
Marco Fontani
Ph.D Thesis in Information Engineering

University of Siena

Digital Forensic Techniques
for Splicing Detection

in Multimedia Contents

UNIVERSITÀ DEGLI STUDI DI SIENA

Dipartimento di Ingegneria dell’Informazione

e Scienze Matematiche

DI

Digital Forensic Techniques for Splicing

Detection in Multimedia Contents

Marco Fontani

Ph.D Thesis in Information Engineering

XXVI Cycle, 2010-2013

Supervisor

Prof. Mauro Barni

Co-Supervisor

Prof. Alessandro Piva

Thesis reviewers

Prof. Anthony T. S. Ho

Prof. Fabio Roli

Prof. Pedro Comesaña Alfaro

Examination Committee

Prof. Anthony T. S. Ho

Prof. Fabio Roli

Prof. Marco Maggini

Siena

December 18, 2014

Contents

1 Introduction 3

1.1 Overview and contribution . 6

1.2 Activity within research projects 7

1.3 Publication list . 9

1.4 Acknowledgments . 12

I Decision Fusion Methods for Splicing Detection in
Digital Images 13

2 Introduction to Image Forensics 17

2.1 What image forensics can do 18

2.2 Methods for forensic analysis of digital images 19

2.3 The importance of a synergic analysis 21

2.3.1 Decision fusion in image forensics: possible approaches . 22

3 A Dempster-Shafer Framework for Splicing Detection 25

3.1 Introduction to Desmpter-Shafer Theory of Evidence 26

3.1.1 Shafer’s formalism . 26

3.1.2 Combination rule . 28

3.1.3 Belief marginalization and extension 31

3.2 The proposed framework . 32

3.2.1 Modeling forensic tools and traces using DST 33

i

Contents

3.2.2 Introducing new tools 35

3.2.3 Managing configurations of tools 37

3.2.4 Modeling traces relationships 38

3.2.5 Dealing with many traces: hierarchical modeling 39

3.2.6 Final decision rule . 40

3.3 From tool outputs to BBAs through background information . 42

3.3.1 Interpretation of tool outputs based on DST 44

3.3.2 Introducing background information 48

3.3.3 Exploiting background information 50

4 Experimental Validation and Concluding Remarks 53

4.1 State of the art methods . 53

4.2 Reference case study and datasets 54

4.2.1 Traces and tools . 54

4.2.2 Normalization of outputs 58

4.2.3 The synthetic forgery dataset 59

4.2.4 The realistic forgery dataset 60

4.2.5 Choice of reliability properties 62

4.3 Training procedure . 65

4.4 Results and discussion . 68

4.4.1 Noticeable case studies 72

4.4.2 Comments . 78

4.5 Concluding remarks . 80

4.5.1 Decision fusion for unsupervised forgery localization . . 80

4.5.2 Decision fusion as a means for countering anti-forensics 83

4.5.3 Conclusion . 84

II The Variation of Prediction Footprint: a Novel Tool for
Video Forensics 87

5 Introduction To Video Forensics 91

5.1 Video coding principles . 91

5.2 Previous works in video forensics 93

5.2.1 Multiple encoding detection 94

ii

Contents

5.2.2 Video splicing detection 97

6 Double Encoding Detection and Forgery Localization for

Digital Videos 99

6.1 Variation of prediction footprint for double encoding detection 99

6.1.1 The intuition behind the VPF 100

6.1.2 Measuring the VPF . 103

6.1.3 Experimental validation 107

6.2 Detection of frame removal and insertion 112

6.2.1 Shift-invariant VPF . 112

6.2.2 Iterative analysis for localizing frame removal 114

6.2.3 Localization of frame insertion 116

6.2.4 Experimental validation 117

6.3 Intra-frame tampering localization through VPF and DQ analysis120

6.3.1 Sketch of the method 121

6.3.2 Detection of frames encoded twice as intra 122

6.3.3 Double quantization analysis for MPEG-2

intra-coded frames . 123

6.3.4 Experimental validation 132

7 Concluding Remarks 137

7.1 Widening the generality of VPF 137

7.2 Future works on inter- and intra- frame forgery detection . . . 138

7.3 Conclusions . 140

III Fake Quality and Splicing Detection in MP3
Audio Tracks 141

8 Introduction to Audio Forensics 145

8.1 Previous works in audio forensics 146

8.1.1 Techniques based on the Electric Network Frequency . . 146

8.1.2 Techniques based on quantization analysis 147

8.2 Basics of MP3 audio coding . 149

iii

Contents

9 Double Encoding Detection and Forgery Localization for MP3

Tracks 151

9.1 Detection and classification of double compression 151

9.2 Application to forgery localization 156

10 Experimental Validation 161

10.1 Dataset for the experiments . 161

10.2 Double compression detection and first compression bit-rate

