λ5

τ number of pk’s elements τ = γ + λ+ log2(b)

Parameters In order to preserve the semantic security of the reduction to

approximate-GCD (great common divisor) problem as in [76], the parameters

depend on λ polynomially and, according to [34], they are defined as: ρ = λ,

ρ′ = 2λ respectively for the noise of each element of public key and ciphertext;

η = λ2 for the length of the private key; γ = λ5 for the length of the ciphertext;

τ = γ + λ+ log2(b) is the number of elements of the public key.

Lemma 1 proves the correctness of the decryption function under the cho-

sen parameters set.

Lemma 1. Chosen a base b = 2k, let (sk,pk), keys output from KeyGen(λ)

as in the system shown in Section 2.3.2. Let c = encrypt(pk,m) for m ∈
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[0, b − 1], with b ∈ Z. Then, c = m + a · b + p · q for some integers a, q and

|a · b+m| < p/2. The decryption function is correct.

The scheme is somewhat homomorphic since only a limited number of

operations can be performed. This number depends on the magnitude of the

noise after every operation. While after a multiplication we have a significant

noise increase, the addition is less problematic because it produces only a

slight noise increase. In order to decrypt the correct message, the total noise

should not grow more than p/2, respecting the boundary1.

b2λ+1 + λ5 · bλ · (b2 + b) <
p

2
. (2.3)

Finding the maximum number of possible multiplications means finding

the largest µ that satisfies Rµ < p
2 , where R = b2λ+1 + λ5 · bλ · (b2 + b)

is the maximum allowed noise as in Equation 2.3, therefore, the bound is

(b2λ+1+λ5·bλ·(b2+b))µ+1 < p
2 . As shown in [34], the number of multiplications

seems to depend mainly on the security parameter λ while they are quite

independent from the base. On the contrary the limit of additions is so hight

that, for certain set of parameters, is negligible.

Security Basis of the SHE Scheme Among the attacks against an asym-

metric encryption scheme, the most important are those who recover the

private key from the public key and those who uncover information from ci-

phertext. In this section, we briefly recall the security basis of the extended

scheme presented in [34]. The security of the scheme is based on the problem

known as approximate-GDC and it has been analyzed for two numbers in [93].

Indeed the public key consists of a set of elements x = p · q+ r. Therefore,

to recover the private key it is necessary to calculate the GCD between these

approximated terms. Finding the private key requires an exhaustive search in

the noise space; hence the research can be made more difficult by increasing

noise.

Basically, the procedure requires to find all the possible common divisors

for each pair of public key elements, taking into account all possible values

with the aim of defining a set. Repeating the procedure for all possible pairs of

1We refer to [34] for further details.
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public key elements, the possible private keys can be found in the intersection

of all the sets and therefore must be repeated until it is a singleton. In the

DGHV scheme in [76], Van Dijk et al. adopt a maximum noise equal to

ρ = 2λ, which requires an exhaustive search of 24λ for each pair of public

keys. In the extended scheme [34], even if the base varies, the problem and

the resolution method remain essentially the same, which implies that the

complexity of the scheme does not decrease. Moreover Pisa et al. claim that

since the noise increases of log2 b (where b is the adopted base), the complexity

actually increases.

A cryptographic scheme is said to be semantically secure if two plaintexts

are completely indistinguishable after encryption. Pisa et al. claim that their

system is semantically secure by relying on the approximate-GDC problem,

and they provide only a sketch of the security proof. The authors consider a

game with a challenger and an attacker. First of all the attacker receives the

public key, then he chooses two messages of the same sizes and sends them

to the challenger. After that, the challenger chooses one of the messages,

encrypts it and sends it back to the attacker. The attacker wins the game if

he can reveal the origin of the message. Van Dijk et al. prove in [76], that

an attacker A with advantage ε can be converted into an algorithm where

by B can solve the GCD problem with success probability ε/2. In [34], the

procedure is essentially the same with minor differences. First the size of the

parameters ρ, γ, η is multiplied by a factor log2 b to take into account the larger

base. Second τ must also be increased of the same factor in order to preserve

the statistical indistinguishability of cipher distribution, since the message

space is larger. In the extension, thanks to the larger noise, the approximate-

GCD problem is more complex and therefore the system is secure as the

DGHV scheme. Concluding their analysis, Pisa et al. claim that the security

level is the same as the DGHV scheme because the basic principles underlying

both schemes are the same.

2.4 SPDZ

In this section we describe the secret sharing protocol known as SPDZ and

proposed by Damg̊ard et al. in [35, 36]. SPDZ system provides security
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against an active adversary corrupting up to n− 1 of the n players.

We assume the computation is performed over a fixed finite field Fp of

characteristic p; where p is a prime number. Each player Pi has an uniform

share αi ∈ Fp of a secret key α such that α =
∑n

i=1 αi mod p (in the following

we omit the indication of the modulus operation for simplicity).

An item a ∈ Fp is 〈·〉-shared if player Pi holds a tuple 〈ai, γ(a)i〉 such

that a =
∑n

i=1 ai and γ(a) =
∑n

i=1 γ(a)i. In other words, ai and γ(a)i are

additive secret shares of a and γ(a). The value γ(a) represents the Message

Authentication Code (MAC) of a. Any operation involving some variables is

also performed on their MAC, so that, at the end of the protocol, the MAC

is checked before revealing the outcome. If it is not consistent with the final

output, the procedure aborts and nobody gets the output.

During the description of the protocol, we say that a 〈·〉 - shared value

is partially opened if each party reveals to the other the value ai but not

the associated γ(a)i. In this thesis we focus on secure two-party computation

protocols, then n = 2 and α = α1+α2 and 〈a, γ(a)〉 = 〈a1, γ(a)1〉+〈a2, γ(a)2〉.
The protocol can be divided into two phases. The first one, referred to as

pre-computation, where the system is set and the second, online, where the

actual computation is performed. The pre-processing phase in realty needs

some interaction between parties, but it’s sometimes called offline only as

opposed to the following online phase. In the original paper,[36] the pre-

processing part is implemented by relying on SHE, with a shared private key.

During the offline phase, parties generate a public key and a shared secret key

for the SHE scheme (see [36] for details). They use an homomorphic scheme

of the LWE family (learning with error Section 2.3), mostly based on [94]

and [95, 96]. Then, relying on the homomorphic properties of the SHE, the

pre-processing protocol generates α and α’s shares, input shares, shares of

tuples for multiplications and squares, and the random share values necessary

to evaluate the comparison [36]. Multiplication and square tuples are sets

of two or three elements needed for interactive operations, as detailed in the

following:

• A multiplication tuple is the set {〈a〉, 〈b〉, 〈c〉} for some a, b, c ∈ Fp such

that c = a · b randomly chosen.

• A squared tuple is {〈a〉, 〈b〉} for some a, b ∈ Fp such that b = a2 ran-
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domly chosen.

Each party can see only his set of shares, generated using the homomorphic

properties of the cryptosystem. Details can be found in [36].

All the tuples are produced twice more than needed, because half of them

are “sacrificed” in the sub-phase called tuple-checking. During this last sub-

phase the protocol checks if the output of the previous sub-phase has been

produced correctly along with the corresponding MACs. In fact, an adversary

could introduce errors during MAC and decryption key generation. MAC

checking is possible without revealing the MAC key α. If a is a partially

opened value all the parties have a =
∑n

i=1 ai but not the associated γ(a).

γ(a) is additively shared between parties. To check if a is correct, we must

verify that γ(a) = α · a. Since γ(a) − α · a is a linear function of a, α, γ,

the parties can compute the function locally and then check if γ(a) − α ·
a = 0 without revealing α. We will refer to this procedure as MACCheck

(Protocol 2.1). Finally each party decrypts his set of pre-processed data by

using his secret key share. In the implementation proposed in Chapter 5, we

assume that the generation of tuples and inputs have been already done in

the encrypted domain before the protocol starts and we focus our efforts on

the analysis of the online part of the system.

Table 2.2: Linear operation in SPDZ.

Operation Server Client

〈a〉+ 〈b〉 〈a〉1 + 〈b〉1 〈a〉2 + 〈b〉2
〈a〉 − 〈b〉 〈a〉1 − 〈b〉1 〈a〉2 − 〈b〉2
α · 〈a〉 α · 〈a〉1 α · 〈a〉2
c+ 〈a〉 c+ 〈a〉1 〈a〉2

Linear operations, such as additions and scalar multiplications (see Ta-

ble 2.2), can be performed on the 〈·〉-shared without interaction; while multi-

plications and comparisons need data transmission and proper sub-protocols.

A summary of operations complexities is presented in Table 2.3.
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Protocol 2.1 MACCheck protocol

Sketch of the MACCheck protocol of the values a1 . . . ak for n parties P1 . . .Pn.
All players have a public set of opened values {a1, a2 . . . ak}, meaning that in
a previous sub-protocol each Pi sent is share of at (t = 1 . . . k) to all the other
Pi, j = 1 . . . n, j 6= i. For t = 1 . . . k, (γ(a)t)i indicates the share of γ(aj) of
the party i. More details can be found in [36].

Input: {a1, a2 . . . ak}, partially open values, each player has input αi and
γ(a)t)i, for all t = 1 . . . k.

1: Each player set a random seed si and sends it to the other.
2: Each player compute s= s1 ⊕ s2 ⊕ . . .⊕ sn.
3: Each player sample a random vector r from an uniform pseudorandom

generator U initialized with the seed s. (Every one obtain the same vector
because they agreed on the seed).

4: Each player computes a =
∑n

j=1 rj · aj .
5: Each Pi computes γi =

∑t
j=1 rj · γ(aj)i and δi = γi − αi · a.

6: Each Pj sends δi to all other parties.
7: Compute δ = δ1 + . . .+ δn.

Output: : If δ 6= 0 abort.

Multiplication and square We show how to securely evaluate the product

between two ciphertexts and the square of a ciphertext [36]. During the offline

phase, several multiplication triples are produced. In the online phase to mul-

tiply two 〈·〉-shared 〈x〉 and 〈y〉, we take a multiplication triple {〈a〉, 〈b〉, 〈c〉}
and we partially open 〈x〉 − 〈a〉, obtaining ε, and 〈y〉 − 〈b〉, obtaining δ. Now

the share of z = x · y is computed as 〈z〉 = 〈c〉 + ε · 〈b〉 + δ · 〈a〉 + ε · δ. The

multiplication protocol (Protocol 2.2) requires two transmissions to partially

open ε and δ.

In order to compute more efficiently the square of a sharing value x using

only one transmission, as in [36], during the offline phase we prepare a list of

pairs of 〈·〉-shared values {〈d〉, 〈e〉} such that e = d2 (d, e ∈ Fp). To square

the shared value 〈x〉, we take a pair {〈d〉, 〈e〉} and partially open the result

of 〈x〉 − 〈d〉 obtaining ε. Then the share of z = x2 can be computed from

〈z〉 = 〈e〉+ 2 · ε · 〈d〉 − ε2. The complete protocol is described in Protocol 2.3.

Multiplications and squares, between shares, require respectively two and

one transmissions. Therefore those are the most complex operations and we
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choose to evaluate all the following complexities in terms of multiplication (or

square) number and transmissions.

Protocol 2.2 Multiplication.

Multiplication protocol for n parties P1 . . .Pn. xi indicates the share of x of
the party i.

Input: 〈x〉, 〈y〉
1: Take a multiplication triple {〈a〉, 〈b〉, 〈c〉}.
2: Compute 〈x〉 − 〈a〉 = 〈ε〉.
3: Compute 〈y〉 − 〈b〉 = 〈ρ〉
4: ∀i = 1 . . . n, Pi sends εi and ρi to all Pj , with j 6= i.
5: Compute ε =

∑n
i=1 εi and δ =

∑n
i=1 δi

6: Compute 〈z〉 = 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ.
Output: 〈z〉.

Protocol 2.3 Square.

Protocol for square for n parties P1 . . .Pn. xi indicates the share of x of the
party i.

Input: 〈x〉.
1: Take a square pair (〈a〉, 〈b〉).
2: Compute 〈x〉 − 〈a〉 = 〈ε〉.
3: ∀i = 1 . . . n,Pi sends εi to all Pj , with j 6= i.
4: Compute ε =

∑n
i=1 εi

5: Compute 〈z〉 = 〈e〉+ 2 · ε · 〈d〉 − ε2.
Output: 〈z〉.

Comparison In this paragraph, we show how to compute the outcome of

a secure comparison x < y, for any two elements x, y ∈ Fp, according to

the protocol proposed in [97]. The comparison computation is based on the

observation that 〈x < y〉 is determined by the truth values of 〈x < p
2〉, 〈y <

p
2〉,

and 〈(x − y) mod p < p
2〉, where 〈x < y〉 indicates the share values of the

outcome of x < y. We can avoid to compute also 〈x < p
2〉 and 〈y < p

2〉 since,

as in [97], we choose p large enough that both inputs are lower than p
2 . If z is

equal to x−y, given 〈z < p
2〉, then 〈x < y〉 can easily computed as 1−〈z < p

2〉.
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We observe that if z > p
2 then 2z > p. Since we work on Fp, we have that

2z mod p = 2z − p and it is odd; else if z < p
2 than 2z < p and it will be

even because we do not need any modular operation. Therefore, to establish

if z is larger or smaller than p
2 we need to determine only the last significant

bit of 2z. To compute the last significant bit of 2z, we use a value 〈r〉 shared

by parties both as integer and as a bit array. The value r along with its bit

decomposition are pre-computed offline. We indicate by r0r1 . . . r` the bits of

r and with 〈ri〉 their shared values.

First of all we compute 〈s〉 = 〈2z + r〉, than s is partially opened. Now if

s < p then the last significant bit of 2z is equal to s0 ⊕ r0 else it is equal to

1− (s0 ⊕ r0).
Since we work in the field Fp, s < p if and only if s < r. For this reason

we must only determine whether s < r or not. We remind that s is known

to both parties therefore we can easily obtain a 〈·〉-share of δ, the truth value

of 〈s < r〉 (i.e. 〈δ〉 = 〈s < r〉) working on the bits of s and on the shared

bits of r. In order to do that we use the following procedure to calculate

〈δ〉 = 〈s < r〉:

1. If s0 = 0 then 〈δ〉 = r0 else 〈δ〉 = 0.

2. For all i < `− 1

if si = 0 then 〈δ〉 = 〈ri〉+ 〈δ〉 · 〈1− ri〉
else 〈δ〉 = 〈ri〉 · 〈δ〉.

