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Abstract

E
very day we share our personal information through digital systems which

are constantly exposed to threats. For this reason, security-oriented dis-

ciplines of signal processing have received increasing attention in the last

decades: multimedia forensics, digital watermarking, biometrics, network mon-

itoring, steganography and steganalysis are just a few examples. Even though

each of these fields has its own peculiarities, they all have to deal with a com-

mon problem: the presence of one or more adversaries aiming at making the

system fail. Adversarial Signal Processing lays the basis of a general theory

that takes into account the impact that the presence of an adversary has on

the design of effective signal processing tools.

By focusing on the application side of Adversarial Signal Processing, namely

adversarial information fusion in distributed sensor networks, and adopting

a game-theoretic approach, this thesis contributes to the above mission by ad-

dressing four issues. First, we address decision fusion in distributed sensor

networks by developing a novel soft isolation defense scheme that protects the

network from adversaries, specifically, Byzantines. Second, we develop an op-

timum decision fusion strategy in the presence of Byzantines. In the next step,

we propose a technique to reduce the complexity of the optimum fusion by re-

lying on a novel nearly-optimum message passing algorithm based on factor

graphs. Finally, we introduce a defense mechanism to protect decentralized

networks running consensus algorithm against data falsification attacks.





Part I

Introduction, Basic Notions,

and State of Art





Chapter 1

Introduction

”Security against defeat implies defensive tactics; ability to defeat the enemy

means taking the offensive.”

Sun Tzu, ”The Art of War”

”When you play the game of thrones, you win or you die. There is no

middle ground.”

Cersei Lannister, ”Game of Thrones”

1.1 Motivation

I
n the era of digital revolution, intelligent and digital systems are invading

our lives. This evolution has a fundamental impact on social, political and

economical domains both at personal and society level.

While this digital world is of extreme importance and contributes to the

health of our society, its ultra-fast growth creates new opportunities to per-

petrate digital crimes, that is cybercrimes, all the more, that this new kind

of criminal activity does not need anymore the physical presence of criminals

on the crime scene. Criminals and victims are no more limited to territorial

borders since crimes are perpetrated in a virtual cyberspace. These crimes

can target economy and finance, public health and national security.

Cybercrimes encompass a spectrum of activities ranging from violating

personal privacy to illegal retrieval of digital information about a firm, a

person and so on. Crimes like fraud, child pornography, violation of digital

privacy, money laundering, and counterfeiting stand on the middle of the cy-

bercrimes spectrum. Due to the anonymity provided by the internet, criminals

are concealed over the cyberspace to attack their specific victims. Another
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part of these crimes aims at altering the data of individuals within corpo-

rations or government bureaucracies for either profit or political objectives.

The other part of the spectrum is occupied by crimes that aim at disrupting

internet functionality. These range from spam, hacking, and Denial of Service

(DoS) attacks, to cyberterrorism that, according to the U.S. Federal Bureau of

Investigation (FBI), is any ”premeditated, politically motivated attack against

information, computer systems, computer programs, and data which results in

violence against non-combatant targets by sub-national groups or clandestine

agents”. The public awareness about the danger of cyberterrorism has grown

dramatically since 11 September 2001 attacks. Especially nowadays, due to

the existence of numerous terrorist groups that are interested in attacking a

vast list of targets. These groups are benefiting from the cyberspace to re-

cruit personnel to get involved into terrorist activities. As an evidence about

the economical impact of cybercrimes, McAfee reported in 2014 that the es-

timated cost of cybercrime on the global economy is more than 400 billion

dollars [1].

For all these reasons, the fight against cybercrime occupies a top position

in the priorities list of many governments around the globe. For instance, in

the United States, within the department of justice, the FBI’s Cyber Division

is the agency responsible to combat cybercrime [2]. Other agencies like the

U.S. Secret Service (USSS) and U.S. Immigration and Customs Enforcement

(ICE) have specific branches committed to fight cybercrimes [3]. Moreover,

the USSS runs the National Computer Forensic Institute (NCFI) that offers

training courses in computer forensics to help the state and local law officers,

prosecutors, and judges to conduct basis electronic crimes investigations, re-

spond to network intrusion incidents, conduct computer forensics examina-

tion, and strengthen their prosecution and adjudication [4]. In addition, the

Internet Crime Complaint Center (IC3) serves as a partnership between the

FBI and the National White Collar Crime Center -known as NW3C-. IC3

aims to provide the public with a suitable and reliable reporting mechanism

to submit information to FBI. For this sake, IC3 accepts online complaints

from victims of internet crimes or any interested third party [5].

Attention to and fight against cybercrimes is not limited to governmental

institutions, it also involves scientific researchers with various backgrounds
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from all around the globe. Researchers devote their effort to develop ef-

fective solutions to these security problems and take effective steps toward

secure defense solutions and algorithms to combate cybercrime. Signal pro-

cessing researchers are on the top of the list of scientists engaged in such an

effort. Increasing attention has been devoted to disciplines like multimedia

forensics [6], [7], digital watermarking [8], steganography and steganalysis [9],

biometrics [10], network intrusion detection, spam filtering [11], [12], traffic

monitoring [13], videosurveillance [14] and many others. Despite enormous

differences, all these fields are characterized by a unifying feature: the pres-

ence of one or more adversary aiming at system failure. So far, the problem of

coping with an adversary has been addressed by different communities with

very limited interaction among them. It is not surprising, then, that similar

solutions are re-invented several times, and that the same problems are faced

again and again by ignoring that satisfactory solutions have already been dis-

covered in contiguous fields. The lack of a unifying view makes difficult to

grasp the essence of the addressed problems and work out effective solutions.

While each adversarial scenario has its own peculiarities, there are some com-

mon and fundamental problems whose solution under a unified framework

would speed up the understanding of the associated security problems and

the development of effective and general solutions. The absence of a unifying

framework raises the need for a general theory that takes into account the

presence of an adversary and its effect on the design of effective signal pro-

cessing tools, i.e. a theory of Adversarial Signal Processing (Adv-SP), a.k.a.

Adversary-aware Signal Processing [15].

Adv-SP is an emerging discipline that aims at studying signal processing

techniques explicitly thought to withstand the intentional attacks of one or

more adversaries aiming at system failure. Its final aim is modeling the inter-

play between a Defender, wishing to carry out a certain processing task, and

an Attacker, aiming at impeding it. A natural framework to model this inter-

play relies on Game-Theory since it provides a powerful mathematical model

of conflict and cooperation between rational decision-makers. This framework

helps to overcome the so called ”cat & mouse” loop in which researchers and

system designers continuously develop new attacks and countermeasures in a

never-ending loop. By adopting the game-theoretical formalization, a tremen-
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dous step toward the development of the theoretical foundation of Adv-SP has

been already achieved, [6], [16], [17] and [18] are just a few examples. While

these works aim at developing a general Adv-SP theory, in this thesis, we

apply some general ideas from the Adv-SP field to the problem of Adversar-

ial Information Fusion in Distributed Sensor Networks. In these networks,

some distributed sensors, for instance autonomous sensors, actuators, mobile

devices, must provide some information about the state of an observed sys-

tem. In the centralized approach, the information collected by the sensors is

sent to a ”Fusion Center” (FC). By using all the information received from

the nodes, the FC is responsible of making final global decision about the

state of the system of interest. The actual process of integrating the infor-

mation submitted by several sources into a coherent understanding of the

system state is called ”Information Fusion”. Therefore, Information Fusion,

in general, refers to particular mathematical functions, algorithms, methods

and procedures for combining information. This term is very flexible and the

classification of various techniques depends on different perspectives i.e type

of information, type of data representation, level of information abstraction,

and others [19]. Information fusion techniques are extensively used in sev-

eral fields. In economic for instance, information fusion is used to compute

the Retail Price Index (RPI) which is a measure of the change of the aver-

age prices over a certain amount of time, or the Human Development Index

(HDI) that is a metric to assess the social and ecomic development levels of

countries, and many others. In addition, in biology, fusing DNA and RNA

sequences is another form of information fusion. Moreover, in Computer Sci-

ence and Artificial Intelligence, information fusion is used widely, i.e sensors

data fusion in robotics, fusion of images in computer vision, ensemble meth-

ods for data mining, decision making systems, multi-agents systems and many

others [19], [20], [21].

In this thesis, we focus on Information Fusion in Distributed Sensor Net-

works in the presence of adversaries. Specifically, we address a setup wherein

some of the sensors might be interested in corrupting the information fusion

process to pursue an exclusive benefit from the system under inspection, forge

the knowledge about the state of the system or corrupt the whole network
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functionality. These malicious and misbehaving nodes1 are known as adver-

saries and due to their presence, the problem at hand is called ”Adversarial

Information Fusion”. Following this setting, the defender or the network de-

signer is asked to modify the fusion process to take into account that a part

of the network is under the dominance of the adversaries. The modification

of the fusion process is to be implemented at the FC if the network is cen-

tralized, while, on the other hand, is to be implemented locally at the nodes

when the network is fully decentralized.

Adversarial Information Fusion in Distributed Networks is of great im-

portance in many applications. Cognitive Radio Networks (CRN) offer a first

example. The electromagnetic spectrum is a naturally limited resource that is

ever-demanded due to the explosion of wireless technology [22], [23]. The use

of a fixed access policy is ineffective because it assigns spectrum portions ex-

clusively to licensed users. A report by Federal Communication Commission

(FCC) in 2002 revealed that the licensed spectrum is heavily underutilized by

the owners [24]; this raises the need for a more flexibile and efficient spectrum

allocation policy. Dynamic Spectrum Access (DSA) is a promising solution to

underutilization of the spectrum [25]. In DSA there are two types of users: li-

censed users known as Primary Users (PU) and second priority users known as

Secondary Users (SU). A PU has the highest priority to access the spectrum

resource since he is the license holder; SUs on the other hand, are allowed

to access the spectrum when it is free or in a shared manner providing no

harmful interference to PUs [25]. DSA requires that SUs are able to sense,

monitor and access the spectrum in an efficient, intelligent and dynamic way.

An SU device with cognitive capabilities is known as Cognitive Radio (CR).

This concept was introduced by Joseph Mitola III in his PhD thesis in year

2000 [26], [27]. Cognitive Radio is Software Defined Radio (SDR) device that

is a fully programmable wireless device that can sense its surrounding en-

vironment and adapt its transmission and reception parameters accordingly.

The intelligent and dynamic adaptation capabilities of the CR are the reason

behind calling it a ”Brain Empowered Wireless Communication” [28].

Cognitive Radios must sense the spectrum by monitoring the PU activity

1Throughout the thesis, we will alternatively use the words sensor and node to refer to

a distributed sensor network entity.
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in order to decide if the spectrum is occupied or not. This decision can

be made either locally by exchanging the ”measurements” between CRs or

remotely by sending the measurements to a FC that ”fuses” the received

information and broadcasts back the final global decision. The adversaries

in CRN can modify their measurements to cause a wrong decision about the

spectrum occupancy. This wrong decision can have many effects, for instance,

cause harmful interference to PU’s transmission, exclusive use of the spectrum

by the adversaries or even just confusing the network.

Wireless Sensor Networks (WSN) offer another important example. A

WSN is a group of spatially distributed sensors that are responsible to moni-

tor a physical phenomenon, health and environmental conditions like temper-

ature, sound, pressure, etc... In WSN, the sensors are responsibile to measure

the physical phenomenon of interest and then pass the information gathered

to the nearby nodes or to a FC which fuses all the data received and comes

out with a global decision. If the adversary can control some of the sensors,

based on its objective and knowledge of the physical system, it can perform

arbitrary attacks by flooding the network with random information or devise

a strategic attack by sending specific wrong information to force a precise false

global decision. These behaviors can disrupt severely the network’s function-

ality and operation and consequently, corrupt the whole WSN.

The emerging field of multimedia forensics offers an additional example.

Due to nowdays powerful and user-friendly softwares, editing digital media

such as images, video or audio no longer requires professional skills. Typi-

cally, editing is used to enhance the media quality, e.g. by enhancing image

contrast, denoising an audio track or re-encoding a video to reduce its size.

However, altering a digital media can serve less ’innocent’ purposes. For in-

stance, to remove or implant evidence or to distribute fake content so to create

a deceiving forgery. This makes the truthfulness of the message conveyed by

media contents doubtfull and to be questioned since ”seeing is not believing”

anymore and a photographic image cannot be considered as an evidence to

support any fact. Multimedia Forensics tackles with this problem based on

the observation that any processing tends to leave traces that can be exploited

to expose the occurrence of manipulations [29], [6]. Very often, the creation

of a forgery involves the application of more than one single processing tool,
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thus leaving a number of traces that can be used by the forensic analyst; this

consideration suggests to analyze the ”authenticity” of digital medias by using

more than one tool. Furthermore, these tools are far from ideal and often give

uncertain or even wrong answers. Especially because after each improvement

in forensic tools, the adversaries impose an opposite effort to devise more

powerful techniques that leave minor evidence into the forged content in the

attempt to impair the forensic detection tools. Therefore, whenever possible,

it may be wise to employ more than one tool searching for the same trace.

By taking into account the presence of the adversaries, fusing all the local

decisions to make a final decision about document’s authenticity can improve

forgery detection [30].

Online reputation systems are an additional example. A reputation sys-

tem gathers evidence from agents about objects like products, good, services,

business, users or digital contents in order to come out with reputation scores.

Most online commercial systems collect user feedbacks as evidence to compute

scores for the objects of interest. These scores have a major influence on new

online agent’s decision. Thus, they provide enough incentive for attackers

to manipulate them by providing false/forged feedbacks. By doing so, the

attackers try to increase or decrease the reputation of an object and hence,

manipulate the decisions of possibile new agents [31].

1.2 Goals and Contributions

Various types of adversaries exist for distributed sensor networks and they can

be classified depending on many factors: their objectives, their behavior, the

amount of information they have about the system under control as well as

the network, and so on [32], [33], [34], [35]. Attacks in which adversaries have

full control of a number of nodes and behave arbitrarily to disrupt the network

are referred to as Byzantines. The term Byzantine Attack is originated from

the Byzantines general problem stated by Lamport et al. in [36] as follows:

”a group of generals of the Byzantine army camped with their troops around

an enemy city. Communicating only by messenger, the generals must agree

upon a common battle plan. However, one or more of them may be traitors

who will try to confuse the others. The problem is to find an algorithm to
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ensure that the loyal generals will reach agreement”. The relation between

this problem and distributed sensor networks is straightforward as Byzantine

generals play the role of internal adversaries. A Byzantine adversary may have

various behaviors, such as lying about network connectivity, flooding network

with false traffic, forging control information, modifying the information sent

by nearby sensors (e.g., peer to peer networks), or dominating the control of

a strategic set of sensors in the network and colluding [37]. As an example, in

cooperative spectrum sensing in cognitive radio networks, Byzantine attacks

are known as Spectrum Sensing Data Falsification Attack” (SSFD) [38], [39],

[40]. In addition to the above examples, in wireless sensor networks, various

byzantine attacks exist and they can severly degrade the network performance

and corrupt its proper functionality [41], [37].

1.2.1 Goal of the Thesis

With the above ideas in mind, in this thesis we consider the problem of byzan-

tine attacks in distributed sensor network in a binary decision setup [42], [43].

In the literature binary decision is also referred to as binary detection (or

Binary Hypothesis Test), since, in many applications, the decision problem

refers to the detection of the presence or absence of a certain phenomenon or

signal. For instance, in source identification in multimedia forensics, the ana-

lyst aims to distinguish which between two sources (e.g. a photo camera and

a scanner) generated a specific digital content or to identify the specific device

used to acquire the content [6]. In Cognitive Radio Networks, the FC or the

network wants to distinguish between two cases: the presence or absence of

PU signal in the spectrum of interest [27], [28]. In addition, in WSN, the net-

work wants to detect the presence of a certain physical phenomenon [44]. As a

last example, machine learning binary detection and classification for various

applications (e.g. spam filtering) to differentiate to which class a specific data

belongs [45], [46].

The goal of this thesis is to study the problem of adversarial information

fusion in distributed sensor networks, analyzing the effects of the Byzantines

on the binary detection problem and developing possible defense strategies to

mitigate the effect of the attacks on the information fusion process. Later, by

assuming that Byzantines are not näıve and because ”to every action, there
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is always a reaction” [47], we formalize the interplay betwen the Byzantines

(the Attackers) and the Defender (the network designer) in a Game-Theoretic

fashion following the Adv-SP setup. We adopt such a formalization to study

the optimal behavior of the attacker and defender. We analyze the existence

of equilibrium points for the game and we then evaluate the performance

achieved by the players at the equilibrium so to understand who is going to

”win” the game. It is noteworthy to observe that the nature of game-theory

by itself proposes the best strategy or optimal behavior favoring none of the

players. However, since our goal in this thesis is to make sensor networks more

secure and also, the role of the defender is usually considered more legal,

the discussions will sometimes be carried out by considering the defender’s

perspective.

1.2.2 Contribution of the Thesis

We start by considering an adversarial decision fusion in which the nodes

send to the FC a vector of binary decisions about the state of a system over

an observation window. Considering this setup, as a first contribution, we

develop a novel soft identification and isolation scheme to exclude the reports

sent by the Byzantines from the decision fusion process. By isolation we mean

the process whereby the FC removes Byzantines’s decisions from the fusion

process after identifying them among the nodes in the distributed network.

By adopting this soft scheme, the FC can assign a reliability value to each

node. Moreover, as an additional contribution, we formalize the competition

between the Byzantines and the FC in a game-theoretic sense and we study

the existence of an equilibrium point for the game. Then, we derive the

payoff in terms of the decision error probability when the players ”play” at

the equilibrium.

As a second contribution, we derive the optimum decision fusion rule in

the presence of Byzantines in a centralized setup. By observing the system

over an observation window, we adopt the Maximum A Posteriori Probabil-

ity (MAP) rule while assuming that the FC knows the attack strategy of

the Byzantines and their distribution across the network. With regard to

the knowledge that the FC has about the distribution of Byzantines over

the network, we consider several cases. First, we examine an unconstrained
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maximum entropy scenario in which the uncertainty about the distribution of

Byzantines is maximum, which means that the a-priori infromation available

at the FC about the Byzantines’s distribution is minimum. Then, we consider

a more favorable scenario to the FC in which the maximum entropy case is

subject to a constraint. In this scenario, the FC has more a-priori information

about Byzantines’s distribution i.e the average or the maximum number of

Byzantines in the network. Finally, we consider the most favorable situation

in which the FC knows the exact number of Byzantines present in the network.

Concerning the complexity of the optimal fusion rule, we develop an efficient

implementation based on dynamic programming. Thereafter, we introduce a

game-theoretic framework to cope with the lack of knowledge regarding the

Byzantines strategy. In such a framework, the FC makes a ”guess” by select-

ing arbitrarily a Byzantine’s attacking strategy within the optimum fusion

rule. By considering the decision error probability as the payoff, we study the

performance of the Byzantines as well as the FC at the game equilibrium for

several setups when the players adopt their best possibile strategies.

By revisiting the complexity of the optimum fusion rule, as an additional

contribution, we propose a novel message passing approach based on factor

graph. We consider a more general model for the observed system in which we

examine both independent and Markovian sequences. Then, we show that the

message passing algorithm can give a near-optimal performance while reduc-

ing the complexity from exponential to linear as a function of the observation

window size.

In the last part of the thesis, we consider a decentralized version of the

data fusion process. In this setup, the nodes detect the state of the system by

iteratively exchanging their observations with each other in order to reach an

agreement about the status of the system. The decentralized fusion algorithm

is known as consensus algorithm [48], [49]. In this scenario, we focus on a case

in which the adveraries attack the links between the system being monitored

and the sensors. To make the network more robust, we propose a primary

isolation step to be carried at the node level to filter out the falsified informa-

tion injected by the attacker. In turn, as a reaction, the adversary may adjust

the strength of the falsification attack to avoid that the forged measurements

are discarded. So, we employ game-theory to model the competition between
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the adversary and the network. Then, we use numerical simulations to derive

and study the equilibrium points of the game and the performance at the

equilibrium.

1.3 Thesis Overview

We start by briefly introducing some basic notions of detection theory in

Chapter 2 specifying some information fusion techniques. Chapter 3 presents

a short introduction to Game Theory. Then, in Chapter 4 we review some

of the most common security threats and defenses in distributed detection

systems.

In Chapter 5 we develop a novel soft identification and isolation scheme for

Byzantines and we model the competition between them and the FC through

game-theory.

In Chapter 6 we derive the optimum fusion rule in the presence of Byzan-

tines and we consider a game-theoretic framework to model the interplay be-

tween them and the FC. Then, we study the optimum behavior of the players

at the equilibrium of the game considering several Byzantines distributions in

the network.

In Chapter 7, we explain a near-optimal message passing approach based

on factor graph that reduces the complexity of the optimum Fusion rule.

Chapter 8 deals with the decentralized binary detection in distributed

networks using the consensus algorithm under falsification attack. We make

the algorithm more robust by proposing a primary isolation step to filter out

the measurements coming from the links under the control of the adversaries.

Then, by formalizing the game between the network and the adversary in a

game-theoretic setup and derive the best performance for both players.

The thesis ends Chapter 9 where we give some guide lines for future re-

search.

1.4 Publication List

The research activity of this thesis resulted in the following publications:

Chapter 5



16 1. Introduction

A. Abrardo, M. Barni, K. Kallas, and B. Tondi, ”Decision fusion with cor-

rupted reports in multi-sensor networks: a game-theoretic approach,” in Pro-

ceedings of CDC’15, IEEE Conference on Decision and Control, Los Angeles,

California, December 2014.

Chapter 6

Andrea Abrardo, Mauro Barni, Kassem Kallas, and Benedetta Tondi, ”A

Game-Theoretic Framework for Optimum Decision Fusion In the Presence of

Byzantines”, in IEEE Transactions on Information Forensics and Security,

vol. 11, no. 6, pp. 1333-1345, June 2016.

Chapter 7

Andrea Abrardo, Mauro Barni, Kassem Kallas, and B. Tondi, ”A Message

Passing Approach for Decision Fusion in Adversarial Multi-Sensor Networks”,

Submitted to Elsevier Journal on Information Fusion.

Chapter 8

Kassem Kallas, Benedetta Tondi, Riccardo Lazzeretti and Mauro Barni,

”Consensus Algorithm with Censored Data for Distributed Detection with

Corrupted Measurements: A Game-Theoretic Approach,” Proceedings of the

7th Conference on Decision and Game Theory for Security, New York, NY,

November, 2016.



Chapter 2

Distributed Detection and Information
Fusion in Sensor Networks

”We are to admit no more causes of natural things than such as are both

true and sufficient to explain their appearances.”

Isaac Newton, ”Philosophiæ Naturalis Principia Mathematica”

”Hypotheses should be subservient only in explaining the properties of things

but not assumed in determining them, unless so far as they may furnish

experiments.”

Isaac Newton

2.1 Introduction

Distributed sensor networks consist of a set of spatially distributed sensors

that operate as data collectors or decision makers to monitor a shared

phenomenon. This is a common case in many real world situations like air-

traffic control, economic and finance, medical diagnosis, electric power net-

works, wireless sensor networks, cognitive radio networks, online reputation

systems, and many others. Usually, in centralized networks, if there are no

power, channel, communication or privacy constraints, the sensors can send

the full raw information they collect to a FC. However, real life situations

are different and several constraints must be considered e.g. when sensors are

spatially distributed over a large territorial area, when the channel bandwidth

is limited, or even when the sensors are supplied with short life power sources.

To address these limitations, sensors must perform some local processing be-

fore sending a compressed version of the collected information to the FC. The

abstraction level of the information summary can vary a lot. For instance, it
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can be a quantized set of the raw information, a soft summary statistic like

an average or a likelihood value, or even a single information bit.

By means of a fusion rule, the FC integrates the information received from

the sensors to make a global decision regarding the system or phenomena

under probation. The definition of the fusion rule depends on the a-priori

information available about the sensors, the transmission channel and the

phenomena as well as the information type provided by the sensors. Fusion

rules can be as simple as voting rules or advanced sophisticated statistical

rules.

In the rest of this chapter, first, we briefly introduce some basic notions

of detection theory and outline some detection techniques used locally at the

sensors as well as the corresponding decision strategy. Then, we list some

common information fusion techniques that can be employed by the FC in

the centralized setup. Regarding the decentralized case, we introduce very

shortly the emerging field of signal processing over graphs and we explain de-

centralized fusion by means of consensus algorithm as one of its application.

Finally, we give an overview of cognitive radio networks and cooperative spec-

trum sensing as an example of distributed detection and information fusion.

2.2 Detection Theory

Detection theory is a methodology to model the decision making process in

order to decide among various classes of items and how to react to that deci-

sion. Making decisions and detecting events is not restricted to human being

and other living creatures but it also includes intelligent devices and ma-

chines. Detection theory is fundamental in the design of electronic and signal

processing systems [42] as it has been applied widely in information systems

i.e. in radar systems, digital communications, sensor networks, image pro-

cessing, bio-medicine, control systems, seismology, cognitive radio networks

and many others. The main common objective of detection theory is being

able to decide about the existence and the status of a phenomenon or event.

For example, a radar system must decide about the presence or absence of an

aircraft or any other target, a sensor network has to detect the presence or

absence of a natural incident, medical test must detect if a certain disease is
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present or not, and image processing may aim at detecting the presence of a

specific object or feature in an image.

The most common case is when the sensors are faced with a binary de-

tection problem i.e. they must decide about the presence or absence of a

phenomenon. In the literature, a widely used synonym for the same problem

is binary hypothesis testing. Usually, the two hypotheses are denoted by H0

and H1 where, H0 is called the null hypothesis and represents the absence of

the phenomenon of interest, whereas H1 is called the alternative hypothesis

and represents the presence of the phenomenon. A more general situation is

when the sensors have to decide between a set of M hypotheses. However,

this case is out of the scope of this thesis. By focusing on the binary detection

problem, in the setup considered in this chapter, the system state1 is observed

by a network of n sensors through vectors x1,x2, . . . ,xn. The sensors can de-

cide about the system state by producing the information u1, u2, . . . , un that,

depending on the information abstraction, can be an information value or a

decision bit. The system state Si, i ∈ {0, 1} can be in S0 under hypothesis

H0 and in S1 under hypothesis H1. P (H0) and P (H1) are the a-priori prob-

abilities that the system is under hypothesis H0 and H1, respectively. The

sensors are not assumed to communicate with each other and compute their

local information independently and send it the FC, which in turn, has to

come out with a global decision S∗ ∈ {0, 1} regarding the state Si. The above

setup is illustrated in Figure 2.1.

In the following subsection, we consider the case of a single sensor observ-

ing the system through a variable x. The sensor employs a certain detection

technique in order to make a decision about the state of the system. We will

present the most common techniques to perform binary detection and decision

locally at the sensor.

2.2.1 Bayesian Detection

In Bayesian detection, two fundamental pieces of information must be avail-

able to the sensors: the a-priori probabilities about the system states P (H0)

and P (H1), and the observation probability densities conditioned to the hy-

1from now on, we interchange the use of the phenomenon, the event and the system state

to refer to the system under probation.
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Fusion Center

NodeNodeNode

Detection Rule Detection Rule Detection Rule

The System State

Figure 2.1: Parallel Topology

Table 2.1: Decision cases in binary detection

System State Hj

Decision Hi
H0|H0 H0|H1

H1|H0 H1|H1

potheses, namely, p(x|H0) and p(x|H1). After the decision in favor of Hi, i ∈
{0, 1}, four situations are possible; among them two are correct decisions and

the others are erroneous. These cases are shown in Table 2.1.

Each decision is taken by the sensor at a cost Cij referring to the case of

deciding Hi while Hj is true. Clearly, the erroneous decision costs C01 and

C10 cost the sensor more than the correct decisions (C00 and C11). The cost

here refers to the cost of making a decision and the consequences emerging
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from that decision. Following this formulation, a sensor prefers to employ a

decision rule which minimizes the average cost or risk function C given by

C =

1∑
i=0

1∑
j=0

CijP (Hj)P (Hi|Hj) (2.1)

In [50] it is shown that the decision rule that minimizes R is given by the

Likelihood Ratio Test (LRT) as

Λ(x) =
P (x|H1)

P (x|H0)

H1

≷
H0

P (H0)(C10 − C00)

P (H1)(C01 − C11)
, (2.2)

where, the left hand side of the equation Λ(x) is the likelihood ratio, while

the right hand side is the decision threshold λ given by

λ =
P (H0)(C10 − C00)

P (H1)(C01 − C11)
(2.3)

So, the LRT test can be written as

Λ(x)
H1

≷
H0

λ (2.4)

Consequently, the sensor decides in favor of H1 when the Λ(x) is greater than

λ and in favor of H0 otherwise.

The Log-likelihood ratio test (LLRT) is obtained by applying the loga-

rithm to both sides of Equation (2.4):

log Λ(x)
H1

≷
H0

log λ (2.5)

2.2.2 Detection Performance Metrics

For a sensor, the performance of the adopted detection rule is evaluated based

on correct and wrong decision probabilities. The wrong decision probabili-

ties are the probability of false alarm, PFA, and the probability of missed

detection, PMD, and are given by

PFA = P (H1|H0)

PMD = P (H0|H1)
(2.6)
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These terminologies originate from radar theory to indicate the cases of

missing an existing target and raising an alarm when the target is absent. A

false alarm refers to a case in which the sensor mistakenly decides for H1 while

the true system state is H0, whereas a missed detection occurs when the sensor

decides for H0 and the true system state is H1. In statistics, the probabilities

PFA and PMD are known as Type I and Type II error probabilities as well

as false positive and false negative, respectively. Consequently, the correct

detection probability PD and the null probability Pnull (usually called as true

negative) are given by

PD = P (H1|H1) = 1− PMD

Pnull = P (H0|H0) = 1− PFA
(2.7)

and hence, the overall decision error probability is given as

Pe = P (H0)PFA + P (H1)PMD (2.8)

In order to evaluate the performance of a detector, a common graphical repre-

sentation known as the Receiver Operating Characteristics (ROC)is used [51].