estimation . 162

10.3 Tampering localization . 169

10.4 Conclusions and open issues . 175

11 Other Works: Image Counter-Forensics 177

12 Conclusion 181

12.1 Summary . 181

12.2 Open issues . 183

12.3 Final remarks . 184

Bibliography 187

iv

FOR there are some who long to know for the sole purpose of knowing, and

that is shameful curiosity; others who long to know in order to become

known, and that is shameful vanity. To such as these we may apply the words

of the Satirist: “Your knowledge counts for nothing unless your friends know

you have it.” There are others still who long for knowledge in order to sell

its fruits for money or honors, and this is shameful profiteering; others again

who long to know in order to be of service, and this is charity. Finally there

are those who long to know in order to benefit themselves, and this is wisdom.

Sermon XXXVI on The Song of Songs

St. Bernard of Clairvaux

REALISM requires a certain method for observing and coming to know

an object, and this method must not be imagined, thought of or organized

and created by the subject: it must be imposed by the object. [...] This means

that the method of knowing an object is dictated by the object itself and cannot

be defined by me.

The Religious Sense

Mons. Luigi Giussani

Chapter 1

Introduction

WHILE the reader goes through this introduction, thousands of events

are being captured in the world using digital devices. A good deal

of this huge population of multimedia contents will be stored somewhere and

never be looked at again, while another considerable fraction will be uploaded

on social networks and websites, thus becoming of public domain. But there

is a relatively small part of the cake that will be used to convince someone

that something happened. Be it in a newspaper, a breaking news website,

or even within a court, there are multimedia contents that stand as proof

of something, and are claimed to be a credible proof. In fact, people tend

to be convinced rather easily by something that can be watched or heard,

for mainly two reasons: senses are directly involved, much more than when

reading or listening to someone, and there is an aura of objectivity around

recordings. Unfortunately, the objectivity of multimedia contents is often

overestimated: just by looking around, it is evident that creating fake digital

contents is very common today. While fake pictures on gossip magazines

can be considered harmless in most cases, there are scenarios in which the

truthfulness of a multimedia content must be assessed, often without having

access to any other information but the content itself.

Multimedia forensics is a relatively new discipline that seeks to solve this

kind of problems: the basic idea behind is that any processing applied to

a digital content leaves subtle traces, that can be analyzed to uncover the

“digital history” of the object. Thus, the word forensics is not related only

to the application field but rather to the methodology that is going to be

followed: the analyst is given the content “as it is”, and must retrieve any

useful information about its past, in close similarity to what scientific police

does on a crime scene.

4 1. Introduction

In the last ten years, multimedia forensic researchers struggled to answer

as many questions as possible about the past of a given image, audio or video,

questions like “which was the recording device?”, or “is the content authen-

tic?”. In particular, the second question attracted an increasing attention,

because authenticity assessment is a crucial step in many fields: it is not hard

to foresee the dangerousness of fake objects in medical, military, journalistic

and legal contexts.

Among the different approaches to assess the authenticity of a content,

splicing detection is probably the most promising: it consists in determin-

ing whether the analyzed content is the digital representation of something

that really happened, or it has been forged by splicing together two or more

contents, with a clever “cut-&-paste” job. When this happens, the forensic

analyst hopes that each of the spliced signals brought some of its digital his-

tory with it, thus allowing to search for inconsistencies in the forged content.