Now 〈z < p
2〉 can be easily calculated as

〈δ ⊕ s0 ⊕ r0〉 = 〈δ〉 − 〈s0 ⊕ r0〉 − 〈δ〉 · 〈s0 ⊕ r0〉 (2.4)

Since s0 is known, in our implementation, Equation 2.4 can be simplified: if

s0 = 0

〈δ〉+ 〈r0〉 − 2 · 〈δ〉 · 〈r0〉

else

1 + 2〈δ〉 · 〈r0〉 − 〈r0〉 − 〈δ〉.

For more details see [97,98].

The entire protocol is summarized in Protocol 2.4. This protocol requires

one multiplication for each iteration plus one for the last step. Therefore the
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complexity depends on the bit length of r and is equal to ` multiplications

and 2` transmissions.

Protocol 2.4 Comparison

Protocol for comparison between two share 〈x〉, 〈y〉 for n parties P1 . . .Pn.
〈x〉i indicates the share of x of the party
i.

Input: 〈x〉, 〈y〉.
1: 〈z〉 = 〈x〉 − 〈y〉.
2: 〈ε〉 = 2 · 〈z〉.
3: Take a random shared value 〈r〉 and its shared bits 〈r`〉〈r`−1〉 . . . 〈r0〉.
4: Compute 〈s〉 = 〈ε〉+ 〈r〉.
5: ∀i = 1 . . . n, Pi sends his 〈s〉i to all Pj , with j 6= i.
6: compute ε =

∑n
i=1〈s〉i

7: if s0 = 0 then
8: 〈δ〉 = r0.
9: else

10: 〈δ〉 = 0.
11: end if
12: for all i < `− 1 do
13: if si = 0 then
14: return 〈δ〉 = 〈ri〉+ 〈δ〉 · 〈1− ri〉
15: else
16: 〈δ〉 = 〈ri〉 · 〈δ〉.
17: end if
18: end for
19: if s0 = 0 then
20: 〈z < p

2〉 = 〈δ〉+ 〈r0〉 − 2 · 〈δ〉 · 〈r0〉
21: else
22: 〈z < p

2〉 = 1 + 2〈δ〉 · 〈r0〉 − 〈r0〈−〈δ〉.
23: end if
Output: 〈z < p

2〉.

Security In [36] it is demonstrated that the whole system is secure against

at most n − 1 corrupted parties. The tuple checking phase prevents the

adversary to introduce errors because MAC is checked without revealing α.
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Table 2.3: Computational complexity for SPDZ operations. 〈·〉 indicates
shares, a, b, c ∈ Fp, ` is the bit length of p.

Operation Round Bandwidth

〈a〉+ b 0 0
〈a〉 − b 0 0
b− 〈a〉 0 0
b · 〈a〉 0 0
〈a〉 · 〈c〉 2 2`
〈a〉2 1 `

〈a〉 < 〈c〉 2 · ` 2 · `2

Moreover they construct a simulator of the offline and online phases and

demonstrate that the adversary is able to cheat the MACCheck procedure

with probability 2/p. Thus the cheating probability is negligible since p can

be chosen ad hoc.

2.5 Hybrid protocols

At the end of our excursus we mention hybrid protocols. Complex protocols

can be divided into subprotocols and different tools can be used for their im-

plementation, in order to take the best from each approach. Usually hybrid

protocols work with HE and GC (as in [99]), but can be adapted to different

tools. The main challenge of hybrid protocols is the adoption of proper inter-

face protocols to link subparts implemented relying on different techniques.

For example, it may happen that a HE protocol outputs an intermediate x

and the same x must be used as an input in a GC subroutine, or vice versa.

For this reason the two parts of the protocol must be connected in such a

way that the security of the whole system is guaranteed. At the same time,

the representation of the variable x must be adapted to the new subprotocol

requirements. Such an interface can be obtained through additive blinding: a

random value R is added to x by the server at the end of a subprotocol and

then removed at the beginning of the next one, so that only the masked value

of x is disclosed to the client.





Chapter 3

Privacy Preserving Biometrics Matching

Biometric based recognition refers to the automatic recognition of individuals

based on their unique anatomical traits (face, iris, fingerprints, etc.) or their

characteristic behavior (such as signature, gait) [100]. In the last years it has

become a useful tool for people identification since identity verification is an

integral part of our society, especially in the digital cyber world, thanks to the

universality, distinctiveness, ease collectability, permanence and performances

of biometric traits. While passwords can be stolen or lost, biometrics traits

are always with us. For this reason, creating a reliable automatic recognition

systems is crucial for many business sectors. On the other hand, since bio-

metric traits cannot be changed, it is also becoming crucial to find a way to

protect them from forgery and spoofing.

Reliable and secure biometric recognition protocols can be developed us-

ing Secure Multi-Party Computation techniques, as shown in [11]. In this

chapter, we present the most common biometric recognition methods, i.e.

iris, fingerprints, and face, in (Section 3.1) and their implementation in the

encrypted domain (Section 3.2, Section 3.3, Section 3.4). These three biomet-

rics are strictly related to our research, as it will be evident from Chapter 4

and Chapter 5. Then in section Section 3.5 we describe the principal char-

acteristic of a multi-biometric system. Finally in Section 3.6 we review the

state of art of multi-biometric works, secure in the malicious setting.

3.1 Biometric recognition in plain domain

A biological trait must have some requirements to be qualified as a biometrics.
Some of the main characteristics are:

universality each person should have the characteristic;
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distinctiveness the same characteristic in two people should be enough dif-
ferent to avoid false matches;

permanence the characteristic should not change over a period of time;

collectability that characteristic can be measured quantitively;

acceptability this feature refers to extent people are willing to accept the
use of a particular biometric characteristic in their daily life.

strength how difficult is to gain a positive response using fraudulent meth-
ods.

reducibility the captured trait should be reduced to a form easy to handle.

However to be practical a biometric system should be at the same time

accurate, fast, accepted by the intended population, and enough robust to

resist to various attacks to the recognition system itself [5].

Many biometric characteristic are used in several applications: commercial

(computer network login, electronic data security, e-commerce, etc.), govern-

mental (national ID card, driver’s license etc.), and forensic (terrorist identi-

fication, criminal investigation, etc.). DNA, iris, face, fingerprint, ear shape,

voice, gait, and palmprint are only some examples of biometric trait that can

be used in recognition systems. Each one has its strong and weak points and

none is optimal for all the possible applications [5]. The match between a

specific biometric trait and an application is determined depending on the

operational modalities and the properties of the biometric trait.

Any biometric recognition system consists of four main stages (Figure 3.1).

!
!

The!sensor!
captures!the!
traits.!

Step%one:%
acquisition%

The!raw!data!are!
processed!to!
extract!a!
template!

Step%two:%%
template%
extraction%

A!classi6ier!is!
used!to!calculate!
a!match!score.!

Step%three:%
match.%

The!matching!
score!is!used!to!
determine!an!
identity!or!to!
validate!a!
claimed!identity!

Step%four:%
Decision%

Figure 3.1: Biometric recognition system main steps.

First some kind of sensor captures the traits of an individual as a raw

biometric data. Second, raw data are processed to extract a compact repre-
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sentation of the physical trait, usually called features. Features of the same

person can be grouped in a set of n elements and are usually called template.

The third stage is the matching step during which the system employs a clas-

sifier D(·) to compare the extracted features with the templates stored in a

database. In the final step, the decision step, the matching score is used to

determine an identity or to validate a claimed identity.

In a generic recognition system, a server S owns a database of n enrolled

biometric feature vectors ({yi}, i = 1 . . . n). The client C owns a biometric

vector x. Depending on the application context, the biometric system can

operate in two ways: identification (Figure 3.3 ) or verification (Figure 3.2).

The first mode, identification, answers the question who does this biometric

Feature
extraction

Distance

Comparison

Yes / No

Threshold

X

Client’s biometric Server

Template
selection

Id

Figure 3.2: Authentication protocol
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Best matching’s Id
or Yes / No
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Client’s biometric Server

Y2

Yn

Distance Distance

Figure 3.3: Identification protocol

belong to? and aims to establish if the identity is known by the system,

without that the subject claims who he/she is. The identification system

matches the new template with all those into the database, searching for the

most similar one. Given a threshold t, the server must verify if an i exists

such that D(x,yi) < t. In the second mode, also called authentication, the

system validates the identity of a user to answer the following question: is he

who claims to be? The person claims to be someone and the system needs to

confirm or deny the claim, comparing the new template with the one stored
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into the database [5]. Given the identification tag id, the server checks if the

distance between the query x and the probe in the database yid is lower than

the threshold, i.e. D(x,yid) < t. We will use the generic term recognition

when there is no need to make a distinction between the two modalities.

Biometric recognition poses some risks (Section 1.2). Since a physical

traits, like face, voice or fingerprint, are impossibile to hide from others, an

impostor may attempt to use a copy or an imitation of a legitimate user’s

biometric trait in order to access the system. Those attacks, known as spoof

attacks, are particularly relevant for voice and signature, but also other phys-

ical traits can be subject to spoof attacks, for examples it has been demon-

strated in [101] that it is possible to construct fake fingerprints in order to

bypass a fingerprint recognition system. It is also possibile that an impostor

may exploit biometric collision. As said in Section 1.2, since no biometrics

has false acceptance rate equal to zero, it is possible that the biometrics of

the attacker is similar to one of the many stored into the server database.

Therefore he may target a specific template or engage a trial-and-error attack

[8]. Even worse the attacker may take control of the database and use the

informations to infiltrate other systems.

Since biometric traits cannot be changed, unlike passwords, in the last

years the necessity to protect biometric templates has arisen. Both S and

C can be interested in preserving the privacy of their data. Many privacy

protection protocols for biometric recognition has been proposed in the past

[11, 20]. The main part of those protocols use SMPC tools that guarantee

privacy against a semi-honest adversary (Section 2.1), this choice is due to

the superior efficiency of semi-honest cryptographic solutions with respect to

malicious ones. In the following sections we present the state of art in privacy

preserving biometric protocols, while our implementations are described in

Chapter 4 and Chapter 5.

3.2 Iris recognition in the encrypted domain

Iris can be easily represented as a N elements bit vector [102, 103], and two

irises can be compared using their Hamming distance (HD). Usually N = 2048

[104] but it can also vary depending on the radial r and angular θ resolution
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used in the extraction process [103]. The angular resolution θ, is defined by

radial lines passing through the iris region, the radial resolution r instead is

the number of points selected on each radial line. At the end of the encoding

phase data from each sector, defined by r and θ, is represented with two

bits, therefore N is equal to 2 · r · θ. The simplicity of representation and

comparison of iris recognition is attracting for privacy preserving protocols

and many implementations have been presented in the past.

Luo et al. in [21] implemented an HE-based privacy preserving iris iden-

tification protocol based on Daugman iriscode [102] and tested the system on

CASIA Iris Database [105], containing the images of 100 individuals. They

used the Matlab code from [106] to extract the iris and mask code of length

N = 9600 bits, where the mask code is a vector, extracted from the eye image

together with the iris template and representing the region altered by noise

such as reflection, eyelashes and eyelids. On a Linux machine with AMD

Athlon 64, 2.4 GHz and 2GB of memory, a single identification query requires

27.1 minutes on average (about 16.2s per record). This large time complexity

is justified by the length of the iris code (9600), which is encrypted bit by bit

with the corresponding 2048-bit ciphertext using Pailler cryptosystem [21].

For the secure comparison the protocol [21] relies on DGK scheme [107], but

the client has to collaborate with the database owner to output the compari-

son result.

In [1] Blanton et al., instead, present a different approach for iris and

finger identification, based on a hybrid HE and GC protocol. They repre-

sent iriscode as a 2048 bit vector. For the HE part of the protocol they use

DGK cryptographic scheme [107, 108], it has reduced functionalities but has

faster encryption and decryption times than Pailler ones, and it has a 1024-

bit ciphertext (Pailler ciphertext is 2048-bit long). GC is used to perform

comparison because it has minor time complexity than HE [109]. To better

illustrate the advantages of their implementation of iris identification proto-

col, the authors test the protocol using both DGK cryptographic scheme [107]

and Pailler’s one[14]. The framework based on DGK’s scheme is about 25%

faster than the Pailler-based one, because they precompute most of the op-

erations, and they optimize the multiplication protocol. Blanton et al. work

is not exactly comparable with Luo et al. one because even using the Pailler
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implementation, they consider a smaller iriscode representation. The proto-

col has been implemented in C and runs on a 2.13-GHz dual-core processor.

Offline and online computation times are summarized in Table 3.1. Online

communication and computation complexity is indicated per record (using the

notation ”/rec”) because it is influenced by database size. It is worth nothing

that the comparison between two 2048-bit iriscodes requires only 0.15ms.

Table 3.1: Offline and online performance of iriscode, fingercode and minutiae
based fingerprint identification [1]. Some of the overheads depend on the
server’s database size, for this reason online complexity are indicated per
record (“/rec”) and so they refer to a single match.

Server Runtime Client Runtime Bandwidth
Precomp. Online Precomp. Online Precomp. Online

ms ms/rec ms ms/rec KB KB/rec

Iriscode 89 149.25 0 22.61 0.5 19.9
Fingercode 0.22 1.42 4.7 1.08 2.12 0.86
Minutiae 6 339 25 1876 16 294

Two different full-GC implementations of identification protocols are pre-

sented in [25] and [24]. In [25], authors use a secure filtering method to avoid

an exhaustive search into the database. They also implement rotation, and

consider 7 rotation for each iris. They used the ICE database [110, 111] it

contains images of 243 eyes, for which the number of images for each eye

is variable for a total of 2953 images. The authors tested the protocol on

datasets of different size n. The resulting bandwidth is 475n+0.08n2 kilobytes

and runtime of about 2.4 seconds for each match. They used two different

machines for server and client. The client is equipped with a 2.66GHz quad

core processor connected to a server whit a 2GHz processor through a local

area network. Given k the number of candidates used in the filtering phase,

the resulting system requires approximatively 0.2n+ 16.9k seconds instead of

the 16.8n seconds would need a system that emploies a 1:1 exhaustive search.

Similar results have been obtained in the protocol presented in [24] by

Luo et al. [24]. Luo et al. confront the test on two sets of iriscodes, in the

first set the length N of the iriscode is 2048 and it is based on Daugman

work [102] and the second based on the open source iris recognition system
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in [103,106], where N = 9600. The matching between two 2048-bits iriscodes

needs 563ms and the transmission of 571KB, while the matching of two 9600-

bit templates needs 2563ms and 2655KB of transmission. In the results is

included the precomputation for OT because it needs to be executed every

time the protocol is implemented. The OT offline time is independent from

the database size but it depends on iriscode length. On the contrary circuit

construction and circuit transmission is not counted because it has to be run

only one time. Luo et al. tested the protocol also using a common average

mask for all the iris. In this setting the performance is comparable with the

one in [1], but using a full GC implementation. Tests have been implemented

in Java and run on a Intel Core2 Duo CPU 3.00GHz processor with 8GB RAM

on 64 windows 7 Professional, over the CASIA Iris Database (CASIA-IrisV3-

Lamp) [105] that includes 3763 samples from 292 individuals. The efficiency

of the protocol relies on the offline computation of the circuit garbling phase

and circuit transmission.