The use of this curve is not restricted to radar and detection theory but also

extended to medicine, radiology, bio-metrics, machine learning and data min-

ing research. Usually, the ROC curve shows the performance of the detector

by plotting the PD versus PFA by varying the decision threshold. Other forms

of the curve are constructed by using other detection probabilities. An ex-

ample of a ROC curve is depicted in Figure 2.2. From this Figure, it can

be seen that the worst case performance of a detector is on the straight line

where PFA = PD since, in this case, the detector is completely ”blind” and

decides by just flipping a coin. Below this line, the detector can flip its deci-

sion to return back to correct decision region. The optimal operation point

for a detector is the nearest point to the top left corner of the graph. At

this point the detector achieves the highest PD with an acceptable constraint

on PFA since both probabilities cannot be jointly optimized. An ideal but

not realistic detector is a detector with an operating point exactly at that

corner with PD = 1 and PFA = 0. It is useful to observe that, typically,

when a Bayesian detection is used, Pe is considered for performance evalu-

ation while, for the Neyman-Pearson detector presented in the next section,

the performance evaluation usually relies on the ROC curve.
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Figure 2.2: ROC curve example

2.2.3 Neyman-Pearson Detection

In practice, the a-priori probabilities required to implement a Bayesian detec-

tor are difficult to be known. In addition, assigning the costs Cij is difficult

or even impossible. Thus, selecting an ”optimal” threshold for the LRT test

cannot be guaranteed. Neyman-Pearson (NP) detection is a design criterion

that overcomes these limitations. By constraining one type of decision er-

ror (usually the PFA), the NP detector minimizes the other type. By doing

so, the NP detector does not need the a-priori probabilities but instead, it

needs to specify a maximum tolerable error for one error type among the two.

Formally speaking, the NP detector constraints PFA to an acceptable value

αNP and maximizes the detection probability PD as illustrated in Figure 2.3.

Hence, the LRT for the NP setup becomes

log Λ(x)
H0

≷
H1

log λNP . (2.9)

The decision threshold λNP is computed by letting PFA = αNP and solving

the following integral:

PFA =

∫ ∞
λNP

p(Λ/H0)dΛ = αNP . (2.10)
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Figure 2.3: Neyman-Pearson Setup

The threshold λNP obtained by solving this integral, is optimal for the LRT

test.

2.2.4 Sequential Detection

In some situations, the sensor decision is based on a vector of observations

instead of a single observation and the number of observations needed to

make a decision is not fixed. In this situation, the information is gathered

sequentially by the sensor over an observation window. To minimize the delay,

the sensor make its decision as soon as the collected information is sufficient

to make an acceptable ”accurate” decision. With sequential detection, a new

information is collected only when the available observations are not sufficient

to make a decision. For this reason, the sequential detector uses two thresholds

for the LRT test, so to collect a new observation only when the LRT value

falls between the two thresholds.

The Neyman-Pearson approach to sequential detection has been developed

by Abraham Wald and known as the Wald’s Sequential Probability Ratio Test

(SPRT) [52], [53]. In each step of SPRT, the sensor compares the LRT value to
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two thresholds λ0 and λ1 determined based on pre-defined values for PFA and

PMD. If the value falls between λ0 and λ1, the sensor takes a new observation.

On the other hand, the sensor decides for H1 if the LRT result is greater than

λ1 whereas, it decides for H0 when the value is smaller than λ0. The decision

scenario of the SPRT detector is depicted in Figure 2.4.

Figure 2.4: SPRT detector

The vector xK = [x1, x2, . . . , xK ] represents the observations gathered by

a sensor at the Kth time instant. Then, the LRT of the SPRT is constructed

as follows

Λ(xK) =
p(xK|H1)

p(xK|H0)
=

K∏
k=1

p(xk|H1)

p(xk|H0)
. (2.11)

The thresholds λ0 and λ1 are computed by constraining PFA and PMD to

αST and βST , respectively, and are computed as follows

λ0 ≈
βST

1− αST
λ1 ≈

1− βST
αST

.

(2.12)

The reason of the approximation is that in the discrete case, the signal

may cross the threshold between the samples. Therefore, the approximation is
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obtained by neglecting the overshoots associated with the threshold crossing

events.

The main drawback of this detection method is the time required to make

a decision. In addition, the detector can get stuck in a never-ending loop

between the thresholds λ0 and λ1 due to the low quality of the observations.

On the contrary, the advantage of the SPRT is that it takes on average fewer

observations than a fixed size observation test [50].

2.3 Information Fusion Rules

In this section, we consider the parallel topology depicted in Figure 2.1. This

is, the most common topology to model distributed sensor networks. In the

following, we give an overview of the commonly used fusion rules that can

be implemented in both centralized and decentralized network setups. The

choice of a fusion rule depends on many factors; for instance, the processing

capability of the sensors, the available information about the system and the

network, the channel bandwidth and quality, the energy consumption, the

presence of attacks and adversaries and many others.

2.3.1 Centralized Fusion

In centralized networks, after local processing each sensor i sends its informa-

tion ui to the FC. Each sensor is assumed to have local detection and false

alarm probabilities Pdi , Pfai . The performance of the fusion rule deployed

at the FC is measured using global detection and false alarm probabilities

denoted as QD and QFA, respectively. Two classes of fusion rules are consid-

ered: simple and advanced rules. In the former, the processing burden is low

and the amount of a-priori information required at the FC is small; while in

the latter, more processing is required and more information must be known

in advance since most of these rules are statistically based.

2.3.1.1 Simple Fusion Rules

The term ”simple” refers to the fact that the operations performed at the FC

are computationally cheap. These rules can be used in the absence of a-priori
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information about the system and the network. We start by considering

the case of binary reports, a case which is suitable for bandwidth limited

applications. By receiving a pool of binary bits, the FC can apply a ”hard” or

”voting” fusion rule, namely, AND, OR and k-out-of-n rule [54]. The decision

bit is computed locally at the sensor by performing an LRT detection as in

Section 2.2, then, the node sends a bit 1 when the LRT decides for H1 and 0

otherwise. Using the AND rule, the FC decides for S∗ = 1 only when all the

sensors decide in favor of H1,

S∗ = 1 : if
n∑
i=1

ui = n

S∗ = 0 : otherwise

(2.13)

while, by applying the OR rule [55], it decides for S∗ = 1 if any of the nodes

decide for H1. The global decision of the OR rule is given by

S∗ = 1 : if

n∑
i=1

ui ≥ 1

S∗ = 0 : otherwise

(2.14)

The most general voting rule is the k-out-of-n rule wherein the FC decides

S∗ = 1 when at least k nodes out of n decide for H1. A special case is the

majority rule where k = bn2 c. The k-out-of-n rule is formalized by

S∗ = 1 : if
n∑
i=1

ui ≥ k

S∗ = 0 : otherwise

(2.15)

The performance of the fusion rule are evaluated by QD = P (S∗ = 1|H1)

and QFA = P (S∗ = 1|H0) as the global probabilities of detection and false

alarm. By assuming that the each sensor makes its decision independently of

the others, the expressions for the performance are given below. QDAND
and
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QFAAND
obtained by applying the AND rule are given by

QDAND
=

n∏
i=1

Pdi ,

QFAAND
=

n∏
i=1

Pfai ,

(2.16)

while, for the OR rule, QDOR
and QFAOR

are given by

QDOR
= 1−

n∏
i=1

(1− Pdi),

QFAOR
= 1−

n∏
i=1

(1− Pfai),
(2.17)

and finally, for the k-out-of-n rule

QDkn
=

n∑
i=k

(
n

i

)
P idi(1− Pdi)

(n−i)

QFAkn
=

n∑
i=k

(
n

i

)
P ifai(1− Pfai)

(n−i).

(2.18)

A comparative performance evaluation of the three voting rules under different

settings is conducted in [56].

When there are no limitations on the bandwidth, the overall performance

of the fusion technique can be improved by sending more detailed information

to the FC [57]. This information can be a statistics or the LRT value about

the system (known as ”soft decision”). We present three simple and common

information fusion rules: Square Law Combining (SLC) [58], Maximal Ratio

Combining (MRC) and Selection Combining (SC) [59]. MRC is an optimal

combination scheme when the Channel Side Information (CSI) is known at

the FC [60]. The CSI is the Signal to Noise ratio (SNR) between the sensor

i and the system and it is denoted by γi. This information is not required

by SC and SLC. By applying the SLC, the FC sums all the received data as

follows

USLC =

n∑
i=1

ui, (2.19)
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MRC is a modified version of SLC wherein a weight wi proportional to SNR

is assigned to each information provided by the sensors as follows

UMRC =
n∑
i=1

wiui. (2.20)

On the other hand, the SC selects the information of the sensor experiencing

the maximum SNR

USC = max
γi

(u1, u2, . . . , un). (2.21)

Using soft combination rules, the decision for the value of S∗ is made by

comparing the combined information to a threshold ζ. In [61], [62], [63], [64], it

is shown that at the cost of higher overhead and channel quality requirement,

the soft fusion rules provide better performance than hard fusion rules.

2.3.1.2 Advanced Fusion Rules

Many forms of advanced information fusion schemes exist. They depend on

many factors ranging from the a-priori available information to the appli-

cation scenarios wherein these schemes are applied. Examples of advanced

information fusion techniques include evidential belief reasoning, fusion and

fuzzy reasoning, rough set fusion for imperfect data, random set theoretic

fusion and others [65]. Here we consider statistical information fusion due

to its perfect match with distributed sensor network applications. In addi-

tion, statistical information fusion has a very rich background and in the

literature it is the most common approach applied to distributed sensor net-

works [50], [66]. By adopting such an approach, the LRT has to be performed

at the FC after receiving the information from the sensors. Given the vector

u = u1, u2, . . . , un with the information sent to the FC, the Bayesian infor-

mation fusion that minimizes the average cost of the global decision is given

by

Λ(u) =
P (u1, u2, . . . , un|H1)

P (u1, u2, . . . , un|H0)

S∗=1
≷

S∗=0

P0(C10 − C00)

P1(C01 − C11)
= λ (2.22)

where, Cij is the cost of the global decision of the FC in favor of Hi when

the system is in state Hj . Hereafter, given the conditional independence
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assumption of local decisions provided by the sensors, the Bayesian fusion

becomes

Λ(u) =
P (u1, u2, . . . , un|H1)

P (u1, u2, . . . , un|H0)

=
n∏
i=1

P (ui|H1)

P (ui|H0)

=
∏
S1

P (ui = 1|H1)

P (ui = 1|H0)

∏
S0

P (ui = 0|H1)

P (ui = 0|H0)

=
∏
S1

1− Pmdi
Pfai

∏
S0

Pmdi
1− Pfai

.

(2.23)

where, Sj is the set of the sensors for which ui = j. By applying the logarithm

to the last part of Equation (2.23), we obtain∑
S1

log
(1− Pmdi

Pfai

)
+
∑
S0

log
( Pmdi

1− Pfai

) S∗=1
≷

S∗=0
log(λ) (2.24)

which also can be expressed as

n∑
i=1

[
ui log

(1− Pmdi
Pfai

)
+ (1− ui) log

( Pmdi
1− Pfai

)] S∗=1
≷

S∗=0
log(λ) (2.25)

This is an optimal fusion rule and it is known as the Chair-Varshney rule [67].

It can be seen as performing a weighted sum over the local decisions provided

by the sensors. The Chair-Varshney rule requires the knowledge of the local

performances of the sensors , the a-priori probabilities about the system state,

and the costs.

These limitations can be overcome by using the Neyman-Pearson rule [68]

maximizing the detection probability at the FC (QD) while constraining the

false alarm probability QFA.

Λ(u) =
P (u1, u2, . . . , un|H1)

P (u1, u2, . . . , un|H0)

S∗=1
≷

S∗=0
λ. (2.26)

The threshold λ is set in such a way to satisfy the constraint on the global

false alarm probability QFA, in the following∑
Λ(u)>λ

P (Λ(u)|H0) = QFA. (2.27)
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If the FC must take a decision as soon as the information sent by the sensors is

enough, the sequential probability ratio test (SPRT) can be applied globally.

In this case, if M information samples are already enough, the FC can make

the global decision. If not, the FC can collect more information from the

sensors. The SPRT can be formalized as follows

M∏
i=1

P (ui|H1)

P (ui|H0)
= Λ(u), (2.28)

then, the decision is made according to the rule:
Λ(u) ≥ Υ1, S∗ = 1

Υ0 < Λ(u) < Υ1 take new value

Λ(u) ≤ Υ0, S∗ = 0

(2.29)

The thresholds Υ0 and Υ1 are computed by constraining both QFA = αFC
and QMD = βFC as in the following equation:

Υ1 ≈
1− βFC
αFC

Υ0 ≈
βFC

1− αFC
.

(2.30)

2.3.2 Decentralized Fusion

In decentralized fusion, the network by itself in the absence of the FC is

responsible to decide about the system state. To do so, the information fusion

techniques are implemented locally at the sensors. The global decision about

the system state is reached by iterating a peer-to-peer information exchange

among the sensors. Decentralized information fusion is desirable in many

situations, for instance, when the sensors do not want to exchange information

with a remote party due to privacy reasons or power constraints. Even more,

in large networks, the FC can become a bottleneck or a single point of failure.

Finally, the nature of the future communication networks is fully distributed

and self-adaptive thus, it is preferable to avoid to rely on a central unit to

control the data exchange and decision in the network. Recently, consensus

algorithms [49] have been used in distributed sensor networks and several
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other fields. In a consensus algorithm, each sensor communicates with its

neighbors and updates its local information about the system by applying

a local fusion rule that is a weighted combination of its own information

and the information received from its neighbors. This process is repeated

until the whole network reaches a steady state value which is used by all the

sensors to decide about the state of the system. In the sequel, we give a short

introduction to the emerging field of signal processing over graphs and then,

as an application of the field, we introduce the consensus algorithm.

2.3.2.1 Signal Processing over Graphs

Signal processing over graphs is an emerging field that combines algebraic and

spectral graph theoretic concepts to process signals on graphs [69]. A graph

is a generic data representation to describe the geometric structure of the

data. Data forms can be found in many applications, including social, energy,

transportation, sensor, information, and neuron networks. Each entity in

these networks is represented by a vertex on the graph and each couple of

related vertices are connected by an edge. The edge is usually associated

to a weight that reflects the similarity between the vertices it connects, for

instance, it can be concluded from the physical phenomenon between the

vertices or can be inferred from the data itself. As an example, the edge

weight may be inversely proportional to the physical distance between nodes

in a network. Each vertex on the graph carries a data sample and signals on

graphs can be seen as the set of the samples. A representative example of

signals over graph is illustrated in Figure 2.5.

Many real life examples can be represented by signals over graphs. For

example, spread of disease, human migration patterns, trading goods in trans-

portation systems, sensing results in WSN or CRN and many others. For in-

stance, the anatomical connectivity of functional regions of the cerebral cortex

used in brain imaging applications [70]. Additional examples come from image

processing where graph-based filtering methods are applied for better edges

and textures recognition [71], [72]. Cooperative spectrum sensing in cognitive

radio networks offers another example. In this application, the vertices are

the SUs performing the spectrum sensing, the edges are the communication

links between them, and the signals are the measurements collected about
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Figure 2.5: Signals over a Graph. The length of the red bar represents the

values of the signal and its direction indicates its value sign.

the PU activity in the spectrum. The connection between signal processing

over graphs and distributed sensor networks is straightforward, as sensors are

represented by the vertices and the link connecting them as the edges. The

signals carried by the sensors are the information gathered about the system

of interest.

2.3.2.2 Consensus Algorithm

The Decentralized Distributed Sensor Network Model

A distributed sensor network can be modeled as a non-directed graph G
where the information can be exchanged in both directions between sensors.

A graph G = (N , E) consists of the set of vertices N = {n1, ..., nn} and the set

of edges E where (ni, nj) ∈ E if and only if there is a common communication

link between ni and nj , i.e., they are neighbors. The neighborhood of a node

ni is indicated as Ni = {nj ∈ N : {(ni, nj), (nj , ni)} ∈ E }. A graph G can be

represented by its adjacency matrix A = {aij} where aij = 1, if (ni, nj) ∈ E ,

0 otherwise. An example of consensus network is depicted in Figure 2.6 and

its corresponding matrix is given in Equation (2.31).
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Figure 2.6: A consensus network example.

A =



0 1 1 0 1 0

1 0 0 1 0 0

1 0 0 1 0 0

0 1 1 0 1 1

1 0 0 1 0 1

0 0 0 1 1 0


(2.31)

The degree matrix D of G is a diagonal matrix with dii = ai1+ai2+...+ain,

dij = 0, ∀i, j 6= i [73].

The Consensus Algorithm

Consensus algorithm for distributed detection is a protocol where the sensors

locally exchange information with their neighbors in order to converge to an

agreement about the state of a system [49]. It consists of three phases: the

initial phase, the state update phase and the decision phase.

1. Initial phase: the sensors collect their initial information xi(0) about

the system state, and exchange the information with their neighbors.

2. State update phase: at each time step k, each sensor updates its state

based on the information received from its neighbors. Then, at step

k + 1 we have:

xi(k + 1) = xi(k) +
ε

wij

∑
j∈Ni

(xj(k)− xi(k)) (2.32)
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where, 0 < ε < (max
i
Ni)−1 is the update step parameter and wij is

the weight assigned to neighbor’s information value. A special case is

the equal weight combining rule for which wij = 1, ∀i. This phase is

iterated until the sensors reach the consensus value x̄ = 1
n

∑
i∈N xi(0),

which corresponds to the mean of the initial measurements. This is when

the state update at the sensors is the same at consecutive iterations.

3. The final decision phase: this is the last phase in which all sensors

compare the consensus value x̄ to a threshold λ to make the final decision

S∗:

S∗ =

{
1, if x̄ > λ,

0, otherwise.
(2.33)

It is noteworthy to mention that the consensus algorithm was originally

proposed as an efficient way to compute averages in a decentralized fashion,

but its application to distributed detection was not immediately considered.

Afterwards, the use of consensus algorithm for detection and the specific re-

lated problems started being developed as it can be seen in [74–76]. Besides,

note that more general formulations for the consensus algorithm have been

proposed, for instance, compact forms with more general weights or combi-

nation matrices, as it can be seen in [49].

2.4 Cognitive Radio Networks: application of Dis-

tributed Detection and Information Fusion

In [28], a spectrum hole or a spectrum whitespace is defined as ”A spectrum

hole is a band of frequencies assigned to a primary user, but, at a particular

time and specific geographic location, the band is not being utilized by that

user”. An example of spectrum holes in depicted in Figure 2.7. The con-

cept of cognitive radio is introduced in Chapter 1 as an SDR-based device

that, using DSA, allows to efficiently exploit the spectrum holes to improve

the spectrum utilization. Therefore, cognitive radio is an intelligent wireless

system that learns from the surrounding environment, and adapts, on the fly,

its parameters to the variations of the incoming Radio Frequency (RF) stim-
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uli by dynamically changing its operating parameters i.e transmission power,

carrier frequency, modulation, etc.

Figure 2.7: A snapshot of Power Spectral Density from 88 to 2686 MHz

measured in Massachusetts. The picture is taken from [77].
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Figure 2.8: Cognitive Cycle. The picture source is: [28].

Cognitive capability is obtained by interacting with the environment using

what is called a cognitive cycle illustrated in Figure 2.8. Cognitive cycle

contains three main actions:

• The radio-scene analysis is used to estimate the interference temperature

of the radio environment and detect the spectrum holes.
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• The channel identification is used to estimate the channel-state infor-

mation and predict the channel capacity for transmission.

• The transmit-power control and dynamic spectrum management.

A CR may construct its cognitive cycle around a specific narrow spectrum

hole, or around a wideband hole or even around a set of narrow band spectrum

holes in order to provide the best performance in spectrum management,

efficiency, and transmission power control.

The most fundamental key enabling task and first step for learning the

environment and performing other cognitive actions is the radio-scene analy-

sis, namely, the ability to sense the spectrum. Spectrum sensing aims at of

obtaining awareness about the spectrum usage and existence of primary users

in a geographical area. This awareness can be obtained by using geolocation

and database, by using beacons, or by local spectrum sensing at cognitive ra-

dios [28], [78] . Spectrum sensing can be carried out by locally measuring

the spectral content, or the radio frequency energy over the spectrum; or by

obtaining several spectrum features together such as time, space, frequency,

code, signal type, modulation, waveform, bandwidth, carrier frequency, etc.

However, using several features together requires more powerful signal pro-

cessing techniques and higher computational complexity. In what follows,

we will analyze the energy detector, as this is the most common technique to

sense the spectrum. Then, we show the benefit from cooperation between CRs

to improve the accuracy of the spectrum sensing result and hence, improve

spectrum utilization.

2.4.1 Energy Detector

Energy Detector (ED) is the most common approach to spectrum sensing for

its low computational and implementation complexities [79]. In addition, it

does not require any a-priori information about the PU signal. It is a thresh-

old based signal detection method that, in order to decide about the spectrum

occupancy, compares the output of the detector to a threshold [80]. This is

an example of the binary detection problem as PU activity represents the

system state, SU is the sensor performing the detection, and H0 represents

the absence of PU signal and H1 its presence. Some challenges for the imple-
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mentation of ED includes the threshold selection, the inability to distinguish

between the PU signal and channel noise, its bad performance under low

(SNR) [81], and its inefficiency in detecting spread spectrum signals [82], [83].

The signal received by the ED is written in the following form,

y(m) = s(m) + w(m), (2.34)

where, s(m) is the PU signal, w(m) is the Additive White Gaussian Noise

(AWGN), and m is the sample index. The information gathered by the ED

as decision metric is given by the square sum of all the samples as, namely:

Λ =

M∑
m=1

|y(m)|2. (2.35)

The detection and false alarm probabilities PD, PFA of the ED are given as

follows

PD = P (Λ > λE |H1), (2.36)

PFA = P (Λ > λE |H0) (2.37)

The decision threshold λE can be selected by using Bayesian or Neyman-

Pearson techniques as discussed in Section 2.2.

The noise can be modeled as a Gaussian random variable with zero-mean

and variance σ2
w, i.e. w(m) = N(0, σ2

w). In the simplified case, the same model

can be adopted for the PU signal as well, i.e. s(m) = N(0, σ2
s). Under these

assumptions, the decision metric in Equation (2.35) which is the square sum

of M Guassian samples, follows a chi-square distribution with 2M degrees of

freedom X 2
2M and it is formalized as:

Λ =

{
σ2
w
2 X 2

2M , under H0

σ2
w+σ2

s
2 X 2

2M , under H1.
(2.38)

The probabilities PFA and PD are computed as, follows [84]

PFA =
Γ(M2 ,

λE
2 )

Γ(M2 )
, (2.39)
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PD = QM
2

(
√

2γS ,
√
λE), (2.40)

where Γ(.) is the incomplete gamma function [85], QM
2

is the generalized

Marcum Q-function [86], and γS = ES
N0

is the SNR experienced by the detector.

More advanced detection techniques for cognitive radio offer better per-

formance than ED, but require more a-priori information about the PU signal

and has higher complexity and implementation cost. Example of these detec-

tors are cyclo-stationary detector, matched filter detector, radio identification

detector, wave-based form detector and others. A complete survey about

spectrum sensing techniques can be found in [78], [87].

2.4.2 Cooperative Spectrum Sensing

Cooperation among SUs performing spectrum sensing has been proposed to

solve problems like fading, shadowing, hidden PUs and the delay in sensing

time [88], [89], [90]. Cooperative spectrum sensing decreases the probabilities

of missed detection and false alarm considerably and hence, increases the

spectrum utilization and decreases the interference to PU. In addition, as it

is shown analytically and numerically in [91], cooperative sensing provides

higher capacity gains. Cooperation between SUs can be implemented in both

centralized and decentralized fashion [92].

2.4.2.1 Centralized Cooperative Spectrum Sensing

In centralized spectrum sensing, a FC collects information from cognitive ra-

dios and then computes the global decision to identify the availability of the

spectrum. Then, it broadcasts the global decision back to the cognitive net-

work. To do so, simple and advanced detection techniques like those explained

in Section 2.2 can be implemented by the cognitive radios. In turn, the FC

can employ a fusion rule to come out with the final decision about the PU

activity in the spectrum. For instance, in [64], sensing results considered in

both soft and hard versions are fused at the FC referred to as master node

in order to detect TV channels. In [93], SUs send a quantized version of the

local information to the FC which, in turn, applies a likelihood ratio test over
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the received likelihood ratio information to compute the final decision. The

case of centralized fusion with one bit local decision is considered in [94].

2.4.2.2 Decentralized Cooperative Spectrum Sensing

In the decentralized spectrum sensing, which is often referred to as distributed

sensing, cognitive radios share their information among each other but they

make their own decisions as to which part of the spectrum they can use.

Decentralized sensing is more advantageous over the centralized version, in

that there is no need for a backbone infrastructure and then, it has lower

network implementation cost. Many decentralized fusion techniques has been

considered in a cognitive radio setup for information exchange and coordina-

tion among the nodes. Examples are: consensus algorithm [95], [96], diffusion

adaptation algorithm [97], belief propagation algorithm [98] and many others.

2.5 Conclusion

We introduced some basic notions of detection theory and outlined some

detection techniques used locally at the sensors as well as the correspond-

ing decision strategy. Specifically, we discussed the Bayesian detector, the

Neyman-Pearson detector and the SPRT detector used locally at the sensors

and their extension to be deployed globally at the FC. Then, we listed some

common information fusion techniques that can be employed by the FC in

the centralized setup. Specifically, we discussed the AND, OR and k-out-of-n

rules when sensors send hard decisions, and the SLC, MRC and SC combi-

nation rules when sensors send soft decisions. Regarding the decentralized

case, we explained decentralized fusion by means of consensus algorithm as

an application for the emerging field of signal processing over graphs. Finally,

we gave an overview of cognitive radio networks and cooperative spectrum

sensing, as an example of distributed detection and information fusion, and

we specifically discussed the spectrum sensing by means of energy detector.



Chapter 3

Basics of Game Theory

”Thus the expert in battle moves the enemy, and is not moved by him.”

Sun Tzu, ”The Art of War”

3.1 Introduction

G
ame theory is a mathematical discipline that studies the situations of

competition and/or cooperation, between decision makers known as play-

ers. Game theoretic concepts apply whenever the actions of several decision-

makers are mutually dependent, that is their choices mutually affect each

other. For this reason, game theory is sometimes referred to as interactive

decision theory.

Although examples of games occurred long before, the birth of modern

Game Theory as a unique field was in 1944, with the book ”Theory of Games

and Economic Behavior” by John von Neumann and Oskar Morgenstern [99].

Game Theory provides tools to formulate, model and study strategic scenarios

in a wide variety of application fields ranging from economics and political

science to computer science. A fundamental assumption in almost all variants

of Game Theory is that each decision maker is rational and intelligent. A

rational player is one who has certain specific preferences over the outcomes

of the game. A player intelligence is its ability to always select the move

that gives him the most preferable outcome, given his expectation about his

opponents move. The objective of game-theory is to predict how rational

players will play the game, or, to give advice on the strategies to be followed

when playing the game against rational opponents.

Game-theoretic models are highly abstract representations of classes of

real life situations for which satisfying solutions for players are recommended

with desirable properties. Game Theory encompasses a great variety of sit-
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uations depending on the number of players, the way the players interact,

the knowledge that a player has on the strategies adopted by the opponents,

the deterministic or probabilistic nature of the game, etc. In all the models,

the basic entity is the player, which should be interpreted as an individual

or as a group of individuals, making a decision or following a strategy. A

distinction can be made between situations in which the players have com-

mon goals and hence play a cooperative game and situations in which the

players have different and possibly conflicting goals. In the latter case we

say that the game is non-cooperative. Hybrid games contain cooperative and

non-cooperative players. For instance, coalitions of players are formed in a

cooperative game, but they play in a non-cooperative manner. Another pos-

sible classification between game-theoretical models concerns the amount of

information available to the players about each other, leading to Games with

Perfect or Imperfect Information. A more common classification is made be-

tween simultaneous and sequential games. Simultaneous games are games

where both players move simultaneously, or if they do not move simultane-

ously, they are unaware of the earlier players’ moves so that their moves are

effectively simultaneous. On the contrary, in sequential games the players

have some knowledge about earlier moves. This knowledge does not need to

be complete i.e., a player may know that an earlier player did not perform one

particular move, while he does not know which of the other available moves

the first player actually chose.

Game representations are used to differentiate between simultaneous and

sequential games. To distinguish between the two type of games, here, we

introduce briefly games in normal and extensive forms. A normal form game is

represented by a matrix where, for the 2-players case, one player is considered

as the row player, and the other as the column player. Each row or column

represents a strategy (which is the move selected by the player) and each entry

in the matrix represents the payoff, that is the final outcome of the game for

each player for every combination of strategies. An example of a 2-player

game in normal form is shown in Table 3.1.
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Strategy 1 Strategy 2

Strategy 1 (a, b) (c, d)

Strategy 2 (e, f) (j, h)

Table 3.1: Example of game representation in normal form. The row player

is player 1 and the column player is player 2. The entries of the table are the

payoffs of the game for each pair of strategies.

A game in extensive form can be described using a game tree, that is,

a diagram that shows the choices (strategies) made by players at different

points in time. The nodes of the tree represent the players positions in the

game (in time) and the edges are the strategies. The payoffs are represented

at the end of each branch of the tree. A complete tree is a tree that starts

at the initial position, that is the beginning of the game, and contains all

possible moves from each player. The complete tree is the extensive form

game representation. An example of 2-player game in extensive form is shown

in Figure 3.1, where, the payoff of pi,j refers to player i ∈ {1, 2} selecting a

strategy j ∈ {1, 2}. Note that the value of pi,j is generic as for a specific player

could be different from one branch to another. For instance, the value of p1,1

when player 2 chooses strategy 1 or strategy 2 is not necessarly equal. The

same case also holds for the payoff of player 2 with respect to the strategies

selected by player 1.

For non-cooperative games, the normal form is used when the players

choose their move or set of moves once and for all at the beginning, that is

when all the players’ decisions are made simultaneously. By contrast, the ex-

tensive form is used for sequential games, when each player needs to reconsider

his moves when it is his turn to play [100].

3.2 Normal Form Games

The normal form (also called strategic form) is the basic game model studied

in non-cooperative game theory. A game in normal form lists each player

strategies, and the outcomes that result from each possible combination of

choices. A two-player normal form game is defined by the four-tuple G(S1,S2,

v1, v2), where S1 = {s1,1 . . . s1,n1} and S2 = {s2,1 . . . s2,n2} are the sets of
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Player 1

Player 2 Player 2

Figure 3.1: Example of a game described in extensive form.

strategies available to the first and second player, and vl(s1,i, s2,j), l = 1, 2 is

the payoff (also called utility) of the game for the lth player, when the first

player chooses the strategy s1,i and the second chooses s2,j . A profile is a pair

of strategies (s1,i, s2,j). Games in normal form are compactly represented by

matrices, namely, payoff matrices.