As the reader probably noticed, we used the word “signal”; as it will become

evident in the rest of this thesis, indeed, images, audios and videos are dif-

ferent but share the same nature of digitized signals: all of them have been

sampled, quantized, and possibly compressed at some point in their history.

Therefore, while specific methods have to be devised for different media, the

underlying rules can be inherited in some cases. Encouraged by this fact, in

this thesis we address the problem of splicing detection in multimedia con-

tents, working on the three main media: images, video and audio. For this

reason, the thesis consists of three parts, one for each media.

The first part regards still images. When we began our studies on this

topic, in 2010, a large family of tools for splicing detection was already avail-

able in the literature [1, 2]. Each tool differed from the others either in the

specific trace it searched for (traces left by the camera [3], or by JPEG com-

pression [4], etc.) or in the way the trace was searched for. Each tool was

conceived alone, meaning that manipulation traces were searched indepen-

dently one from the other. This scenario contrasted with the fact that the

creation of a credible splicing typically involves many processing operations,

so that the produced forgery shows more than one forensic trace. For this

reason, we investigated the possibility of using several tools together, combin-

ing their outputs in an intelligent way. To this end, we developed a decision

5

fusion framework specifically tailored for image forensics, based on Dempster-

Shafer Theory of Evidence (DST), which is a mathematical tool allowing to

make inference in presence of uncertainty and lack of prior probabilities [5].

Besides merging the output of several tools, we found that the analyst can

strongly improve the reliability of his conclusions by accounting for other clues

like compatibility relationships between forensic traces, tool reliability under

different working conditions, and so on.

In the second part of the thesis, we consider splicing detection in digital

video. Despite the significant advancements made in the last years, forensic

video analysis is not as advanced as image forensics [6]. This especially holds

for splicing detection, where a few methods have been proposed, most of

them working only under restrictive hypotheses. Moreover, the concept itself

of video splicing is more involved with respect to images: the forger may

want to change the meaning of the video on a frame-by-frame basis (intra-

frame splicing), or to simply conceal an event by removing groups of frames

(inter-frame splicing). These manipulations are deeply different, and need to

be investigated with different techniques. In this thesis, we first introduce a

new footprint, the Variation of Prediction Footprint (VPF), and show how

it can be used to detect double video encoding. Then, building on the VPF,

we develop two video forensic techniques for detecting both intra- and inter-

frame video splicing. Noticeably, the intra-frame forgery detection technique

is based on an important result coming from image forensics, that is double

quantization analysis, properly adapted to the context.

The third and last part of the thesis is devoted to digital audio, namely

to MP3 compressed tracks. Audio forensic roots date back to the ’60s, when

magnetic tapes were investigated to expose traces of manipulations. Today

digital audio recordings are broadly used in the court, and their authentic-

ity is often questioned [7]. As a contribution to this field, we investigated

the possibility of “exporting” a technique that worked brilliantly for images,

namely calibration [8], into the field of compressed audio, focusing on MP3

compression. Somehow similarly to what we did for video, we first propose

a method to detect double compression and then build on such a method to

localize traces of cut-&-paste operations.

Throughout the thesis it emerges that while image, audio and video foren-

6 1. Introduction

sics are at different development stages, there are some concepts that stand

like a common denominator in all of them. For example, there exists a robust

link between double compression detection and splicing localization: this was

already clear for images when we began our activity, and by leveraging on

this concept also in video and audio we obtained interesting results. Another

example regards multiple coding: regardless of the media, when the signal is

compressed at decreasing quality the forensic analysis becomes very hard, if

not impossible. Similarly, we also believe that the concepts we considered in

the development of the fusion framework for digital images are also valid for

other media, so that the framework presented in the first part of the thesis

can also be used with audio and video forensic tools.