A completely different approach has been proposed by Bringer et al. in

[112]. The new identification framework, called GSHADE (Generalized Secure

Hamming Distance Computation) relies on a hybrid use of OT and GMW[48].

GMW is a MPC primitive similar to GC, it also represents functions as binary

circuit, but securely evaluates shares rater than gates. GSHADE has been

implemented in C++ and tested using two machines equipped with 3.2-GHz

processor. For a database of 320 iriscodes of 2048 bits each, this new protocol

has a computational complexity three time larger than the hybrid protocol

presented in [1] but it is 35 times faster.

After the widespread of Gentry’s SHE, Yasuda et al. in [27] presented a

general authentication protocol based on Gentry and Halevi SHE scheme [15].

This framework can be applied to any biometric represented with a 2048 bit

vector and match score calculated with Hamming distance. The authors have

introduced a packed representation of the biometric template that allows to

compute the HD with only three products. They performed tests on a Intel

Xeon at 3.07-GHz processor and have shown that the protocol in [27] needs

only 18.10 milliseconds for computing HD. It is faster than the implementation

in [28]. It is important to point out that Yasuda et al. assume the presence

of three parties: server S, client C and a trusted third party A. A generates
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passwords and gives public passwords to S and C, keeping the secret one for

itself. C generates the encrypted template vector while S computes Hamming

distance. Finally A decrypts the output distance d, compares it against t and

returns yes if d < t.

3.3 Face recognition in the encrypted domain

Erkin et al. identification protocol, presented in [2], is based on the eigenface

method [113, 114]. A detailed description of eigenface protocol is out of the

scope of this work. Hence we only give a simple sketch and we invite interested

readers to read the original papers [2, 26, 113, 114] for further details. Each

face image can be seen as a two dimensional array. The aim of the eigenface

framework is to define k eigenfaces that can be used to describe all the faces

into the database, as eigenvectors in linear algebra. For this reason a face

template is a vector of k real numbers. For identification, the server looks for

the index i of the images into the database such that the Euclidean distance

between templates is lower than a threshold t. Unlike many following privacy

preserving protocols, feature extraction [2] is carried out in the encrypted

domain, relying on the homomorphic properties of Pailler cryptosystem ([14]

and Section 2.3). Using the same properties, squared Euclidean distance is

also implemented in the encrypted domain, while for the comparison step

the authors rely on DGK scheme [107]. The recognition protocol has been

evaluated on a computer with 2.4-GHz dual-core processor, using the “ORL

Databases of Faces” [115]. The resulting runtime is about 40 seconds for

matching against 320 images, that could be reduced to 18 seconds if precom-

putation is applied. Computational and communication complexity can be

reduced by assuming that the eigenfaces for feature extraction are public, as

shown in Table 3.2. This last assumption has been used in almost all the

subsequently works on this topic.

Sadeghi et al. [26] improved Erkin et al. identification protocol, by propos-

ing two different protocols: a full-GC, and an hybrid scheme (Section 2.5)

where HE is used to compute distance and GC for comparison. Tests have

run on a PC mounting a 2.6-GHz processor and the resulting protocol is 30%

faster than that by Erkin et al. Moreover, the round complexity of the hybrid
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Table 3.2: Computational and communication complexity of privacy-
preserving face recognition [2].

Complexity

DB size
Computational (sec) Communication (KB)

n Full Query
With Public

Full Query
Public

precomputation Eigenfaces Eigenfaces

10 24 8.5 1.6 2725 149
200 34.2 14.5 11.4 5497 2921
320 40 18 18.2 7249 4674

protocol is reduced from logarithmic in the size of the database of the proto-

col proposed in [2] to 6 moves while the full-GC protocol requires only two

rounds. The main drawback of GC protocol is the huge offline complexity of

hundreds of megabits, compared to few kilobytes of hybrid solution. Results

for on line computation are summarized in Figure 3.4.
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Figure 3.4: Runtime comparison of HE [2] and hybrid [26] implementations
of the Eigenface protocol. Time complexity for full-GC implementation is not
shown in the figure because authors were not able to compile the circuit due
to memory restriction of the compiler. They estimate the GC protocol to be
slower than the hybrid one.

In [22] the authors propose a new technique for feature extraction, called

SCiFI, designed to improve privacy preserving identification protocols effi-

ciency. In this case a face, is mapped into a bit vector of fixed length that

represents the characteristics that almost every face has. Each element vector
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represents one of this components and in the template it is equal to 1 if the

face contains that components. In other words in [22] Osadchy et al. think

of a face like a collage of known elements [22]. In SCiFI, the distance score

between faces is calculated by using Hamming distance. In a first and offline,

phase the server S prepares the representation of the images in his database

and also initialize the cryptographic algorithm. The online phase starts when

the client C acquire an image, then C extracts the template representation and

finally S and C run the secure matching protocol between client’s probe and

server’s database in order to output a decision. For tests, on the new face

recognition algorithm authors use FERET [116] (1196 images of 194 subjects)

and PIE [117](2856 probes) databases of images. In the privacy preserving

implementation, match score is evaluated by using Pailler Cryptosystem and

then comparison is implemented by using a 1-out-of-d OT, where d is the

maximum value that the distance can assume. The experiments have been

run on two computers equipped with a 2.6-GHz processor and a 2.8-GHz

dual-core processor, representing respectively the client and the server. Of-

fline precomputation took 213 second to client, almost half of this time is

spent on preparing and sending homomorphic encryptions. The online time

complexity is about 0.30 seconds for a single match and about 31s for an iden-

tification task on 100 images. In [118] and [119], performances had improved

by expressing the SCiFI framework as a binary circuit and evaluated through

GC [118] and GMW [119] protocols.

The GSHADE protocol (Section 3.2, [112]) has been tested against face

templates generated by eigenfaces and SCiFI algorithms for identification

tasks on two machines equipped with a 3.2-GHz processor. The speedup

improvement factor ranges from 66 to 100 and communication complexity is

comparable with previous implementations on the eigenfaces case, while in

the SCiFI protocol the runtime decreases by a factor 4 − 5 and communica-

tion reduces by14 for 5 · 104 elements with respect to the implementation of

[119].

One of the firsts non-interactive biometric authentication protocol is pre-

sented by Troncoso-Pastoriza et al. in [28] and is based on the SHE scheme

presented in [15]. All the computation is moved on the server’s side, the client

has only to encrypt inputs, decrypt outputs (represented as a soft score of a
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SVM) and compare the output against the threshold. In fact comparison is

not carried out in the encryption domain. A C++ implementation of the system

has been run on a machine equipped with a 3.30GHz processor. As databases

he uses XM2VTS [120] and LFW [121] databases Troncoso-Pastoriza et al.

implementation runs in 59 seconds, improving the results of 420 seconds with

respect to the equivalent Pailler implementation [2]. On the contrary, the

communication complexity is much higher (393 MB in [28] and 16.4 MB in

the Pailler-based system) due to the larger expansion factor of a lattice based

cryptosystem [15].

3.4 Fingerprint recognition in the encrypted do-

main

In order to guarantee the efficiency of the privacy preserving protocols, most

of the proposed schemes for fingerprint recognition rely on the fingercode rep-

resentation [122], since the resulting template is a fix-length integer vector.

In the original setting [122], the extraction process produces a template (fin-

gercode) of 640 features, each feature can be quantized into 256 values and

requires 1 byte of storage.

Barni et al. in [23], used the fingercode to implement a Pailler based

privacy preserving identification protocol. In [23] authors also study the

quantization method of [122] in order to find a trade off between feature

bit length and accuracy. They demonstrate that the representation of a fin-

gercode through a vector of 192 features of 4 bits each guarantees an equal

error rate of 6.7%. According to the results reported in [23], by representing

a fingercode with a vector of 96 features of 2 bits each, the equal error rate

increases only of 7.6%, this last configuration is more appealing to be used

in privacy preserving protocols. As a conclusion, when tested on a database

of 64 identities the protocol in [23] runs in about 16 seconds on a machine

equipped with a 2.4-GHz dual-core processor.

In [1] the authors use both fingercode and minutiae [123] for identification

on a database of 320 elements. Given a fingerprint X, a minutae Xi is a planar

point (ai, bi, αi), where ai, bi are coordinates and αi is a direction on the plane.

Therefore X can be represented as the set X = {(a1, b1, α1), . . . (amx , bmx , αmx)},



46 3. Privacy Preserving Biometrics Matching

Table 3.3: Online performance of the fingercode identification system in [3].

Database size Running time(sec) Bandwidth (KB)

128 2.22 966.84
256 4.33 1927.71
512 9.12 3849.48
1024 18.11 7692.98

wheremx is the number of minutiae for the fingerprintX. Two minutiae are matching

if the Euclidean distance between points is less than a threshold d0 and the distance

between the two directions is less than a certain limit α0. Some tolerance values are

necessary to compensate errors introduced by skin distortion or algorithms errors.

Comparison of two fingerprints means finding the best match between two

sets of points so that the number of matching minutiae is maximized. The

protocol presented in [1] for both minutiae and fingercode representations, is

an Hybrid HE and GC protocol and is similar to the iris one (Section 3.2).

When compared with [23], using the same fingercode’s length and a database

of the same size, the protocol is 35 times faster. In fact, client’s run time is

0.35s while server’s one is 0.45s. In their minutiae implementation Blanton

et al. use a fix number m of minutiae for all fingerprints, because the com-

putational cost increases with m2 but nevertheless, the protocol, adapted to

operate on minutiae, is less efficient. In fact according to [1] runtime increases

significantly. Table 3.1 summarizes runtimes when 32 minutiae are used to

representing a fingerprint.

In [3], Evans et al. present an hybrid implementation for fingercode-based

identification. Authors assume that fingercode extraction is performed by

client in plain domain. Each fingercode is a vector of length n and each ele-

ment is a 8-bit integer and sever owns a database of m elements. The database

is organized in a m×n matrix in which each row is a vector representing some

fingerprint. Euclidean distance protocol builds on the one proposed by Erkin

et al in [2] and adopts the packing technique proposed by Sadeghi et al in

[26]. In distance protocol, they move as much computation as possible to a

preprocessing phase that can be done by server alone; moreover, in contrast
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with previous works, most computation is done on client side and data are

encrypted with the server public key of a homomorphic encryption scheme.

On server side database elements are packed by columns and then encrypted.

This solution allows to reduce the number of homomorphic operation because

a single one performs arithmetic over several packed scalars and at the same

time it uses less bandwidth than previous implementations. The matching

protocol is carried out by using a garbled circuit formed by several subproto-

cols. Online runtimes of a java implementation, running on a two machines

equipped with 2.0GHz processor and connected by LAN, are summarized in

Table 3.3. They use a random generated 640 elements vector as benchmark

and they confront it with a random database’s element.

3.5 Multimodal Biometrics

Thanks to the use of SMPC techniques, biometric matching can be carried out

in such a way that the parties involved in the computation cannot access the

information or the result owned by the counterpart. In the works presented

above, all the authors have found a trade off between accuracy and algorithmic

simplification in order to make them suited for a SMPC implementation. It

is evident, as pointed out in [11], that the main question is not if a certain

computation can be carried out in the encrypted domain but how efficiently

a certain solution can be implemented. The need for efficiency often leads to

use tools and SMPC techniques secure in the semi-honest model, introducing

in this way an imperfect security and therefore the possibility for malicious

adversary to infiltrate the protocol. We believe that a solution can be found

working at the same time on both the signal processing and cryptographic

aspects of the problem, Whit regard to accuracy, a solution can be found

employing more than a biometric trait.

Most real word applications for biometric recognition use only one source

of information i.e. only one biometric probe is captured and processed. This

systems have some limitations and weaknesses that can lead to lower accuracy

and efficiency. A recognition process based on a single biometric can fail for

a multitude of reasons. Data can be affected by noise, such as scars on

fingerprint images or voice altered by a cold. Moreover two individuals can
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have similar traits, as Golfarelli et al. state in [124], the number of differences

between faces are only in the order of 103, therefore inter-class similarities

are quite common. Combining more than one source of information makes

it possible to improve accuracy, and at the same time it allows to reduce

template complexity. This is the solution we exploit in Chapter 5.

Such systems, usually known as multimodal biometric systems, are more

reliable because they can access a certain number of different and independent

pieces of information. In addition, this can be also a way to make spoof attacks

more difficult to carry on. In fact forging more than one biometric trait can

be challenging [125]. For this reason, novel devices are often equipped with

more sensors.

Here we review some possibilities to take the best advantage from the

avaibility of multiple sources of evidence [7,125] (a summary can be found in

Figure 3.5).

• Multi-sensor. Different sensors are used to capture the same biometric

trait, in order to extract more information. For example in [132], Chang

et al. use both 2D and 3D images of a face and combine them at the

data level.

• Multi-sample. A Multi-sample system collects and processes multiple

images of the same biometric trait, to anticipate variations that can

occur or to have a better representation of the biometries. The cell-

phone’s fingerprint sensor is an everyday example. Usually the enroll-

ment or training phase of the system requires several images of the same

fingerprint to have a complete set of images of the finger on multiple

positions.

• Multi-Instance. Similarly to the previous case, a multi-instance system

collects and processes images of several distinct instances of the same

biometrics trait. This system does not need new sensors nor a new

feature extraction and matching system. Multi-instance examples are

systems that use both irises, or the Automated Fingerprint Identification

System (AFIS) that obtains information from ten prints of the same

subject.
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Figure 3.5: The possible sources of information in a multibiometric system:
multi-sensor, multi-sample, multi-instance, multi-algorithm, multimodal. In
the last scenario (multimodal) more than one biometric trait is used to achieve
evidence. In all the others a single biometric is used. Images sources [126–131]

• Multi-algorithm. In these systems the same biometric feature is matched

using more than one algorithm. For example Ross et al. [133] combine

the matching score of a minutiae based fingerprint matcher to the score

of a texture-based matcher to improve performance.

• Multimodal. In this last set of systems, information from two or more

different biometric traits are combined together during the recognition

process. Many combinations have been explored in the literature: face

and iris [134] fingerprints, face, and iris [135], hand and face [136], etc.

In multimodal systems, the acquisition sequence indicates the way in which

each source of evidence is acquired. Usually, each sample is acquired indepen-

dently in a short time interval, even if in some cases probes can be obtained
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at same time, i. e. face and iris can be collected almost simultaneously us-

ing two different cameras [7]. In order to output a decision, information can

be processed serialy, or in parallel. In the first modality the first source, for

example fingerprint, is processed; then if the result is inconclusive the second

source is elaborated, for example the face. This procedure can reduce com-

putation time if a decision is made before going into all the biometric probes.