3.2.1 Game Analysis

3.2.1.1 Nash Equilibirium

Given a game, determining the best strategy that each player should follow to

maximize its payoff is not easy. Even more, a profile which is optimum for both

players may not exist. A common goal in Game Theory is to determine the

existence of equilibrium points, i.e., profiles that, to a certain extent, represent

a satisfactory choice for both players. While there are many definitions of

equilibrium, the most famous and commonly adopted is the one by John

Nash [101,102]. In a 2-player game, a profile (s1,i∗ , s2,j∗) is a Nash equilibrium

if:

v1(s1,i∗ , s2,j∗) ≥ v1(s1,i, s2,j∗) ∀s1,i ∈ S1

v2(s1,i∗ , s2,j∗) ≥ v2(s1,i∗ , s2,j) ∀s2,j ∈ S2,
(3.1)
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where for a zero-sum game v2 = −v1. In practice, a profile is a Nash equi-

librium if none of the players can improve its payoff by changing its strategy

unilaterally. This profile is known as the equilibrium point or saddle point of

the game. Two types of Nash equilibria exist: pure strategy Nash equilibrium

and mixed strategy Nash equilibrium.

Strategies in Normal Form Games

• Pure Strategy Nash Equilibirum:

A pure strategy Nash equilibrium is a Nash equilibrium in which each

player selects a single strategy and plays it. Then, a pure strategy profile

(s1,i∗ , s2,j∗) is a Nash equilibrium for the game with s1,i∗ and s2,j∗ being

the pure strategies for player 1 and player 2, respectively. This means

that none of the player will improve his payoff by changing his strategy

unilaterally.

• Mixed Strategy Nash Equilibirum:

Players could also follow another, more complicated strategy. They can

randomize their choice over the set of available strategies according to a

certain probability distribution. Such a strategy is called a mixed strat-

egy. Given a 2-player normal form game G(S1,S2, v1, v2), let Π(Z) be

the set of all the probability distributions over the set Z = {z1, . . . , zn}.
Then, the set of mixed strategies for a player i are all probability dis-

tributions over its strategy set Si, namely, MSi = Π(Si). The set of

mixed strategy profiles is the cartesian product of single mixed strategy

sets MS = MS1 ×MS2. If player 1 selects a mixed strategy ms1 over

the set of strategies S1 and has beliefs about the second player mixed

strategy ms2 ∈ MS2 over S2 then, the expected payoff for player 1

given that player 2 will play ms2 is the weighted average of the payoffs

where the weight to each payoff given a strategy s1 is the probability

that player 1 will play that strategy. This can be expressed as:

v1(ms1,ms2) =
∑

ms2∈MS2

ms2(ms2)v1(ms1,ms2) (3.2)

An example of a game in normal form in which the players will follow
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mixed strategies is the ”Rock-Paper-Scissors” game with an example of

its payoff matrix shown in Table 3.2.

Rock Paper Scissors

Rock (0,0) (-1,1) (1,-1)

Paper (1,-1) (0,0) (-1,1)

Scissors (-1,1) (1,-1) (0,0)

Table 3.2: ”Rock-Paper-Scissors” game example. The row player is

player 1 and the column player is player 2.

Let r1, p1, s1 be the probabilities that player 1 plays rock, paper, and

scissors, respectively. Then, the expected payoff of player 1 is: v1 = p1−
s1 if player 2 rocks, v1 = s1−r1 if player 2 plays paper, and v1 = r1−p1

if player 2 plays scissors. Player 2 tries to minimize player 1’s payoff, so

we have: v1 ≤ p1−s1, v1 ≤ s1−r1, and v1 ≤ r1−p1. Then, player 1 must

find r1, p1, and s1 that maximize his payoff subject to r1 + p1 + s1 = 1.

By solving this optimization problem, the mixed strategy for player 1

turns out to be (r1, p1, s1) = (1/3, 1/3, 1/3). Optimization problems of

this kind are solved by means of Linear Programming which will discuss

by the end of this subsection.

It is known that every normal form game with a finite sets of moves has

at least one Nash equilibrium in mixed strategies [101].

For strictly competitive games, Nash equilibrium has interesting prop-

erties. Let G be a two-players zero-sum game and (s1,i∗ , s2,j∗) be a Nash

equilibrium; then, s1,i∗ maximizes the first player payoff in the worst case

scenario, i.e., assuming that second player selects his most profitable strategy

corresponding to the most harmful move for the first player. Similarly, s2,j∗

maximizes the second player payoff. We also have that [102]

max
s1,i∈S1

min
s2,j∈S2

v1(s1,i, s2,j) = min
s2,j∈S2

max
s1,i∈S1

v1(s1,i, s2,j) = v1(s1,i∗ , s2,j∗) (3.3)

As a consequence of relation (3.3), if many equilibrium points exist, they

all yield the same payoff. In a 2-player game, a player minmax value is always
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equal to its maxmin value, and both are equal to the Nash equilibirum value

as shown by Von Neumann’s Minimax Theorem [103].

A known result asserts that, if the two players are allowed to adopt mixed

strategies over their set of moves, finding the Nash equilibrium for the game

corresponds to solving one of the two Linear Programming (LP) problems in

Equation (3.3).

Figure 3.2: Centipede game example.

For completeness, it should be mentioned that in some types of games,

Nash equilibria can be highly inefficient. An example of this situation is the

Centipede game [102]. This game is an extensive-form game in which two

players alternately get a chance to take a larger portion of a continuously

increasing amount of money. As soon as a player decides to take the money,

the game ends with that player getting the larger amount while the other

player gets less amount of money. An example of the centipede game is shown

in Figure 3.2. In this figure, a 1 at a black circle (decision node) denotes a

decision opportunity for player 1 and a 2 at a decision node denotes a decision

opportunity for player 2. The top number at the end of each vertical line is the

payoff for the first player and the bottom number is the payoff for the second

player. The first player has the first move: if he chooses to take the money by

playing D, both players will get a payoff of 1, otherwise, the opportunity to

make a decision passes to player 2. In the second step, the second player has

the decision opportunity: if he chooses D, player 1 gets payoff of 0 and player



48 3. Basics of Game Theory

2 gets 3, otherwise, by playing A the opportunity to make a decision passes

to player 1, and so on till the end of the game tree. If both players always

choose to not take the money (by playing A), they both receive payoff of 100

at the end of the game. Therefore, both players will receive a payoff of 100

if they always choose A rather than D and will receive payoff of 1 if player 1

chooses D on his first move. Using backward induction – which is the process

of reasoning backward from the end of a problem – game theory predicts that

the first player will choose to play D at the very first move and both players

will receive a payoff of 1.

However, in experimental studies as the one shown in [104], the authors

found that theoretical predictions of game-theory is rarely followed. By con-

sidering several versions of the game with different game length, they found

that in only 7% of the four-move games, 1 % of the six-move games, and

15 % of the high payoff games did the first player choose to play D in the

first move. This contradiction can be explained by two reasons. The first is

that some people are selfless and prefer to cooperate with the other player

by always playing A, rather than taking down the money. Another reason is

that people may be incapable of making the deductive reasoning necessary to

make the rational choice predicted by the Nash equilibrium. The fact that

few people play D on the very first move is not surprising, given the small

size of the starting payoff when compared with the increasing payoffs as the

game progresses. As a result, this example shows a case where the prediction

of the Nash equilibrium is not efficient and may contradict real experiments.

Linear Programming

Linear Programming (LP) [105], or linear optimization, is a method to

evaluate the best outcome of a mathematical linear function subject to linear

relationships or constraints. More formally, LP is an optimization technique to

maximize or minimize a linear objective function, subject to linear equality

and linear inequality constraints. Its feasible region is a convex polytope

as in Figure 3.3, which is a set defined as the intersection of finitely many

half spaces, each of which is defined by a linear inequality or constraint. Its

objective function is a real-valued linear function defined on this polyhedron
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(polytope). A linear programming algorithm finds a point in the polyhedron

(on its solid shape surface) where this function has the smallest (or largest)

value if such a point exists.

Figure 3.3: Convex polytope example.

A linear program can be expressed as:

maximize cTx

subject to Ax ≤ b,

and x ≥ 0.

(3.4)

where, x represents the vector of variables to be determined, b and c are vec-

tors of known coefficients, A is a matrix of known coefficients, and (.)T is the

matrix transpose. Here, cTx is the objective function and the constraints of

the problem are the inequalities Ax ≤ b and x ≥ 0. These constraints specify

the convex polytope over which the objective function is to be optimized.

Back to the 2-player game, Equation (3.3) can be seen as solving two

separated LP problems, namely, minimizing the payoff (the function) subject

to S2 and then, maximizing it subject to S1. If the 2-player game is zero-sum,

it will be sufficient to solve one of the linear programming problems to find

the payoffs of both players.
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3.2.1.2 Dominance Solvable Games

Despite its popularity, the practical meaning of Nash equilibrium is often un-

clear, since it cannot be guaranteed that the players will end up playing at the

Nash equilibrium. A particular kind of normal form games for which stronger

forms of equilibrium exist are called dominance solvable games [102]. This

concept is directly related to the notion of dominant and dominated strategies.

A strategy is said to be strictly dominant for one player if it is the best strat-

egy for the player no matter how the other player decides to play. Another

form of dominant strategy is the weak dominant strategy, which, regardless of

what any other player do, gives a payoff at least as high as any other strategy

available in the strategy set, and, gives a strictly higher payoff for some profile

of other players’ strategies. Obviously, if a strictly dominant strategy exists

for one of the players, he will surely adopt it. Similarly, a strategy sl,i is

strictly dominated by strategy sl,j , if the payoff achieved by player l choosing

sl,i is always lower than that obtained by playing sl,j regardless of the choice

made by the other player. Formally, in the 2-players case, a strategy s1,i is

strictly dominated by strategy s1,k for a player, for instance, player 1, if

v1(s1,k, s2,j) > v1(s1,i, s2,j) ∀s2,j ∈ S2. (3.5)

Alternatively, a strategy s1,i is weakly dominated by strategy s1,k for a

player, for instance, player 1, if

v1(s1,k, s2,j) ≥ v1(s1,i, s2,j) ∀s2,j ∈ S2. (3.6)

Following this definition, a strictly dominant strategy is a strategy which

strictly dominates all the other strategies in the strategy set.

A possible technique to solve a game is by recursive elimination of the

dominated strategies since, all the strategies that a player definitely should

not adopt can be removed from the game. In recursive elimination, first,

all the dominated strategies are removed from the set of available strategies,

since no rational player would ever play them. In this way, a new, possibly

smaller game is obtained. Then, at this point, some strategies, that were not

dominated before, may be dominated in the remaining game, and hence are

eliminated. The process is repeated until no dominated strategy exists for
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any player. A rationalizable equilibrium is any profile which remains after

the recursive elimination of dominated strategies [106, 107]. If at the end of

the process only one profile is left, the remaining profile is said to be the only

rationalizable equilibrium of the game, which is also the only Nash equilibrium

point. A dominance solvable game is a game that can be solved according to

the procedure described above. Note that the removal of weakly dominated

strategies will possibly cause the loss of some of the Nash equilibria of the

game. For instance, consider the payoff matrix in Table 3.3, strategy T is

weakly dominant for player 1 and strategy L is strictly dominant for player

2, and (T,L) is a Nash equilibrium, but also (B,L) is a Nash equilibrium that

is lost deleting the weakly dominated strategy B.

L R

T (1, 1) (2, 0)

B (1, 2) (0, 0)

Table 3.3: Example of removal of weakly dominated strategies will cause the

loss of some Nash equilibria. The row player is player 1 and the column player

is player 2.

It goes without saying that the concept of rationalizable equilibrium is a

stronger notion than that of Nash equilibrium [108]. In fact, under the as-

sumption of rational and intelligent players, it can be seen that the players will

choose the strategies corresponding to the unique rationalizable equilibrium

since it will maximize their payoffs. An interesting, related notion of equi-

librium is that of dominant equilibrium. A dominant equilibrium is a profile

that corresponds to dominant strategies for both players and is the strongest

kind of equilibrium that a game in normal form may have.

3.2.2 Examples of Normal Form Games

3.2.2.1 Zero-Sum Games

In Zero-Sum games, also known as strictly-competitive games, the two players

have opposite goals. In this case, the two payoffs are strictly related to each

other, since for every profile we have v1(s1,i, s2,j) + v2(s1,i, s2,j) = 0. In other
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words, the win of one player is equal to the loss of the other, then, only one

payoff must be defined. The payoff v of the game can be defined by adopting

the perspective of only one player, e.g., v1 = v, with the understanding that

the payoff of the second player is equal to −v. In the most common formu-

lation of zero-sum games with perfect information, the sets S1, S2 and the

payoff functions are assumed to be known to both players. In addition, it is

assumed that the players choose their strategies before starting the game so

that they have no idea about the choice of the other player. An example of

zero-sum games is presented in the following.

Matching Pennies

In the game of matching pennies, each of the two players have a coin. They

both flip their coins and simultaneously show their result. If the coins match,

player 1 wins both coins; otherwise, both coins go to player 2. The payoff

matrix of matching pennies game is shown in the Table 3.4.

Heads Tails

Heads (1,−1) (−1, 1)

Tails (−1, 1) (1,−1)

Table 3.4: Matching Pennies game example. The row player is player 1 and

the column is for player 2.

This game has no pure strategy Nash equilibrium since there is no pure

strategy for any of the players and there is no ”best response” by any of

the players. Instead, the unique Nash equilibrium of this game is in mixed

strategies wherein each player selects a head or a tail with a probability of

0.5.

3.2.2.2 Prisoner’s Dilemma

A Prisoner’s dilemma [109] is a famous example of a 2-player normal form

game in which the two players are prisoners suspected of a crime. Each

player is taken separately to a room and asked to confess the crime or deny

it. Based on the choice of the two players, each of them will stay a number

of years in jail. The Prisoner’s dilemma game can be formalized as:
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• Players are Prisoner 1 and Prisoner 2.

• S1 = S2 = {Confess,Deny}.

• The cost matrix is given in Table 3.5.

Confess Deny

Confess (−1,−1) (−3, 0)

Deny (0,−3) (−2,−2)

Table 3.5: Prisoner’s Dilemma payoff matrix example. The row player

is Prisoner 1 and the column player is Prisoner 2.

In this game, regardless of whether a prisoner decision is to confess or

deny, each prisoner gets less punishment by denying the crime and hence

accusing the other prisoner. The reason behind the dilemma is that prisoner

2 can either confess or deny. In the first case, if prisoner 2 confesses, prisoner

1 should deny, because going free is better than staying 1 year in jail. In

the second case, if prisoner 2 denies, prisoner 1 should deny as well, because

getting jailed for 2 years is better than 3. Therefore, in both cases prisoner

1 should deny the crime as well as prisoner 2 and hence the strategy profile

(Deny, Deny) with payoffs (2, 2) is a pure strategy Nash equilibrium for the

game.

3.2.2.3 Battle of Sexes

The battle of sexes is a 2-player coordination game in normal form. In this

game, a man and a woman want to go out together to watch one of two movies

F1 and F2 at two different places. The players are currently in two different

places and did not agree before where to go. They have to decide each on his

own where to go, knowing that they cannot communicate with each other.

Their main concern is to be together, however the man has a preference for

F1 and the woman for F2. The payoff for each strategy of the game in Table

3.6 accounts also for the harm that the couple receives if they do not go to

the same place.
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F1 F2

F1 (2, 1) (0, 0)

F2 (0, 0) (1, 2)

Table 3.6: Battle of sexes game example. Row player is the man and column

player is the woman.

If the players go separated to watch different movies, they will receive no

payoff. Instead, if they go together, only one of them will enjoy the movie

and the other will receive only the payoff related to the pleasure of staying

with his/her partner. Hence, there will be two Nash equilibria which are

the profiles: (2, 1) and (1, 2). This battle can be solved by the use of mixed

strategies.

Suppose that the woman is likely to choose F1 with probability w and

F2 with probability 1 − w. Likewise, the man is likely to choose F1 with a

probability m and F2 with probability 1−m. In this case, the probabilities

become: w ×m that both go to F1, (1 −m) × w that the man goes to F2

and the woman to F1, m × (1 − w) the man goes to F1 and the woman to

F2, and (1−m)× (1− w) that both go to the F2. The man will receive an

expected payoff of 2w if he goes to F1 and 1−w if he goes to F2. If the man

mixes the two strategies of going to F1 and F2, they must have the same

expected payoff so to make the other player uncertain, otherwise, the best

response would be to always use the move whose expected payoff is higher.

In this way, we have 2w = 1− w and hence, w = 1/3. Likewise, conditioned

on the man’s strategy, on the woman side we have m = 2(1−m) and hence,

m = 2/3.

In the above setting in Table 3.6, we have: the probability that the two

players will choose either to go together to F1 (or F2) is 2/9, the probability

that the man goes to F2 and the woman to F1 is 1/9, and the probability

that the man goes to F1 and the woman to F2 is 4/9. Then, the expected

payoff for the man becomes 2× (2/9) + 1× (2/9) + 0× (4/9) = 2/3. Similarly,

the expected payoff for the woman is also 2/3. Based on the expected payoffs,

the values (m,w) = (2/3, 1/3) is a mixed strategy Nash equilibrium for the

game and a fair choice for both players since it returns the same payoff for

both. It is noteworthy to observe that for the mixed strategy Nash equilibrium
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(m,w) = (2/3, 1/3), the payoff of both players is lower than 1, i.e the minimum

payoff in the Nash equilibria.

3.2.2.4 Common-Payoff Games

Common-Payoff games are games in which, for every different strategy profile

ss, the players have the same payoff. These games are also known as pure

coordination games or team games since all players need to coordinate on a

strategy to maximize their payoff. An example of Common-Payoff game is

shown in the following payoff matrix:

Left Right

Left (1, 1) (0, 0)

Right (0, 0) (1, 1)

Table 3.7: Common-payoff game example. The row player is driver 1 and the

column is driver 2.

In this typical example two drivers drive toward each other and meet on

a narrow road and they have to select the road side upon which to drive.

Both have to deviate from each other in order to avoid collision. If both

follow the same deviation they will manage to pass each other, but if they

choose different deviations they will collide. In the payoff matrix in Table 3.7,

successful passing is represented by a payoff of 1, and a collision by a payoff

of 0. In this case there are two pure Nash equilibria: either both deviate to

the left, or both deviate to the right. Therefore, it doesn’t matter which side

both drivers select, as long as they both select the same.

3.3 Conclusion

In this chapter we gave a brief introduction to game theory. First, we in-

troduced games in normal form and we explained some solution concepts to

these games, namely, Nash equilibrium and dominance solvability. Then, we

discussed some examples of games in normal form to clarify the mechanics

of the games and their solutions. As game theory may be used to model

competitions, in this thesis, it will play a fundamental role in modeling the
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competition between the players, namely, the adversaries as the attackers and

the sensor network. Throughout the thesis we will focus on 2-player games

in normal form in which the first player (the attackers) and the second player

(the defender) aim at acheiving opposite objectives. At one hand, the at-

tackers want to introduce decision errors in the distributed sensor network in

order to achieve some selfish or malicious objectives. On the other hand, the

defender aims at protecting the sensor network against attackers and provide

the most possible robust detection and decision performance. By adopting

such a model, we are aiming at finding possible equilibria describing the in-

terplay between the attackers and the defender and then, try to find out who

will win the game.



Chapter 4

Security Attacks and Defenses in
Distributed Sensor Networks

”If you know the enemy and know yourself, you need not fear the result of

a hundred battles. If you know yourself but not the enemy, for every victory

gained you will also suffer a defeat. If you know neither the enemy nor your-

self, you will succumb in every battle.”

Sun Tzu, ”The Art of War”

”Power resides where men believe it resides. It’s a trick, a shadow on the

wall. And a very small man can cast a very large shadow.”

Lord Varys, ”Game of Thrones”

4.1 Introduction

I
nformation fusion in distributed sensor networks may suffer from various

threats and attacks. An incentive for the adversary could be the critical

nature of the phenomenon such as troops passage in a battlefield, monitoring

traffic flow using sensors [110], [111], [34], image authenticity in front of a

court for crime witness [6], [112], and many others. In addition, deceiving

the detection and decision of the network about the phenomenon could be

beneficial for the attacker e.g. to gain exclusive access to the spectrum in

cognitive radio networks [113], change an item reputation in online reputation

systems [114] and others.

A fundamental and key enabler factor to ensure proper sensor networks

functionality is securing them against attacks and threats. A fundamental step

for the protection of sensor networks is securing the information fusion process

in order to ensure a trusted and accurate detection and decision about the

observed phenomenon. To do so, the information fusion process should take
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into account the possible presence of sensors under the control of adversary

in the network knowing that they can have various malicious objectives.

In this chapter, we outline the most common attacks in centralized dis-

tributed sensor networks as well as in consensus-based decentralized networks.

In addition, we present the most common countermeasures to protect the net-

work from these attacks.

4.2 Attacks to Distributed Sensor Networks

We start by considering the centralized network setup illustrated in Figure 4.1.

The illustration shows several possible adversarial setups. In these setups, the

information fusion process will carried out at the level of the binary decisions

r1, . . . , rn provided by the sensors. The adversary can carry out its attacks in

three positions, which are:

• The observations about the phenomenon used by the sensors to make the

local decision. In this attack, the adversary can access and eavesdrop the

observations and modify them since he has control over the observation

channel between the system and the sensor network. In this way, they

can control what the sensors will observe about the phenomenon and

consequently, deceive the local decision and hence, indirectly, corrupt

the information fusion process performed later at the FC.

• The sensors themselves. In this attack, a fraction (or all) of the sen-

sors are under the control of the adversary. Then, the adversary can

modify the detection and decision rules, the decision thresholds or the

data computed locally to be sent to the FC. Altering the information

computed locally by the sensors can maliciously affect the result of the

fusion process since a part of the information fused is unliterary altered

by the adversary.

• The information sent by the sensors. In this case, the attackers does

not have control over the sensors but instead, they have access to the

links between the sensors and the FC. Alike the case of attacking the

sensors, this attack can make the information fusion fail. The difference
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between the two types of attacks is that in the latter, the adversary does

not have access to the observations.

Fusion Center

Sensor

Detection Rule

The System State

Attacks to Observations

Attacks to Sensors

Attacks to Reports

Sensor

Detection Rule

Sensor

Detection Rule

Figure 4.1: Classification of attacks to distributed sensor networks.

4.2.1 Attacks to the Observations

The n sensors in the network observe the phenomenon through the vectors

x1,x2, . . . ,xn. In this scenario, a fraction of the links, let us say α = b/n, is

under the control of the adversary. The variable α, could be either the exact

fraction of the links under the control of the adversary, or the probability

that a link is under the control of the adversary. The adversary can modify

the vectors from x1,x2, . . . ,xb to x̃1, x̃2, . . . , x̃b so to induce a wrong local
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decision at the sensors 1, . . . , b. The objective of the adversary could vary from

pushing the b sensors to change their decision from H0 to H1 and viceversa or

only corrupting the functionality of the network by inducing random errors.

Consequently, a fraction of the information sent to the FC will be wrong and

this will affect the global decision at the FC. This setup is very general and

can be used to model a variety of situations. Here, we present two examples

of such an adversarial setup: the jammer attacks in wireless communication

networks [115] and the Primary User Emulation Attack (PUEA) in cognitive

radio networks [116].

4.2.1.1 Jammer Attack

Due to the open and shared nature of the wireless medium, together with the

advancement of wireless technologies and software, wireless networks can be

easily monitored, accessed and broadcast on by a transmitter. The adversary

can observe the communication links and the information between wireless

entities, and launch Denial of Service (DoS) attacks by injecting wrong in-

formation messages. Severe types of DoS attacks can be launched in wireless

networks which can block the wireless medium and prevent other wireless de-

vices from even communicating with each other. These attackers are known

as jammers and continuously transmit radio frequency signals to occupy the

channel and then block the information flow in the network or between the

network and the system [111]. Therefore, a jammer is an adversary who inten-

tionally trying to interfere with the transmissions and receptions of wireless

communications.

The objective of a jammer is to interfere with legitimate wireless commu-

nications. It can achieve this goal by either preventing the transmission of the

information from the source, preventing the reception of the information by

the receiver, or modifying the information exchanged between them. Many

types of jammers exist depending on their objective and behavior, we may

have:

• A Constant jammer continuously transmits signals to block the commu-

nication between some selected network entities.

• A Deceptive jammer constantly injects regular information into the links
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with no separation between subsequent transmissions. In this way, the

receiver will be deceived into believing that there is an information com-

ing and will remain in receiving mode.

• A Random jammer randomly alternates between sleeping and attacking

modes in order to save energy.

• Reactive jammer: the jammer stays quiet when the channel is idle and

there is no information exchange and starts transmitting as soon as it

senses any activity on the channel. Therefore, a reactive jammer targets

the reception of a message. The advantage of this kind of jammer is that

it is harder to detect.

A complete survey of jammer attacks and their feasibility in wireless networks

can be found in [115].

The connection between jammer attacks and attacking the observations is

straightforward as the jammer can:

• Block the system state information observed by the sensors to let them

believe that the activity does not exist which means that the system is

in state S0 while it can be in S1.

• Inject a specific information value on the link to change the sensor local

decision from H0 to H1 or viceversa, like the case of a deceptive jammer.

4.2.1.2 Primary User Emulation Attack

In Cognitive Radio Networks, guaranteeing a trustworthy spectrum sensing is

a particularly important problem as spectrum sensing is a key enabler for this

technology. The main concern in spectrum sensing is the ability to distinguish

between PU and SU signals. To do so, an SU should continuously scan the

spectrum for the presence of PU signals in the candidate bands. If an SU de-

tects a PU signal in the current band, it must immediately switch to another

band. On the other hand, if the SU detects the presence of another SU, it runs

a coexistence mechanism [92, 117] to share spectrum bands. Distinguishing

the two types of signals is not trivial, especially in hostile environments. Many

techniques are proposed to increase the accuracy of PU activity detection in-

cluding: Energy detectors, Cyclostationary detectors, Wave-based detectors,
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Matched filter detectors and so on [78,87]. The most common approach to im-

prove spectrum sensing accuracy is collaborative spectrum sensing [55, 64], in

which, the SUs collaboratively scan the spectrum and send their results, to a

FC that makes a final decision about spectrum occupancy. This collaboration

among SUs can be also implemented in a decentralized fashion [92].

A Primary User Emulation Attacker (PUEA) [113,118,119] is an adversary

that modifies the air interface of a CR to mimic the characteristics of a PU

signal, thereby causing the SUs to mistakenly detect the adversary signal as

a PU signal. The high reconfigurability of software-defined CR devices makes

PUEAs possible and realistic [120].

When the attacker detects no PU activity, it sends jamming signals emu-

lating PU’s activity, so to let the SUs believe that a PU is active and hence,

prevent them from using the available spectrum. This attacker can be seen

as a new type of DoS jamming attack specific to cognitive radio networks

scenario [119].

Based on the objective of the adversary, PUEAs can be classified into

two classes: Selfish PUEA and Malicious PUEA. A selfish PUEA aims at

increasing the usage of the spectrum by the attacker. By finding an available

spectrum band and preventing other SUs from accessing that band, the ad-

versary can gain alone the access to the spectrum band. On the other hand,

a malicious PUEA aims at impeding spectrum sharing by deceiving the spec-

trum sensing proces. In this way, SUs always detect the presence of a PU and

move to another band [121].

4.2.2 Attacks to the Sensors

In the case of attacks to the sensors, the FC has to tackle with the presence of

a number of malevolent sensors, which deliberately alter their information re-

ports to induce a global decision error. According to a consolidated literature,

such nodes are referred to as byzantine nodes or simply Byzantines [36, 37].

Note that a byzantine sensor can decide to alter its report by relying on its

observations of the system state Si, i ∈ {0, 1}, but usually it does not have

access to the observations available to the other sensors and their information

reports. In this setup, a fraction α of the n sensors is under the control of the

attacker which, in order to make the fusion process fail, alter the local infor-
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mation or decision prior to sending them to the FC. From the perspective of

the FC, the problem can be viewed as one of robust distributed information

fusion problems as the information from the sensors is a mixture of good and

adversarial data.

4.2.2.1 Spectrum Sensing Data Falsification Attacks

In a cognitive radio network setup, Spectrum Sensing Data Falsification (SSDF)

[87], [39,40,122–125] refers to SU that sends altered local spectrum sensing re-

sults, which will possibly result in erroneous decisions by other SUs or by the

FC. The SSDF attack is an example of a Byzantine attack targeting the spec-

trum sensing process. In cognitive radio networks, spectrum sensing failure

problem can be caused by malfunctioning SUs or SSDF attacks. A malfunc-

tioning SU is unable to produce reliable local information and may send wrong

sensing information to the FC. On the other hand, in SSDF attacks, a mali-

cious SU intentionally sends falsified reports to the FC in the attempt to cause

a failure in the information fusion process. It is shown in [126] that, under

certain assumptions, even a single byzantine sensor can make the information

fusion process fail.

Depending on the attack objective and behavior, SSFD attacks can be

classified into the following categories:

• Malicious SUs [127] send false sensing results so to confuse other SUs

or the FC about spectrum occupancy. The objective of malicious SSDF

attack is to lead the FC or the rest of the SUs to decide the absence of

a PU signal when it is present, or make them believe that there is a PU

signal when there is not. Consequently, in the first case, the SUs will

refrain from using the specific band, while in the second case they will

cause harmful interference to PU.

• Greedy SUs [128] continuously report that a specific spectrum band

is occupied by a PU. This can be seen as a selfish attack aiming at

occupying the available band alone by forcing the other SUs to evacuate

it.

• Unintentionally misbehaving SUs [113] send wrong information reports

about PU activity in the spectrum, not because they are attackers, but
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because of a problem in their software or hardware such as random faults

or virus [129–131].

4.2.3 Attacks to the Reports

In this case, the adversary can access the links between the sensors and the FC.

This may correspond to a situation in which the adversary does not control

the nodes but only the communication link between the nodes and the fusion

center, or to the case of byzantine sensors which, for some reasons, cannot

observe the information data at the input of the sensor, or decide not exploit

such a knowledge. For the FC, both types of attacks force it to consider that

a part of the received information is malevolently altered and consider this

fact when fusing the information. The difference between the two cases is

that: in case of the attacks to reports, the adversary does not have access to

the observations about the system and could be also that it does not know

the local information computed at the sensors.

4.2.4 Attacks to Consensus Algorithms for decentralized dis-

tributed sensor networks

In a decentralized consensus algorithm, a byzantine attack can target the ini-

tial phase or the state update phase of the algorithm in order to mislead the

network decision about the system state [132]. The first case is referred to

as data/measurement falsification attack, while the second case is known as

consensus disruption attack. Data falsification attackers are more capable and

can disguise themselves while degrading the network detection performance

using falsified data or measurements. On the other hand, a consensus dis-

ruption attack aims at corrupting the consensus operation but, it is easier to

detect because of its nature [132].