1.1 Overview and contribution

In the first part of the thesis we present a decision fusion framework for

image forensics. After a brief introduction to image forensics in Chapter

2, highlighting the need for a synergic analysis, we enter the heart of our

contribution in Chapter 3, where we first introduce those basic notions of

Dempster-Shafer Theory that are essential to the rest of the chapter and

then formalize the proposed decision fusion framework. The experimental

validation of the framework is treated in Chapter 4, which also concludes the

first part of the thesis, laying the basis for future developments.

The second part of the thesis is structured similarly: it begins with an

introduction to video forensics, in Chapter 5. Following that, we present our

contributions in Chapter 6: Section 6.1 presents the VPF and its application

to the detection of double encoding ; then Section 6.2 presents a tool for inter-

frame video splicing detection, and its experimental validation. A new tool

for intra-frame splicing detection is the topic of Section 6.3, that is also a

good example of how methods for image forensics can be adapted to work on

different domains with a moderate, though not negligible, effort. Chapter 7,

finally, draws some concluding remarks. This part of the thesis is the result

of a joint work with the University of Vigo.

The last part of the thesis begins with Chapter 8, that introduces audio

forensics. Chapter 9 contains the proposed method for double compression

1.2. Activity within research projects 7

detection and its application as a tool for fake quality detection and forgery

localization of MP3 audio tracks. The validity of the method is investigated

in Chapter 10.

Before concluding the thesis, in Chapter 11 we give a brief summary of

our contribution in the field of counter-forensics: while not directly related

to splicing detection problem per se, counter-forensics is an important aspect

of our discipline, and acted as a stimulating factor in the development of

our contribution about decision fusion. Finally, we conclude the thesis in

Chapter 12, summarizing the lessons learned through this work and outlining

some possible future trends in multimedia forensics.

1.2 Activity within research projects

During our research activity we participated in several international research

projects. This fact brought a significant contribution: we learned the impor-

tance of establishing contacts, sharing knowledge with other partners, and we

hopefully advanced in the ability to focus the efforts toward specific objectives.

The LivingKnowledge (Facts Opinions and Bias in Time) project1, funded

by the European Commission under the FP7-FET programme and expired

on February 2012, allowed us to take the first steps in the multimedia forensic

field. The project studied the effect of diversity and time on opinions and

bias. Our contribution focused on the application of multimedia forensics

for recovering information on image history and manipulation, in order to

investigate how visual contents may be used to affect opinions and bias of

viewers. It was here that the need for decision fusion methods in image

forensics became evident for the first time.

The REWIND project2 (REVerse engineering of audio-Visual content

Data), funded by the European Commission under the FP7-FET programme

and expired on June 2014, accompanied the whole activity presented in this

thesis. The goal of the project was to develop new theories and tools for

investigating the digital history of multimedia contents. Also according to

project reviewers opinion, REWIND reached and in some cases exceeded its

1http://livingknowledge.europarchive.org
2http://www.rewindproject.eu

8 1. Introduction

objectives, so that it can be regarded as a successful story we are proud of

being part of. Also, it was thanks to REWIND that the collaboration with

the University of Vigo flourished, leading to some of the results presented in

this thesis.

The collaboration with the University of Vigo was also fostered by the

LIFTGATE3 project (Lifting Up the Research Potential of the Galician Telecomms

Center), that gave us the possibility to be a visiting student at GRADIANT4

(Galician Research and Development Center in Advanced Telecommunica-

tions), located in Vigo; working with GRADIANT researchers gave an impor-

tant impulse to our work on decision fusion.

Simultaneously, we worked on the AMULET project (A MUlti-cLuE ap-

proach To image forensics), funded by the U.S. Air Force European Office

for Aerospace Research and Development (EOARD), that is currently active.

The focus of the project is on the development of new techniques for multi-

clue forensics analysis that, starting from the indications provided by a pool

of forensics tools thought to detect the presence of specific artifacts, reach a

global conclusion about the authenticity of a given image. In particular, it is

of interest to investigate the practical applicability of different solutions for

multi-clue analysis; to this end, we studied methods for merging information

stemming from tools that do not require an exaggerated amount of training

data, and we compared such methods with state of the art technologies. This

research project was especially essential for the development of the first part

of the thesis.