On the contrary in parallel mode all the various evidences are processed inde-

pendently at the same time and all the partial results are combined together,

using an appropriate fusion scheme [7]. In our work (Chapter 5), we use a

multimodal system, involving face and iris, to improve efficiency in a privacy

protection authentication protocol. We process information derived from the

two biometric traits in parallel.

In a multimodal biometric system, information can be merged in any of

the steps, summarized in Figure 3.1, [7, 125,137].

• Signal Level Fusion. Multiple samples may be combined together to

extract a better template. Theoretically signal level fusion is preferable

to the others, since fusion is carried out before any information is dis-

carded, however performing fusion at the signal level is a difficult task

because various modalities may not be easily combined and the access

to raw data is not always possible.

• Feature Level Fusion. After feature extraction, this kind of systems

combine all the features into a single biometric signature.

• Score Level Fusion. The match scores are combined to obtain a final

result. It is the most used approach because accessing and combining

the scores obtained by relying on different modalities is relatively easy.

• Decision Level Fusion. The outputs (usually accept or reject) of multiple

classifiers are fused using various techniques as, for example, majority

voting. Despite its simplicity, decision level fusion is highly subopti-

mal, since a great deal of possibly useful information has already been

discarded in the previous steps.

To the best of our knowledge, Gomez-Barrero et al. [138] have proposed

the only previous work on multibiometric privacy protection. In their work,
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the authors present a general framework for multi-biometric template protec-

tion based on Pailler cryptosystem, in which only encrypted data is handled.

In Gomez-Barrero et al. the client computes the encrypted distance while the

server owns both secret and public keys. They assume that all involved par-

ties act correctly, according to the honest-but-curious model, moreover they

assume that an adversary may take control of the server, but C and S can not

collude. The authors examine the outcome of the fusion of online signature

and fingerprints, at three different levels of fusion: feature, score and decision

level. The system presented by Gomez-Barrero et al. has a low computational

cost (only one decryption on the server side and no encryptions at verification

time), moreover it ensure a good accuracy (EER = 0.12%), with a required

time for a single comparison of about 5 · 10−4s. A drawback with the sys-

tem described in [138], is that comparison is carried out on plain data by the

server, thus introducing a breach into the security of the system.

3.6 Biometric recognition in malicious setting

Almost all the schemes presented in the previous sections have been designed

to provide security in the semi-honest model because the security in the mali-

cious setting can be achieved only at the cost of high complexity. Nevertheless

there are some works on privacy preserving biometric authentication that are

secure against a malicious attacker. For example, in [29] the author presents

a general privacy protection authentication protocol and proves its security

in the malicious model. In his work, Abidin combines verifiable computa-

tion with homomorphic encryption in order to guarantee security against a

malicious adversary colluding with the server. Abidin assumes to have a se-

mantically secure HE cryptographic scheme, that allows to homomorphically

compute the distance between two encrypted inputs. He outlines a generic

authentication framework, but does not provide results about the practical

implementation of the protocol on the contrary he proves security against

malicious adversaries.

In [30], Pathak and Raj present two speech-based authentication protocols.

The first one is an interactive protocol based on Pailler cryptosystem which

is secure against a semi-honest adversary, the second one is a non-interactive
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protocol based on BNG [139] cryptosystem, which allows to perform an ar-

bitrary number of additions and one multiplication between ciphertexts, and

is secure against malicious attacks. During the protocols, the user can only

observe masked data, moreover he cannot obtain any information on the other

party’s speech. Pathak and Raj also state that the privacy preserving pro-

tocols have the same accuracy of a non-private one using the same matching

framework. In both cases the output is a probability value and the client

checks if such a value is equal to zero or not in the plain domain. From the

tests and the analysis reported in [30], it is clear that the interactive protocol

is way more efficient than the malicious one. A single verification task, in

fact, takes about 5 minute using the interactive protocol and about 5 hours

using the non-interactive one, using encryption key of the same size. The

big difference in time complexity is mainly due to the execution of the private

inner product, that is a very expensive operation.

Recently, Gasti et al. [140] proposed a biometric authentication protocol

based on simple garbled circuits and secure against malicious adversaries by

relying on an untrusted third party (the cloud). The goal of the protocol is

to minimize the amount of computation performed by the biometric owner’s

device (a smartphone), while also reducing the protocol execution time and

without the necessity to rely on cut-and-choose techniques. In the protocol,

the biometric owner acts as circuit constructor, the Cloud as circuit evaluator,

while the server verifies the correctness of the circuit. The approach is secure

against colluding biometric owner and Cloud, but not against a colluding

server and Cloud.



Chapter 4

Biometrics Recognition Based on
Somewhat Homomorphic Encryption

In this chapter we present two non interactive privacy preserving biometric

recognition protocols. The two protocols have been published in the following

papers:

• G. Droandi, and R. Lazzeretti. ”SHE based non interactive privacy pre-

serving biometric authentication protocols.” In IEEE 9th International

Workshop on Intelligent Signal Processing (WISP), 2015 IEEE. Siena,

Italy, May 2015.

• G. Droandi, ”Non-interactive privacy preserving protocol for biometric

recognition based on somewhat homomorphic encryption”, in Proceed-

ings of the 14th European Conference on Cyber Warfare and Security

2015: ECCWS 2015. Academic Conferences Limited, 2015, p. 355-362.

In the first one we describe a secure authentication protocol, while in the

second we propose a privacy preserving identification scheme.

As introduced in Section 3.1, any biometric recognition system is com-

posed by four fundamental steps (Figure 4.1). In the protocols proposed in

this chapter the latter two are computed in the encrypted domain. In other

words, by assuming that a client C has already acquired the traits and ex-

tracted the biometric template in the plain domain, C and S compute the

matching score and compare it against the threshold in a secure way. Since

comparison is a complex operation in the encrypted domain, we perform it in

clear on client side, paying attention to obfuscate the values (more details in

Section 4.5) involved in the computation.

The security of both schemes relies on the somewhat homomorphic scheme

proposed by Pisa et al. [34] and described in Section 2.3.2.
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Figure 4.1: Biometric recognition system: main steps. In the presented pri-
vacy preserving protocols, the last two steps are carried out in the encrypted
domain.

The two protocols have been applied to two different biometrics: iris and

fingerprint. For the iris we used Daugman’s [102] iriscode, assuming that

the feature vector is composed by 2048 bits. In Daugman’s work the match

score is obtained by using a weighted Hamming distance (WHD) that consid-

ers also bit-masks, in order to include only significant bits, as described by

Equation 4.1:

WHD(t1, t2) =
‖(t1 ⊕ t2) ∧m1 ∧m2‖

‖m1 ∧m2‖
(4.1)

where t1 = (t1,1 · · · t1,n) and t2 = (t2,1 · · · t2,n) are the template vectors, while

m1,m2 are the mask vectors.

In our protocols, we discard the bitmasks and simply compare two tem-

plates by using the Hamming distance (HD, Equation 4.2) to keep the com-

putational complexity low.

HD(t1, t2) = ‖t1 ⊕ t2‖ =
n∑
i=1

t1,i ⊕ t2,i. (4.2)

Considering that the maximum value the distance can assume is 2048, it

requires 11 bits to be represented, therefore the base of the cryptosystem

must be at least b = 211.

For fingerprint matching, we use fingercode [122] template. In the orig-

inal setting [122] the extraction process produces 640 components for each

fingercode with a EER equal to 6.5%. To reduce the magnitude of SHE pa-
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rameters, we decided to represent a fingercode with a vector of 96 features

of 2 bits each, because, according to the results reported in [23, 141], in this

way the equal error rate is only 7.6% (Section 3.4). To match two fingercode

vectors it is necessary to compute the Euclidean distance. If t1 and t2 are

n-element vectors then

ED(t1, t2) =

√√√√ n∑
i=1

(t1,i − t2,i)2. (4.3)

The maximum distance between two features is 3 (assuming for example that

of t2,i is equal to zero, and t1,i is equal to the maximum number that can be

presented with two bits, i.e. 3), then the maximum value that (t1,i− t2,i)2 can

assume is 9 and, since a fingercode template has 96 elements,
∑n

i=1(t1,i−t2,i)2
is equals 9 · 96 = 864 in the worst case. This last value can be represented

with 10 bits.

In the following sections, we describe the SHE-based implementation.

Given a message m, we indicate with JmK its encryption with the public

key. If t is a vector of n messages then JtK is the element-wise encryption

(Jt1K , Jt2K , . . . JtnK).
Given the characteristic of the chosen biometric, we represent each tem-

plate as a vector of n elements in a fixed interval: [0, 1] for iriscodes and

[0, 2`], with ` ∈ N for fingercodes. Therefore iriscode template is a vector

(i1, i2, . . . , i2048) with ij ∈ {0, 1} and fingercode one is (f1, f2, . . . , f96) with

fj ∈ {0, 1, 2, 3}.
Since the focus of this part of the research was the implementation of

the somewhat homomorphic scheme and its applications, in the tests we used

vectors of random generated features. We do not report the EER because it

has no meaning for these tests.

4.1 Representing negative numbers in SHE

A contribution of this thesis is the extension of Pisa et al. cryptographic

scheme [34] to negative numbers, which is necessary in distance computation.

The extension is based on the observation that usually there are two ways
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to compute the reduction modulo n. As we have seen in Section 2.3.2, we

use two different notations to indicate the reduction of x modulo p. The

notation [x]p indicates the remainder in the interval [0, p), while x mod p

refers to the integer in the interval (−p/2, p/2]. In algebra two integers a, b

are congruent modulus p (in symbols a ≡ b mod p) if their difference a − b
is an integer r multiple of p. This rule holds also for negative numbers,

for example −8 ≡ 7 mod 5 because −8 − 7 = −15 that is a multiple of

5. We exploit this property to encode also negative numbers. Given a

base b = 2k, we can encrypt integers in the interval (−b/2, b/2]. In this

case the decryption function is performed as [c]p mod b, for any ciphertext

c. Obviously, to represent negative numbers, the base should be twice the

maximum integer that can be obtained during computation.

4.2 General Protocol

In this section we describe the general privacy preserving biometric recognition

protocols. The protocols involve two parties: the client C and the server S.

All the computations are performed on the server side, without interaction

between the parties. C only encrypts inputs and decrypts output. During the

computation, S never accesses the client features, he sees only encrypted

values.

4.2.1 Authentication protocol

In this case the client must prove to be who he claims. During the enrollment

phase, C generates a feature vector from his biometric and encrypts it with

his public key. Then he sends the encrypted template to the server for future

use. S gives back an identification tag. C sends his public key along with

the template, because the server needs both to operate. Even if S maintains

the database of enrolled individuals, it can not access to those because the

templates are encrypted with client’s public keys. The authentication protocol

is divided into three steps (Figure 4.2):

1. Client encryption. The client generates an encrypted probe JqK of his

biometric and sends it to the server along with an identification tag.
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Decryption
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Client C Server S

Figure 4.2: Three steps of the general recognition protocol.

2. Server computation. The server retrieves the template JsK stored into

the database by using the identification tag and then runs the privacy

preserving protocol to calculate the Hamming or the Euclidean distance

JD(q, s)K between JqK and JsK. Then S should compare the output with

the given threshold ε. Since comparison is an operation that cannot be

performed on encrypted values without interaction, the server calculates

d = JD(q, s)− εK. The client is authenticated only whether d < 0.

However the magnitude of this value must be obfuscated because it could

reveal information to malicious attackers, therefore S opportunely blinds

d, obtaining db, without changing its sign (we describe the blinding

technique in Section 4.5). Finally S sends db to the client (Figure 4.3).

3. Client decryption. The client decrypts the output. If the number is

lower than zero, then his identity is confirmed.

4.2.2 Identification protocol

In this scenario the server owns a database containing the templates x1,x2 . . .xNd

of Nd individuals and can access each template xi in plain. Client on the other

hand wants to know if a biometric probe is one of the Nd entries of S, but he

desires to protect his template. For this reason C encrypts his probe, and we

assume that the server has already the client’s public key.

The identification protocol is divided into three steps (Figure 4.2):
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Figure 4.3: Authentication protocol: step 2 processing at the server. With
the notation b(d) we indicate the blinding operation (see Section 4.5) .

1. Client encryption. The client encrypts his biometric template JqK =

(Jq1K , Jq2K , · · · JqnK) with his public key and sends it to the server.

2. Server computation. The server loads the biometric templates and en-

crypts the values needed in the computation. S evaluates the distance

from the client’s probe using the privacy preserving distance calculation

described in Section 4.3 and Section 4.4, it repeats the process for each

biometric into the database. As before, he subtracts the acceptance

threshold ε from each result. The vector containing all the outputs is

permutated before being sent back to the client, to avoid revealing to

the client the position of its biometrics in the database (Figure 4.4).

3. Client decryption. The client decrypts all the outputs. If one number is

minor than zero then its biometrics is into the database.

We remark that in both protocols computation is performed only by the

server, while client encrypts the input and decrypts the outputs. Moreover,

in both protocols the final decision is carried out in plain by the client.

4.3 Computation of the Hamming distance under

SHE

To compute the Hamming distance in the encrypted domain, we need to

evaluate the XOR between ciphertexts. However, with the SHE encryption
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Figure 4.4: Identification protocol, step 2, server computation.

scheme we can perform additions modulus b, hence XOR between the probe

element qj and the database’s element xi,j , must be evaluated as

qj ⊕ xi,j = qj + xi,j − 2 · qj · xi,j . (4.4)

Once all database entries are encrypted with the client’s public key, XOR

can be computed as

J(qj ⊕ xi,j)K = Jqi · (1− 2 · xi,j) + xi,jK

= (JqiK · J1− 2 · xi,jK + Jxi,jK) (4.5)

thanks to the homomorphic properties of the cryptosystem.

In the authentication protocol, the term J1− 2 · xi,jK could be either sent

to the server in the enrollment phase or calculated in advance by the server

as J1K + J−1K · Jxi,jK.
This solution is adopted in the authentication protocol where it is imper-

ative to protect the privacy of the client and to prevent any unauthorized use

of his biometric.

In the identification protocol, the server has access to the bits of the

biometry xi, hence given the encrypted bits of the probe JqjK, it can compute
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the XOR as

q
qj ⊕ xij

y
=

{
JqjK if xij = 0

J1− qjK = J1K + J−1K · JqjK if xij = 1.
(4.6)

Since server owns the database, he does not need to encrypt all the features

of all the biometric in the database, but only the encryption of 1 and −1

with the user’s public key are necessary, thus avoiding several encryption

operations and lowering memory requirements. This solution is used in the

identification protocol in order to improve efficiency, to reduce memory, and

time complexity. We remind that the representation of negative numbers is

possible, as described in Section 4.1.