• Data/Measurement Falsification Attack

In a data falsification attack, sensors falsify their initial data or the

false data could be injected from the outside in order to degrade the

detection performance of the network. By doing so, the attacker tries

to change the final test information which, in weighted average consen-

sus algorithms, is the weighted average of all the initial measurements
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x̄ = 1
n

∑
i∈N wixi(0) where, N is the set of all the sensors, xi(0) is the

initial measurement at sensor i, and wi is the assigned weight to the

measurement xi(0). Formally, by considering the attack at a sensor i,

we have:

x̃i(0) = xi(0) + ∆i or wi → w̃i, (4.1)

where, x̃i(0) is falsified initial data, ∆i is the attack power which can

take any real value, and w̃i is the modified weight.

• Consensus Disruption Attack

This attack aims at degrading the detection performance by disregarding

the state update rule of the consensus algorithm as follows:

x̃i(k + 1) = xi(k) +
ε

wi

∑
j∈Ni

(xj(k)− xi(k)) + ui(k) (4.2)

where, ui(k) is the injected value by the byzantine sensor i in the state

update xi(k + 1) at iteration k + 1. Then, the attacked state update

value x̃i(k+ 1) is sent by the adversary to all its neighbor sensors in the

set Ni and the error propagates through the network.

Similar to the attacks in the centralized setup, attacks on consensus algo-

rithm can have the objective of pushing the network into believing that the

system state is S0 while it is S1 by using low values of ∆i or ui(k) or the

opposite case by making the network believe that S1 is correct while it is not

by using high values of the attack. In addition, the attack can be constant or

probabilistic in nature, which means that the attack can inject the falsified

value statically, or randomly with a certain probability Pi.

4.3 Defenses Against Attacks to Distributed Sensor

Networks

Having presented the most common adversarial setups and attacks in dis-

tributed sensor networks, we now describe the most common countermeasures

and show how they contribute to protect the network. In general, these coun-

termeasures can directly modify the information fusion process or introduce
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a pre-step before the fusion process so to filter out the adversary effect before

performing the fusion.

4.3.1 Defenses against Attacks to the Observations

An asymptotic version - as a function of the network size n - of the problem

of attacks to the observations has been studied in [29] in a binary hypothesis

testing framework. In this setup, by knowing the true system state, the at-

tacker can corrupt a part of or all the observations. On his side, the FC runs

a binary hypothesis test based on the Neyman-Pearson criterion, in which

H0 is the hypothesis that the system state is in a safe or normal condition

and H1 that it is not. The authors proposed a general framework based

on game-theory that encompasses a wide variety of situations including dis-

tributed detection, data fusion, multimedia forensics, and sensor networks. In

this framework, the interplay between the adversary and the defender (FC)

is modeled as a 2-player game in which the adversary tries to induce a false

negative error while the FC must ensure that false positive error probability

stays below a threshold. The set of strategies of the defender consists of the

acceptance regions for H0 ensuring a given false positive error probability. On

the other hand, the strategies of the attacker are all the possible modifica-

tions of the observation sequence subject to a maximum distortion. Following

this theoretical model, the authors derive the equilibrium point of the game,

showing that a dominant strategy exists for the defender, which means that

the defender can choose its strategy without caring about what the adversary

is doing. An interesting result of this work states that the defender would

get no advantage from the knowledge of the attacked sensors. The reason of

this behavior is due to the adoption of a NP setup at the FC, and by the

assumption that the attacker acts only when H0 does not hold while the FC

is asked to satisfy a constraint on false positive error.

The study in [29] addresses the problem from the most general and theo-

retical point of view. Now we move to present some more practical defenses

for the two attacker types we have presented in the previous section: the

jammer and the PUEA.
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4.3.1.1 Defenses Against Jammer Attack

For the jammer attack, the typical defenses involve the usage of spread-

spectrum communication such as frequency hopping or code spreading [34].

Frequency-hopping spread spectrum (FHSS) [133] is a method of transmit-

ting signals by rapidly changing the carrier frequency among many available

channels using a pseudo-random sequence known at both the transmitter and

the receiver. The lack of knowledge of the frequency selection by the attacker

makes jamming the frequency being used not possible. However, since the

range of possible frequencies is limited, a jammer may instead jam a wide set

of the frequencies increasing its possibility to succeed in the attack.

Code spreading [133] is another way to defend against jamming attacks. A

pseudo-random spreading sequence is used to multiplex the signals for trans-

mission. This sequence is known to both the transmitter and the receiver and

without it the attacker cannot jam the communication channel. This method

is widely used in mobile networks [134]. However, code spreading has high

design complexity and energy consumption, thus limiting its usage in energy

limited scenarios like wireless sensor networks.

4.3.1.2 Defenses Against PUEA

In its report, the FCC [24] states that: ”No modification to the incumbent

signal should be required to accommodate opportunistic use of the spectrum

by SUs”. This restriction should be followed when designing security mech-

anisms to defend against PUEA or any other attack specific to the cognitive

radio setup.

For PUEA, few defense mechanisms assume that the location of the PU is

known. Those mechanisms are called location-based defense mechanisms. We

follow this classification of the defense mechanisms which has been introduced

in [113].

Location-based defense mechanisms against PUEA

In [116], the authors utilize two pieces of information to develop their

defense protocol: the location of the PU transmitter and the Received Signal

Strength (RSS). The RSS information is collected by a separate wireless sensor
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network. The defense scheme consists of three phases: first, it verifies if the

signal characteristics are similar to those of the PU or not, then it tests the

received signal energy based on the location information, and last, it tests the

localization of the signal transmitter. A transmitter who does not pass any

of these three phases will be considered as PUEA and will be omitted. The

drawbacks of this method are: first, the location information about the PU

is not always available, especially in small networks, and second, is the RSS

may have large fluctuations even within small area networks.

In [135], Fenton’s approximation and Sequential Probability Ratio Test

(SPRT) are used to analytically model the received power at the SUs. The

SUs compare the received power in a band of interest to a threshold. If the

power is below the threshold the band is considered to be free. On the other

hand, if the band is tagged as occupied the SUs test whether the detected

signal source was a legitimate PU or a PUEA. Based on the assumption that

the attackers and the SUs are uniformly distributed, two statistical formula-

tions are proposed to model the Probability Density Function (PDF) of the

received power at the SU from a legitimate PU, and the PDF of the received

power at the SU from malicious users. Then, the defense mechanism at the

SUs tests the two PDFs using an SPRT by performing a binary hypothesis

test between H0 which means that the signal comes from legitimate PU, and

H1 according to which the signal comes from a PUEA. In this setup, several

malicious users can be present in the network and the authors show that when

the attackers are too close to the SUs, the false alarm and missed detection

probabilities are maximized because the total received power from all the at-

tackers is larger than the received power from the legitimate PU. A drawback

of this work is the possibility of an endless loop of the SPRT that leads to

very long sensing times. This work is extended in [120] where the authors

use Neyman Pearson composite hypothesis testing to solve the endless loop

problem of SPRT.

Other defense proposals based on localization algorithms use the Time

of Arrival (TOA), Time Difference of Arrival (TDOA), and Angle of Arrival

(AOA) in order to distinguish between a PU legitimate signal and PUEA [117].

In TOA, SUs receive signals from satellites that contain their location and
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time information. Based on this information, the node can calculate its own

position and estimates the PU position. TDOA [136] is a passive localiza-

tion technique that uses the difference between the arrival times of signals

transmitted by a PU but does not know the signal transmission time. TDOA

measures the time differences at several receivers with known locations and

computes a location estimate of the PU that permits to distinguish between a

legitimate and a malicious behavior. In the AOA technique, an SU measures

the angle of arrival of the signal from two or more other SUs. If the locations

of the other SUs are known, the receiver can compute its own location using

triangulation [137]. By using the same method, the AOA information at mul-

tiple SUs is used to determine the PU location and hence, help to distinguish

between the legitimate PU and PUEA. All of these techniques fail when the

PUEA is too close to the PU when knowing the PU location gives no benefit.

Defense mechanisms not based on location

In [138], the authors use the channel impulse response, referred to as ”link

signature”, to determine whether a PU transmitter changes its location or

not. They propose the use of a ”helper node” located in a fixed position

very close to the PU. This node communicates with SUs to help them to

verify the PU signals. The SUs do so by verifying the cryptographic link

signatures carried out by the helper node which communicates with SUs only

when there is no PU transmission. For this reason, the helper node has to

sense the PU transmissions and also to differentiate PU signals from PUEA

signals. The helper node authenticates the legitimate PU using the first and

the second multipath components of the received PU signal at its interface.

Then, the helper node compares the ratio of the multipath components to a

threshold, and if the ratio is above the threshold, it decides that the signal

belongs to a legitimate PU, else that it is a PUEA. Now, the SUs verify the

PU transmission by computing the distance between the link signatures of

the received signals and those sent by the helper node. If the distance is lower

than a threshold, the received signal belongs to a legitimate PU, otherwise,

it is a PUEA and it will be discarded.

Other proposals to defend against PUEA contradict with the FCC re-
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quirement since they try to modify the PU signal. Part of these proposals

modify the PU signal to integrate into it a cryptographic signatures that per-

mits the SU to verify the PU from the PUEA, like the work in [139], and

other proposed authentication mechanisms between the PU transmitter and

the SUs [138].

4.3.2 Defenses against Attacks to Sensors

In this section, we present the proposed countermeasures to defend against

the byzantine attacks and the Spectrum Sensing Data Falsification (SSDF)

attack in cognitive radio networks.

As mentioned earlier in Chapter 2, various information types can be pro-

vided by the sensors at different levels of abstraction. In this section, we

consider simplest case in which the sensors send binary decisions about the

phenomenon, namely, a bit 0 under H0 and 1 otherwise. We consider this

case since it is the most relevant for the rest of the thesis.

In the absence of Byzantines, the Bayesian optimal fusion rule has been

derived in [50, 67] and it is known as Chair-Varshney rule. If the local error

probabilities (PMD, PFA) are symmetric and equal across the sensor network,

Chair-Varshney rule boils down to simple majority-based decision.

In the presence of Byzantines, Chair-Varshney rule requires the knowledge

of Byzantines’ positions in the binary vector submitted to the FC along with

the flipping probability Pmal
1. Since this information is rarely available, the

FC may resort to a suboptimal fusion strategy.

An overview of the literature about distributed detection and estimation

in the presence of the Byzantines is given in [37]. The authors use the concept

of critical power of Byzantines (αblind) that was originally introduced in [140]

in order to characterize the fraction of Byzantines that makes the decision

at the FC no better than flipping a coin. In [141], by adopting a Neyman-

Pearson setup and assuming that the byzantine nodes know the true state of

the system, the asymptotic performance - as a function of the network size n

- obtainable by the FC is analyzed as a function of the percentage of Byzan-

tines in the network. By formalizing the attack problem as the minimization

1The flipping probability is the probability that the attacker flips its binary local decision

about the system state before sending it to the FC.
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of the Kullback-Leibler Distance (KLD) [142] between the information reports

received by the FC under the two hypotheses H0 and H1, the blinding percent-

age, that is, the percentage of Byzantines in the network that makes the FC

blind, is determined and shown to be - at least asymptotically - always equal

to 50%. This means that unless more than half of the sensors are Byzantines,

asymptotically, the FC can provide reliable detection and decision.

By observing the system state over a longer observation window, the FC

improves the estimation of the sequence of system states by gathering a num-

ber of reports provided by the sensors before making a global decision. In

cooperative spectrum sensing, for instance, this corresponds to collectively

decide about the vacant spectrum bands over a time window, or, more realis-

tically, at different frequency slots. The advantage of deciding over a sequence

of states rather than on each single state separately, is that in such a way it is

possible for the FC to understand which are the byzantine nodes and discard

the corresponding observations (such an operation is usually referred to as

byzantine isolation). Such a strategy is adopted in [143], where the analy-

sis of [141] is extended to a situation in which the Byzantines do not know

the true state of the system. Byzantine isolation is achieved by counting the

mismatches between the reports received from each sensor and the global de-

cision made by the FC. In order to cope with the lack of knowledge about

the strategy adopted by the Byzantines, the decision fusion problem is casted

into a game-theoretic formulation, where each party makes the best choice

without knowing the strategy adopted by the other party.

A slightly different approach is adopted in [144]. By assuming that the

FC is able to derive the statistics of the reports submitted by honest sensors,

byzantine isolation is carried out whenever the reports received from a node

deviate from the expected statistics. In this way, a correct decision can be

made also when the percentage of Byzantines exceeds 50%. The limit of this

approach is that it does not work when the reports sent by the Byzantines

have the same statistics of those transmitted by the honest nodes. This is the

case, for instance, in a perfectly symmetric setup with equiprobable system

states, symmetric local error probabilities, and an attack strategy consisting

of simple decision flipping.
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4.3.2.1 Defenses to SSDF in Cognitive Radio Networks

The byzantine attack in a cognitive radio context is known as SSDF attack. In

this part, we present the most common countermeasures against these attacks.

In the scenario considered here, the group of SUs send binary decisions about

PU activity to the FC which, in turn, decides about the spectrum occupancy

by fusing the decisions using an information fusion rule. In some of these

works, when the SUs are not trusted a priori, a trust or reputation metric is

assigned to each SU in the network depending on its behavior.

In [126] the proposed scheme calculates trust values for SUs based on their

past reports. This metric can become unstable if no attackers are present in

the network or there are not enough reports. For this reason, the authors also

compute a consistency value for each SU. If the consistency value and the

trust value fall below certain thresholds, the SU is identified as a Byzantine

and its reports are not considered in the fusion rule. The authors evaluate the

proposed scheme using two fusion rules, namely, the OR rule and the 2-out-

of-n rule. A drawback of this work is that only one adversary is considered

in the evaluation.

The authors in [145] use a reputation metric to detect and isolate attackers

from honest SUs. This metric is computed by comparing the report of each

SU to the final decision made at the FC. The metric increments by one if the

report and the final decision mismatch (more reliable SUs have low metric

values). If the reputation metric of an SU exceeds a predefined threshold, its

reports are isolated and not used in the fusion rule. By adopting the major-

ity voting as the fusion rule, the authors show that when the percentage of

attackers in the network is below 40%, the probability of isolating the attack-

ers can exceed 95%, while the isolation probability of the honest SUs is very

near to zero. This defense scheme is similar to [126] with the difference that

here the authors did not restore the reputation metric if an SU is temporary

misbehaving and thus, [126] is considered to be a more fair approach.

Weighted Sequential Probability Ratio Test (WSPRT) as a modified ver-

sion of the SPRT test is proposed in [38] to assign a weight wi to each SU in

the network as follows:

Λ(u) =
n∏
i=1

(P (ui|H1)

P (ui|H0)

)wi

. (4.3)
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In WSPRT shown in Equation (4.3), the FC computes the product of the

likelihood ratios for each decision provided by the SUs. Based on the likeli-

hood value for each SU report, the FC assigns to it a weight wi ∈ [0, 1] that

values its contribution in the final decision made at the FC. The weight is

computed based on a reputation rating ri assigned to each SU. If the report

of the SU matches with the final decision at the FC, its reputation rating ri
is increased by one, otherwise it is decreased. Then, using a non-decreasing

function f(.), the reputation rating is mapped to a weight wi to be used

for each SU report in the WSPRT. In addition, the reputation rating of a

misbehaving SU can be restored to zero just after a few instants if it starts

behaving correctly again. Each SU implements an SPRT and decides between

two hypotheses H1 for PU presence and H0 for its absence, by comparing the

local spectrum sensing measurement with two predefined thresholds, wich are

computed by constraning the false alarm and missed detection probabilities

as explained in Chapter 2. If the output falls between these thresholds, no

decision is made and the SU takes a new sample. For the simulation, the

authors assume two constant strategies for the adversary, namely, the ”al-

ways true” SSDF attackers, which always reports a vacant spectrum, and the

”always false” SSDF attackers, that reports always the spectrum as occu-

pied. Furthermore, eight different information fusion rules are considered at

the FC: AND, OR, Majority, SPRT, WSPRT and LRT with three different

thresholds. For the ”always-false” attack the simulation results show that for

all fusion rules, except the OR and AND rules, the correct detection ratio

decreases as the number of the attackers increases. For the other two rules,

the correct sensing ratio does not significantly change, but it is lower than

the other rules. For the ”always-true” case, the results show that the perfor-

mance of the majority rule decreases significantly as the number of attackers

increase, which means that this rule is more vulnerable to this type of attack

than the other rules.

In [146], the authors propose an intelligent attack called the ”hit-and-

run” attack. By knowing the fusion technique used by the FC, this attacker

alternates between honest and lying modes. The attacker estimates its own

suspicious level and as long as it is below a threshold h, it reports falsified

decisions. If the suspicious level falls below a threshold, it switches to honest
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mode. On the defender side, when the suspicious level of an SU becomes

larger than h, a point is assigned to this user. When the cumulative points

exceed a predefined threshold, the reports of this SU are ignored permanently.

Simulations show that the scheme achieves good performance for up to three

attackers. A drawback of this method is that a user is permanently removed

from a CRN if it collects enough points then, some honest but temporarily

misbehaving SUs can be permanently removed from the network. In addition,

the authors assume a non-realistic scenario in which the adversary knows the

reports of the other SUs.

In [147], a Double-Sided Neighbor Distance (DSND) algorithm is used

for the detection of the attackers. An SU is characterized as an adversary

if its reports to the FC are too far or too close to the reports sent by other

SUs. Two attack models are considered: the independent attack, where an

adversary does not know the reports of the honest SUs, and the dependent

attack, where the adversary is aware the reports of the others. The results

show that, in the case of the independent attack, the adversary can always

be detected when the number of spectrum sensing iterations tends to infinity.

For the dependent attack, the adversary can avoid been detected if it has

accurate information about the missed detection and false alarm probabilities

and then follows them in his attacking strategy.

4.3.3 Defenses against Attacks to Reports

As anticipated, in this attack the adversary can access the links between the

sensors and the FC. From the FC point of view, both types of attacks force

it to consider that a part of the received information is malevolently altered

and consider this fact when fusing the information. Therefore, the defense

methods and algorithms presented in Subsection 4.3.2 can also be applied in

this case.

4.3.4 Defenses Against Attacks to Consensus Algorithm

In this section, we present some attempts to address the security threats to

consensus algorithms in distributed sensor networks.

In [40], a defense scheme against data falsification attack is proposed. By

assuming that the attacker behavior is static and injecting constant falsified
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measurements, the scheme eliminates the state update with the largest de-

viation from the local mean among all the received state updates from the

neighboring nodes. The drawback of this scheme is that it can only deal with

the situation in which only one byzantine node exists and it excludes one

state value even if there are no Byzantines in the network. Another draw-

back is that the scheme can cause unidirectional information exchange in the

network. This work is extended in [148] to enhance the security of the con-

sensus algorithm by adding an authentication technique for the nodes prior

to joining them to the consensus mechanism. This technique uses ID-based

cryptography with threshold secret sharing and it is implemented prior to

filtering the state with maximum deviation from the mean.

In [149], the vulnerability of distributed consensus-based spectrum sensing

is analyzed and an adversary detection algorithm with an adaptive threshold is

proposed. The authors propose a novel type of attack called ”Covert Adaptive

Data Injection Attack”. By ”covert” they mean that the attacker is willing to

inject false data without being detected. On the other hand, ”adaptive” means

that the attacker uses the knowledge of the detection algorithm, and adapts its

strategy based on neighbors’ state update information. The defensed method

developed is based on a specific model for power propagation and hence, it

restricts its application.

The authors in [150] propose a Byzantine mitigation technique based on

adaptive local thresholds. This threshold is updated at each consensus iter-

ation, and is used to classify the state updates received by the neighboring

nodes between honest nodes and Byzantines. Based on this classification, the

scheme modifies the consensus algorithm in such a way to introduce a reduc-

ing factor to the state update phase of the algorithm. The reducing factor

assigned to the nodes classified as Byzantines mitigates their contributions to

the state update phase and in the same time, tolerates the occasional large

state update deviations of honest users. The reducing factor will eventually

isolates the Byzantines state update from the rest of the network.

Consensus disruption attacks are easier to detect because of their nature.

The identification of consensus disruption attackers has been studied in the

literature of ”resilient-consensus” and control theoretic techniques were devel-

oped to identify disruption attackers in a single consensus iteration [151,152].
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4.4 Conclusion

In this chapter we have presented the most common attacks and countermea-

sures in different adversarial setups. We started by considering the centralized

version of the problem and reviewed the attacks and defenses in several ad-

versarial versions. In addition, we provided real-life examples of attacks and

some specific mitigations for each adversarial setup. Then, we presented the

attacks and defenses in decentralized consensus algorithm.

In the rest of the thesis, we will focus on information fusion in distributed

sensor network in which some of the sensors presented in the network are

Byzantines. In addition to that, we will specifically consider the case in which

the sensors report binary decisions to the FC. For the consensus algorithm,

we will focus on the case of data falsification attack where the sensors falsify

their measurements prior to any information exchange.
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Chapter 5

Soft Isolation Defense Mechanism Against
Byzantines for Adversarial Decision Fusion

”I’m not upset that you lied to me, I’m upset that from now on I can’t believe

you.”

Friedrich Nietzsche

”Chaos isn’t a pit. Chaos is a ladder. Many who try to climb it fail, and

never get to try again — the fall breaks them. And some are given a chance

to climb, but they refuse. They cling to the realm, or the gods, or love ...

illusions. Only the ladder is real, the climb is all there is.”

Lord Petyr Baelish, ”Game of Thrones”

5.1 Introduction

I
n this chapter we address the problem of decision fusion in centralized

distributed sensor networks in the presence of Byzantines. In the problem

that we have considered, the fusion center is required to make a decision about

the status of an observed system by relying on the information provided by

the nodes. Decision fusion must be carried out in an adversarial setting, by

taking into account the possibility that some of the nodes are Byzantines

and they malevolently alter their reports to induce a decision error. Despite

being the simplest kind of attack, this case contains all the ingredients of

more complex situations, hence its analysis is very instructive and already

provides interesting insights into the achievable performance of decision fusion

in distributed sensor networks under adversarial conditions.

A graphical representation of the problem studied in this chapter is given

in Figure 5.1. The n nodes of the distributed sensor network observe a system

through the vectors x1,x2 . . .xn. Based on such vectors, the nodes compute

n reports, say r1, r2 . . . rn and send them to a fusion center. The fusion
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Decision Fusion

Fusion Center

The Observed System

Attacks to Sensors

Figure 5.1: Decision fusion under adversarial conditions.

center gathers all the reports and makes a final decision about the state of

the observed system. We assume that the system can be only in two states S0

and S1. Additionally, the reports correspond to local decisions on the system

status made by the nodes, i.e. the reports are binary values and ri ∈ {0, 1}
for all i.

In the adopted setup, the byzantine nodes do not know the true state of

the system and act by flipping the local decisions with a certain probability

Pmal. The fusion center first tries to understand which are the byzantine

nodes and then makes a decision by discarding the suspect nodes.

With the above ideas in mind, the goal of this chapter is twofold. First of

all, it introduces a soft identification strategy whereby the fusion center can

isolate the byzantine nodes from the honest ones. Then, we introduce a game-

theoretic formulation of the decision fusion problem with attacked nodes, thus

providing a rigorous framework to evaluate the performance achievable by the

fusion center and the Byzantines, when both of them play at the equilibrium.
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The game-theoretic approach is used to compare the fusion strategy described

in this chapter with the one presented in [143]. Finally, we demonstrate the

superior performance of the soft identification scheme by means of numerical

simulations.

5.2 Decision Fusion with Isolation of Byzantines

5.2.1 Problem formulation

In the scenario described above, the Fusion Center (FC) uses the byzantine

isolation strategy described in chapter 4. In the following we give an exact

formulation of such an approach.

As we said, we are considering the case of binary reports. Specifically,

each node makes a local decision about the state of the observed system and

forwards its one-bit decision to FC, which must decide between hypothesis

H0 and hypothesis H1. We assume that a fixed fraction α of the n nodes

(or links between the nodes and the FC) is under the control of byzantine

attackers which, in order to make the information fusion process fail, corrupt

the reports by flipping the one-bit local decisions with probability Pmal (as in

[143,153], we assume a symmetric attacking strategy). Under this assumption,

the probability that a node is Byzantine weakly depends on the state of the

other nodes when the network size is large enough. By referring to Figure 5.1,

the above attack corresponds to the insertion of a binary symmetric channel

with crossover probability Pmal in the attacked links.

The strategy adopted by the fusion center consists in trying to identify the

attacked nodes and remove the corresponding reports from the fusion process.

To do so, the FC observes the decisions taken by the nodes over a time period

m, and makes the final decision on the state of the system at each instant j

only at the end of m. To elaborate, for each instant j, we indicate the reports

received from the nodes as rnj = (r1j , r2j , ..., rnj) where rij ∈ {0, 1}. The

fusion center applies an l-out-of-n fusion rule1 to rnj to make an intermediate

decision on the status of the system at time j. Let us indicate such a decision

as dint(j). The local decisions made by the i-th node over the time window

1In other words, the fusion center decides in favor of H1 if l out n nodes decided for such

a hypothesis.
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m, are denoted as ui = (ui1, ui2, . . . , uim) with uij as the local decision at

instant j ∈ {1, . . . ,m}. The relationship between uij and the status of the

system at time j is ruled by the following equations, which take into account

the probability of a decision error by the local node:

P (uij = 1|H1) = Pdi (5.1)

P (uij = 1|H0) = Pfai , (5.2)

where Pdi and Pfai are, respectively, the probability of correct detection and

false alarm for node i. In the following, we assume that the states assumed

by the system over subsequent instants are independent of each other. Errors

at different nodes and different times are also assumed to be independent.

By assuming that transmission takes place over error-free channels, for

honest nodes we have rij = uij , while for the byzantine nodes we have rij 6= uij
with probability Pmal. Then, for the Byzantine reports we have:

P (rij = 1|H1) = Pmal(1− Pdi) + (1− Pmal)Pdi , (5.3)

P (rij = 1|H0) = Pmal(1− Pfai) + (1− Pmal)Pfai . (5.4)

Given the observation vector rnj for each j (j = 1, ..,m), in order to remove

the fake reports from the data fusion process, the FC proceeds as follows: it

associates to each node i a reputation score Γi, based on the consistency of the

reports received from that node with the intermediate decisions dint(j) over

the entire time window m. Then, the FC isolates the nodes whose reputation

is lower than a threshold η and decides about the system state by fusing only

the remaining reports.

5.2.2 Byzantine Identification: hard reputation measure

As described in chapter 4, in the identification scheme proposed in [143], the

FC computes for each node i a reputation score by counting the number of

times that the reports received from that node are different from the interme-

diate decisions dint(j) during the observation window m. The hard reputation

score ΓH,i is hence defined as ΓH,i =
∑m

j=1 I(rij = dint(j)) where I(x) (in-

dicator function) is equal to 1 when its argument its true and 0 otherwise.

Accordingly, the nodes whose reputation is lower than a threshold η are re-

moved from the fusion process. For each j, the final decision is taken by
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relying on an l′-out-of-n′ rule, where l′ is the final decision threshold and n′ is

the number of nodes remaining after that the thought-to-be byzantine nodes

have been discarded.

In [143], the above scheme is shown to be able to mitigate the effect of

byzantine attacks when α < 0.5, a situation in which the Byzantines are not

able to blind the FC by attacking the network independently (referred to as

Independent Malicious byzantine Attacks (IMBA) in [143]), which is the only

case considered in this chapter.

5.3 Decision Fusion with Soft Identification of Ma-

licious Nodes

In this section, we propose an isolation strategy which removes the Byzantines

from the network according to a soft 2 reliability measure. For any instant j

and given the vector rnj with the reports, the new isolation strategy relies on

the estimation of the following probabilities:

P
(
ui(t) = 1, rnj

)
, (5.5)

P
(
ui(t) = 0, rnj

)
.

For a honest node, in fact, such probabilities are very different from each

other, since the expression for which rij = uij is close to 1, while the other is

very close to 0. On the contrary, for a byzantine node, the above probabilities

tend to be closer. For this reason, we propose to measure the reputation score

of a node as follows. For each j we first compute:

Rij =

∣∣∣∣∣∣log

P
(
uij = 0, rnj

)
P
(
uij = 1, rnj

)
∣∣∣∣∣∣ , (5.6)

that is the absolute value of the log-ratios of the two probabilities. Then we

set:

ΓS,i =

m∑
j=1

Rij . (5.7)

2We point out that our Soft identification method is soft with regard to the identification

of the Byzantines in the intermediate step of the Byzantines identification process, but is

not used in the final decision step as the majority rule is applied.
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To evaluate (5.6), we start rewriting the joint probabilities within the log as

follows (for notation simplicity, we omit the index j):

P (ui, r
n) = P (rn|ui, H0)P (ui, H0) + P (rn|ui, H1)P (ui, H1) . (5.8)

To proceed, we make the simplifying assumptions that the reports received

by the FC from different nodes are conditionally independent3. This is only

approximately true since in our scenario we operate under a fixed number

of Byzantines, and then the probability that a node is Byzantine depends

(weakly) on the state of the other nodes. Such dependence decreases when

the number of nodes increases and disappears asymptotically due to the law

of large numbers. To clarify this assumption, let us denote the probability of

a node being Byzantine as P (B). If the nodes are independent of each others,

P (B) = α for every node i in the network and in this sense, the meaning

of the probability of a node being Byzantine is equivalent to the fraction of

Byzantines in the network. On the other hand, if the probability that a node

is Byzantine depends on the status of the other nodes, this will not be the case

anymore. Let us take the vector of nodes [1, 2, . . . , n] then, the probability of

the first node to be Byzantines is P (B1) = α = M
n . Then, we take the second

node, by assuming that the first node is Byzantine, the probability that the

second is also a Byzantine becomes P (B2|B1) = M−1
n−1 ≈ M

n for large n.

Let us now consider the quantity P (rj′ |ui, H0). When i = j′, we can omit

the conditioning to H0 since ri depends on the system status only through ui.