Finally, we had the possibility of interacting with industrial partners under

the umbrella of MAVEN project5 (Management and Authenticity Verification

of multimedia contENts), funded by the European Commission under the

FP7 - SME programme, also currently active. MAVEN focuses on the devel-

opment of a set of tools for multimedia data management and security. More

specifically, MAVEN objectives are centered on two key concepts: “search”

and “verify”; MAVEN first searches for digital contents containing “objects”

of interest (e.g., a face appearing on Closed-Circuit Television, CCTV). Once

those objects are retrieved, advanced forensic analysis tools are applied to ver-

3https://sites.google.com/a/gradiant.org/liftgate/
4http://www.gradiant.org
5http://maven-project.eu/

1.3. Publication list 9

ify their integrity and authenticity. Through the collaboration with forensic

software companies like AMPED6, we obtained stimulating information about

the real needs of multimedia forensic analysts and about practical constraints

that should be kept in mind during the research effort.

1.3 Publication list

The activity of the thesis resulted in the following publications, listed in re-

verse chronological order.

• International, peer reviewed journals:

1. D. P. Dupplaw, M. Matthews, R. Johansson, G. Boato, A. Costanzo,

M. Fontani, E. Minack, E. Demidova, R. Blanco, T. Griffiths

et al., “Information extraction from multimedia web documents:

an open-source platform and testbed,” International Journal of

Multimedia Information Retrieval, pp. 1–15, 2014.

2. T. Bianchi, A. De Rosa, M. Fontani, G. Rocciolo, and A. Piva,

“Detection and localization of double compression in MP3 audio

tracks,” EURASIP Journal on Information Security, vol. 2014,

no. 1, p. 10, 2014.

3. M. Fontani, T. Bianchi, A. De Rosa, A. Piva, and M. Barni, “A

forensic tool for investigating image forgeries,” Intl. Journal of

Digital Crime and Forensics (IJDCF), vol. 5, no. 4, pp. 15–33,

2013.

4. M. Fontani, T. Bianchi, A. De Rosa, A. Piva, and M. Barni,

“A Framework for Decision Fusion in Image Forensics Based on

Dempster-Shafer Theory of Evidence,” IEEE Transactions on In-

formation Forensics and Security, vol. 8, no. 4, pp. 593–607, 2013.

5. S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Taglia-

sacchi, and S. Tubaro, “An overview on video forensics,” APSIPA

Transactions on Signal and Information Processing, vol. 1, no. 1,

2012.

6http://ampedsoftware.com/

10 1. Introduction

• International, peer reviewed conferences:

1. A. De Rosa, A. Piva, M. Fontani, and M. Iuliani, “Investigat-

ing Multimedia Contents,” in ICCST 2014, IEEE Intl. Carnahan

Conference on Security Technology, October 2014, pp. 1–6.

2. A. Gironi, M. Fontani, T. Bianchi, A. Piva, and M. Barni, “A

video forensic technique for detecting frame deletion and insertion,”

in ICASSP 2014, IEEE Intl. Conference on Acoustic Speech and

Signal Processing, May 2014, pp. 6226–6230.

3. M. Fontani and M. Barni, “Countering anti-forensics by means

of data fusion,” in IS&T/SPIE Electronic Imaging 2014, February

2014.

4. M. Fontani, E. Argones-Rúa, C. Troncoso, and M. Barni, “The

Watchful Forensic Analyst: Multi-Clue Information Fusion with

Background Knowledge,” in WIFS 2013, IEEE Intl. Workshop on

Information Forensics and Security, November 2013, pp. 1–6.

5. D. Labartino, T. Bianchi, A. De Rosa, M. Fontani, D. Vazquez-

Padin, A. Piva, and M. Barni, “Localization of forgeries in MPEG-2

video through GOP size and DQ analysis,” in MMSP 2013, IEEE

Intl. Workshop on Multimedia Signal Processing, September 2013,

pp. 494–499.