Finally, given a XOR implementation, an encrypted probe JqK and a

database entry JxiK, the S computes the Hamming distance as:

JHD(q,xi)K =

u

v
n∑
j=1

(qj ⊕ xi,j)

}

~ =

n∑
i=1

Jqj ⊕ xi,jK . (4.7)

4.4 Computation of the Squared Euclidean dis-

tance under SHE

Comparing two fingercodes requires Euclidean distance (ED). Square root

is an operation that the cryptosystem cannot evaluate, for this reason we

compute the square Euclidean distance (SED). Given two template vectors

t1, t2, then

SED(t1, t2) =

n∑
i=1

(t1,i − t2,i)2 (4.8)

The cryptosystem allows operation modulus b, so, given a new probe q

and a database entry xi, server simply computes

JSED(q, xi)K =

u

v
n∑
j=1

(qj − xi,j)2
}

~ =

n∑
i=1

(JqjK + J−xi,jK)2 . (4.9)

In the authentication protocol, in order to compute the lowest possibile
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number of multiplication, S stores in his database J−xiK = (J−xi,1K , . . . J−xi,nK)
for i = 1 . . . D. J−xiK could either been sent in the enrollment phase or it

could has been calculated as J−1K · Jxi,jK for i = 1 . . . D and j = 1 . . . n.

On the contrary, in the identification protocol, where S has access to the

features in plain, he stores only the encryption of b − 1 numbers, avoiding

keeping all database encrypted with client public key (Equation 4.10).

q
(qj − xij )2

y
=



(JqjK)2 if xij = 0

(JqjK + J−1K)2 if xij = 1

(JqjK + J−2K)2 if xij = 2
...

...

(JqjK + J−(b− 1)K)2 if xij = b− 1

(4.10)

4.5 Blinding and comparison

In both the protocols, the distance D(q, xi) must be compared against the

threshold ε, but comparison evaluation is expensive in the SHE cryptosystem

and it requires an interactive protocol. This problem can be overcome by

computing the difference between the distance and the threshold as di =

D(q, xi) − ε under encryption i.e. JdiK = JD(q, xi)− εK = JD(q, xi)K + J−εK.
Two biometrics match if the result is negative.

During the authentication protocol, in order to better preserve the privacy

of the server, the number JdiK is blinded, before disclosing it to the client.

Unfortunatelly, additive blinding cannot be used because it could change the

sign of di. On the other hand, multiplicative blinding is known to be much

less secure [142]. The best solution, among those allowed by the encryp-

tion scheme in use, is to adopt a hybrid multiplicative/additive blinding: in

practice two random values ki,1 and ki,2 are chosen and the final result is

obfuscated by the server by computing Jdb,iK = Jki,1 · (D(q, xi)− ε) + ki,2K =

Jki,1K · JD(q, xi)− εK + Jki,2K.
Given the base b, the range of possible values is (−b/2, b/2], hence k1 (we

avoid the index i for simplicity) has to be chosen so that the product modulus

does not exceed b/2, limiting the possible values to the range
(

1, b
2(Dmax−ε)

)
,

where Dmax denotes the maximum value the distance can assume (in our
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protocol Dmax is 2048 for iriscode and 864 for fingercode). Given k1, k2 must

be chosen in such a way that the sign of the final result does not change. k2
can be positive or negative, to define its range we must address the following

two worst cases:

1. if D(q, xi)− ε = 1, then |k2| < k1;

2. if D(q, xi) = Dmax, then |k2| < b/2− (Dmax − ε).

By defining k2,lim = min{k1, b/2 − (Dmax − ε)}, k2 is randomly chosen in

the range (−k2,lim, k2,lim). To guarantee high security levels, a very large

base would be needed, however this would result in a high complexity for the

system, hence a trade-off is needed (see Section 4.7 for more details about the

trade-off we reached in our system). Finally the result is decrypted by the

client.

In the identification protocol, the result vector is instead permuted to

protect the identification number of the possible positive match. Once the

vector is received, the client decrypts the outputs and the presence of a neg-

ative number proves that the client’s biometric is into the database. In this

protocol the client receives the distance of his probe from all the biometric

templates in the database and this could be considered a security issue. Lets

imagine that an attacker acting as C wants to forge a template to infiltrate the

system. First he creates a random template and submits it to the server. He

receives various results and chooses the one with the smallest value to try to

improve his forged template and then try to submit it to the server again. The

new set of outputs the adversary receives is scrambled differently than before

and he cannot get useful information from that. Therefore he can not know if

after the second round his probe is more or less similar to the target database

one. Multiplicative blinding could be also applied but it will make the compu-

tation slower because it involves a homomorphic multiplication. Permutation

instead does not need any further operation in the encrypted domain, and

therefore its complexity is negligible. Moreover after the permutation step it

is impossible to determine to which client each output correspond. For this

reason we decided to avoid the expensive blinding operation that should be

applied to each of the Nd elements of the database increasing the complexity

by Nd encrypted multiplications.
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4.6 Complexity of the proposed protocols

The main advantage of the chosen cryptosystem is the possibility to directly

evaluate the Hamming or Euclidean distance on the server, working on en-

crypted values. In our proposed protocols we have decided to work over inte-

gers, with base b. Indeed the protocols could be computed by using the DGHV

scheme with base 2, but while the XOR between the bits could be more effi-

ciently implemented without products, square values, sums and differences of

the features require circuits composed by many AND gates. For example, we

can observe that in the case of the Hamming distance, a reverse tree structure

to compute the sums is composed by log2 n layers, wherein the i-th layer is

made by n/2i adders working on i-bit long inputs (each one requiring i AND

gates). Hence for each biometric in the database, 2 · (n− 1)− log2 n products

are needed for the sum and, being the depth of the tree log2 n, it is important

that at least log2 n multiplications are allowed before the SHE incurs in a de-

cryption error. The Euclidean distance requires even more AND gates. Since

our solution works directly on integer values, only n products are evaluated

in parallel to compute the XORs (Jqi · (1− 2 · xi,j)K or J−1K · Jxi,jK). Also for

the Euclidean distance, n products are sufficient to evaluate in parallel the

squares of qi − xi,j .
In the authentication protocol, we need an extra product for blinding,

hence for the computation of both the distances it is sufficient that the

SHE scheme allows the evaluation of at least 2 products, if we consider that

J1− xi,jK or J−xi,jK has been sent encrypted from C in the enrollment phase,

while if the server must compute them before executing the protocol, SHE

must allow three multiplications.

In the identification protocol an average of only n/2 products is required

to compute the XORs because S can access the templates stored in plain.

Furthermore such products can be run in parallel, hence we only need that the

SHE copes with the noise amplification due to one multiplication. Moreover,

it is important to note that for distance computation the server does not

need to encrypt all the entries in the database, but only few numbers. In

particular, for the case of a Euclidean distance, by assuming that each feature

is represented with ` bits, if 2`− 1 < n×Nd, it is more convenient to encrypt

the 2`−1 values that the features can assume (the encryption of 0 is avoided)
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Table 4.1: Size of the ciphertext, secret and public key as a function of the
security parameter and the base.

λ Base Secret Key Cipher Public Key

10

2 10 B 0.1 KB 0.1 MB
210 101B 1.2 KB 1.3 MB
250 506 B 6.3 KB 6.6 MB
2100 1013 B 12.5 KB 13.8 MB
2150 1519 B 18.8 KB 21.7 MB

15

2 25Byte 7 KB 7 MB
210 245 B 72 KB 70 MB
250 1 KB 360 KB 352 MB
2100 2.4 KB 721 KB 704 MB
2150 3.5 KB 1081 KB 1056 MB

20

2 45 B 66 KB 216 MB
210 451 B 657 MB 2.06 GB
250 2.2 KB 3 MB 11 GB
2100 4.5 KB 6 MB 21 GB
2150 6.7 KB 10 MB 32 GB

and select the correct ciphertext given the real value of the feature, rather

than encrypting the single features.

4.7 Experimental results

In this section we discuss the results of the authentication and identification

protocols, obtained by a practical implementation of the proposed cryptosys-

tem.

The SHE-based iris and fingerprint recognition protocols have been im-

plemented and tested on a desktop equipped with a Quad-Core CPU (Intel i7

at 3,40GHz) and 16 GB RAM, mounting a 64-bit Windows OS, to measure

the communication and computational complexity of the scheme in terms of

bandwidth and runtime. According to Section 2.3.1, the secret key is in the

range [bη−1, bη), with b = 2k and η = λ2 (Table 2.1), therefore it is repre-

sented with kη bits. Similarly the secret key and each element composing the
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public key are represented with up to kλ5 bits. Table 4.1 shows how the size

of ciphertext, public key and secret key increases as a function of the base b

and the security parameter λ. We need at least b = 250 in the authentication

scenario, and b = 212 in identification for which, if λ = 20, we obtain a public

key of 11GB, and 2GB respectively. Therefore for our tests we considered

λ = 10, 15 for which the public key goes from 1.5 MB to 350MB depending

on b and λ. More details can be found in Table 4.1 and in next sections.

We ran 150 tests and we have measured the average times (ms or s) re-

quired by single encryption, decryption, key generation and multiplication, by

using a Java implementation of the SHE scheme (Table 4.2). Addition and

secret key generation are not reported, because the corresponding runtimes

are negligible. The runtime of all the other operations grows with the base’s

bit-length and most of all the security parameter. For high values of b and λ,

public key generation is an expensive operation, but it must be executed only

one time by the client and it does not affect the performance of the recognition

protocols.

Table 4.2: The averaged time results needed for a single encryption, decryp-
tion, key generation and multiplication.

λ Base Public Key Encryption Decryption Multiplication

10

2 0.01 s 0.20 ms 0.00 ms 0.00 ms
210 0.04 s 0.17 ms 0.03 ms 0.00 ms
250 0.58 s 0.27 ms 0.93 ms 3.00 ms
2100 2.03 s 0.63 ms 2.57 ms 8.07 ms
2150 3.59 s 0.93 ms 4.80 ms 15.13 ms

15

2 0.18 s 0.60 ms 0.00 s 0.01 s
210 3.30 s 2.90 ms 0.01 s 0.10 s
250 2 min 39 s 15.68 ms 0.18 s 1.11 s
2100 4 min 42 s 28.58 ms 0.45 s 3.01 s
2150 8 min 56 s 44.00 ms 0.75 s 5.66 s
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4.7.1 Authentication protocol

We now analyze more in depth the authentication protocol. To optimize the

protocol, distance computation is parallelized into 4 threads.

Table 4.3: Iriscode and fingercode templates communication complexity in
the authentication protocol.

λ
Base

250 2100 2150

Iris
10 13 MB 25 MB 38 MB
15 750 MB 1.4GB 2 GB

Finger
10 606 KB 1.2 MB 1.7 MB
15 34 MB 68 MB 102 MB

Iris. We considered the algorithm proposed in [24, 102], where an iris is

represented through a vector of 2048 binary features, hence the Hamming

distance is used and calculated as described in Section 4.3. As said before,

we need at least b = 211 to encode the maximum distance value and b = 212

account for also negative number’s representation (Section 4.1). For λ = 10 we

ran the protocol on different bases (250, 2100, 2150). As to blinding, for b = 250

the choice of k1 is in the range
(
0, 239

)
, for b = 2100 k1 ∈

(
0, 288

)
, while for

b = 2150 k1 ∈
(
0, 2110

)
. As shown in Table 4.3 with λ = 15, the memory

occupied by a single iris template grows significantly with base increases (for

a 150 bits base it takes about 2GB) and during server computation three

2048-elements vectors must be stored at the same time (that needs about

6 GB) plus the public key (about 2GB). Due to those memory problems,

we performed tests only for b = 250. 2048 ciphertexts are transmitted from

C to S and a single ciphertext from the server to the client, resulting in a

total transmission of 13MB, 25MB and 38MB respectively for each base with

the lowest security parameter considered, while with the biggest λ the total

transmission is 750MB (Table 4.3). We performed tests on randomly chosen

bit vectors to simulate a possible iris probe. We repeated the tests 50 times

and the average results for each part of the protocol are shown in Table 4.4.

As expected, independently from the parameter set, the most expensive part
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is the server’s one. With λ = 10, the whole computation takes some seconds

(from about 3 to 17 seconds), while with λ = 15 server computation is really

slow, it takes about 14 minutes (we remember that only b = 250 has been

tested for memory problems).

Table 4.4: average execution time of the iriscode authentication protocol.

λ Base Step 1 Step 2 Step 3

10
250 1.2 s 2.0 s 0.2 ms
2100 1.2 s 5.3 s 4.3 ms
2150 1.8 s 9.7 s 5.6 ms

15 250 29s 14 min 33 s 0.2 s

Fingerprint. We considered the system described in [23, 141], and we rep-

resented each fingercode with a vector of 96 features of 2 bits each, randomly

chosen to simulate a template. As outlined at the beginning of the chapter,

the maximum squared distance value is 864 and it can be represented with 10

bits. For each security parameter’s value we run the tests using different bases

(250, 2100, 2150). The vector length of the fingercode is lower than the iriscode,

allowing us to use a bigger base in the tests (for λ = 15 and b = 2150 the

public key is about 1GB, a iriscode template about 2GB, while a fingercode

template is only about 101MB). In this case, 96 ciphertexts are transmitted

from client to server and one from server to client, with a bandwidth of about

102 MB in the biggest parameter set considered. Bandwidths for different

bases and λ setups are summarized in Table 4.3. As for the iriscode case, the

most expensive part is server’s computation, which takes up to 3 minutes.

In this case execution time is faster than in the iris case, due to the lower

number of elements for each fingerprint representation. Results obtained for

fingerprint matching are summarized in Table 4.5.

As expected, the runtimes needed by the SHE implementation of the privacy

preserving iris and fingerprint matching protocols are by far larger than the

execution time of protocols based on Paillier HE or GC. Nonetheless in our

protocol all the computation is moved into the server side and no interaction is
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Table 4.5: Fingerprint authentication protocol’s average execution time

λ Base Step 1 Step 2 Step 3

10
250 0.03 s 0.10 s 1 ms
2100 0.06 s 0.30 s 3 ms
2150 0.09 s 0.53 s 5 ms

15
250 1.37 s 37 s 0.18 s
2100 2.80 s 1min 48 s 0.45 s
2150 4.25 s 3 min 17 s 0.79 s

needed. Moreover, runtimes can be reduced by using powerful servers allowing

for parallelization across more threads.