On the other hand, when i 6= j′, we can omit conditioning to ui, due to the

conditional independence of node reports. A similar observation holds under

H1. Then we can write:

P (ui, r
n) = P (ri|ui)

{
P (ui|H0)P (H0)

∏
j′ 6=i

P
(
rj′ |H0

)
+ P (ui|H1)P (H1)

∏
j′ 6=i

P
(
rj′ |H1

)}
, (5.9)

where P (ri|ui) = (1− αPmal) if ri = ui, and αPmal, otherwise. Moreover,

we have P (uj′ = 1|H1) = Pdj′ and P (uj′ = 1|H0) = Pfaj′ . In addition:

P
(
rj′ |H0

)
= (1− αPmal)P

(
uj′ = rj′ |H0

)
+ αPmalP

(
uj′ 6= rj |H0

)
, (5.10)

3That is they are independent when conditioning to H0 or H1.
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P
(
rj′ |H1

)
= (1− αPmal)P

(
uj′ = rj′ |H1

)
+ αPmalP

(
uj′ 6= rj′ |H1

)
. (5.11)

By inserting the above expressions in (5.10) and (5.11), we can compute the

soft reputation score ΓS,i. Then, the FC relies on ΓS,i to distinguish honest

nodes from byzantine ones. Specifically, the distinction is made by isolating

those nodes whose reputation score ΓS,i is lower than a threshold η (hereafter,

we will set Pfai = Pfa and Pdi = Pd ∀i).
We conclude this section by observing that, strictly speaking, FC is re-

quired to know α and the flipping probability Pmal. With regard to α, we

assume that FC knows it. As to Pmal, in the next sections, we will see that

choosing Pmal = 1 is always the optimum strategy for the attackers, and hence

FC can assume that Pmal = 1. This assumption is reasonable in our case since

the amount of information available at the FC about the Byzantines is not

large enough to let the FC identify the Byzantines easily and force them to

use a lower Pmal. In addition, previous works [143] argue that under similar

hypotheses and conditions Pmal = 1 is an optimal choice for Byzantines.

5.4 A Game-Theoretical Approach to the Decision

Fusion Problem

In this section, we evaluate the performance achieved by using the strategy

introduced in the previous section and compare it with the hard identification

strategy described in [143]. To do so, we use a game-theoretic approach in

such a way to analyze the interplay between the choices made by the attackers

and the fusion center.

5.4.1 The Decision Fusion Game: definition

In the scenario presented in this chapter, the FC is given the possibility of set-

ting the local sensor threshold for the hypothesis testing problem at the nodes

and the fusion rule, while the Byzantines can choose the flipping probability

Pmal.

With respect to [153], we study a more general version of the decision

fusion game which includes the isolation scheme described in Section 5.2. To
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this purpose, the FC is endowed with the possibility of setting the isolation

threshold η, as well as the final fusion rule after removal of byzantine nodes.

Finally, the performance is evaluated in terms of overall error probability after

the removal step. We suppose that the FC does not act strategically on the

local sensor threshold; then Pd and Pfa are fixed and known to FC. With

regard to the Byzantines (B), they are free to decide the flipping probability

Pmal.

With the above ideas in mind, we define the general decision fusion game

as follows:

Definition 1. The DF (SFC ,SB, v) game is a zero-sum strategic game, played

by the FC and B, defined by the following strategies and payoff.

• The set of strategies available to the FC is given by all the possible isola-

tion thresholds η, and the values of l and l′ in the l-out-of-n intermediate

and final decision rules:

SFC = {(l, η, l′); l, l′ = 1, .., n, ηmin ≤ η ≤ ηmax}, (5.12)

where ηmin and ηmax depend on the adopted isolation scheme.

• The set of strategies for B are all the possible flipping probabilities:

SB = {Pmal, 0 ≤ Pmal ≤ 1}. (5.13)

• The payoff v is the final error probability after malicious node removal,

namely Pe,ar. Of course, the FC wants to minimize Pe,ar, while B tries

to maximize it.

Applying the above definition to the identification schemes introduced so

far, we see that for the case of hard reputation measure (DFH game), the

values of the isolation threshold η range in the set of integers from 0 to m,

while for the scheme based on the soft removal of the malicious nodes (DFS
game) η may take all the continuous values between ηmin = mini=1,..,nRij and

ηmax = maxi=1,..,nRij .
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5.4.2 The Decision Fusion Game: equilibrium point

With regard to the optimum choice for the Byzantines, previous works have

either conjectured or demonstrated (in particular cases) that Pmal = 1 is a

dominant strategy [143, 153]. Even in our case, the simulations we carried

out, some of which are described in the next section, confirms that Pmal = 1

is indeed a dominant strategy for both the hard and the soft identification

schemes. This means that, notwithstanding the introduction of an identifi-

cation scheme for discarding the reports of malicious nodes from the fusion

process, the optimum for the Byzantines is (still) always flipping the local deci-

sions before transmitting them to the FC. This means that for the Byzantines

it is better to use all their power (Pmal = 1) in order to make the intermediate

decision fail than to use a lower Pmal to avoid being identified. As a conse-

quence of the existence of a dominant strategy for B, the optimum strategy

for FC is the triple (l∗, η∗, l′∗) which minimizes Pe,ar when Pmal = 1. By

exploiting a result derived in [50] for the classical decision fusion problem

and later adopted in [153] in presence of Byzantines, the optimal value l∗

determining the intermediate fusion rule is given by

l∗ =
ln [(P (H0)/P (H1)){(1− p10)/(1− p11)}n]

ln [{p11(1− p10)}/{p10(1− p11)}] , (5.14)

where P (H0) and P (H1) are the a-priori probabilities of H0 and H1, while

p10 = p(r = 1|H0) and p11 = p(r = 1|H1), evaluated for Pmal = 1. With

regard to η and l′, we have:

(η∗, l′∗) = arg min
(η,l′)

Pe,ar((l
∗, η, l′), Pmal = 1). (5.15)

Depending on the adopted isolation scheme, we have a different expression for

Pe,ar and then different η∗’s and l′∗’s as well. The minimization problem in

(5.15) is solved numerically for both hard and soft isolation in the next section.

According to the previous analysis, ((l∗, η∗, l′∗), P ∗mal) is the only rationalizable

equilibrium for the DF game, thus ensuring that any rational player will surely

choose these strategies. The value of Pe,ar at the equilibrium represents the

achievable performance for FC and is used to compare the effectiveness of

data fusion based on soft and hard Byzantine isolation.
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5.5 Performance Analysis

We now evaluate the performance at the equilibrium for the two games DFH
and DFS , showing that the soft strategy outperforms the one proposed in

[143], in terms of Pe,ar. We also give a comparison of the two schemes in

terms of isolation error probability.

In all our simulations, we consider a sensor network with n = 100 nodes.

We assume that the probability of the two states S0 and S1 are the same. We

run the experiments with the following settings: Pd = 1 − Pfa takes values

in the set {0.8, 0.9} and α ∈ [0.4, 0.49], corresponding to a number of honest

nodes ranging from 51 to 60. The observation window m is set to 4. For each

setting, the probability of error Pe,ar of the two schemes is estimated over

50000 simulations.

Due to the symmetry of the experimental setup with respect the two

states, we have that p10 = p01 = 1 − p11. Accordingly, from (5.14) we get

that l∗ = n/2 and then the majority rule is optimal for any Pmal (not only

at the equilibrium). Besides, still as a consequence of the symmetric setup,

the optimality of the majority rule is experimentally proved also for the final

fusion rule, regardless of the values of η and Pmal. Then, in order to ease

the graphical representation of the game in normal form, we fix l∗ = 50 and

l′∗ = n′/2 and remove these parameters from the strategies available to the

FC.

Tables 5.1 and 5.2 show the payoff matrix for the DFH and DFS games

when α = 0.46 and Pd = 0.8 (very similar results are obtained for differ-

ent values of these parameters). For the DFS game, the threshold values

are obtained from the reliability interval [ηS,min, ηS,max]. Since the reliability

measures take different values for different Pmal, a large number of thresh-

olds have been considered, however for sake of brevity, we show the results

obtained with a rather coarse quantization interval, especially far from the

equilibrium point.

As to the strategy of the Byzantines, the simulation results confirm the

dominance of Pmal = 1 for both games. Looking at the performance at the

equilibrium, we see that the DFS game is more favorable to the FC, with a

Pe,ar at the equilibrium equal to 0.1375 against 0.1982 for the DFH game. In

Figure 5.2, the two games are compared by plotting the corresponding payoffs
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ηH / Pmal 0.6 0.7 0.8 0.9 1

4 0.0016 0.0087 0.0354 0.1109 0.2746

3 0.0015 0.0078 0.0262 0.06628 0.1982

2 0.0016 0.0080 0.0281 0.0726 0.1998

1 0.0016 0.0087 0.0354 0.1109 0.2746

0 0.0016 0.0087 0.0354 0.1109 0.2746

Table 5.1: Payoff of the DFH game for α = 0.46 and Pd = 0.8, Pfa = 0.2.

ηS / Pmal 0.6 0.7 0.8 0.9 1

ηS,min 0.0009 0.0035 0.0131 0.0596 0.2253

· 0.0009 0.0035 0.0131 0.0596 0.1889

· 0.0009 0.0035 0.0131 0.0596 0.1589

· 0.0009 0.0035 0.0131 0.0596 0.1401

· 0.0009 0.0035 0.0131 0.0596 0.1405

· 0.0009 0.0035 0.0131 0.0596 0.1375

· 0.0009 0.0035 0.0131 0.0596 0.1528

· 0.0009 0.0035 0.0131 0.0596 0.1801

· 0.0009 0.0035 0.0131 0.0596 0.2192

· 0.0009 0.0035 0.0131 0.0596 0.2742

· 0.0009 0.0035 0.0131 0.0361 0.2742

· 0.0009 0.0035 0.0131 0.0209 0.2742

· 0.0009 0.0035 0.0131 0.0586 0.2742

· 0.0009 0.0035 0.0131 0.1108 0.2742

· 0.0009 0.0035 0.0088 0.1108 0.2742

· 0.0009 0.0035 0.0054 0.1108 0.2742

· 0.0008 0.0021 0.0355 0.1108 0.2742

ηS,max 0.0006 0.0011 0.0355 0.1108 0.2742

Table 5.2: Payoff of the DFS game for α = 0.46 and Pd = 0.8, Pfa = 0.2.

at the equilibrium for various values of α in the interval [0.4, 0.49]. Upon in-

spection of the figure, the superiority of the soft isolation scheme is confirmed.

Finally, we compared the two schemes in terms of capability of isolation of

the byzantine nodes. The ROC curve with the probability of correct isolation

(PBISO) versus the erroneous isolation of honest nodes (PHISO), obtained by

varying η, is depicted in Figure 5.3 for both schemes. The curves correspond

to the case of α = 0.46 and Pd = 0.8. As we can see, soft isolation allows

to obtain a slight improvement of the isolation performance with respect to
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Figure 5.2: Error probability Pe,ar at the equilibrium for Pd = 0.8 (a) and

Pd = 0.9 (b).

isolation based on a hard reputation score.
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Figure 5.3: PHiso vs. PBiso at Pmal = 1.0, for α = 0.46 and Pd = 0.8. For the

soft scheme, 10 thresholds are taken.

5.6 Conclusions

In this chapter, we presented a new defense scheme for decision fusion in the

presence of byzantine nodes, relying on a soft reputation measure for the iden-

tification of nodes. In order to evaluate the performance of the new scheme

and compare it against prior art based on a hard reputation measure, we have

used a game theoretic framework which is particularly suited to analyze the

interplay between the fusion center and the Byzantines. We evaluated the

equilibrium point of the game by means of simulations and used the payoff at

the equilibrium to assess the validity of the soft reputation metric.





Chapter 6

A Game-Theoretic Framework for
Optimum Decision Fusion in the Presence
of Byzantines

”Never interrupt your enemy when he is making a mistake.”

Napoleon Bonaparte

”Knowledge is a Weapon, Jon. Arm yourself well before you ride forth to

Battle.”

George R.R. Martin, ”A Dance with Dragons”

6.1 Introduction

This chapter starts from the observation that the knowledge of Pmal and

the probability distribution of Byzantines across the network would allow

the derivation of the optimum decision fusion rule, thus permitting to the FC

to obtain the best achievable performance. We also argue that in the presence

of such an information discarding the reports received from suspect nodes is

not necessarily the optimum strategy, since such reports may still convey

some useful information about the status of the system. This is the case, for

instance, when Pmal = 1. If the FC knows the identity of byzantine nodes, in

fact, it only needs to flip the reports received from such nodes to cancel the

Byzantines’ attack. In this sense, the methods proposed in previous works, as

well as the one presented in chapter 5, are highly suboptimal, since they do

not fully exploit the knowledge of Byzantines distribution and their attacking

strategy.

With the above ideas in mind, and by adopting the setup illustrated in

Figure 6.1, we first derive the optimum decision fusion rule when the FC knows

both the probability distribution of Byzantines and Pmal. Our analysis goes
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Figure 6.1: Sketch of the adversarial decision fusion scheme.

along a line which is similar to that used in [67] to derive the Chair-Varshney

optimal fusion rule. As a matter of fact, by knowing Pmal and assuming that

the probability that a node is Byzantine is fixed and independent on the other

nodes, the Chair-Varshney rule can be easily extended to take into account

the presence of Byzantines. In contrast to [67], however, the optimal fusion

rule we derive in this chapter, makes a joint decision on the whole sequence of

states hence permitting to improve the decision accuracy. Furthermore, the

analysis is not limited to the case of independently distributed Byzantines.

We also describe an efficient implementation of the optimum fusion strategy

based on dynamic programming.

In order to cope with the lack of knowledge regarding Pmal, we introduce a

game-theoretic approach according to which the FC arbitrarily sets the value

of Pmal to a guessed value PFCmal and uses such a value within the optimum
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fusion rule. At the same time, the Byzantines choose the value of Pmal so

to maximize the error probability, without knowing the value of PFCmal used

by the fusion center. The payoff is defined as the overall error probability,

with the FC aiming at minimizing it, while the goal of the Byzantines is

to maximize it. With regard to the knowledge that the FC has about the

distribution of Byzantines, we consider several cases, ranging from a maximum

entropy scenario in which the uncertainty about the distribution of Byzantines

is maximum, through a more favorable situation in which the FC knows the

exact number of Byzantines present in the network. Having defined the game,

we use numerical simulations to derive the existence of equilibrium points,

which identify the optimum behavior for both the FC and the Byzantines in

a game-theoretic sense.

We use numerical simulations also to get more insights into the optimum

strategies at the equilibrium and the achievable performance under various

settings. The simulations show that in all the analyzed cases, the performance

at the equilibrium outperforms those obtained in previous works (specifically

in [143] and chapter 5). Simulation results also confirm the intuition that,

in some instances, it is preferable for the Byzantines to minimize the mutual

information between the status of the observed system and the reports sub-

mitted to the FC, rather than always flipping the decision made by the local

nodes as it is often assumed in previous works. This is especially true when

the length of the observed sequence and the available information about the

Byzantine distribution allow a good identification of byzantine nodes.

6.2 Optimum fusion rule

In the rest of the chapter, we will use capital letters to denote random variables

and lowercase letters for their instantiations. Given a random variable X,

we indicate with PX(x) its probability mass function (pmf). Whenever the

random variable the pmf refers to is clear from the context, we will use the

notation P (x) as a shorthand for PX(x).

With the above notation in mind, we let Sm = (S1, S2 . . . Sm) indicate a

sequence of independent and identically distributed (i.i.d.) random variables

indicating the state of the system. The independence of the different compo-
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nents of the state vector is a reasonable assumption in several scenarios, e.g.

when they represent the status of the frequency spectrum of a cognitive radio

system at different frequencies [143]. We assume that all states are equiprob-

able, that is PSj (0) = PSj (1) = 0.5. We denote by Uij ∈ {0, 1} the local

decision made by node i about Sj . We exclude any interaction between the

nodes and assume that Uij ’s are conditionally independent for a fixed status

of the system. This is equivalent to assuming that the local decision errors

are i.i.d.

With regard to the position of the Byzantines, let An = (A1 . . . An) be a

binary random sequence in which Ai = 0 (res. Ai = 1) if node i is honest

(res. byzantine). The probability that the distribution of Byzantines across

the nodes is an is indicated by PAn(an) or simply P (an).

Finally, we let R = {Rij}, i = 1 . . . n, j = 1 . . .m be a random matrix

with all the reports received by the fusion center, accordingly, we denote by

r = {rij} a specific instantiation of R. As stated before, Rij = Uij for hon-

est nodes, while P (Rij 6= Uij) = Pmal for byzantine nodes. Byzantine nodes

flip the local decisions Uij independently of each other with equal probabili-

ties, so that their action can be modeled as a number of independent binary

symmetric channels with crossover probability Pmal.

We are now ready to derive the optimum decision rule on the sequence

of states at the FC. We stress that, while considering a joint decision on the

sequence of states does not give any advantage in the non-adversarial scenario

with i.i.d. states, such an approach permits to improve the accuracy of the

decision in the presence of byzantine nodes. Given the received reports r

and by adopting a maximum a posteriori probability criterion, the optimum

decision rule minimizing the error probability can be written as:

sm,∗ = arg max
sm

P (sm|r). (6.1)

By applying Bayes rule and exploiting the fact that all state sequences are

equiprobable, we obtain:

sm,∗ = arg max
sm

P (r|sm). (6.2)

In order to go on, we condition P (r|sm) to the knowledge of an and then

average over all possible an:
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sm,∗ = arg max
sm

∑
an

P (r|an, sm)P (an) (6.3)

= arg max
sm

∑
an

( n∏
i=1

P (ri|ai, sm)

)
P (an) (6.4)

= arg max
sm

∑
an

( n∏
i=1

m∏
j=1

P (rij |ai, sj)
)
P (an), (6.5)

where ri indicates the i-th row of r. In (6.4) we exploited the fact that,

given an and sm, the reports sent by the nodes are independent of each other,

while (6.5) derives from the observation that each report depends only on

the corresponding element of the state sequence. It goes without saying that

in the non-adversarial case (P (an) = 1 for an = (0, · · · , 0) and 0 otherwise)

the maximization in (6.5) is equivalent to the following component-wise max-

imization

s∗j = arg max
sj

n∏
i=1

P (rij |sj), ∀j = 1, · · · ,m, (6.6)

which corresponds to the Chair-Varshney rule.

We now consider the case in which the probability of a local decision error,

say ε, is the same regardless of the system status, that is ε = Pr(Uij 6= Sj |Sj =

sj), sj = 0, 1. For a honest node, such a probability is equal to the probability

that the report received by the FC does not correspond to the system status.

This is not the case for byzantine nodes, for which the probability δ that the

FC receives a wrong report is

δ = ε(1− Pmal) + (1− ε)Pmal. (6.7)

According to the above setting, the nodes can be modeled as binary sym-

metric channels, whose input corresponds to the system status and for which

the crossover probability is equal to ε for the honest nodes and δ for the

Byzantines. With regard to ε, it is reasonable to assume that such a value

is known to the fusion center, since it depends on the characteristics of the

channel through which the nodes observe the system and the local decision
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rule adopted by the nodes. The value of δ depends on the value of Pmal

which is chosen by the Byzantines and then is not generally known to the

FC. We will first derive the optimum fusion rule assuming that Pmal is known

and then relax this assumption by modeling the problem in a game-theoretic

framework.

From (6.5), the optimum decision rule can be written:

sm,∗ = arg max
sm

∑
an

( ∏
i:ai=0

(1− ε)meq(i)εm−meq(i) (6.8)

∏
i:ai=1

(1− δ)meq(i)δm−meq(i)

)
P (an),

where meq(i) is the number of j’s for which rij = sj .

As a notice, when there are no Byzantines in the network, the optimum

decision in (6.8) boils down to the majority rule.

To go on with the study of the adversarial setup we need to make some

assumptions on P (an).

6.2.1 Unconstrained maximum entropy distribution

As a worst case scenario, we could assume that the FC has no a-priori infor-

mation about the distribution of Byzantines. This corresponds to maximizing

the entropy of An, i.e. to assuming that all sequences an are equiprobable,

P (an) = 1/2n. In this case, the random variables Ai are independent of each

other and we have PAi(0) = PAi(1) = 1/2. It is easy to argue that in this

case the Byzantines may impede any meaningful decision at the FC. To see

why, let us assume that the Byzantines decide to use Pmal = 1. With this

choice, the mutual information between the vector state Sm and R is zero

and so any decision made by the FC center would be equivalent to guessing

the state of the system by flipping a coin. The above observation is consistent

with previous works in which it is usually assumed that the probability that

a node is Byzantine or the overall fraction of Byzantines is lower than 0.5,

since otherwise the Byzantines would always succeed to blind the FC [37].
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6.2.2 Constrained maximum entropy distributions

A second possibility consists in maximizing the entropy of An subject to

a constraint which corresponds to the a-priori information available to the

fusions center. We consider two cases. In the first one the FC knows the

expected value of the number of Byzantines present in the network, in the

second case, the FC knows only an upper bound of the number of Byzantines.

In the following, we let NB indicate the number of Byzantines present in the

network.

6.2.2.1 Maximum entropy with given E[NB]

Let α = E[NB]/n indicate the expected fraction of byzantine nodes in the net-

work. In order to determine the distribution P (an) which maximizes H(An)

subject to α, we observe that E[NB] = E[
∑

iAi] =
∑

iE[Ai] =
∑

i µAi ,

where µAi indicates the expected value of Ai. In order to determine the max-

imum entropy distribution constrained to E[NB] = αn, we need to solve the

following problem:

max
P (an):

∑
i µAi

=nα
H(An). (6.9)

We now show that the solution to the above maximization problem is obtained

by letting the Ai’s to be i.i.d. random variables with µAi = α. We have:

H(An) ≤
∑
i

H(Ai) =
∑
i

h(µAi), (6.10)

where h(µAi) denotes the binary entropy function1 and where the last equality

derives from the observation that for a binary random variable A, µA = PA(1).

We also observe that equality holds if and only if the random variables Ai’s are

independent. To maximize the rightmost term in Equation (6.10) subject to∑
i µAi = nα, we observe that the binary entropy is a concave function [142],

and hence the maximum of the sum is obtained when all µAi ’s are equal, that

is when µAi = α.

In summary, the maximum entropy case with known average number of

Byzantines, corresponds to assuming i.i.d. node states for which the proba-

bility of being malicious is constant and known to the FC2. We also observe

1For any p ≤ 1 we have: h(p) = p log2 p + (1− p) log2(1− p).
2Sometimes this scenario is referred to as Clairvoyant case [143].
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that when α = 0.5, we go back to the unconstrained maximum entropy case

discussed in the previous section.

Let us assume, then, that Ai’s are Bernoulli random variables with pa-

rameter α, i.e., PAi(1) = α, ∀i. In this way, the number of Byzantines in the

network is a random variable with a binomial distribution. In particular, we

have P (an) =
∏
i P (ai), and hence (6.4) can be rewritten as:

sm,∗ = arg max
sm

∑
an

( n∏
i=1

P (ri|ai, sm)P (ai)

)
. (6.11)

The expression in round brackets corresponds to a factorization of P (r,

an|sm). If we look at that expression as a function of an, it is a product

of marginal functions. By exploiting the distributivity of the product with

respect to the sum we can rewrite (6.11) as follows

sm,∗ = arg max
sm

n∏
i=1

( ∑
ai∈{0,1}

P (ri|ai, sm)P (ai)

)
, (6.12)

which can be computed more efficiently, especially for large n. The expres-

sion in (6.12) can also be derived directly from (6.2) by exploiting first the

independence of the reports and then applying the law of total probability.

By reasoning as we did to derive (6.8), the to-be-maximized expression for

the case of symmetric error probabilities at the nodes becomes

sm,∗ = arg max
sm

n∏
i=1

[
(1− α)(1− ε)meq(i)εm−meq(i) + α(1− δ)meq(i)δm−meq(i)

]
.

(6.13)

Due to the independence of node states, the complexity of the above max-

imization problem grows only linearly with n, while it is exponential with

respect to m, since it requires the evaluation of the to-be-minimized function

for all possible sequence sm. For this reason, the optimal fusion strategy can

be adopted only when the length of the observed sequence is limited.

6.2.2.2 Maximum entropy with NB < h

As a second possibility, we assume that the FC knows only that the number

of Byzantines NB is lower than a certain value h (h ≤ n). For instance, as
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already observed in previous works [37,141,143], when the number of Byzan-

tines exceeds the number of honest nodes no meaningful decision can be made.

Then, as a worst case assumption, it makes sense for the FC to assume that

NB < n/2 (i.e., h = n/2), since if this is not the case, no correct decision can

be made anyhow. Under this assumption, the maximum entropy distribution

is the one which assigns exactly the same probability to all the sequences an

for which
∑

i ai < n/2. More in general, the FC might have some a priori

knowledge on the maximum number of corrupted (or corruptible) links in the

network, and then he can constraint NB to be lower than h with h < n/2.

To derive the optimum fusion strategy in this setting, let I be the indexing

set {1, 2, ..., n}. We denote with Ik the set of all the possible k-subsets of I.

Let I ∈ Ik be a random variable with the indexes of the byzantine nodes, a

node i being Byzantine if i ∈ I, honest otherwise. With this notation, we can

rewrite (6.3) as

sm,∗ = arg max
sm

h−1∑
k=0

∑
I∈Ik

P (r|I, sm)p(sm), (6.14)

where we have omitted the term P (I) (or equivalently P (an)) since all

the sequences for which NB < h have the same probability. In the case of

symmetric local error probabilities, (6.14) takes the following form:

sm,∗ = arg max
sm

h−1∑
k=0

∑
I∈Ik

(∏
i∈I

(1−δ)meq(i)δm−meq(i)
∏
i∈I\I

(1−ε)meq(i)εm−meq(i)

)
.

(6.15)

Since, reasonably, h is a fraction of n, a problem with (6.15) is the complexity

of the inner summation, which grows exponentially with n (especially for val-

ues of k close to h). Together with the maximization over all possible sm, this

results in a doubly exponential complexity, making the direct implementa-

tion of (6.15) problematic. In Section 6.3, we introduce an efficient algorithm

based on dynamic programming which reduces the computational complexity

of the maximization in (6.15).

We conclude by stressing an important difference between the case consid-

ered in this subsection and the maximum entropy case with fixed E[NB], with
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the same average number of Byzantines. In the setting with a fixed E[NB]

(< n/2) there is no guarantee that the number of Byzantines is always lower

than the number of honest nodes, as it is the case in the setting analyzed in

this subsection when h ≤ n/2. This observation will be crucial to explain

some of the results that we will present later on in the chapter.

6.2.3 Fixed number of Byzantines

The final setting we are going to analyze assumes that the fusion center knows

the exact number of Byzantines, say nB. This is a more favorable situation

with respect to those addressed so far. The derivation of the optimum decision

fusion rule stems from the observation that, in this case, P (an) 6= 0 only for

the sequence for which
∑

i ai = nB. For such sequences, P (an) is constant

and equal to
(
n
nB

)−1
. By using the same notation used in the previous section,

the optimum fusion rules, then, is:

sm,∗ = arg max
sm

∑
I∈InB

P (r|I, sm)p(sm), (6.16)

which reduces to

sm,∗ = arg max
sm

∑
I∈InB

(∏
i∈I

(1− δ)meq(i)δm−meq(i)
∏
i∈I\I

(1− ε)meq(i)εm−meq(i)

)
,

(6.17)

in the case of equal local error probabilities. With regard to computational

complexity, even if the summation over all possible number of Byzantines is

no more present, the direct implementation of (6.17) is still very complex due

to the exponential dependence of the cardinality of InB with respect to n.

6.3 An efficient implementation based on dynamic

programming

The computational complexity of a direct implementation of (6.15) and (6.17)

hinders the derivation of the optimum decision fusion rule for large size net-

works. Specifically, the problem with (6.15) and (6.17) is the exponential
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number of terms of the summation over Ik (InB in (6.17)). In this section, we

show that an efficient implementation of such summations is possible based

on Dynamic Programming (DP) [154].

Dynamic programming is an optimization strategy which allows to solve

complex problems by transforming them into subproblems and by taking ad-

vantage of the subproblems overlap in order to reduce the number of op-

erations. When facing with complex recursive problems, by using dynamic

programming we solve each different subproblem only once by storing the

solution for subsequent use. If during the recursion the same subproblem is

encountered again, the problem is not solved twice since its solution is already

available. Such a re-use of previously solved subproblems is often referred in

literature as memorization algorithm [154]. Intuitively, DP allows to reduce

the complexity of problems with a structure, such that the solutions of the

same subproblems can be reused many times.

We now apply dynamic programming to reduce the complexity of our

problem. Let us focus on a fixed k (and n) and let us define the function fn,k
as follows:

fn,k =
∑
I∈Ik

(∏
i∈I

(1− δ)meq(i)δm−meq(i)
∏
i∈I\I

(1− ε)meq(i)εm−meq(i)

)
. (6.18)

By focusing on node i, there are some configurations I ∈ Ik for which

such a node belongs to I, while for others the node belongs to the comple-

mentary set I \ I. Let us define b(i) = (1 − δ)meq(i)δm−meq(i) and h(i) =

(1 − ε)meq(i)εm−meq(i), which are the two contributions that node i can pro-

vide to each term of the sum, depending on whether it belongs to I or I \ I.

Let us focus on the first indexed node. By exploiting the distributivity of

the product with respect to the sum, expression (6.18) can be rewritten in a

recursive manner as:

fn,k = b(1)fn−1,k−1 + h(1)fn−1,k. (6.19)

By focusing on the second node, we can iterate on fn−1,k−1 and fn−1,k, getting:

fn−1,k−1 = b(2)fn−2,k−2 + h(2)fn−2,k−1, (6.20)



104
6. A Game-Theoretic Framework for Optimum Decision Fusion in the

Presence of Byzantines

and

fn−1,k = b(2)fn−2,k−1 + h(2)fn−2,k. (6.21)

We notice that subfunction fn−2,k−1 appears in both (6.20) and (6.21) and

then it can be computed only once. The procedure can be iterated for each

subfunction until we reach a subfunction whose value can be computed in

closed form, that is: fr,r =
∏n
i=n−r+1 b(i) and fr,0 =

∏n
i=n−r+1 h(i), for some

r ≤ k. By applying the memorization strategy typical of dynamic program-

ming, the number of required computations is given by the number of nodes

in the tree depicted in Figure 6.2, where the leaves correspond to the terms

computable in closed form3. By observing that the number of the nodes of

the tree is k(k+ 1)/2 + k(n− k− k) + k(k+ 1)/2 = k(n− k+ 1), we conclude

that the number of operations is reduced from
(
n
k

)
to k(n − k + 1), which

corresponds to a quadratic complexity instead of an exponential one.