In [28] the author presents a fully non interactive face verification protocol

with a structure similar to ours. The author uses Gentry’s homomorphic

cryptosystem [15] extended to integer values, where the final match score is a

22 bits integer. In Troncoso-Pastoriza work, the server computation runs in

12.3 seconds, but a face is represented using 5200-dimensional Gabor vector

with three bits elements. Our implementation of finger and iris authentication

protocol is faster for λ equal to 10, while for λ = 15, only the fingerprint

protocol has comparable runtimes, for a base of 50 bits. The difference in

performances is given by both the distinct homomorphic scheme but also by

the total bits used in integer representation.

4.7.2 Identification Protocol

Regarding the identification protocol, we use the same representation of the

authentication scheme (Section 4.7.1).

Iris. For iris matching, since in this scenario we do not need extra bits for

blinding, we can choose b = 212, hence public key size is 1.5MB if λ = 10

and 77MB if λ = 20. We also point out that in identification protocols,

for each client i, S must store only the template JxiK, possibly all the terms

J1− 2 · xi,jK, and the values −1, 1 encrypted with C’s public key (Section 4.3).

As in the previous section, we performed tests on randomly chosen bit vectors

to simulate a possible iris database. The tests have been repeated 50 times.
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Table 4.6: Iris and fingerprint identification protocol’s average execution time

λ Biometric Base Step 1 Step 2 Step 3

10
iris 212 0.33 s 0.12 s 0.00 s

fingerprint 211 0.02 s 0.01 s 0.00 s

15
iris 212 7.10 s 54 s 0.01 s

fingerprint 211 0.34 s 3.76 s 0.01 s

We expect long execution time due to the time required for each multiplica-

tion. Table 4.6 summarize results. We measured the average execution time

in seconds of each part of the protocol with respect to a database of a single

element. Hence the total time must be multiplied by a factor Nd. As shown

in Table 4.6, for λ = 15 the most expensive part in terms of execution time

is server computation, which takes almost a minute, while the initial client

encryption for all the 2048 features takes some seconds (and client decryp-

tion is negligible). On the other hand, for λ = 10 the execution of the whole

protocol takes less than a second, but is less secure.

A vector of 2048 ciphertexts is transmitted by the client to the server

and another vector of the same size from the server to the client. The total

transmission requires 6MB and 346MB for λ = 10 and λ = 15 respectively.

Fingerprint. In the identification scenario, S can access the stored biomet-

ric, hence to evaluate the Euclidean distance, only the encryptions of −1,−2

and −3 are needed on servers side, avoiding as before the problem of encrypt-

ing and storing many features. We remind that each fingercode templates is

a 96-elements vector and each feature is represented with 2 bits (as outlined

in Section 4.7.1) moreover the representation of negative numbers is possibile

thanks to our extension (Section 4.1). To allow negative number representa-

tion, we take b = 211. As for the iris case, to simulate the fingercode database,

we used randomly chosen vectors of numbers in {1, 2, 3}. As we discussed at

the beginning of Section 4.7 we let λ = 10 and 15. With this set of parameters

public key is respectively 1.4MB and 84MB. For λ = 10 the protocol takes

less than a second, while for the larger security parameter the most expensive

phase is server’s computation, which takes about 4 seconds for each biometrics
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in the database. At the beginning of the protocol, the client transmits 96 ci-

phertexts to the server, at the end S sends to C a vector of the same size of the

database. For λ = 10, each encrypted fingercode of 96 feature requires about

120KB, and a ciphertext about 1.3KB. Therefore, the resulting bandwidth,

given the number of database elements Nd, is about (120 +Nd · 1.3)KB. For

λ = 15, bandwidth for a fingercode template is 7.4MB and a single ciphertext

is about 79.3KB. Results are summarized in Table 4.6.

For λ = 10, the time required by our implementation of the privacy pre-

serving iris and fingercode protocols has similar performances to GC [24] or

Pailler [23] implementations. For λ = 15, the time needed by the SHE imple-

mentation is instead by far larger than the execution time of GC or Pailler

protocols. The full-GC implementation for iris matching in [24] needs less

than a second, but both circuit garbling and circuit transmission are pre-

computed. Nonetheless, in our protocol all the computation is moved on the

sever side, and no interaction is needed, making it appealing for an offline

database search. Running times can be lowered by using powerful servers

allowing a greater number of threads for parallelization. The Nd matching

operations can be also evaluated in parallel.



Chapter 5

Multi-Modal Biometrics authentication in
the Malicious Setting

As detailed in Section 3.1, the great majority of works on biometric recogni-

tion protocols focus on the use of innovative SMPC cryptographic primitives.

In Chapter 4 we presented two non interactive biometric recognition (an iden-

tification and an authentication) systems based on a SHE encryption scheme

(Section 2.3). In this chapter, instead, we follow a less investigated approach,

we worked on the signal processing side of the problem looking for a bio-

metric recognition protocol which is better suited to be implemented in a

SMPC framework. In fact, as highlighted in the introduction (Section 1.4)

and in[11], this strategy may help to reduce the complexity of the resulting

SMPC protocol.

The complexity of the biometric feature and therefore of the recognition

system, can be reduced by using more than a single biometric trait in the

process and therefore we choose a multimodal system. As we have seen in

Section 3.5, a multimodal recognition system consist in the combination or

fusion of two or more distinct biometric traits. In this way it is possible to

achieve the same accuracy of a single modality protocol but using less feature

and therefore the implementation requires less operations.

In this chapter, we present SEMBA, a SEcure Multi-Biometric Authenti-

cation protocol [143], a multimodal biometric authentication protocol which

achieves a better trade-off between efficiency and accuracy with respect to the

single modality subprotocols composing it. Specifically, SEMBA analysis face

and iris templates and can be easily implemented by using Secure Multiparty

Computation protocols.

SEMBA is published in the paper:

G. Droandi, M. Barni, R. Lazzeretti, T. Pigata. ”SEMBA: SEcure Multi-
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Biometric Authentication”, In ArXiv e-prints, 1803.10758, 2018.

Multimodal biometric systems are commonly used to decrease intra-class

similarity in the presence of noise and other distortion [7]. We demonstrate

that by using a properly simplified representation of the two biometric traits,

the multimodal protocol can reach the same accuracy of a corresponding

single-modality systems based on more accurate and complicated represen-

tation of a single biometric (particularly of the iris), but with a lower compu-

tational complexity. This is a crucial advantage in privacy preserving proto-

cols. We also show that system designers could decide to exploit the superior

performance allowed by multimodal recognition to improve accuracy, main-

taining the same complexity of the single modality protocols. The security of

SEMBA is based on SPDZ [35,36], described in (Section 2.4).

To be used with SPDZ we need biometric recognition systems that have a

fixed length template, and a simple match function that can be implemented

using few operations. At the same time to allow our search for efficiency,

we have the necessity to change the length of the vector in order to find the

best configuration for our purpose. For iris, between the possible choices in

letterature, we choose to use the system presented in [103] since it matches to

all our needs. For iris template extraction, we use the open source Matlab

code [106] (as Luo et al. in [21]). The source code is part of the work [103], the

distance and the template proposed respect the characteristics needed to be

used with s.p.e.d. We consider a binary template of N features (iriscode), and

a corresponding noise mask (Section 3.2 and Chapter 4). Since in this chapter

we want to find a trade off between complexity and efficiency, we tested in

plain domain many possible combinations of θ and r in order to find a value

of N = 2 · θ · r (Chapter 3.2), looking for one guaranteeing a low complexity

and a low EER. As result, our system obtains the same accuracy of the stand

alone iris authentication protocol described in [103]. In contrast with what we

did in Chapter 4, here we use a weighted Hamming distance (Equation 4.1),

where the weights depend on the masks bits. In this way, only significant bits

are used to calculate the distance between the two templates. In the output of

the Matlab code, the value mi,j = 1 of the mask vector indicates that the bit

is affected by noise and the corresponding bit in the iriscode template must

be excluded by the computation. Keeping the same notation of Chapter 4,
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Equation 4.1 can be also written as

WHD =
‖(t1 ⊕ t2) ∧ (m1 ∧m2)‖

N − ‖m1 ∨m2‖

=

∑N
i [(t1,i ⊕ t2,i) ∧ (m1,i ∧m2,i)]

N −∑N
j=1m1,j ∨m2,j

. (5.1)

Where we indicate with a the negation of a bit feature a, equal to 1− a.

The previous equation is equivalent to

WHD =

∑N−1
i=1 (t1,i ⊕ t2,i) ∨ (m1,i ∨m2,i)∑n−1

i=0 m1,i ∨m2,i

. (5.2)

In the original work [103], iris templates are shifted m times, to bypass the

error introduced by possible movements of the owner and to improve accuracy.

The weighted Hamming distance is computed for each of them, and the lowest

WHD is used to authenticate the iris owner. In his work, Masek recommend

to perform m = 8 shifts; to reduce the computational complexity, we did

not consider rotation. In Section 5.4 we analyze the results of our tests on

template length, and in Section 5.5 we use them to set the parameters for the

tests in the encrypted domain.

For the face template, we use Tuck and Pentland eigenfaces [113]. The

eigenface algorithm determines a set of vectors that can be used to generate a

face-space and to project all the faces into the database (Section 3.3). Given

a face image Γ, Γ is projected into the face- space defined by eigenfaces. The

resulting template is the vector Ω = [ω1 . . . ωk] where each ωi describes the

contribution of each eigenface in representing the input image. In order to find

the image that best matches Γ, we look for the projection vector Ωj among

all the stored images, that minimizes the Euclidean distance

‖Ω− Ωj‖ =

√√√√ k∑
i=0

(Ωi − Ωj,i)
2. (5.3)

The general authentication protocol is the same of Chapter 4, Section 4.2.1

and described in Figure 3.2. The client C is already enrolled in the database
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owned by the server S. Then S needs to verify C identity, but the client does

not want to disclose his biometric features to S. For this reason match score

calculation and comparison are carried out in encrypted domain (Figure 4.1).

First we present the general lines of the stand alone iris and face protocols

(Section 5.1 and Section 5.2). Then we describe the secure protocol for multi-

biometrics recognition (Section 5.3). After we present the tests we run in plain

regarding iris, face and on multi-biometrics protocols. (Section 5.4). Finally

in Section 5.5 we analyze the outputs of the tests in the encrypted domain.

5.1 Iris authentication protocol in SPDZ

The server, S, and the client, C, cooperate to complete the protocol. In our

implementation we assume that the offline part of the SPDZ (Section 2.4),

i.e. initial setting, has already been completed. For this reason C and S both

have shares of a new probe t1, of a template t2 given in a previous enrollment

phase, and of the corresponding masks m1,m2. Then they compute WHD

as described in Section 5.1.1 (Equation 5.4). Finally the result of WHD

is compared with a threshold as described in Section 5.1.1 (Equation 5.5,

Equation 5.6 and Equation 5.7). The threshold is set during tests on plain

values (5.4).

5.1.1 Hamming distance and comparison in SPDZ

Section 2.4 shows that SPDZ system supports operations modulus p. Each

binary element of an iris feature is hence encrypted as a modulo p integer

〈a〉-share. For this reason, to implement the Hamming distance computation

as in Equation 5.1, we need to implement the logical operations ⊕,∨,∧ as

a combination of integer operations +,−, ·. The correspondences between

binary and integer operations are detailed in Table 5.1.

Given the implementation of the binary operations, we can describe the

SPDZ-based implementation of WHD. By indicating with t1 = (t1,1, t1,2, · · · , t1,N )

and t2 = (t2,1, t2,2, · · · , t2,N ) two binary iris feature templates, where N is the

number of features, we denote with 〈ti〉 the vectors containing the shares of

each element, i.e. the vector (〈ti,1〉, 〈ti,2〉, · · · 〈ti,n〉) for i = 1, 2.
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Table 5.1: Correspondence table between binary and integer operations

Binary Integer

a⊕ b a+ b− 2 · a · b
a ∧ b a · b
a ∨ b a+ b− a · b
a 1− a

Since m1 ∧m2 is equivalent to m1 ∨m2, the Hamming distance in Equa-

tion 5.2 can be computed as:∑N
i=1 {(t1,i + t2,i − 2 · t1,i · t2,i) · [1− (m1,i +m2,i −m1,i ·m2,i)]}

N −∑N
j=1(m1,i +m2,i −m1,i ·m2,i)

(5.4)

Division is a very expensive operation in SPDZ, hence the denominator is

multiplied by the acceptance threshold before comparison. By letting

num =
N∑
i=1

{(t1,i + t2,i − 2t1,it2,i) [1− (m1,i +m2,i −m1,im2,i)]} (5.5)

and

den = N −
N∑
j=1

(m1,i +m2,i −m1,i ·m2,i), (5.6)

the authentication check corresponds to

num < τ · den. (5.7)

For the comparison we use the protocol described in Section 2.4.

5.1.2 Complexity

Computing t1⊕ t2 and m1∧m2 requires N multiplications each, one for each

element of the template; moreover, N multiplications are required to compute

(t1⊕t2)∧(t1∧t2). The total cost associated to the computation of num is 3N

multiplications. Multiplication between shares requires data transmission (see
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Section 2.4), slowing down the computation. To increase efficiency, we split

the multiplication protocol into two parts. First we calculate 〈εi〉 = 〈t1,i〉−〈a〉
and 〈δi〉 = 〈t2,i〉 − 〈b〉, for all i = 1 . . . N . Then, to partially open the values,

both server and client exchange the shares by using a packet for all ε’s and one

for all δ’s. In this way, we need only two transmissions for N multiplications.

Therefore for the numerator we need only 6 transmissions. The computation

of den (Equation 5.6) has a negligible complexity since m1,i+m2,i−m1,i ·m2,i

has already been calculated for all i’s in Equation 5.5. Finally, we need a

multiplication between den and t, and ` multiplications for the comparison,

where ` is the number of bits necessary to represent a modulo p integer (see

Section 2.4). Therefore, we need 3N + ` + 1 multiplications but only 2` + 7

transmissions for the iris protocol (Table 2.3).

5.2 Face authentication protocol in SPDZ

As in the previous section, we assume the offline part of the SPDZ (Sec-

tion 2.4) initial setting has already been completed. For this reason C and S
both have shares of a new probe Ω, and a template Ωi given in a previous

enrollment phase. Each face feature has been rounded to be represented in

Fp (we avoid rounding operator for simplicity). Then both parties cooperate

to compute SED as described in Section 5.2.1 and finally compare the score

(Equation 5.9) with a threshold set during the tests in the plain domain.