6.4 Decision fusion with Byzantines game

The optimum decision fusion rules derived in Section 6.2 assume that the FC

knows the attacking strategy adopted by the Byzantines, which in the sim-

plified case studied in this chapter corresponds to knowing Pmal. By knowing

Pmal, in fact, the FC can calculate the value of δ used in Equations (6.8),

(6.13), (6.15) and (6.17), and hence implement the optimum fusion rule. In

previous works, as in [143, 145], it is often conjectured that Pmal = 1. In

some particular settings, as the ones addressed in [153] and chapter 5, it has

been shown that this choice permits to the Byzantines to maximize the er-

ror probability at the fusion center. Such an argument, however, does not

necessarily hold when the fusion center can localize the byzantine nodes with

good accuracy and when it knows that the byzantine nodes always flip the

local decision. In such a case, in fact, the FC can revert the action of the

Byzantines by simply inverting the reports received from such nodes, as it is

implicitly done by the optimal fusion rules derived in the previous section.

In such a situation, it is easy to argue that it is better for the Byzantines to

3The figure refers to the case k < n − k, which is always the case in our setup since

k < bn/2c.
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fn−2,kfn−2,k−1fn−2,k−2

fn,k

fn−1,k−1 fn−1,k

fn−k,k

fn−k−1,kfn−k−1,k

fn−k,k−1

fk,0 fk,1 fk,kfk,k−1

fk−1,k−1fk−1,0

f0,0

fn−k,0 fn−k,1

fn−k−1,0 fn−k−1,1

Figure 6.2: Efficient implementation of the function in (6.18) based on dy-

namic programming. The figure depicts the tree with the iterations for the

case k < n− k.

let Pmal = 0.5 since in this way the mutual information between the system

status and the reports received from the byzantine nodes is equal to zero. In

general, the byzantine nodes must face the following dilemma: is it better
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to try to force the FC to make a wrong decision by letting Pmal = 1 and

run the risk that if their location in the network is detected the FC receives

some useful information from the corrupted reports, or erase the information

that the FC receives from the attacked nodes by reducing to zero the mutual

information between the corrupted reports and Sm ?

Given the above discussion, it is clear that the FC cannot assume that

the Byzantines use Pmal = 1, hence making the actual implementation of the

optimum decision fusion rule impossible.

In order to exit this apparent deadlock, we model the race of arms be-

tween the Byzantines and the FC as a two-player, zero-sum, strategic game,

whose equilibrium defines the optimum choices for the FC and the Byzan-

tines. In this model, the interplay is between the value of Pmal adopted by

the Byzantines and the value used by the FC in its attempt to implement the

optimum fusion rule as game. For sake of clarity, in the following we indicate

the flipping probability adopted by the Byzantines as PBmal, while we use the

symbol PFCmal to indicate the value adopted by the FC in its implementation

of the optimum fusion rule. With the above ideas in mind, we introduce the

following Decision Fusion Game.

Definition 2. The DFByz(SB,SFC , v) game is a two player, zero-sum, strate-

gic, game played by the FC and the Byzantines (collectively acting as a single

player), defined by the following strategies and payoff.

• The sets of strategies the Byzantines and the FC can choose from are,

respectively, the set of possible values of PBmal and PFCmal :

SB = {PBmal ∈ [0, 1]};
SFC = {PFCmal ∈ [0, 1]}. (6.22)

• The payoff function is defined as the error probability at the FC, indi-

cated as Pe

v = Pe = P (S∗ 6= S). (6.23)

where S is the true system state and S∗ is the decision made by FC.

Of course the Byzantines aim at maximizing Pe, while the FC aims at

minimizing it.
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Note that according to the definition of DFByz, the sets of strategies

available to the FC and the Byzantines are continuous sets. In practice,

however, continuous values can be replaced by a properly quantized version

of PBmal and PFCmal .

In the next section, we use numerical simulations to derive the equilibrium

point of various versions of the game obtained by varying the probability

distribution of Byzantines as detailed in Section 6.2. As we will see, while

some versions of the game has a unique Nash (or even dominant) equilibrium

point in pure strategies, in other cases, a Nash equilibrium exists only in

mixed strategies.

6.5 Simulation results and discussion

In order to investigate the behavior of the DFByz game for different setups and

analyze the achievable performance when the FC adopts the optimum decision

strategy with parameters tuned following a game-theoretic approach, we run

extensive numerical simulations. The first goal of the simulations was to study

the existence of an equilibrium point in pure or mixed strategies, and analyze

the expected behavior of the FC and the Byzantines at the equilibrium. The

second goal was to evaluate the payoff at the equilibrium as a measure of the

best achievable performance of Decision Fusion in the presence of Byzantines.

We then used such a value to compare the performance of the game-theoretic

approach proposed in this thesis with respect to previous works.

6.5.1 Analysis of the equilibrium point of the DFByz game

As we said, the first goal of the simulations was to determine the exis-

tence of an equilibrium point for the DFByz game. To do so, we quan-

tized the set of available strategies considering the following set of values:

SqB = {0.5, 0.6, 0.7, 0.8, 0.9, 1} and SqFC = {0.5, 0.6, 0.7, 0.8, 0.9, 1}. We re-

stricted our analysis to values larger than or equal to 0.5 since it is easily

arguable that such values always lead to better performance for the Byzan-

tines4. As to the choice of the quantization step, we set it to 0.1 to ease the

4By using a game-theoretic terminology, this is equivalent to say that the strategies

corresponding to PB
mal < 0.5 are dominated strategies and hence can be eliminated.
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description of the results we have got and speed up the simulations. Some

exploratory test made with a smaller step gave similar results as it will be

shown in the subsequent subsection.

Let V denote the payoff matrix of the game, that is, the matrix of the

error probabilities for each pair of strategies (PBmal, P
FC
mal ) ∈ S

q
FC × S

q
B. For

each setting, the payoff matrix v is obtained by running the simulations for

all the possible moves of FC and the Byzantines.

Sometimes (when the game can be solved with pure strategies), the equi-

librium point easily comes out through inspection of the payoff matrix, espe-

cially when a rationalizable equilibrium exists. In the general case, we can

find equilibrium point by relying on the minimax theorem [102]. Let pB (res.

pFC) be a column vector with the probability distribution over the possible

values of PBmal (res. PFCmal ). The mixed strategies Nash equilibrium (p∗B, p
∗
FC)

can be found by solving separately the max-min and min-max problems:

p∗B = arg maxpB(SqB) min
pFC(SqFC)

pTBvpFC

p∗FC = arg minpFC(SqFC) max
pB(SqB)

pTBvpFC (6.24)

which can be reduced to two simple linear programming problems.

We found that among all the parameters of the game, the value of m has

a major impact on the equilibrium point. The value of m, in fact, determines

the ease with which the FC can localize the byzantine nodes, and hence plays

a major role in determining the optimum attacking strategy. For this reason,

we split our analysis in two parts: the former refers to small values of m,

the latter to intermediate values of m. Unfortunately, the exponential growth

of the complexity of the optimum decision fusion rule as a function of m

prevented us from running simulations with large values of m.

Simulations were carried out by adopting the following setup. We run

50,000 trials to compute Pe at each row of the matrix. In particular, for each

PBmal, we used the same 50,000 states to compute Pe for all PFCmal strategies.

In all the simulations, we let PSj (0) = PSj (1) = 0.5, n = 20, and ε = 0.1. We

used the linear programming tools from Matlab Optimization Toolbox [155]

to solve (6.24).
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6.5.1.1 Small m

For the first set of simulations, we used a rather low value of m, namely

m = 4. The other parameters of the game were set as follows: n = 20,

ε = 0.1. With regard to the number of Byzantines present in the network we

used α = {0.3, 0.4, 0.45} for the case of independent node states studied in

Section 6.2.2.1, and nB = {6, 8, 9} for the case of known number of Byzantines

(Section 6.2.3). Such values were chosen so that in both cases we have the

same average number of Byzantines, thus easing the comparing between the

two settings.

Tables 6.1 through 6.3 report the payoff for all the profiles resulting from

the quantized values of PBmal and PFCmal , for the case of independent node states

(constrained maximum entropy distribution). The error probabilities in all

the tables are scaled by a convenient power of 10. In all the cases PBmal = 1

is a dominant strategy for the Byzantines, and the profile (1, 1) is the unique

rationalizable equilibrium of the game. As expected, the error probability

increases with the number of Byzantines. The value of the payoff at the

equilibrium ranges from Pe = 0.0349 with α = 0.3 to Pe = 0.3314 with

α = 0.45. For completeness, we report the value of the error probability in the

non-adversarial setup, which is Pe = 0.34 ·10−5. Concerning the computation

of the equilibrium point, we can observe that by looking at these tables,

apparently the strategy PBmal = 1 is dominant for the Byzantines, so it is

sufficient to consider only the row corresponding to this strategy from the

payoff matrix. In this way, the problem becomes monodimensional one and

the equilibrium point is the point that minimizes the Pe at the FC, which is

PFCmal = 1. This strategy for computing the equilibrium point can be applied

whenever we have a dominant strategy for any of the players, however, in this

thesis we used Lemke-Howson algorithm [156] to solve the games.

Tables 6.4 through 6.6 report the payoffs for the case of fixed number of

Byzantines, respectively equal to 6, 8 and 9.

When nB = 6, PBmal = 0.5 is a dominant strategy for the Byzantines,

and the profile (0.5, 0.5) is the unique rationalizable equilibrium of the game

corresponding to a payoff Pe = 3.8 · 10−4. This marks a significant difference

with respect to the case of independent nodes, where the optimum strategy for

the Byzantines was to let PBmal = 1. The reason behind the different behavior
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PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.845 0.965 1.1 1.3 1.6 2.1

0.6 1.2 1.1 1.2 1.5e-3 1.8 2.6

0.7 2.2 2.0 1.8 1.8e-3 2.1 3.7

0.8 5.4 5.1 5.0 5.0e-3 5.1 7.7

0.9 16.2 16.1 16.5 16.4 16.0 19.1

1.0 43 43.1 46.9 46.8 41.6 34.9

Table 6.1: Payoff of the DFByz game (103×Pe) with independent node states

with α = 0.3, m = 4, n = 20, ε = 0.1. The equilibrium point is highlighted in

bold.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.33 0.37 0.44 0.58 0.73 0.85

0.6 0.60 0.54 0.59 0.70 0.80 1.14

0.7 1.38 1.20 1.19 1.24 1.29 2.40

0.8 3.88 3.56 3.36 3.31 3.35 6.03

0.9 9.93 9.61 9.57 9.55 9.54 11.96

1.0 20.33 20.98 21.70 21.90 21.84 19.19

Table 6.2: Payoff of the DFByz game (102×Pe) with independent node states

with α = 0.4, m = 4, n = 20, ε = 0.1. The equilibrium point is highlighted in

bold.

is that in the case of fixed number of nodes, the a-priori knowledge available at

the FC is larger than in the case of independent nodes with the same average

number of nodes. This additional information permits to the FC to localize

the byzantine nodes, which now cannot use PBmal = 1, since in this case they

would still transmit some useful information to the FC. On the contrary, by

letting PBmal = 0.5 the information received from the byzantine nodes is zero,

hence making the task of the FC harder. When nB = 9 (Table 6.6), the

larger number of Byzantines makes the identification of malicious nodes more

difficult and PBmal = 1 is again a dominant strategy, with the equilibrium of the
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PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.62 0.69 0.86 1.34 1.70 1.57

0.6 1.23 1.15 1.26 1.84 2.18 2.38

0.7 2.94 2.64 2.57 3.00 3.14 5.33

0.8 7.89 7.39 7.03 6.74 6.81 12.73

0.9 18.45 17.94 17.63 17.08 17.07 22.78

1.0 34.39 34.62 34.84 36.66 36.61 33.14

Table 6.3: Payoff of the DFByz game (102×Pe) with independent node states

with α = 0.45, m = 4, n = 20, ε = 0.1. The equilibrium point is highlighted

in bold.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 3.80 3.80 4.60 7.60 12.0 29.0

0.6 3.60 3.45 3.90 5.20 8.0 17.0

0.7 3.45 2.80 2.80 3.10 4.40 8.75

0.8 4.10 2.85 2.15 2.05 2.25 3.25

0.9 3.55 2.05 1.40 0.95 0.70 0.75

1.0 2.05 0.90 0.35 0.15 0.05 0.05

Table 6.4: Payoff of the DFByz game (104×Pe) with nB = 6, m = 4, n = 20,

ε = 0.1. The equilibrium point is highlighted in bold.

game obtained at the profile (1,1) with Pe = 0.0551. A somewhat intermediate

situation is observed when nB = 8 (Table 6.5). In this case, no equilibrium

point exists (let alone a dominant strategy) if we consider pure strategies

only. On the other hand, when mixed strategies are considered, the game

has a unique Nash equilibrium for the strategies reported in Table 6.7 (each

row in the table gives the probability vector assigned to the quantized values

of Pmal by one of the players at the equilibrium). Interestingly the optimum

strategy of the Byzantines corresponds to alternate playing PBmal = 1 and

PBmal = 0.5, with intermediate probabilities. This confirms the necessity for

the Byzantines to find a good trade-off between two alternative strategies:
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PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 1.2 1.4 1.9 3.1 6.3 18.9

0.6 1.5 1.4 1.4 2.0 3.7 10.0

0.7 1.4 1.1 0.945 1.1 1.7 4.0

0.8 1.4 0.95 0.715 0.58 0.675 1.2

0.9 2.1 1.4 0.995 0.745 0.71 0.78

1.0 7.3 5.7 5.3 3.7 3.0 2.9

Table 6.5: Payoff of the DFByz game (103×Pe) with nB = 8, m = 4, n = 20,

ε = 0.1. No pure strategy equilibrium exists.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.22 0.24 0.33 0.63 1.41 4.13

0.6 0.27 0.24 0.27 0.41 0.78 2.03

0.7 0.32 0.24 0.23 0.26 0.37 0.82

0.8 0.54 0.45 0.39 0.36 0.41 0.59

0.9 2.04 1.87 1.76 1.58 1.56 1.66

1.0 9.48 8.76 8.37 6.72 5.88 5.51

Table 6.6: Payoff of the DFByz game (102×Pe) with nB = 9, m = 4, n = 20,

ε = 0.1. The equilibrium point is highlighted in bold.

set to zero the information transmitted to the FC or try to push it towards a

wrong decision. We also observe that the error probabilities at the equilibrium

are always lower than those of the game with independent nodes. This is an

expected result, since in the case of fixed nodes the FC has a better knowledge

about the distribution of Byzantines.

The last case we have analyzed corresponds to a situation in which the FC

knows that the number of Byzantines cannot be larger than a certain value h

(see Sec. 6.2.2.2).

We first consider the case in which the FC knows only that the number of

Byzantines is lower than n/2. The payoff for this instantiation of the DFByz
game is given in Table 6.8. In order to compare the results of this case with
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0.5 0.6 0.7 0.8 0.9 1.0

P (PBmal) 0.179 0 0 0 0 0.821

P (PFCmal ) 0 0 0 0.846 0.154 0

P ∗e = 3.6e− 3

Table 6.7: Mixed strategies equilibrium for the DFByz game with nB = 8,

m = 4, n = 20, ε = 0.1. P ∗e indicates the error probability at the equilibrium.

those obtained for the case of independent nodes and that of fixed number

of Byzantines, we observe that when all the sequences an with nB < n/2

have the same probability, the average number of Byzantines turns out to be

7.86. The most similar settings, then, are that of independent nodes with

α = 0.4 and that of fixed number of nodes with nB = 8. With respect to

the former, the error probability at the equilibrium is significantly smaller,

thus confirming the case of independent nodes as the worst scenario for the

FC. This is due to the fact that with α = 0.4 it is rather likely that number

of Byzantines is larger than 0.5 thus making any reliable decision impossible.

The error probability obtained with a fixed number of Byzantines equal to

8, however, is much lower. This is a reasonable result, since in that case

the a-priori information available to the FC permits better localization of the

corrupted reports.

We now move to the case with h < n/2. Table 6.9 reports the payoffs

of the game when NB < n/3. By assuming a maximum entropy distribution

over the admissible configurations an with NB < n/3, the average number

of Byzantines turns out to be 4.64. In this case, the equilibrium point shifts

to (0.5, 0.5). This confirms the behavior discussed in the previous paragraph:

since the average number of Byzantines is lower the FC is able to localize

them with a better accuracy, then it is better for the Byzantines to minimize

the information delivered to the FC.

For completness, we present two additional results with smaller quanti-

zation steps, specifically, 0.01 and 0.001. We do so in order to approximate

better the continuous nature of the strategies available to the FC and Byzan-

tines. We considered two examples: one with independent node states and
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PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.15 0.17 0.20 0.29 0.39 0.51

0.6 0.17 0.16 0.16 0.22 0.29 0.40

0.7 0.19 0.15 0.14 0.16 0.20 0.30

0.8 0.27 0.20 0.17 0.16 0.17 0.22

0.9 0.85 0.76 0.72 0.63 0.58 0.63

1.0 3.81 3.49 3.30 2.62 2.24 2.13

Table 6.8: Payoff of the DFByz game (102 × Pe) with NB < n/2. The other

parameters of the game are set as follows: m = 4, n = 20, ε = 0.1. The

equilibrium point is highlighted in bold.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 1.9 2.10 2.30 2.85 3.4 4.05

0.6 1.85 1.75 1.9 2.0 2.85 3.80

0.7 1.3 1.05 0.75 0.8 1.30 2.20

0.8 1.7 1.45 1.15 1.1 1.15 1.50

0.9 1.25 0.65 0.5 0.35 0.35 0.35

1.0 0.85 0.6 0.4 0.1 0.05 0.05

Table 6.9: Payoff of the DFByz game (104 × Pe) with NB < n/3. The other

parameters of the game are set as follows: m = 4, n = 20, ε = 0.1. The

equilibrium point is highlighted in bold.

the other with fixed number of Byzantines. In the first example, we used the

settings used to obtain Table 6.3 while, in the second one, we used the settings

used in Table 6.5. Upon inspection of the resutling payoff in Figure 6.3 and

6.4, we see that they are very similar to those reported in Table 6.3 and Table

6.5, respectively. Now, we move to examine the Byzantines behavior at the

equilibrium and the corresponding payoff value. For the independent node

states case, the equilibrium point remains at (1,1) as the game is solved and

the payoff at the equilibrium is found to be P ∗e = 0.3335 and thus, the results

confirm those obtained with a larger quantization step in Table 6.3. For the
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Figure 6.3: Payoff of the DFByz game with independent node states with

α = 0.45, m = 4, n = 20, ε = 0.1. The quantization step over the strategy

sets is 0.001.

fixed number of Byzantines case, the players still adopt a mixed strategy Nash

equilibrium and their strategies are shown in Figure 6.5 and 6.6. As for the

behavior of the Byzantines strategy, by comparing Figure 6.5 to Table 6.7, it

can be seen that they are in line. In addition, the value of the payoff at the

equilibrium in this case is found to be P ∗e = 0.0035 which is approximately

the same we got with a larger quantization step. Concluding, we can argue

that the size of the quantization step even if the payoff function is continuous,

doesn not affect much the behavior of the players as well as the game payoff

value at the equilibrium.

6.5.1.2 Intermediate values of m

In this section we report the results that we got when the length of the

observation vector increases. We expect that by comparing the reports sent by
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Figure 6.4: Payoff of the DFByz game with fixed node states with nB = 8,

m = 4, n = 20, ε = 0.1. The quantization step over the strategy sets is 0.01.

the nodes corresponding to different components of the state vector allows a

better identification of the byzantine nodes, thus modifying the equilibrium of

the game. Specifically, we repeated the simulations carried out in the previous

section, by letting m = 10. Though desirable, repeating the simulations with

even larger values of m is not possible due to the exponential growth of the

complexity of the optimum fusion rule with m.

Tables 6.10 through 6.12 report the payoffs of the game for the case of

independent node states. As it can be seen, PBmal = 1.0 is still a dominant

strategy for the Byzantines and the profile (1,1) is the unique rationalizable

equilibrium of the game. Moreover, the value of Pe at the equilibrium is

slightly lower than for m = 4, when α = 0.3 and α = 0.4 (see Tables 6.1 and

6.2). Such an advantage disappears when α = 0.45 (see Table 6.3), since the

number of Byzantines is so large that identifying them is difficult even with

m = 10.

The results of the simulations for the case of fixed number of nodes with
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Figure 6.5: Byzantines strategy of the DFByz game with fixed node states with

nB = 8, m = 4, n = 20, ε = 0.1. The quantization step over the strategy sets

is 0.01.

Figure 6.6: FC strategy of the DFByz game with fixed node states with nB = 8,

m = 4, n = 20, ε = 0.1. The quantization step over the strategy sets is 0.01.
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PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.258 0.28 0.39 0.63 1.0 1.7

0.6 0.28 0.226 0.248 0.362 0.652 2.0

0.7 0.346 0.22 0.206 0.23 0.314 5.3

0.8 1.2 0.648 0.44 0.428 0.498 13.9

0.9 8.6 7.8 7.6 7.8 7.5 19.9

1.0 41.9 46.7 50.9 59.8 52.2 32.9

Table 6.10: Payoff of the DFByz game (103×Pe) with independent node states

with α = 0.3, m = 10, n = 20, ε = 0.1. The equilibrium point is highlighted

in bold.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.11 0.13 0.19 0.73 2.16 0.68

0.6 0.11 8.32e-2 9.96e-2 0.26 0.67 1.30

0.7 0.18 7.66e-2 6.62e-2 9.52e-2 0.18 4.87

0.8 1.10 0.60 0.33 0.24 0.28 10.41

0.9 5.77 4.75 3.95 3.53 3.41 13.44

1.0 20.41 21.26 22.65 24.27 26.21 18.72

Table 6.11: Payoff of the DFByz game (102×Pe) with independent node states

with m = 10, n = 20, α = 0.4, ε = 0.1. The equilibrium point is highlighted

in bold.

nB = {6, 8, 9} are given in Tables 6.13 through 6.15. With respect to the

case of m = 4, the optimum strategy for the Byzantines shifts to PBmal = 0.5.

When nB = 6, PBmal = 0.5 is a dominant strategy, while for nB = 8 and

nB = 9, no equilibrium point exists if we consider only pure strategies. The

mixed strategy equilibrium point for these cases is given in Tables 6.18 and

6.19. By comparing those tables with those of the case m = 4, the preference

towards PBmal = 0.5 is evident.

Table 6.16, gives the results for the case NB < n/2. As in the case of fixed

number of Byzantines, the equilibrium point strategy passes from the pure
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PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.20 0.23 0.47 2.88 10.92 1.26

0.6 0.22 0.18 0.24 0.80 2.85 2.93

0.7 0.50 0.19 0.15 0.23 0.65 10.64

0.8 2.61 1.24 0.63 0.41 0.59 20.65

0.9 11.74 9.28 7.08 5.65 5.21 25.85

1.0 34.25 34.94 36.01 37.74 39.87 33.17

Table 6.12: Payoff of the DFByz game (102×Pe) with independent node states

with α = 0.45, m = 10, n = 20, ε = 0.1. The equilibrium point is highlighted

in bold.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 1.22 1.22 1.40 2.20 5.06 11.0

0.6 1.12 0.94 1.02 1.26 2.56 5.34

0.7 1.22 0.58 0.56 0.64 0.98 2.06

0.8 1.22 0.36 0.32 0.28 0.30 0.56

0.9 1.40 0.20 0.18 0.16 0.10 0.18

1.0 1.52 0.14 0.14 0.10 6e-2 4e-2

Table 6.13: Payoff of the DFByz game (104 × Pe) with nB = 6, m = 10,

n = 20, ε = 0.1. The equilibrium point is highlighted in bold.

strategy (1,1) to a mixed strategy (see Table 6.20). Once again, the reason for

such a behavior, is that when m increases, the amount of information available

to the FC increases, hence making the detection of corrupted reports easier.

As a result, the Byzantines must find a trade-off between forcing a wrong

decision and reducing the mutual information between the corrupted reports

and system states. Eventually, Table 6.17 reports the results of the game for

the case NB < n/3 and m = 10. As one could expect, the profile (0.5, 0.5)

is still the equilibrium point of the game, as the optimum strategy for the

Byzantines continues to be the one which minimizes the amount of information

delivered to the FC. We conclude observing that even with m = 10, the case
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PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 4.04 4.44 6.24 10.0 24.0 71.0

0.6 4.02 3.30 3.58 5.24 10.0 26.0

0.7 3.48 2.16 2.14 2.16 3.26 7.76

0.8 3.56 1.10 0.88 0.78 0.98 2.08

0.9 4.60 0.68 0.54 0.30 0.26 0.44

1.0 5.20 0.54 0.20 8e-2 0 0

Table 6.14: Payoff of the DFByz game (104 × Pe) with nB = 8, m = 10,

n = 20, ε = 0.1. No pure strategy equilibrium exists.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 6.74 7.82 12 23 52 168

0.6 5.44 4.94 6.14 9.40 18 52

0.7 4.22 3.30 2.78 3.38 5.86 15

0.8 3.0 2.24 1.24 0.78 1.32 3.24

0.9 5.22 2.36 1.34 1.02 0.88 1.24

1.0 70 40 19 8.90 3.44 2.42

Table 6.15: Payoff of the DFByz game (104 × Pe) with nB = 9, m = 10,

n = 20, ε = 0.1. No pure strategy equilibrium exists.

of independent nodes results in the worst performance.

6.5.2 Performance at the equilibrium and comparison with

prior works

As a last analysis we compared the error probability obtained by the game-

theoretic optimum decision fusion introduced in this chapter, with those ob-

tained by previous works. Specifically, we compared our scheme against a

simple majority-based decision fusion rule according to which the FC decides

that sj = 1 if and only if
∑

i rij > n/2 (Maj), against the hard isolation

scheme described in [143] (HardIS), and the soft isolation scheme proposed in

the previous chapter.
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PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 4.46 5.38 6.64 9.88 16 27

0.6 3.90 3.38 4.10 5.90 9.42 19

0.7 3.04 2.24 1.82 2.26 3.68 7.28

0.8 2.78 1.72 1.0 0.72 0.90 1.70

0.9 3.24 1.38 0.62 0.30 0.20 0.48

1.0 27 15 6.84 4.68 1.42 1.04

Table 6.16: Payoff of the DFByz game (104 × Pe) with NB < n/2. The other

parameters of the game are set as follows: m = 10, n = 20, ε = 0.1. No pure

strategy equilibrium exists.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.5 0.58 0.66 0.78 1.1 1.56

0.6 0.44 0.42 0.48 0.56 0.88 1.3

0.7 0.48 0.48 0.46 0.48 0.54 0.86

0.8 0.4 0.36 0.3 0.22 0.26 0.26

0.9 0.34 0.3 0.22 0.16 0.012 0.016

1.0 0.34 0.28 0.16 0.06 0.02 0.02

Table 6.17: Payoff of the DFByz game (104 × Pe) with NB < n/3 in the

following setup: m = 10, n = 20, ε = 0.1.The equilibrium point is highlighted

in bold.

0.5 0.6 0.7 0.8 0.9 1.0

P (PBmal) 0.921 0 0 0 0 0.079

P (PFCmal ) 0.771 0.229 0 0 0 0

P ∗e = 4.13e− 4

Table 6.18: Mixed strategies equilibrium for the DFByz game with nB = 8,

m = 10, n = 20, ε = 0.1. P ∗e indicates the error probability at the equilibrium.
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0.5 0.6 0.7 0.8 0.9 1.0

P (PBmal) 0.4995 0 0 0 0 0.5005

P (PFCmal ) 0 0 0.66 0.34 0 0

P ∗e = 1.58e− 3

Table 6.19: Mixed strategies equilibrium for the DFByz game with nB = 9,

m = 10, n = 20, ε = 0.1. P ∗e indicates the error probability at the equilibrium.

0.5 0.6 0.7 0.8 0.9 1.0

P (PBmal) 0.4 0 0 0 0 0.6

P (PFCmal ) 0 0 0.96 0.04 0 0

P ∗e = 6.76e− 4

Table 6.20: Mixed strategies equilibrium for the DFByz game with NB < n/2

with m = 10, n = 20, ε = 0.1. P ∗e indicates the error probability at the

equilibrium.

In order to carry out a fair comparison and to take into account the game-

theoretic nature of the problem, the performance of all the schemes are eval-

uated at the equilibrium. For the HardIS and SoftIS schemes this corresponds

to letting PBmal = 1. In fact, in the previous chapter, it is shown that this is

a dominant strategy for these two specific fusion schemes. As a consequence,

PFCmal is also set to 1, since the FC knows in advance that the Byzantines

will play the dominant strategy. For the Maj fusion strategy, the FC has no

degrees of freedom, so no game actually exists in this case. With regard to

the Byzantines, it is easy to realize that the best strategy is to let PBmal = 1.

When the equilibrium corresponds to a mixed strategy, the error probabil-

ity is averaged according to the mixed strategies at the equilibrium. Tables

6.21 and 6.22 show the error probability at the equilibrium for the tested

systems under different setups. As it can be seen, the fusion scheme resulting

for the application of the optimum fusion rule in a game-theoretic setting,

consistently provides better results for all the analyzed cases. Expectedly,
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the improvement is more significant for the setups in which the FC has more

information about the distribution of the Byzantines across the network.

Maj HardIS SoftIS OPT

Independent nodes, α = 0.3 0.073 0.048 0.041 0.035

Independent nodes, α = 0.4 0.239 0.211 0.201 0.192

Independent nodes, α = 0.45 0.362 0.344 0.338 0.331

Fixed n. of nodes nB = 6 0.017 0.002 6.2e-4 3.8e-4

Fixed n. of nodes nB = 8 0.125 0.044 0.016 0.004

Fixed n. of nodes nB = 9 0.279 0.186 0.125 0.055

Max entropy with NB < n/2 0.154 0.086 0.052 0.021

Max entropy with NB < n/3 0.0041 5e-4 2.15e-4 1.9e-4

Table 6.21: Error probability at the equilibrium for various fusion schemes.

All the results have been obtained by letting m = 4, n = 20, ε = 0.1.

Maj HardIS SoftIS OPT

Independent nodes, α = 0.3 0.073 0.0364 0.0346 0.033

Independent nodes, α = 0.4 0.239 0.193 0.19 0.187

Independent nodes, α = 0.45 0.363 0.334 0.333 0.331

Fixed n. of nodes nB = 6 0.016 1.53e-4 1.41e-4 1.22e-4

Fixed n. of nodes nB = 8 0.126 0.0028 9.68e-4 4.13e-4

Fixed n. of nodes nB = 9 0.279 0.0703 0.0372 1.58e-3

Max entropy with NB < n/2 0.154 0.0271 0.0141 6.8e-4

Max entropy with NB < n/3 0.0039 9.8e-05 7.40e-05 5e-05

Table 6.22: Error probability at the equilibrium for various fusion schemes.

All the results have been obtained by letting m = 10, n = 20, ε = 0.1.

6.5.3 Assumptions validation and discussion

In many real life situations, the information about the Byzantines distribution

in the network is not available or easy to be obtained. For this purpose, in
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this subsection, we discuss the hypothesis about the FC’s knowledge of the

Byzantines distribution when applying the optimum fusion rule. We evaluate

the performance of the optimum rule and we discuss the performance loss

when such a hypothesis does not hold.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 9.35e-4 8.75e-4 0.001 0.0012 0.0015 0.0019

0.6 0.0011 9.85e-4 0.001 0.0012 0.0015 0.0019

0.7 0.0021 0.0019 0.0018 0.0018 0.0022 0.0032

0.8 0.0057 0.0053 0.0052 0.0052 0.0059 0.0077

0.9 0.0160 0.0158 0.0157 0.0157 0.0163 0.0187

1.0 0.0414 0.0413 0.0413 0.0413 0.0372 0.0350

Table 6.23: Payoff of the DFByz game with independent node states with

αFC = 0.2, α = 0.3,m = 4, n = 20, ε = 0.1. The equilibrium point is

highlighted in bold.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.0036 0.0035 0.0041 0.0047 0.0057 0.0071

0.6 0.0067 0.0061 0.0061 0.0064 0.0080 0.0104

0.7 0.0153 0.0143 0.0139 0.0139 0.0173 0.0242

0.8 0.0396 0.0382 0.0379 0.0379 0.0448 0.0578

0.9 0.1013 0.1005 0.1003 0.1002 0.1081 0.1201

1.0 0.2040 0.2039 0.2039 0.2039 0.1965 0.1927

Table 6.24: Payoff of the DFByz game with independent node states with

αFC = 0.2, α = 0.4,m = 4, n = 20, ε = 0.1. The equilibrium point is

highlighted in bold.

In Table 6.23, the probability that a node is Byzantine is α = 0.3 while

the estimated value at the FC mismatches with the real value and it is set

to αFC = 0.2. By comparing this table to Table 6.1, we see that the equi-

librium point does not change and the payoff at the equilibrium is 0.0350 for

mismatched α and 0.0349 for matched α. Then, in this situation the loss in
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performance is very low and mismatching does not affect heavily the perfor-

mance of the optimum fusion rule. This loss in performance increases a little

bit when the difference between the α of Byznatines and the one used at the

FC increases. For instance, by comparing Table 6.24 to Table 6.2 we can see

that the equilibrium point remains at (1,1) but with performance loss is equal

0.0008.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.0020 0.0019 0.0018 0.0019 0.0023 0.0031

0.6 0.0035 0.0029 0.0025 0.0023 0.0025 0.0030

0.7 0.0057 0.0043 0.0033 0.0029 0.0027 0.0028

0.8 0.010 0.0070 0.0055 0.0047 0.0038 0.0035

0.9 0.0194 0.0134 0.0118 0.0107 0.0091 0.0085

1.0 0.0516 0.0420 0.0410 0.0394 0.0375 0.0372

Table 6.25: Payoff of the DFByz game with NBFC
< n/4 in the following

setup: m = 4, n = 20, ε = 0.1, NB < n/2. The equilibrium point is high-

lighted in bold.

PB
mal/P

FC
mal 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.0015 0.0015 0.0016 0.0020 0.0027 0.0042

0.6 0.0022 0.0018 0.0017 0.0018 0.0023 0.0034

0.7 0.0029 0.0021 0.0017 0.0016 0.0016 0.0023

0.8 0.0047 0.0033 0.0025 0.0022 0.0019 0.0021

0.9 0.0112 0.0092 0.0081 0.0078 0.0072 0.0069

1.0 0.0401 0.0379 0.0362 0.0342 0.0329 0.0296

Table 6.26: Payoff of the DFByz game with NBFC
< n/6 in the following

setup: m = 4, n = 20, ε = 0.1, NB < n/2. The equilibrium point is high-

lighted in bold.

Now we consider a different situation that corresponds to maximum en-

tropy with NB < h. In this case, the FC wrongly estimates the maximum

number of Byzantines in the network. We consider two cases: in the first case



126
6. A Game-Theoretic Framework for Optimum Decision Fusion in the

Presence of Byzantines

shown in Table 6.25, the maximum number of Byzantines in the network is

bounded by n/4 while the real Byzantines fraction is bounded by n/2 with

an average number of Byzantines of 7.858; In the second case shown in Table

6.26, the same setting was adopted but the maximum number of Byzantines

in the network estimated at the FC is bounded by n/6. By comparing Table

6.25 and 6.26 with Table 6.8, we see that the equilibrium point is the same

but we have a loss in performance of 0.0159 with respect to Table 6.25 and of

0.0083 with respect to Table 6.26.

6.6 Conclusions

We have studied the problem of decision fusion in distributed sensor networks

in the presence of Byzantines. We first derived the optimum decision strategy

by assuming that the statistical behavior of the Byzantines is known. Then

we relaxed such an assumption by casting the problem into a game-theoretic

framework in which the FC tries to guess the behavior of the Byzantines.

The Byzantines, in turn, must fix their corruption strategy without knowing

the guess made by the FC. We considered several versions of the game with

different distributions of the Byzantines across the network. Specifically, we

considered three setups: unconstrained maximum entropy distribution, con-

strained maximum entropy distribution and fixed number of Byzantines. In

order to reduce the computational complexity of the optimum fusion rule for

large network sizes, we proposed an efficient implementation based on dy-

namic programming. Simulation results show that increasing the observation

window m leads to better identification of the Byzantines at the FC. This

forces the Byzantines to look for a trade-off between forcing the FC to make

a wrong decision on one hand, and reducing the mutual information between

the reports and the system state on the other hand. Simulation results con-

firm that, in all the analyzed cases, the performance at the equilibrium are

superior to those obtained by previously proposed techniques.



Chapter 7

An Efficient Nearly-
Optimum Decision Fusion Technique Based
on Message Passing

”Efficiency is doing things right; effectiveness is doing the right things.”

Peter Drucker

7.1 Introduction

I
n the attempt to diminish the computational complexity while minimizing

the loss of performance with respect to the optimum fusion rule presented in

chapter 6, in this chapter, we propose a nearly-optimum fusion scheme based

on message passing and factor graphs. Moreover, we consider a more general

model for the system state that includes both Markovian and independent

sequences. At last, we confirm the results in chapter 6 that the optimum

strategy for the Byzantines is to follow a dual-behavior to find a trade-off

between inducing global decision error at the FC and avoid being detected

by trying to minimize the mutual information between the reports and the

sequence of system states.

In chapter 6 we have shown that the complexity of the optimum decision

fusion algorithm grows exponentially with the length of the observation win-

dow m. Such a complexity prevents the adoption of the optimum decision

fusion rule in many practical situations. Also the results regarding the op-

timum strategies of the Byzantines and the FC derived in previous chapter

cannot be immediately applied to the case of large observation windows.

Message passing algorithms, based on the so called Generalised Distribu-

tive Law (GDL, [157], [158]), have been widely applied to solve a large range

of optimization problems, including decoding of Low Density Parity Check
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(LDPC) codes [159] and BCJR codes [157], dynamic programming [160], so-

lution of probabilistic inference problems on Bayesian networks [161] (in this

case message passing algorithms are known as belief propagation). Here we

use message passing to introduce a near-optimal solution of the decision fusion

problem with multiple observations whose complexity grows only linearly with

the size of the observation window, thus marking a dramatic improvement

with respect to the exponential complexity of the optimal scheme proposed

in chapter 6.

Using numerical simulations and by first focusing on the case of small ob-

servation windows, for which the optimum solution can still be applied, we

prove that the new scheme gives near-optimal performance at a much lower

complexity than the optimum scheme. We then use numerical simulations to

evaluate the performance of the proposed method for long observation win-

dows. As a result, we show that, even in this case, the proposed scheme main-

tains the performance improvement over the simple majority rule, the hard

isolation scheme in [143] and the soft isolation scheme described in chapter 5.

As opposed to chapter 6, we do not limit our analysis to the case of

independent system states, but we extend it to a more realistic scenario where

the sequence of states obey a Markovian distribution [162] as depicted in

Figure 7.1. The Markovian model is rather common in the case of cognitive

radio networks [163–165] where the primary user occupancy of the spectrum

is often modelled as a Hidden Markov Model (HMM).

The Markovian case is found to be more favourable for the FC with respect

to the case of independent states, due the additional a-priori information

available to the FC.

Last but not the least, we confirm that the dual optimum behavior of the

Byzantines observed in chapter 6 is also present in the case of large observation

windows, even if in the Markovian case, the Byzantines may continue using

the maximum attack power for larger observation windows.

7.2 Notation and Problem Formulation

For the analysis in this chapter we adopt the same notation we used in chapter

6. For the sake of clarity, here, we recapitulate such notation. Let sm =
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Figure 7.1: Markovian model for system states. When ρ = 0.5 subsequent

states are independent.

{s1, s2, . . . , sm} with sj ∈ {0, 1} indicating the sequence of system states over

an observation window of length m. The nodes collect information about the

system through the vectors x1,x2 . . .xn, with xi indicating the observations

available at node i. Based on such observations, a node i makes a local

decision uij about system state sj . We assume that the local error probability,

hereafter indicated as ε, does not depend on either i or j. The state of the

nodes in the network is given by the vector an = {a1, a2, . . . , an} with ai = 1/0

indicating that node i is honest or Byzantine, respectively. Finally, the matrix

R = {rij}, i = 1, . . . , n, j = 1, . . . ,m contains all the reports received by the

FC. Specifically, rij is the report sent by node i relative to sj . For honest

nodes we have uij = rij while, for Byzantines we have p(uij 6= rij) = Pmal.

The Byzantines corrupt the local decisions independently of each other.

By assuming that the transmission between nodes and fusion center takes

place over error-free channels, the report is equal to the local decision with

probability 1 for honest nodes and with probability 1 − Pmal for Byzantines.

Hence, according to the local decision error model, we can derive the proba-

bilities of the reports for honest nodes:

p (rij |sj , ai = 1) = (1− ε)δ(rij−sj) + ε(1− δ(rij−sj)), (7.1)
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where δ(a) is defined as:

δ(a) =

{
1, if a = 0

0, otherwise.
(7.2)

On the other hand, by introducing δ = ε(1− Pmal) + (1− ε)Pmal, i.e., the

probability that the FC receives a wrong report from a byzantine node, we

have:

p (rij |sj , ai = 0) = (1− δ)δ(rij−sj) + δ(1− δ(rij−sj )) (7.3)

As for the number of Byzantines, we consider a situation in which the

states of the nodes are independent of each other and the state of each node

is described by a Bernoulli random variable with parameter α, that is p(ai =

0) = α,∀i. In this way, the number of byzantine nodes in the network is

a random variable following a binomial distribution, corresponding to the

constrained maximum entropy in chapter 6 with p (an) =
∏
i
p(ai), where

p(ai) = α(1− ai) + (1− α)ai.

Regarding the sequence of states sm, we assume a Markov model as shown

in Figure 7.1 , i.e., p (sm) =
∏
j
p(sj |sj−1). The transition probabilities are

given by p(sj |sj−1) = 1 − ρ if sj = sj−1 and p(sj |sj−1) = ρ when sj 6= sj−1,

whereas for j = 1 we have p(s1|s0) = p(s1) = 0.5.

In this chapter we look for the bitwise Maximum A Posteriori Probability

(MAP) estimation of the system states {sj} which reads as follows:

ŝj = arg max
sj∈{0,1}

p (sj |R)

= arg max
sj∈{0,1}

∑
{sm,an}\sj

p (sm, an|R) (law of total probability)

= arg max
sj∈{0,1}

∑
{sm,an}\sj

p (R|sm, an) p(sm)p(an) (Bayes)

= arg max
sj∈{0,1}

∑
{sm,an}\sj

∏
ij

p (rij |sj , ai)
∏
j

p(sj |sj−1)
∏
i

p(ai)

(7.4)
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where the notation
∑
\

denotes a summation over all the possible combinations

of values that the variables contained in the expression within the summation

may assume by keeping the parameter listed after the operator \ fixed. The

optimization problem in (7.4) has been solved in the previous chapter for the

case of independent system states. Even in such a simple case, however, the

complexity of the optimum decision rule is exceedingly large, thus limiting the

use of the optimum decision only in the case of small observation windows

(typically m not larger than 10). In the next section we introduce a sub-

optimum solution of (7.4) based on message passing, which greatly reduces

the computational complexity at the price of a negligible loss of accuracy.

7.3 A Decision Fusion Algorithm Based on Message

Passing

7.3.1 Introduction to Sum-product message passing

In this section we provide a brief introduction to the message passing (MP)

algorithm for marginalization of sum-product problems. Let us start by con-

sidering N binary variables z = {z1, z2, . . . , zN}, zi ∈ {0, 1}. Then, consider

the function f (z) with factorization:

f (z) =
∏
k

fk (Zk) (7.5)

where fk, k = 1, . . . ,M are functions of a subset Zk of the whole set of

variables. We are interested in computing the marginal of f with respect to a

general variable zi, defined as the sum of f over all possible values of z, i.e.:

µ(zi) =
∑
z\zi

∏
k

fk (Zk) (7.6)

where notation
∑
z\zi

denotes a sum over all possible combinations of values of

the variables in z by keeping zi fixed. We are interested in finding the value

zi that optimizes Equation (7.6). Note that marginalization problems occur

when we want to compute any arbitrary probability from joint probabilities by

summing out variables we are not interested in. In this general setting, since
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the vector z has N binary elements, determining the marginals by exhaustive

search requires 2N operations. However, in many situations it is possible to

exploit the distributive law of multiplication to get a substantial reduction in

complexity.

To elaborate, let us associate with problem (7.6) a bipartite factor graph, in

which for each variable we draw a variable node (circle) and for each factor

we draw a factor node (square). A variable node is connected to a factor node

k by an edge if and only if the corresponding variable belongs to Zk. This

means that the set of vertices is partitioned into two groups (the set of nodes

corresponding to variables and the set of nodes corresponding to factors) and

that an edge always connects a variable node to a factor node.

Let us now assume that the factor graph is a single tree, i.e., a graph in which

any two nodes are connected by exactly one path. Under this assumption,

the message passing algorithm is able to come out with the exact marginal-

ization after a single iteration. Instead, when the graph is not a tree, i.e.,

it contains cycles, the algorithm does not give the exact calculation, and it

is in general observed that better solutions are obtaied by iterating, even if

there is no guarantee that the algorithm converges or that it gives a close-to-

the-optimun solution. In general, the longer the cycles the closer the graph

to a tree, i.e., the better the message passing solution is. In the case of a

tree, it is straightforward to derive an algorithm which allows to solve the

marginalization problem with reduced complexity. The algorithm is the MP

algorithm, which has been broadly used in the last years in channel coding

applications [166], [167].

To describe how the MP algorithm works, let us first define messages as

2-dimensional vectors with binary elements, denoted by m = {m(0),m(1)}.
Such messages are exchanged between variable nodes and factor nodes and

viceversa, according to the following rules. Let us first consider variable-

to-factor messages (mvf ), and take the portion of factor graph depicted in

Figure 7.2 as an illustrative example. In this graph, the variable node zi is

connected to L factor nodes, namely f1, f2, . . . , fL. For the MP algorithm

to work properly, node zi must deliver the messages m
(l)
vf , l = 1, . . . , L to all

its adjacent nodes. Without loss of generality, let us focus on message m
(1)
vf .

Such a message can be evaluated and delivered upon receiving messages m
(l)
fv,
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Figure 7.2: Node-to-factor message passing.

l = 2, . . . , L, i.e., upon receiving messages from all function nodes except

f1. In particular, m
(1)
vf may be straightforwardly evaluated by calculating the

element-wise product of the incoming messages, i.e.:

m
(1)
vf (q) =

L∏
j=2

m
(j)
fv (q), (7.7)

for q = 0, 1. Let us now consider factor-to-variable messages, and refer to

the factor graph of Figure 7.3 where P variable nodes are connected to the

factor node fk, i.e., according to the previous notation, Zk = {z1, . . . , zP }.
In this case, the node fk must deliver the messages m

(l)
fv, l = 1, . . . , P to all

its adjacent nodes. Let us consider again m
(1)
fv : upon receiving the messages

m
(l)
vf , l = 2, . . . , P , fk may evaluate the message m

(1)
fv as:

m
(1)
fv (q) =

∑
z2,...,zP

fk (q, z2, . . . , zP )
P∏
p=2

m
(p)
vf (zp)

 (7.8)

for q = 0, 1.

Given the message passing rules at each node, it is possible to derive the

MP algorithm which allows to compute the marginals in Equation (7.6). The
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Figure 7.3: Factor-to-node message passing.

process starts at the leaf nodes, i.e., those nodes which have only one con-

necting edge. In particular, each variable leaf node passes an all-ones message

to its adjacent factor node, whilst each factor leaf node, say fk(zi) passes the

message m
(k)
fv (q) = fk(zi = q) to its adjacent node zi. After initialization

at leaf nodes, for every edge we can compute the outgoing message as soon

as all incoming messages from all other edges connected to the same node

are received (according to the message passing rules (Equation 7.7 and Equa-

tion 7.8). When a message has been sent in both directions along every edge

the algorithm stops. This situation is depicted in Figure 7.4: upon receiving

messages from all its adjacent factor nodes, node zi can evaluate the exact

marginal as:

µ(zi) =
∏

k=1,...,L

m
(k)
fv (zi). (7.9)

With regard to complexity, factors to variables message passing can be

accomplished with 2P operations, P being the number of variables in fk.

On the other hand, variables to nodes message passing’s complexity can be

neglected, and, hence, the MP algorithm allows to noticeably reduce the com-

plexity of the problem provided that the numerosity of Zk is much lower than

N . With regard to the optimization, Equation 7.9 evaluates the marginal for

both zi = 0 and zi = 1, which represent the approximated computation of

the sum-product for both hypotheses. Hence, the optimization is obtained by



7.3. A Decision Fusion Algorithm Based on Message Passing 135

choosing the value of zi which maximizes it.

Figure 7.4: End of message passing for node zi.

7.3.2 Nearly-optimal data fusion by means of message passing

The objective function of the optimal fusion rule expressed in (7.4) can be

seen as a marginalization of a sum product of functions of binary variables,

and, as such, it falls within the MP framework described in the previous

Section. More specifically, in our problem, the variables are the system states

sj and the status of the nodes ai, while the functions are the probabilities

of the reports shown in Equations 7.1 and 7.3, the conditional probabilities

p(sj |sj−1), and the a-priori probabilities p(ai). The resulting bipartite graph

is shown in Figure 7.5.

It is worth noting that the graph is a loopy graph, i.e., it contains cycles,

and as such it is not a tree. However, although it was originally designed for

acyclic graphical models, it was found that the MP algorithm can be used

for general graphs, e.g., in channel decoding problems [168]. In general, when

the marginalization problem is associated to a loopy graph, the implementa-

tion of MP requires to establish a scheduling policy to initiate the procedure,

so that variable nodes may receive messages from all the connected factors

and evaluate the marginals. In this case, a single run of the MP algorithm
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Figure 7.5: Factor graph for the problem at hand.

may not be sufficient to achieve a good approximation of the exact marginals,

and progressive refinements must be obtained through successive iterations.

However, in the presence of loopy graphs, there is no guarantee of either con-

vergence or optimality of the final solution. In many cases, the performance

of the message-passing algorithms is closely related to the structure of the

graph, in general, and its cycles, in particular. Many previous works in the

field of channel coding, e.g., see [169], reached the conclusion that, for good

performance, the factor graph should not contain short cycles. In our case, it

is possible to see from Figure 7.5 that the shortest cycles have order 6, i.e., a

message before returning to the sender must cross at least six different nodes.

We speculate that such a minimum cycles length is sufficient to provide good

performance for the problem at hand. We will prove through simulations that

such a conjecture is true.

To elaborate further, based on the graph of Figure 7.5 and on the general

MP rules reported in the previous Section, we are now capable of deriving the

messages for the scenario at hand. In Figure 7.6, we display all the messages

for the graph in Figure 7.5 that are exchanged to estimate in parallel each of
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the states sj , j ∈ {0, 1} in the vector sm = {s1, s2, . . . , sm}. Specifically, we

have:

τ
(l)
j (sj) = ϕ

(l)
j (sj)

n∏
i=1

ν
(u)
ij (sj) j = 1, . . . ,m

τ
(r)
j (sj) = ϕ

(r)
j (sj)

n∏
i=1

ν
(u)
ij (sj) j = 1, . . . ,m

ϕ
(l)
j (sj) =

∑
sj+1=0,1

p (sj+1|sj) τ (l)
j+1(sj+1) j = 1, . . . ,m− 1

ϕ
(r)
j (sj) =

∑
sj−1=0,1

p (sj |sj−1) τ
(r)
j−1(sj−1) j = 2, . . . ,m

ϕ
(r)
1 (s1) = p(s1)

ν
(u)
ij (sj) =

∑
ai=0,1

p (rij |sj , ai )λ(u)
ji (ai) j = 1, . . . ,m, i = 1, . . . , n

ν
(d)
ij (sj) = ϕ

(r)
j (sj)ϕ

(l)
j (sj)

n∏
k=1
k 6=i

ν
(u)
kj (sj) j = 1, . . . ,m− 1, i = 1, . . . , n

ν
(d)
im (sm) = ϕ

(r)
j (sm)

n∏
k=1
k 6=i

ν
(u)
km(sm) i = 1, . . . , n

λ
(d)
ji (ai) =

∑
sj=0,1

p (rij |sj , ai ) ν(d)
ij (sj) j = 1, . . . ,m, i = 1, . . . , n

λ
(u)
ji (ai) = ω

(u)
i (ai)

m∏
q=1
q 6=j

λ
(d)
qi (ai) j = 1, . . . ,m, i = 1, . . . , n

ω
(d)
i (ai) =

m∏
j=1

λ
(d)
ji (ai) i = 1, . . . , n

ω
(u)
i (ai) = p(ai) i = 1, . . . , n

(7.10)

As for the scheduling policy, we initiate the MP procedure by sending the

messages λ
(u)
ji (ai) = ω

(u)
i (ai) to all p (rij |sj , aj ) factor nodes, and by sending

the message p(s1) to the variable node s1. Hence, the MP proceeds accord-

ing to the general message passing rules, until all variable nodes are able to

compute the respective marginals. When this happens, the first iteration is

concluded. Then, successive iterations are carried out by starting from leaf

nodes and by taking into account the messages received at the previous itera-

tion for the evaluation of new messages. Hence, the algorithm is stopped upon

achieving convergence of messages, or after a maximum number of iterations.

The MP scheme described above can be simplified by observing that mes-

sages can be normalized without affecting the normalized marginals. Hence-
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forward, let us consider as normalization factors the sum of the elements of

the messages, i.e., if we consider for example τ
(l)
j (sj), the normalization factor

is τ
(l)
j (0) + τ

(l)
j (1). In this case, the normalized messages, say τ̄

(l)
j (sj) can be

conveniently represented as scalar terms in the interval (0, 1), e.g., we can

consider τ̄
(l)
j (0) only since τ̄

(l)
j (1) = 1 − τ̄ (l)

j (0). Accordingly, the normalized

messages can be evaluated as:

τ̄
(l)
j =

ϕ̄
(l)
j

n∏
i=1

ν̄
(u)
ij

ϕ̄
(l)
j

n∏
i=1

ν̄
(u)
ij + (1− ϕ̄(l)

j )
n∏
i=1

(1− ν̄(u)
ij )

j = 1, . . . ,m

τ̄
(r)
j =

ϕ̄
(r)
j

n∏
i=1

ν̄
(u)
ij

ϕ̄
(r)
j

n∏
i=1

ν̄
(u)
ij + (1− ϕ̄(r)

j )
n∏
i=1

(1− ν̄(u)
ij )

j = 1, . . . ,m

ϕ̄
(l)
j =ρτ̄

(l)
j+1 + (1− ρ)(1− τ̄ (l)

j+1) j = 1, . . . ,m− 1

ϕ̄
(r)
j =ρτ̄

(r)
j−1 + (1− ρ)(1− τ̄ (r)

j−1) j = 2, . . . ,m

ϕ̄
(r)
1 =p(s1 = 0)

ν̄
(u)
ij =

p (rij |0, 0) λ̄
(u)
ji + p (rij |0, 1) (1− λ̄(u)

ji )

κ1 + κ2

where, κ1 = p (rij |0, 0) λ̄
(u)
ji + p (rij |0, 1) (1− λ̄(u)

ji )

and κ2 = p (rij |1, 0) λ̄
(u)
ji + p (rij |1, 1) (1− λ̄(u)

ji )

j = 1, . . . ,m, i = 1, . . . , n

ν̄
(d)
ij =

ϕ̄
(r)
j ϕ̄

(l)
j

n∏
k=1
k 6=j

ν̄
(u)
ki

ϕ̄
(r)
j ϕ̄

(l)
j

n∏
k=1
k 6=i

ν̄
(u)
ki + (1− ϕ̄(r)

j )(1− ϕ̄(l)
j )

n∏
k=1
k 6=i

(1− ν̄(u)
ki )

j = 1, . . . ,m− 1, i = 1, . . . , n
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ν̄
(d)
jm =

ϕ̄
(r)
m

n∏
k=1
k 6=i

ν̄
(u)
km

ϕ̄
(r)
m

n∏
k=1
k 6=i

ν̄
(u)
km + (1− ϕ̄(r)

m )
n∏

k=1
k 6=i

(1− ν̄(u)
km)

i = 1, . . . , n

λ̄
(d)
ji =

p (rij |0, 0) ν̄
(d)
ij + p (rij |1, 0) (1− ν̄(d)

ij )

τ1 + τ2

where, τ1 = p (rij |0, 0) ν̄
(d)
ij + p (rij |1, 0) (1− ν̄(d)

ij )

and τ2 = p (rij |0, 1) ν̄
(d)
ij + p (rij |1, 1) (1− ν̄(d)

ij )

j = 1, . . . ,m, i = 1, . . . , n

λ̄
(u)
ji =

ω̄
(u)
i

m∏
q=1
q 6=j

λ̄
(d)
qi

ω̄
(u)
i

m∏
q=1
q 6=j

λ̄
(d)
qi + (1− ω̄(u)

i )
m∏
q=1
q 6=j

(1− λ̄(d)
qi )

j = 1, . . . ,m, i = 1, . . . , n

ω̄
(d)
i =

m∏
j=1

λ̄
(d)
ji

m∏
j=1

λ̄
(d)
ji +

m∏
j=1

(1− λ̄(d)
ji )

i = 1, . . . , n

ω̄
(u)
i =p(ai = 0) i = 1, . . . , n

(7.11)

7.4 Simulation Results and Discussion

In this section, we analyze the performance of the MP decision fusion algo-

rithm. We first consider the computational complexity, then we pass to eval-

uate the performance in terms of error probability. In particular, we compare

the performance of the MP-based scheme to those of the optimum fusion rule

in chapter 6 (whenever possible), the soft isolation scheme presented in chap-

ter 5, the hard isolation scheme described in [143] and the simple majority

rule. In our comparison, we consider both independent and Markovian system

states, for both small and large observation window m.
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7.4.1 Complexity Discussion

In order to evaluate the complexity of the message passing algorithm and

compare it to that of the optimum fusion scheme, we consider both the number

of operations and the running time. By number of operations we mean the

number of additions, substractions, multiplications and divisions performed

by the algorithm to estimate the vector of system states sm.

By looking at Equation 7.11, we see that running the message passing

algorithm requires the following number of operations:

• 3n+ 5 operations for each of τ̄
(l)
j and τ̄

(r)
j .

• 3 operations for each of ϕ̄
(l)
j and ϕ̄

(r)
j .

• 11 operations for ν̄
(u)
ij .

• 3n+ 5 operations for ν̄
(d)
ij .

• 3n+ 2 operations for ν̄
(d)
im .

• 11 operations for λ̄
(d)
ji .

• 3m+ 2 operations for each of λ̄
(u)
ji and ω̄

(d)
i .

summing up to 12n + 6m + 49 operations for each iteration over the factor

graph. On the other hand, in the case of independent node states, the op-

timal scheme in chapter 6 requires 2m(m + n) operations. Therefore, the

MP algorithm is much less computationally expensive since it passes from

an exponential to a linear complexity in m. An example of the difference in

computational complexity between the optimum and the MP algorithms is

depicted in Figure 7.7 for fixed m and in Figure 7.8 for fixed n.

With regard to time complexity, Table 7.1 reports the running time of the

MP and the optimal schemes. For n = 20, the optimal scheme running time is

17.547 times larger than that of the message passing algorithm. On the other

hand, for the case of n = 100, the optimal scheme needs around 4.258 times

more than the message passing scheme. The tests have been conducted using

Matlab 2014b running on a machine with 64-bit windows 7 OS with 16,0 GB

of installed RAM and Intel Core i7-2600 CPU @ 3.40GHz.
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Figure 7.7: Number of operations required for different n, m = 10 and 5

message passing local iterations for message passing and optimal schemes.
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message passing local iterations for message passing and optimal schemes.
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Setting/Scheme Message Passing Optimal

n = 20,α = 0.45 943.807114 1.6561e+04

n = 100,α = 0.49 4888.821497 2.0817e+04

Table 7.1: Running Time (in seconds) for the Optimal and the Message

Passing algorithms for: m = 10, ε = 0.15, Number of Trials = 105 and

Message Passing Iterations = 5.

7.4.2 Performance Evaluation

In this section, we use numerical simulations to evaluate the performance of

the message passing algorithm and compare them to those obtained by other

schemes. The results are divided into four parts. The first two parts consider,

respectively, simulations performed with small and large observation windows

m. Then, in the third part, we investigate the optimum behaviour of the

Byzantines over a range of observation windows size. Finally, in the last part,

we compare the case of independent and Markovian system states.

The simulations were carried out according to the following setup. We con-

sidered a network with n = 20 nodes, ε = 0.15, ρ = {0.95, 0.5} corresponding

to Markovian and independent sequence of system states, respectively. The

probability α that a node is Byzantine is in the range [0, 0.45] corresponding

to a number of Byzantines between 0 and 9. As to Pmal we set it to either

0.5 or 11. The number of message passing iterations is 5. For each setting,

we estimated the error probability over 105 trials.

7.4.2.1 Small m

To start with, we considered a small observation window, namely m = 10.

With such a small value of m, in fact, it is possible to compare the performance

of the message passing algorithm to that of the optimum decision fusion rule.