5.2.1 Euclidean distance in SPDZ

Given the projection Ω of the query face image, the face-based biometric au-

thentication protocol must evaluate the Euclidean distance ‖Ω−Ωj‖ (Equa-

tion 5.3) where Ωj represents the projection of the registered image Γj . In the

following equation (Equation 5.8) ωi indicates an element of the face Ω and

ωj,i the i-th element of the projection Ωj . Since the square root cannot be

evaluated efficiently in SPDZ, we instead use the squared Euclidean distance

(SED):

SED =
k∑
i=1

(ωi − ωj,i)2. (5.8)
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The SED score is compared (Equation 5.9) against the squared threshold

as described in Section 2.4

SED < τ2. (5.9)

5.2.2 Complexity

The computation of the squared Euclidean distance needs the evaluation of k

squares, but, as we did for WHD, we separate the square computation into two

parts (Section 5.1.2), hence only a transmission is necessary. The complexity

of multiplication and square they are similar, therefore in the following we

consider squaring as multiplications. For the comparison, we need ` products

(Section 2.4), as in the iris authentication protocol. The complexity of the

protocol is hence given by k + ` products (Table 2.3).

5.3 SEMBA: the fusion protocol in SPDZ

We now describe the SEMBA protocol, a multimodal system that merges

iriscode and face template at the score level (Figure 4.1) in a privacy pre-

serving way. As before, we consider that the offline part of the protocol has

already been computed, and that both S and C have shares of a new probe

and the template stored into the database. The protocol can be divided into

four parts: distance calculation, normalization, linear combination, compari-

son and decision (Figure 5.1).

Distance calculation. Given shares of a new face template 〈Ω〉 and of a

new iriscode 〈t〉, we calcolate the distance between the new templates

and the ones stored into the database 〈Ωj〉, 〈tj〉 using SED and WHD.

Squared euclidean distance and Hamming distance are calculated as

described in Section 5.1.1 and 5.2.1.

Normalization. The output of the iris protocol is a real number in [0, 1],

while the output of the face recognition protocol is a squared number in

[0,M ],M ∈ R. Among the solutions proposed in the past to overcome

the problems generated by the differences between scores output by

different biometric recognition systems (see [7] for more details), we
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Figure 5.1: General scheme of our fusion protocol.

choose to use a min - max normalization method [7].

Fnorm =
score−minface

maxface −minface
, (5.10)

where minface,maxface, indicate the minimum and maximum values of

the face range. Since minface = 0, Equation 5.10 can be written as

Fnorm =
score

maxface
. (5.11)

Linear combination. Due to the characteristics of the SMPC system, to

combine the matching scores, we choose a linear combination. If α

and β are proper weights in the interval [0, 1] ∈ R, WHD ∈ [0, 1] is
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the Hamming distance resulting from iris match, SED the Euclidean

distance between faces, and R the maximum value of the face recognition

system, the fusion rule is

α ·WHD + β · SED

R
(5.12)

Comparison and decision. We compare the linear combination with the

threshold. Multimodal recognition corresponds to check if the following

inequality holds:

α · WHD + β · SED

R
< T. (5.13)

The choice of the parameters α, β, T determines the trade-off between

equal error rate (EER) and computational complexity (Section 5.4). As

in [137, 138] we choose β = 1− α for the tests in the plain domain. To

avoid performing a division in WHD (Equation 5.4) and in normalization(
SED

R

)
, instead of the Equation 5.13 we evaluate

α · num ·R+ β · SED · den < T · den ·R, (5.14)

where num (Equation 5.5) and den (Equation 5.6) stand for the nu-

merator and denominator of the Hamming distance respectively, while

SED and R stand for squared Euclidean distance score and face max-

imum range, and T stands for threshold. The SPDZ framework does

not allow the use of non-integer numbers, so α, β and T are scaled and

approximated to integers in the interval [0, 10]. We chose this interval

because it is accurate enough to obtain the same results achieved in the

plain domain, and the resulting bitlength is small enough to make it

possibile to represent α · num ·R+ β · SED · den and T · den ·R in Fp.

5.3.1 Complexity of SEMBA

Equation 5.14 requires three multiplications and six transmissions that cannot

be run in parallel and it needs ` multiplications for the comparison. The

linear combination needs ` + 6 multiplications and 2` + 12 transmissions,
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plus the multiplications necessary to compute the Hamming and the squared

Euclidean distances. The final complexity of the full multimodal protocol is

3N + `+ 6 + k multiplications (since squares and multiplications have similar

complexity we consider all together as multiplications), while it needs only

2`+ 19 transmissions (Table 2.3).

Table 5.2: Complexity Summary. We underline that transmission number
depends only on p’s bitlength `. α, β, t instead do not affect complexity but
only accuracy.

Multiplications Squares Transmissions

Iris 3N + `+ 1 0 2`+ 7
Face ` k 2`+ 1

Multimodal 3N + `+ 6 k 2`+ 19

5.3.2 Security

All the protocols involve a client (the biometric owner) and a server that

authenticates the identity of the client. On one hand C does not want to

reveal his biometric templates, on the other hand S does not want to dislocate

its records. Both client and servers can be malicious but not at the same

time. We underline that if both parties act maliciously, the protocol abort

and they obtain no real information about the other. We also assume that

the parties are connected through a secure channel providing security against

eavesdroppers and any third party that can compromise the transmission.

The whole protocol is developed by relying on the SPDZ framework. Ac-

cording to [36], the SPDZ protocol involving n parties is secure up to n − 1

malicious adversary. Therefore our protocol is secure in the UC model if at

least one of the two party is honest. The offline phase does not depend on

the functionality evaluated and its security demonstration against active ad-

versaries in the UC model is provided in [36]. The following theorem provide

the security demonstration of the protocol.

Theorem 1. The online SPDZ implementation of SEMBA is computation-

ally secure against any static adversary corrupting at most 1 party if p is

exponential in the security parameter.
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Proof. The proof follows the security demonstration of the online SPDZ pro-

tocol in [36]. We rely on the simulator SONLINE defined in [36] to work on top

of the ideal multi-biometric authentication functionality FONLINE. In this way

the adversary cannot distinguish among the simulator using the real function

FONLINE and the real SPDZ-based implementation. Since input values broad-

casted by both the simulator and honest players are uniform, it is not possible

to distinguish among them. The only interaction with the player is performed

during multiplication, squaring, and comparison where for both honest party

and simulator partial opening reveals uniform values. Also MACs have simi-

lar distribution in both the protocol and the simulation. If the protocol does

not abort due to a cheat detection, both the real and the simulated runs

output the decision bit. In the simulation the decision bit is obtained by

a correct evaluation of the multi-biometric function on the inputs provided

by the player. In real world SPDZ-based implementation (i.e. not in the

simulator) the adversary can cheat in the MACCheck (Algorithm 2.1) with

probability 2/p. Hence the probability that the adversary can distinguish the

simulated environment from the real one is negligible if p is exponential. If

the protocol does not abort, the adversary can observe only its inputs, the

shared inputs received by the other party and the final result. The adversary

is not able to obtain the inputs of the honest player, he should be able to solve

the inequality in (Equation 5.14), which has Ni + Nf unknown variables for

the server and Ni + Nf + 3 for the client, where Ni and Nf are the number

of features used to represent iris and face respectively.

5.4 Preliminary tests in plain

In this section, we present the results of the tests performed on plain data.

Those results are used to choose the best parameters to build an efficient

protocol working in the encrypted domain. Tests have been carried out on

the “CASIA-IrisV1” database for irises and “CASIA-FaceV5 part 1” database

for faces, both collected by the Chinese Academy of Sciences’ Institute of

Automation (CASIA) [129,144].

The CASIA-IrisV1 database for irises [144] contains 756 grey-scale eye

images with 108 unique irises (or classes) and 7 images for each of them.
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Only the subset of well segmented images can be used for tests [103]. During

the segmentation step, the iris region is isolated from the rest of the eye, in a

digital image. The iris region can be approximated by two circles, one between

iris and sclera and one for the iris pupil boundary. Segmentation is a crucial

part of iriscode template’s extraction, since the data that is falsely represented

as iris pattern will corrupt the biometrics template and it will alterate the

match score [103]. The resulting database contains 625 eye images.

The CASIA-FaceV5 Databases for faces part 1 [129] contains 500 face

images of 100 subjects. The face images are captured using Logitech USB

camera in one session. All face images are 16 bit color BMP files and the

image resolution is 640× 480 pixels.

We implemented and tested the SPDZ-based iris and multi-biometric pro-

tocols on a desktop equipped with 8GB RAM processor Intel Core i3 CPU

550 @ 3.20 GHz Quad-Core running Ubuntu 14.04 LTS (64 bit) operating

system. We developed the test using C++ language with GMP free library for

arbitrary precision arithmetic, operating on signed integers, rational numbers,

and floating-point numbers.

To implement the SPDZ protocol we chose a prime number p of 46 bits

which is big enough to allow all modular operations and comparisons required

by the protocol. Server and client run on the same computer, and we used a

socket to simulate the transmission channel.

We performed tests on plain data, running the authentication protocol on

each single biometric and then fusing eigenfaces and iriscodes.

5.4.1 Iris

As we saw before (Chapter 4), iris can be represented with a bit vector of

length N . The number N of features depends on the radial r and angular θ

resolution used in the extraction process (Section 3.2) and it’s equal to 2 · r · θ
[103]. For testing the iris authentication protocol, we have chosen a radial

resolution r ranging from 4 to 20 and an angular resolution θ between 100

and 200 (Table 5.3). We tested the protocol on 625 eye images and each one

has been compared with all the others. To extract the features, we used the

Matlab code provided by L. Masek (iris recognition source code [106]), WHD

and comparison has been also been implemented in Matlab. The best accuracy
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is achieved by letting the angular resolution be equal to 160 angles and radial

resolution equal to 20, corresponding to an iris feature vector of length 6400

(as it can be seen from Table 5.3). To better simulate the computation in the

encrypted domain, we do not perform shifts during tests.

Table 5.3: Iriscode EER (%) without shifting, as a function of different values
of r and θ.

r
Angular Resolution θ

100 120 140 160 180 200

4 8.19 6.43 4.37 3.34 3.31 3.10

6 6.88 5.05 3.01 2.45 2.71 3.01

8 6.13 4.42 2.69 2.19 2.58 4.36

10 6.31 4.03 2.64 2.44 2.54 3.92

12 5.96 4.10 2.56 2.14 2.59 3.71

14 5.71 3.85 2.54 2.17 2.58 3.27

16 5.49 3.79 2.32 2.13 2.51 3.31

18 5.71 3.61 2.46 2.31 2.41 3.18

20 5.77 3.74 2.20 2.08 2.41 3.13

5.4.2 Face

We have implemented the eigenface protocol by using the Open Source Com-

puter Video (openCV) library1 and Matlab. Face images are 640× 480 pixel

and we transformed them in 256 grey level images. The protocol has been

tested on 500 images. We used the algorithm provided in the openCV library

to build k eigenfaces with k = 1 . . . 10. Each image is thus represented by a

projection vector with k 16-bit elements. Values have been rounded to the

closest integers. The squared Euclidean distance has been calculated by using

Matlab. We observed that the use of more than 5 projections does not provide

any significant improvement (see Table 5.4).

1http://opencv.org/about.html

http://opencv.org/about.html
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Table 5.4: Eigenface EER (%) values, as a function of the number of projec-
tions.

k EER (%) k EER (%)

1 28.77 6 17.01

2 17.37 7 16.19

3 16.62 8 16.51

4 16.59 9 16.38

5 16.08 10 16.09

Table 5.5: EER of the multimodal biometric authentication protocol. The
first column show iris’s number of feature (N), while, the second one represents
Iris authentication system’s EER (%). All the others columns contain the
EER’s obtained by fusing an iris template of lengthN and a face template with
k ∈ {1 . . . 10} eigenfaces. Each EER represents the minimum EER among all
those obtained by changing α and β, therefore to each EER corresponds to
a different choice of the optimal parameters. We highlighted in bold the
configurations that we have selected for the tests under encryption.

Iris Number of Eigenfaces (k)

N EER 1 2 3 4 5 6 7 8 9 10

6400 2.08 1.17 1.15 1.02 1.25 1.25 1.24 1.31 1.37 1.4 1.41

5760 2.51 1.26 0.98 1.01 1.22 1.38 1.36 1.43 1.47 1.49 1.50

5600 2.20 1.20 1.08 1.19 1.18 1.34 1.28 1.36 1.38 1.39 1.40

4800 3.74 1.90 1.97 1.65 1.98 2.04 2.15 2.11 2.17 2.2 2.21

3840 2.14 1.84 1.52 1.50 1.45 1.63 1.74 1.76 1.77 1.78 1.78

3600 2.54 1.36 1.23 0.97 1.65 1.82 1.99 2.07 2.15 2.17 2.19

3360 2.56 1.51 1.32 1.38 1.31 1.56 1.61 1.58 1.63 1.67 1.69

2560 2.19 1.50 1.24 1.19 1.15 1.39 1.49 1.59 1.6 1.61 1.62

2400 3.01 2.01 1.83 1.89 2.13 2.37 2.56 2.66 2.7 2.72 2.73

2160 2.71 1.92 1.74 1.82 1.98 2.04 2.09 2.07 2.13 2.16 2.18

1920 2.45 1.47 1.42 1.43 1.57 1.66 1.95 1.92 1.95 1.96 1.97

1600 3.10 2.01 1.87 1.85 2.41 2.37 2.56 2.67 2.69 2.71 2.71

1280 3.34 2.29 1.89 2.22 2.26 2.51 2.80 2.80 2.92 2.98 3.01
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Table 5.6: EER (%) dependance from α variation in plain. We chose the
α’s value corresponding to the minimum EER, highlighted in bold. We recall
that β = 1− α.

α
Iris (N) and Face (k)

N = 1600 N = 1600 N = 3600 N = 5760 N = 6400
k = 1 k = 2 k = 3 k = 2 k = 2

0.90 2.52 3.36 2.45 1.52 2.29
0.85 2.37 2.33 2.58 2.02 1.47
0.80 2.01 2.13 1.68 0.98 1.15
0.75 2.57 3.69 3.51 2.02 2.51
0.70 3.00 2.11 2.15 1.92 1.24
0.65 2.33 1.87 1.95 1.15 1.17
0.60 3.81 3.55 2.78 3.13 2.27
0.55 4.25 2.02 0.97 1.63 1.15
0.50 3.85 3.37 4.75 2.57 3.18

5.4.3 Multimodal system

In order to evaluate the efficiency of the fusion protocol in the plain domain,

the fusion of the outcomes of face and iris sub-protocols is implemented using

Matlab. From Table 5.3, we have chosen some relevant iris configurations,

based on the achieved EER or number of features. First of all, to better

compare the plain tests with the best iris result, we chose r = 20 and θ = 160

resulting in N = 6400, then for each θ, we looked for any accuracy lower than

4%, and finally we chose those configurations with EER similar to the previous

ones but less features. Moreover, we varied α in the interval [0, 1] (Table 5.6)

and the number of eigenfaces k from 1 to 10. Table 5.5 summarizes our results,

showing the EER for each N and k. The results in Table 5.5 represent the

minimum EER when we vary α and β, therefore each EER corresponds to

a different choice of the optimal parameters. In fact, as it can be seen from

Table 5.6, reporting the data only for the chosen configurations, the value of

α (and consequently of β) influences the accuracy of the multimodal system.

We summary the used set of parameters in Table 5.7.

The same accuracy of the 6400 stand alone iris protocol (2.08%) can be

reached with many different multi-biometric configurations, as can be seen
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from Table 5.5. For example by using N = 3600 and k = 7 EER is equal

to 2.08% or by using only 1600 iris features and k = 1 (EER=2.01%). For

the tests in the encrypted domain, we chose the last one since it has lower

bandwidth and computational complexity (see Table 4.3 and Table 5.8). We

can also notice that keeping N = 1600, but using 2 features for face repre-

sentation, we can lower both accuracy and complexity. Generally, by using

two eigenfaces, the best possibile accuracy is obtained with 5760 iris features,

however the same performance is obtained also by the combination of 3600

iris feature and three face features. The results of the tested configurations

in the encrypted domain are summarized in Table 5.7. We can also observe

that the number of iris features influences the execution times. A bigger N

corresponds to a higher computational time while the use of more iris features

does not always result in a better accuracy after fusion. Finding a good trade-

off is not easy. In the sequel we chose the parameters based on experimental

results.

5.5 Results of tests on SEMBA

We evaluated the computational complexity of our implementation of SEMBA

(Section 5.3), by using the parameters chosen in the previous section (see Ta-

ble 5.3 and Table 5.7). Since α, β and t do not affect complexity but impact on

the accuracy, we chose the values associated with the lowest EER, Table 5.6

shows the variation of EER when N and k, are fixed and α is varied. We

recall that β = 1 − α (Section 5.3). The number of multiplications affects

heavily the execution times. As we said in Section 5.1, when possible, we

performed a single transmission, by packing data. To calculate the execution

time, reported in Table 5.9, we used the clock function, measuring the CPU

time of the process. To convert the CPU time in seconds, we used the formula
n. clock

clock par sec . The symbol n. clock indicates the processor time consumed by

the protocol’s implementation, the value returned is expressed in clock ticks,

which are units of time of a constant but system-specific length. The quan-

tity clock par sec, instead, indicates the number of clock ticks per second.

Therefore the previous formula returns the number of second required by the

computation. In the protocol only the the bitlength ` of the prime number
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Table 5.7: Equal Error Rate of iris and multimodal biometric authentication
protocols for different settings; α, t respectively stand for fusion coefficient
and threshold.

Iris EER Face Fusion parameters

N Iris (%) Fusion (%) k α t

1600 3.10 2.01 1 0.80 0.35

1600 3.10 1.87 2 0.65 0.25

3600 2.54 0.97 3 0.55 0.25

5760 2.51 0.98 2 0.80 0.35

6400 2.08 1.15 2 0.80 0.35

p influences the number of transmission rounds and the feature configuration

has no impact on it, as it can be seen from Table 5.2. On the contrary, the

amount of data transmitted by each party also depends on the number of

features used in the protocol. In fact, the iris authentication protocol has a

bandwidth of (6N + 2`+ 2) · ` bits, while the multimodal protocol bandwidth

is ` · (6N + k+ 2`+ 12) bits. The complexity of the face-based authentication

protocol is negligible with respect to the iris protocol ones. For this reason,

the overhead introduced by the multimodal biometric authentication is of few

bytes, as shown in Table 5.8. Therefore, the communication complexity re-

mains almost constant switching from the iris to the multimodal protocol.

Our goal is to reduce complexity in order to reach the same efficiency of the

iris-based protocol. These results are a first mark in this direction, because

the overhead introduced by the multi-biometric protocol is low. Moreover,

our analysis shows that SEMBA can also be used to lower the EER without

a significant loss in terms of complexity. In the following we analyze both

cases.

Improved efficiency The running time of the stand alone iris authentica-

tion protocol ranges from 0.03s for 1600 bits, up to 0.12s for a 6400 bit-long

template in the malicious setting (see Table 5.9), while Luo et al. protocol [24]
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Table 5.8: Communication complexity for the iris and multimodal protocols.
It is important to notice that adding few eigenfaces increases the bandwidth
by a few bytes only.

Iris bandwidth (KB) Face

N iris multimodal overhead k

1600 53.24 kb 53.30 kb 0.06 kb 1

3600 119.16 kb 119.23 kb 0.07 kb 3

5760 190.35 kb 190.42 kb 0.07 kb 2

6400 211.44 kb 211.51 kb 0.07 kb 2

with masks needs 2.5s for 9600 bits and 0.56s for 2048 bits in the semi-honest

setting. Moreover from Table 5.7 and Table 5.9, it is evident that the multi-

biometric authentication protocol can provide the same accuracy of the best

stand alone iris protocol, but with lower execution time and computational

complexity. As a matter of fact, the best EER for the standalone iris protocol

is 2.08% for 6400 features corresponding to 19246 multiplications (Table 4.3)

in 0.12s, while in SEMBA for 1600 iris features and 1 eigenface feature, we

need only 8744 multiplications (Table 4.3, where we consider squares as mul-

tiplications) to obtain an EER equal to 2.01% in about 0.03 seconds. On the

contrary, the number of required transmissions increases from 2`+7 to 2`+19

(Table 4.3), but it depends only on the bit length of p.

Table 5.9: Iris protocol time in SPDZ system.

Iris CPU time Face

N Iris (s) multimodal (s) k

1600
0.029s

0.030 1

1600 0.030 2

3600 0.048 0.049 3

5760 0.11s 0.109 2

6400 0.12s 0.120 2



5.5. Results of tests on SEMBA 89

Improved accuracy Two biometrics instead of one can be used to achieve

a higher accuracy, at the cost of a slight increase of complexity with respect

to the iriscode protocol. In fact, complexity depends heavily on the number of

iris features, as shown in Table 4.3, however it is possible to decrease the EER

rate by adding two eigenfaces, while the number of multiplications increases

only from 3N + ` + 1 to 3N + ` + 6 + k = 3N + ` + 8 (as usual we consider

squaring to be equivalent to a multiplication). More generally, when we use

the multimodal authentication, the total CPU time slightly increases with

respect to the unimodal iris protocol, but the EER always decreases by adding

one more eigenface (k = 2) to the 1600 iris feature configuration considered

above, we can have a better EER (1.87%) with the same time complexity

(0.03 seconds). For the case of 5760 bit long iris template the EER passes

from 2.1% for the unimodal authentication to 0.98% of the bimodal case with

k = 2 (Table 5.7). Finally, keeping 0.98% as target accuracy, we highlight

that we can reduce N to 3600 at the cost of an additional feature in the face

representation (k = 3). In this case, computational complexity goes from

36926 to 19596 multiplications and time complexity decreases from 0.109s to

0.05s (Table 5.8 and Table 5.9).





Chapter 6

Conclusion

The goal of this thesis has been to develop tools for the protection of biomet-

ric templates from identity theft and other cybercrimes. We started from the

consideration that most of the works in this research area are secure in the

semi-honest model, i.e. against a passive adversary, a listener that exploits ev-

ery chance to learn private information without tampering with the protocol.

We proposed two solutions, the first one based on a somewhat homomorphic

encryption scheme and the second one on SPDZ, a new secure multiparty

computation tool.

With regard to the first solution, we have implemented and tested a SHE

scheme [34] that works on integer values. Then we used it to build two

privacy-preserving biometric matching protocols. The resulting complexity is

lower than that of a SHE solution working directly on bits. The prior knowl-

edge of the number of multiplications required by the protocol allows us to

use a SHE scheme instead of a FHE, avoiding in this way expensive squash

and bootstrap operations. Even if the protocol is not as efficient as protocols

based on other STPC techniques such as garbled circuits and homomorphic

encryption, our solution has the advantage of moving all the computation to

the server side, without the necessity of any interaction with the client, hence

making the protocol suitable for low power client devices. We have observed,

that the operation runtime and the bitsize of ciphertexts and keys are more

affected by the security parameter than the magnitude of the base b. In fact,

changing b from 2 to 2150 has no consequences in time complexity. This ob-

servation allows us to choose the base that better suits our computational

needs. We have implemented a small upgrade of the cryptographic system by

finding a solution to the problem of encrypting negative numbers. Concerning

the iris and fingerprint identification protocols, we have devised a solution

to keep the number of multiplications and therefore the complexity as low
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as possible, especially in the identification protocol. Moreover, we formulate

blinding methods to protect output results: permutation for identification

and a multiplicative blinding in the authentication protocol. We have tested

the identification and authentication protocols with different security param-

eters and observed that a match takes from some seconds to several minutes,

especially in the iris case. Due to the time required for a single match our

iris recognition protocol is more appropriate for an offline search while the

fingerprint one can be used also online.

In Chapter 5 we presented SEMBA a secure multimodal authentication

system based on the SMPC approach SPDZ [35, 36]. The novelty of this

approach is to use a multimodal system in order to find a better trade off

between accuracy and efficiency, in addition using SPDZ, also the final de-

cision is taken in the encrypted domain by the client that, interacting with

the server, compares the final output with the threshold. In this way we

overcome security weakness of the previous SHE implementations where the

client makes the last decision after decrypting the outputs. We have shown

how it is possible to improve the efficiency of the secure recognition process

in terms of computational and time complexity, without any loss of accuracy,

with respect to an unimodal iris recognition system. We have also seen that

it is possible to improve the accuracy with a minor increase of complexity. As

parallel contributions, we adapted the iris and face authentication protocols

to work in the SPDZ setting and we reduced the complexity by resorting to

packed transmission of the encrypted data involved in the secure multiplica-

tion protocol.

6.1 Highlights for future reserch

Secure biometrics recognition systems and Signal Processing in the Encrypted

Domain are wide and young research areas, and many open issues could be

addressed in the near future. Those most directly related to the research

covered in this thesis are briefly highlighted in the following. First of all,

new and more efficient implementations of the underlying SPED tools, and

building blocks can be studied to improve the protocol efficiency. In both the

protocols, multiplications between encrypted data slow down the computa-
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tion; solutions can be found to speed up the computation. Consequently the

match step can be improved.

In the SHE implementation, the length of the template vectors can be

reduced and tested, maybe using a different feature extractor or a different

biometrics. A cryptographic line of research can investigate a new way to

prepare and store the public key in order to reduce the storage requirement

and therefore allowing to use a bigger security parameter. Moreover the se-

curity of the identification protocol can be improved by applying the blinding

devised for authentication before permutating the output vector.

With regard to SEMBA, in the future we can extend our approach to

handle even more biometric traits, like fingerprints, behavioral biometrics

etc. looking for a simple template to represent and a match score easy to

implement but that at the same time guarantes high accuracy with low com-

putational complexity. Maintaining the same biometrics, we can test different

algorithms and alternative fusion rules. Obviously, in this case we must also

consider if the complexity of each new proposal is a fair price to pay. For

the multimodal system, we could also consider fusion at different levels. It

could be interesting to study fusion at the feature level, and looking for a new

merged template, to be used efficiently with SPED tools, like SCiFI [22] for

face.

In all the implementations presented so far, floating point numbers are

always rounded to integers and a difficult task consists in finding a solution

that allows MPC protocols to work directly with those numbers, avoiding

approximation errors.

Nowadays, cell phones use a biometric key not only to unlock the phone

but also for payments. The biometrics are stored somewhere in the phone

and a criminal, could retrieve and use them to access the bank account and

exploit the weakness of the new payment methods. In this scenario, it could

be interesting to make the system portable to be used on a mobile phone in

order to protect the stored biometrics and the privacy of the owner. It is not

difficult to foresee a future in which biometrics are used to identify people,

as we currently do with ID cards, and to replace physical tokens, as credit

cards, to access the bank account. To make this future possible for every

aspect of our live, it is necessary to implement efficient and secure recognition
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systems in the malicious model, maybe using one or more biometrics. It is

also important to make the framework portable, and reliable enough to be

used in everyday application such as home banking or to confirm a digital

identity like the Italian SPID (Sistema Pubblico di Identità Digitale).

As a final and general note, not only related to biometrics but to s.p.e.d.

tools in general, we point out that the need for privacy is promoting the use of

s.p.e.d. tools in real world applications. In the last few years some attempts

have been made in that direction. For example, N. Smart, one of the au-

thor of SPDZ is co-founder of a company called Unbound Tech1, that offers

services for secure computation and aims to prevent the problem of server

breach. Moreover Smart and his group at KU Leuven university, developed

and distributed an open source version of all their SMPC systems for commer-

cial and research purposes2. Similarly, the non-profit company Alexandra

Institute implemented the FRESCO project [145], which is a Framework for

Efficient and Secure COmputation, released under open source MIT license.

The project aims to ease the development of both prototype applications

based on secure computation and new techniques (called protocol suits for

secure multiparty computation) by providing ready to use frameworks. Their

goal is to create value, growth and welfare in society, by helping public and

private organizations to develop innovative products and services based on IT

research.

Initiatives such the ones mentioned above contribute to spread SMPC

and s.p.e.d. techniques in everyday applications. To continue in this direction

it will be very important to make secure recognition systems efficient and

portable enough to be used on cellphones or other small devices.

1https://www.unboundtech.com
2https://homes.esat.kuleuven.be/ nsmart/SCALE
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In this thesis we study the development of privacy preserving protocols for 

biometric recognition. This is a new research field for which a number of 

solutions have been proposed in recent years. In contrast with the majority of 

previous  works,  we  look  for  protocols  which  are  secure  against  active 

adversaries, that is adversaries that deliberately and arbitrarily deviate from the 

recognition protocol. Specifically, we propose two possible solutions using signal 

processing in the encrypted domain's tools.  

First we use a cryptographic scheme belonging to the somewhat homomorphic 

scheme's family and we propose both an identification and an authentication 

non-interactive scheme. In the first protocol the biometric probe of a specific 

individual is compared with all the probes contained in a database looking for 

a positive match. In the second protocol, instead, the new probe of an enrolled 

individual is compared with the probe of the same individual stored during the 

enrollment phase. 

As a second contribution, we propose SEMBA: a protocol secure against active 

adversary for multibiometric recognition. In this case we look for a trade-off 

between efficiency and accuracy by combining information from two biometric 

traits instead of only one. The protocol relies on SPDZ, a new framework 

proposed by Damgård et al. which is secure also in the presence of an active 

adversary. 
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