The results we obtained are reported in Figure 7.9. Upon inspection of the

figure, the superior performance of the message passing algorithm over the

Majority, Soft and Hard isolation schemes is confirmed. More interestingly,

1It is know from chapter 6 that for the Byzantines the optimum choice of Pmal is either

0.5 or 1 depending on the considered setup.
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Figure 7.9: Error probability as a function of α for the following setting:

n = 20, independent Sequence of States ρ = 0.5, ε = 0.15, m = 10 and

Pmal = 1.0.
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Figure 7.10: Error probability as a function of α for the following setting:

n = 20, Markovian Sequence of States ρ = 0.95, ε = 0.15, m = 10 and

Pmal = 1.0
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the message passing algorithm gives nearly optimal performance, with only a

negligible performance loss with respect to the optimum scheme.

Figure 7.10 confirms the results shown in Figure 7.9 for Markovian system

states (ρ = 0.95).

7.4.2.2 Large m

Having shown the near optimality of the message passing fusion algorithm for

small values of m; we now leverage on the small computational complexity of

such a scheme to evaluate its performance for large values of m (m = 30). As

shown in Figure 7.11, by increasing the observation window all the schemes

give better performance, with the message passing algorithm always providing

the best performance. Interestingly, in this case, when the attacker uses

Pmal = 1.0, the message passing algorithm permits to almost nullify the attack

of the Byzantines for all the values of α. The reason is that, using Pmal = 1.0

conveys more information to the FC about the Byzantines and consequently,

makes their detection easier. Concerning the residual error probability, it

is due to the fact that, even when there are no Byzantines in the network

(α = 0), there is still an error floor caused by the local errors at the nodes

ε. For the case of independent states, such an error floor is around 10−4. In

Figure 7.11 and 7.12, this error floor decreases to about 10−5 because of the

additional a-priori information available in the Markovian case.

7.4.2.3 Optimal choice of Pmal for the Byzantines

One of the main results presented in the previous chapter, is that setting

Pmal = 1 is not necessarily the optimal choice for the Byzantines. In fact,

when the FC manages to identify which are the malicious nodes, it can exploit

the fact the malicious nodes always flip the result of the local decision to get

useful information about the system state. In such cases, it is preferable for

the Byzantines to use Pmal = 0.5 since in this way the reports send to the FC

does not convey any information about the status of the system. However, in

chapter 6, it was not possible to derive exactly the limits determining the two

different behaviours for the Byzantines due to the impossibility of applying

the optimum algorithm in conjunction with large observation windows. By
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Figure 7.11: Error probability as a function of α for the following setting:

n = 20, Markovian Sequence of States ρ = 0.95, ε = 0.15, m = 30 and

Pmal = 1.0.
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Figure 7.12: Error probability as a function of α for the following setting:

n = 20, Markovian Sequence of States ρ = 0.95, ε = 0.15, m = 30 and

Pmal = 0.5.
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exploiting the low complexity of the message passing scheme, we are now able

to overcome the limits of the analysis carried out in previous chapter.

Specifically, we carried out an additional set of experiments by fixing α =

0.45 and varying the observation window in the interval [8,20]. The results we

obtained confirm the general behaviour observed in chapter 6. For instance, in

Figure 7.13, Pmal = 1.0 remains the Byzantines’ optimal choice up to m = 13,

while for m > 13, it is preferable for them to use Pmal = 0.5. Similar results

are obtained for independent system states as shown in Figure 7.14.
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Figure 7.13: Error probability as a function of m for the following settings:

n = 20, Markovian Sequence of States ρ = 0.95, ε = 0.15 and α = 0.45.

7.4.2.4 Comparison between independent and Markovian System

States

In this part, we provide a comparison between the cases of Markovian and

independent system states.

By looking at Figure 7.13 and 7.14, we see that the Byzantines switch their

strategy from Pmal = 1 to Pmal = 0.5 for a smaller observation window (m =

10) in the case of independent states (the switching value for the Markovian

case is m = 13). We can explain this behaviour by observing that in the case

of Markovian states, using Pmal = 0.5 results in a strong deviation from the



148
7. An Efficient Nearly-Optimum Decision Fusion Technique Based on

Message Passing

m
5 10 15 20

lo
g(

P
e)

10-4

10-3

10-2

10-1

100

Hard Isolation P
mal

=0.5

Hard Isolation P
mal

=1.0

Soft Isolation P
mal

=0.5

Soft Isolation P
mal

=1.0

Message Passing P
mal

=0.5

Message Passing P
mal

=1.0

Figure 7.14: Error probability as a function of m for the following settings:

n = 20, independent Sequence of States ρ = 0.5, ε = 0.15 and α = 0.45.

Markovianity assumption of the reports sent to the FC thus making it easier

the isolation of byzantine nodes. This is not the case with Pmal = 1, since,

due to the symmetry of the adopted Markov model, such a value does not

alter the expected statistics of the reports.

As a last result, in Figure 7.15, we compare the error probability for the

case of independent and Markov sources. Since we are interested in com-

paring the achievable performance for the two cases, we consider only the

performance obtained by the optimum and the message passing algorithms.

Upon inspection of the figure, it turns out that the case of independent states

is more favourable to the Byzantines than the Markov case. The reason is

that the FC may exploit the additional a-priori information available in the

Markov case to identify the Byzantines and hence make a better decision.

Such effect disappears when α approaches 0.5, since in this case the Byzan-

tines tend to dominate the network. In that case, the Byzantines’ reports

prevail the pool of reports at the FC and hence, the FC becomes nearly blind

so that even the additional a-priori information about the Markov model does

not offer a great help.
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Figure 7.15: Comparison between the case of independent and Markovian

system states (n = 20, ρ = {0.5, 0.95}, ε = 0.15, m = 10, Pmal = 1.0).

7.5 Conclusions

In this chapter, we proposed a near-optimal message passing algorithm based

on factor graph for decision fusion in distributed sensor networks in the pres-

ence of Byzantines. The effectiveness of the proposed scheme is evaluated by

means of extensive numerical simulations both for the case of independent

and Markov sequence of states. Experiments showed that, when compared

to the optimum fusion scheme, the proposed scheme permits to achieve near-

optimal performance at a much lower computational cost: specifically, by

adopting the new algorithm based on message passing we were able to reduce

the complexity from exponential to linear. Such reduction of the complexity

permits to deal with large observation windows, thus further improving the

performance of the decision. Results on large observation windows confirmed

the dual behavior of the optimum attacking strategy, looking for a trade-off

between pushing the FC to make a wrong decision on one hand and reduc-

ing the mutual information between the reports and the system state on the

other hand. In addition, the experiments showed that the case of independent

states is more favorable to Byzantines than the Markovian case, due to the

additional a-priori information available at the FC in the Markovian case.





Chapter 8

Consensus Algorithm with Censored Data
for Distributed Detection with Corrupted
Measurements

”We cannot solve our problems with the same thinking we used when we cre-

ated them.”

Albert Einstein

8.1 Introduction

I
n centralized networks it is possible to adopt an optimum decision strategy

based on the entire set of measurements collected by the network. At the

the same time, centralized solutions present a number of drawbacks, most of

which related to the security of the network. For instance, the FC represents

a single point of failure or a bottleneck for the network, and its failure may

compromise the correct behavior of the whole network. In addition, due to

privacy considerations or power constraints, the sensors may prefer not to

share the gathered information with a remote device. For the above reasons,

decentralized solutions are sometimes more attractive.

In this chapter, we consider decentralized distributed detection based on

consensus algorithm in adversarial sensor networks. By focusing on the mea-

surement falsification attack with corruption of the physical link presented

in chapter 2, we introduce a preliminary isolation step in which each node

in the network may discard its own measurement based on the available a

priori knowledge of the measurements statistics under the two states of the

system. Then, the consensus algorithm proceeds as usual, with the nodes

which discarded their measurments no longer taking part in the consensus

algorithm. In fact, they only observe the exchanged messages and exploit the
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outcome of the consensus algorithm run by the remaining nodes (assuming

that the networks is not disconnected due to the removal of the nodes with

censored data). Under some assumptions on network topology, that prevents

that isolation step disconnects the network, the convergence of the consensus

algorithm is preserved. By following the principles of adversarial signal pro-

cessing [15], we assume that in turn the attacker may adjust the strength of

the falsification attack to avoid that the fake measurements are discarded. We

then formalize the interplay between the network and the attacker as a zero-

sum competitive game and use simulations to derive the equilibrium point of

the game.

8.2 Distributed Detection based on consensus algo-

rithm

In this section, we describe the distributed detection system considered in this

chapter, when no adversary is present and introduce the consensus algorithm

the detection system relies on.

8.2.1 The Network Model

The network is modeled as an undirected graph G where the information can

be exchanged in both directions between the nodes. A graph G = (N , E)

consists of set of nodes N = {n1, ..., nn} and set of edges E where (ni, nj) ∈ E
if and only if there is a communication link between ni and nj , i.e., they are

neighbors. The neighborhood of a node ni is indicated as Ni = {nj ∈ N :

(ni, nj) ∈ E }. For sake of simplicity, we sometimes refer to Ni as the set of

indexes j instead than directly the nodes. A graph G can be represented by

its adjacency matrix A = {aij} where aij = 1, if (ni, nj) ∈ E , 0 otherwise.

The degree matrix D of G is a diagonal matrix with dii = ai1 + ai2 + ...+ ain,

dij = 0, ∀i, j 6= i [73].

8.2.2 The Measurement Model

Let S be the status of the system under observation: we have S = 0, under

hypothesis H0 and S = 1 under hypothesis H1. We use the capital letter Xi



8.2. Distributed Detection based on consensus algorithm 153

to denote the random variable describing the measurement at node ni, and

the lower-case letter xi for a specific instantiation. By adopting a Gaussian

model, the probability distribution of each measurement xi under the two

hypothesis is given by1:

PX(x) =

{
N (−µ, σ), under H0,

N (µ, σ), under H1,
(8.1)

where, N (µ, σ) is the Normal Distribution with mean µ and variance σ2.

Let us denote with U the result of the final (binary) decision. An er-

ror occurs if U 6= S. By assuming that the measurements are conditionally

independent, that is they are independent conditioned to the status of the

system, the optimum decision strategy consists in computing the mean of the

measurements, x̄ =
∑

i xi/n and comparing it with a threshold λ which is

set based on the a-priori probability (λ = 0 in the case of equiprobable sys-

tem states). In a distributed architecture based on consensus, the value of x̄

is computed iteratively by means of a proper message exchanging procedure

between neighboring nodes, the final decision is made at each single node by

comparing x̄ with λ.

In this chapter we consider the case of equiprobable system states. It is

worth observing that our analysis, included the game formulation in Section

8.5, can be extended to the general case in which this assumption does not

hold.

8.2.3 The Consensus Algorithm

In this chapter, we consider the consensus algorithm as described in chapter

2. In the symmetric setup considered in this chapter, the decision threshold

of the algorithm is set to λ = 0.

1We are assuming that the statistical characterization of the measurement at all the

nodes is the same.
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8.3 Measurement falsification attack against consensus-

based detection

In this section, we consider the impact that one or more fake measurements

have on the output of the consensus algorithm.

8.3.1 Consensus Algorithm with Corrupted Measurements

In the binary decision setup we are considering, the objective of the attacker

is inducing one of the two decision errors (or both of them): decide that

S = 0 when H1 holds (False Alarm), and decide that S = 1 when H0 holds

(Missed Detection). We make the worst case assumption that the attacker

knows the true system state. In this case, he can try to push the network

toward a wrong decision by replacing one or more measurements so to bias the

average computed by the consensus algorithm. Specifically, for any corrupted

node, the attacker forces the measurement to a positive value ∆0 under H0

and to a negative value ∆1 under H1. For the symmetric setup, reasonably,

∆0 = −∆1 = ∆ > 0. In the following we assume that the attacker corrupts a

fraction α of the nodes, i.e the number of attacked nodes is nA = αn.

Given the initial vector of measurements, the consensus value the network

converges to because of the attack is:

x̄ =
1

n

∑
i∈NH

xi(0)± nA∆

n
, (8.2)

whereNH is the set of nodes with uncorrupted measurements (|NH | = n−nA).

By referring to the model described in Section 8.2.2, it is easy to draw

a relation between ∆, α and the probability p that the attacker induces a

decision error. By exploiting the symmetry of the considered setup we can

compute p by considering the behavior under one hypothesis only, that is we

have p = P (U = 1|H0) = P (X̄ > 0|H0).

In the following we indicate with X̄(N ) the average of the measurements

made by the nodes in a set N .

The error probability p for a given nA can be written as:

p =P (X̄ > 0|H0) = P

(
n− nA
n

X̄(NH) > −nA∆

n

∣∣∣∣H0

)
(8.3)
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Figure 8.1: Success probability of the attack versus ∆ in the adversarial setup

n = 20, µ = 2.5, σ = 1, NA = 2(α = 0.1)

=P

(
X̄(NH) >

n

n− nA

(
− nA∆

n

)∣∣∣∣H0

)

=

∞∫
− nA∆

n−nA

N (−µ, σ/√n− nA).

Clearly, if there is no limit to the value of ∆, the attacker will always

succeed in inducing a wrong decision (see for example Figures 8.1 and 8.2).

This shows how harmful the attack can be against distributed detection

based on consensus algorithm.

8.4 Consensus Algorithm with Censored Data

With centralized fusion it is quite easy to detect false measurements, since

they assume outlier values with respect to the majority of the measurements.

In a distributed setting, however, this is not easy since, at least in the initial

phase of the consensus algorithm (see chapter 2), each node sees only its

measurement and has no other clue about the system status.

In contrast to most previous works [149,152], we tackle with the problem
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Figure 8.2: Effect of the attack on the convergence of the consensus algorithm

for ∆ = 27, the network decides for H1 even if H0 is true.

of measurement falsifications at the initial phase of the consensus algorithm

(see for instance [49]), by letting each node discard its measurement if it does

not fall within a predefined interval containing most of the probability mass

associated to both H0 and H1. In the subsequent phases the remaining nodes

continue exchanging messages as usual according to the algorithm, whereas

the nodes which discarded their measurements only act as receivers and do not

take part into the protocol. Due to the removal, the measurements exchanged

by the nodes follows a censored Gaussian distribution, i.e. the distribution

which results by constraining the (initial) Gaussian variable to stay within

an interval [170]. Specifically, the nodes discards all the measurements whose

absolute values are large than a removal threshold η. By considering the

results shown in Figure 8.1, we see that, in the setup considered in the figure,

if we let η = 17.5 the error probability drops to nearly zero since the attacker

must confine the choice of ∆ to values lower than 17.5. The proposed strategy

is simple, yet effective as it can be seen in the example in Figure 8.3, and allow

us to use a game theoretical approach to set the parameters (see Section 8.5).

For our analysis, we assume that the network topology is such that the

connectivity of the network is preserved with high probability and then the

algorithm converges to the average of the measurements that have not been
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Figure 8.3: Consensus algorithm with censored data in the adversarial setup

n = 20, µ = −2.5, σ = 1, nA = 2(α = 0.1), ∆ = 27, η = 25

discarded. For a given graph, this fact is characterized by the node connec-

tivity, namely, the maximum number of nodes whose removal does not cause

a disconnection [171]. Convergence is guaranteed for instance in the following

cases (see [172] for an extensive analysis of the connectivity properties for the

various topologies): Fully-connected graph; Random Graph [173], when the

probability of having a connection between two nodes is large enough; Small-

World Graph [174] when the neighbour list in ring formation is large and the

rewiring probability is large as well; Scale-Free Graph [175] , for sufficiently

large degree of the non-fully meshed nodes.

We now give a more precise formulation of the consensus algorithm based

on censored data. Let us denote with R the set of the remaining nodes after

the censorship, that is

R = {nj ∈ N : −η < xj < η}, (8.4)

and let Ri be the ’active’ neighborhood of node i after censorship, i ∈ R (i.e.

the set of the nodes in the neighborhood of i which take part in the protocol).

The update rule for node i ∈ R can be written as:

xi(k + 1) = xi(k) + ε
∑
j∈Ri

(xj(k)− xi(k)), (8.5)
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where 0 < ε < (max
i
Ni)−1, and the degree refers to the network after the

removal of the suspect nodes, that is to the graph (R, E) (instead of (N , E)).

Under the conditions on network topologies listed before, the consensus

algorithm converges to the average value computed over the measurements

made by the nodes in R, namely x̄(R). Otherwise, disconnection may occur

and is possible that different parts of the network (connected components)

converge to different values.

8.5 Game-Theoretic Formulation

The consensus algorithm with censored data is expected to be robust in the

presence of corrupted measurements. On the other hand, we should assume

that the attacker is aware that the network nodes remove suspect measure-

ments in the initial phase, hence he will adjust the attack strength ∆ to avoid

that the false measurements are removed. We model the interplay between the

attacker and the network as a two-player zero sum game where each player

tries to maximize its own payoff. Specifically, we assume that the network

designer, hereafter referred as the defender (D), does not know the attack

strength ∆, while the attacker (A) does not know the value of the removal

threshold η adopted by the defender.

With these ideas in mind, the Consensus-based Distributed Detection

game CDD(SA,SD, v) is a two-player, strategic game played by the attacker

and the defender, defined by the following strategies and payoff.

• The space of strategies of the defender and the attacker are respectively

SD = {η ∈ [0,∞)}
SA = {∆ ∈ [0,∞)}; (8.6)

The reason to limit the strategies of D to values larger than 0 is to avoid

removing correct measurements at the defender side and to prevent to

vote for the correct hypothesis at the attacker side.

• The payoff function is defined as the final error probability,
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v = Pe = P (U 6= S) = P (X̄ > 0/H0), (8.7)

where X̄ = X̄(R), that is the mean computed over the nodes that

remain after the removal. The attacker wishes to maximize v, whereas

the defender wants to minimize it.

Note that according to the definition of the CDD game, the sets of strate-

gies of the attacker and the defender are continuous sets. We remind that, in

this chapter, we consider situations in which the network remains connected

after the isolation and then the convergence of the algorithm is preserved. No-

tice that, with general topologies, when disconnection may occur, the payoff

function should be redefined in terms of error probability at the node level.

In the next section, we use numerical simulations to derive the equilibrium

point of the game under different settings and to evaluate the payoff at the

equilibrium.

8.6 Simulation Results

We run numerical simulations in order to investigate the behavior of the CDD
game for different setups and analyze the achievable performance when the

attacker and the defender adopt their best strategies with parameters tuned

following a game-theoretic formalization. Specifically, the first goal of the

simulations is to study the existence of an equilibrium point for the CDD
game and analyze the expected behavior of the attacker and the defender at

the equilibrium. The goal is to evaluate the payoff at the equilibrium as a

measure of the best achievable performance of distributed detection with the

consensus algorithm based on censored data.

For our experiments, we quantize the values of η and ∆ with step 0.2 and

then we consider the following sets: SD = {η ∈ {0, 0.2, ...}} and SA = {∆ ∈
{0, 0.2, ...}}. Simulations were carried out according to the following setup.

We considered a network with n = {20, 50} nodes where the measurement

of each node is corrupted with probability α ∈ {0.1, 0.2}. We assume that

the probability that the measurement of a node is corrupted does not depend

on the other nodes (independent node corruption). By following the model
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introduced in Section 8.2.2, the measurements are drawn according to a Gaus-

sian distribution with variance σ2 = 1 and mean −µ and µ under H0 and H1

respectively. In our tests, we took µ = {1, 2}. For each setting, we estimated

the error probability of the decision based on censored data over 105 trials.

Then, we determined the mixed strategies Nash equilibrium by relying on the

minimax theorem [102].

Figure 8.4: Payoff matrix of the game with n = 20, α = 0.1 and µ = 1

(SNR = 4).

Figure 8.4 shows the payoff matrix in gray levels for the game with α = 0.1

and µ = 1 (i.e., SNR = 4). The stepwise behavior of the values of the payoff

in correspondence of the diagonal is due to the hard isolation (for each ∆,

when η < ∆ all the corrupted measurements are removed, while they are kept

for η ≥ ∆). When very low values of η are considered, the error probability

increases because many ’honest’ (good) measurements are removed from the

network and the decision is based on very few measurements (in the limit case,

when all measurements are removed, the network decides at random, leading

to Pe = 0.5). Figure 8.5 shows the mixed strategies at the equilibrium. By

focusing on the distribution of the defense strategy, D seems to follow the

choice of A by choosing the value η which is one step ahead of ∆, a part for

the presence of a peak, that is a probability mass (of about 0.075) assigned

to the value η = 5.6, which is the last non-zero value. Interestingly, a closer

inspection of the payoff matrix shows that all the strategies above this value
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Figure 8.5: Equilibrium strategies in the following setup: n = 20, α = 0.1,

µ = 1, (SNR = 4). Payoff at the equilibrium: v = 0.0176. (a) Attacker Mixed

Strategy (b) Defender Mixed Strategy.
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Figure 8.6: Payoff matrix of the game with n = 20, α = 0.2 and µ = 1

(SNR = 4).

are dominated strategies; hence, reasonably, the defender never plays them

(assigning them a 0 probability). This is quite expected since for larger η it is

unlikely that an observation falls outside the range [−η, η] and then ’censoring’

does not significantly affect the ’honest’ measurements (i.e. R = N with

very high probability). When this is the case, it is clearly is better for D

to choose small η, thus increasing the probability of removing the corrupted

measurements.

A possible explanation for the peaked behavior is the following. When η

decreases, D starts removing good measurements which fall in the tail of the

Gaussian under the corresponding hypothesis, whose values are not limited

to ∆, but can take arbitrarily large values. Depending also on the setup con-

sidered, it may happen that the positive contribution they give to the correct

decision is more relevant than the negative contribution given by the values

introduced by A. When this is the case, it is better for the defender to use all

the measurements. Therefore, the behavior of the defender at the equilibrium

has a twofold purpose: trying to remove the corrupted measurements on the

one hand (by choosing η one step ahead of ∆) and avoiding to rule out the

large good measurements on the other hand(by selecting the critical η). The

error probability at the equilibrium is 0.0176 thus showing that the proposed
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Figure 8.7: Equilibrium strategies in the following setup: n = 20, α = 0.2,

µ = 1 (SNR = 4). Payoff at the equilibrium: v = 0.1097. (a) Attacker Mixed

Strategy (b) Defender Mixed Strategy.



164
8. Consensus Algorithm with Censored Data for Distributed Detection with

Corrupted Measurements

Figure 8.8: Payoff matrix of the game with n = 50, α = 0.2 and µ = 1

(SNR = 4).

scheme allows to get correct detection with high probability despite the data

corruption performed by A.

Figure 8.7 shows the equilibrium strategies for α = 0.2 for the game payoff

matrix in Figure 8.6. Since the removal of the large good measurements has

more impact when α is large, a bit higher weight is associated in this case

to the peak. The error probability at the equilibrium is v = 0.1097. Finally,

Figure 8.9 shows the equilibrium mixed strategies for D and A for the payoff

matrix in Figure 8.8 when n = 50 , α = 0.2 and µ = 2.

8.7 Conclusion

We proposed a consensus algorithm based on censored data which is robust

to measurement falsification attacks. Besides, we formalized the interplay be-

tween the attacker and the network in a game-theoretic sense, and we numer-

ically derived the optimal strategies for both players and the achievable per-

formance in terms of error probability in different setups. Simulation results

show that, by adopting the proposed scheme, the network can still achieve

correct detection through consensus, despite the presence of corrupted mea-

surements.
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Figure 8.9: Equilibrium strategies in the following setup: n = 50, α = 0.2,

µ = 2 (SNR = 4). Payoff at the equilibrium v = 0.0556. (a) Attacker Mixed

Strategy (b) Defender Mixed Strategy.





Chapter 9

Conclusion

”Begin at the beginning and go on till you come to the end; then stop.”

Lewis Carroll, ”Alice in Wonderland”

9.1 Introduction

I
n this thesis we provided a game-theoretic approach for adversarial informa-

tion fusion in distributed sensor networks. We presented several solutions

to tackle with the presence of the adversaries in such networks in both cen-

tralized and decentralized fashion. In this chapter, we summarize the main

contributions of our work and outline some possible directions for future re-

search.

9.2 Summary

Starting from the fact that information fusion in distributed networks is of

great importance in many applications i.e, cognitive radio networks, multi-

media forensics, wireless sensor networks and many others, we observed that

securing these networks against attacks and threats is crucial and a key en-

abling factor for their proper functionality. Motivated by that, we studied

these networks by considering the possible presence of adversaries that aim

at corrupting their functionality. Following the concepts of adversarial signal

processing, we provided a game-theoretic approach to study the security of

adversarial information fusion in distributed sensor networks.

In chapter 2 and 3 we presented a review of the basic notions of detection

theory and game theory. In chapter 4 we presented an extensive review of the

literature concerning the attacks and their mitigation techniques in adversarial
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distributed sensor networks. Then, in chapters 5, 6, 7 and 8 we provided

possible solutions to mitigate the effect of the attacks in these networks and

we used a game-theoretic formulation to study the ultimate performance that

can be achieved by the attacker and the defender.

Specifically, we started by considering an adversarial decision fusion setup

in which the nodes send to the FC a vector of binary decisions about the

system state. As a first contribution, we developed a novel soft identification

and isolation scheme to exclude the reports sent by the adversary, namely the

Byzantines, from the decision fusion process. By adopting such a scheme, the

FC can assign a reliability value to each node. As an additional contribution,

we formalized the competition between the Byzantines and the FC in a game-

theoretic sense and we studied the existence of an equilibrium point for the

game. Then, we derived the payoff in terms of the decision error probability

when the players play at the equilibrium. By using numerical simulations, we

showed that the soft isolation scheme outperforms the defense mechanisms

proposed in previous works.

As a second contribution, we derived the optimum decision fusion rule in

the presence of Byzantines in a centralized setup. By observing the system

over an observation window, we adopted the Maximum A Posteriori Prob-

ability (MAP) rule while assuming that the FC knows the attack strategy

of the Byzantines and their distribution across the network. With regard to

the knowledge that the FC has about the distribution of Byzantines over the

network, we considered many cases. First, we examined an unconstrained

maximum entropy scenario in which the uncertainty about the distribution

of Byzantines is maximum Then, we considered a more favorable scenario to

the FC in which the maximum entropy case is subject to a constraint. In this

scenario, the FC has more a-priori information about Byzantines’s distribu-

tion i.e the average or the maximum number of Byzantines in the network.

Finally, we considered the most favorable situation in which the FC knows

the exact number of Byzantines present in the network. Concerning the com-

plexity of the optimal fusion rule, we developed an efficient implementation

based on dynamic programming. Thereafter, we introduced a game-theoretic

framework to cope with the lack of knowledge regarding the Byzantines strat-

egy. In such a framework, the FC makes a ”guess” by selecting arbitrarily a



9.2. Summary 169

Byzantine’s attacking strategy within the optimum fusion rule. By consider-

ing the decision error probability as the payoff, we studied the performance

of the Byzantines as well as the FC at the equilibrium for several setups. As

a main result of this chapter, we showed that the attacker should follow a

mixed strategy Nash equilibrium as opposed to what was believed in previous

works. This strategy reaches a trade-off between inducing decision error at

the FC and avoiding being caught. Finally, by comparing the performance of

the optimum fusion rule to those of previous works, we showed its superior

performance over all the other schemes.

By revisiting the complexity of the optimum fusion rule, as an additional

contribution, we proposed a near-optimal message passing approach based on

factor graph. We considered a more general model for the observed system

in which we examine both independent and Markovian sequences. Then, we

showed that the message passing algorithm can give near-optimal performance

while reducing the complexity from exponential to linear as a function of the

observation window size. In addition, we showed that the case of independent

states is more favorable to the Byzantines than the Markovian case, due to

the additional a-priori information available at the FC in the Markovian case.

Furthermore, based on large observation windows, we confirmed the dual

behavior in the attacking strategy of the Byzantines, looking for a trade-

off between pushing the FC to make a wrong decision on the one hand and

reducing the mutual information between the reports and the system state on

the other hand.

In the last part of the thesis, we considered a decentralized version of the

data fusion process based on consensus algorithm. We focused on case in

which the adversary attacks the links between the system being monitored

and the sensors. To make the network more robust, we proposed a primary

isolation step to be carried at the node level to filter out the falsified infor-

mation injected by the attacker. Then, we employed game-theory to model

the competition between the adversary and the network. At last, we used

numerical simulations to derive and study the equilibrium points of the game

and the performance at the equilibrium.



170 9. Conclusion

9.3 Open Issues

There are some avenues for future work on the topics addressed in this the-

sis. As a first research direction, we can improve the performance of the

Byzantines by giving them more freedom in their strategies. For instance, we

could let them exploit the knowledge of the observation vectors. By exploit-

ing the knowledge of such information, the Byzantines can focus their attack

on the most uncertain cases thus avoiding to flip the local decision when it

is expected that the attack will have no effect on the FC decision. Another

approach would be granting the Byzantines the opportunity to coordinate

before deciding on the attack and the strategy. Therefore, all the Byzantines

can be synchronized together and they can do so by using a pseudo random

generator with a common seed to synchronize their local clocks. Considering

a scenario where the nodes can send more extensive reports rather than one

single bit [176] is another interesting extension of the work done in this thesis.

In decentralized networks, extending the game-theoretic approach to in-

clude graph disconnections as a part of the defender payoff and then apply our

analysis to general topologies is an interesting research direction. In addition,

we would like to extend the analysis to more complicated statistical models

for the measurements, e.g. to the case of chi-square distribution, and to con-

sider more complicated versions of the game, e.g. by allowing the players to

adopt randomized strategies.

Even more interestingly, we could apply the concepts of adversarial signal

processing to more complex and fully adaptive networks. The reason is that,

these networks have been playing an increasingly important role in our daily

life because of their technological, social, and economical aspects on people’s

life. As examples of these networks Facebook, Twitter, Amazon and many

others. As a first example, on facebook, we would like to apply the concept

of adversarial information fusion to combat against fake user profiles who

generate forged/negative reviews or ratings against a business page and cause

financial loss. Another example is about twitter, for instance, we can counter

the users or profiles who, by faking information into their tweets, spread

falsified information about an event or a trend that can be critical.

Although being aware of some specific limitations for some applications, we

believe that studying adversarial information fusion can bring an important
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contribution to the security of networks with distributed sensors. Due to

its wide applicability and going in line with the development of a general

framework for adversarial signal processing, it is easy to foresee an increasing

interest in the topic studied in this thesis in the near future.
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[8] L. Pérez-Freire, P. Comesana, J. R. Troncoso-Pastoriza, and F. Pérez-González,
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