6. T. Bianchi, A. De Rosa, M. Fontani, G. Rocciolo, and A. Piva,

“Detection and Classification of Double Compressed MP3 Audio

Tracks,” in IHMMSEC 2013, ACM Workshop on Information Hid-

ing and Multimedia Security. New York, NY, USA: ACM, June

2013, pp. 159–164.

7. D. Vazquez-Padin, M. Fontani, T. Bianchi, P. Comesana, A. Piva,

and M. Barni, “Detection of video double encoding with GOP size

estimation,” in WIFS 2012, IEEE Intl. Workshop on Information

Forensics and Security, December 2012, pp. 151–156.

8. P. Bestagini, M. Fontani, S. Milani, M. Barni, A. Piva, M. Ta-

gliasacchi, and S. Tubaro, “An overview on video forensics,” in

EUSIPCO 2012, European Signal Processing Conference, August

2012, pp. 1229–1233.

1.3. Publication list 11

9. M. Fontani, T. Bianchi, A. De Rosa, A. Piva, and M. Barni, “A

Dempster-Shafer framework for decision fusion in image forensics,”

in WIFS 2011, IEEE Intl. Workshop on Information Forensics and

Security, December 2011, pp. 1–6.

The author of this thesis also contributed to the publications listed below;

they are not discussed in details in the thesis as they deal with watermarking

and counter-forensic. Chapter 11 gives a brief overview of our contributions

to counter-forensics.

1. A. De Rosa, M. Fontani, M. Massai, A. Piva, and M. Barni, “Second-

order statistics analysis to cope with contrast enhancement counter-

forensics,” to appear on IEEE Signal Processing Letters, 2014.

2. M. Barni, M. Fontani, and B. Tondi, “Universal Counterforensics of

Multiple Compressed JPEG Images,” in IWDW 2014, IEEE Intl. Work-

shop on Digital-Forensics and Watermarking, October 2013, pp. 1–15.

3. M. Barni, M. Fontani, and B. Tondi, “A universal attack against

histogram-based image forensics,” Intl. Journal of Digital Crime and

Forensics, vol. 5, no. 3, pp. 35–52, 2013.

4. M. Barni, M. Fontani, and B. Tondi, “A universal technique to hide

traces of histogram-based image manipulations,” in MMSEC 2012, ACM

Multimedia and Security Workshop. New York, NY, USA: ACM,

September 2012, pp. 97–104.

5. M. Fontani and M. Barni, “Hiding traces of median filtering in digital

images,” in EUSIPCO 2012, European Signal Processing Conference,

August 2012, pp. 1239–1243.

6. M. Fontani, A. De Rosa, R. Caldelli, F. Filippini, A. Piva, M. Con-

salvo, and V. Cappellini, “Reversible watermarking for image integrity

verification in hierarchical PACS,” in MMSEC 2010, ACM Workshop

on Multimedia and Security. New York, NY, USA: ACM, September

2010, pp. 161–168.

12 1. Introduction

1.4 Acknowledgments

When I had to take the decision about pursuing or not a Ph.D, one thing was

evident to me: I was standing in front of great people to follow. After four

intense years, I can definitely say that I was right. Prof. Mauro Barni, my

advisor, introduced me to research in the most fascinating way: by letting me

follow him. That means: follow his passion for studying and teaching and,

more in general, his positive look to reality. He worked hard to show me how

to make science, how to present my work, how to follow a project, and much

more. But he was not alone in the challenging task of making a researcher out

of me. Prof. Alessandro Piva, my co-advisor, and Dr. Alessia De Rosa (both

from the University of Florence) were the first to enthusiastically introduce

me to digital image processing and, more in general, to high quality research.

Starting right from my Bachelor thesis, I always felt they were betting on me

more that I would have done, and this still holds today. Besides my mentors, I

would like to thank my thesis reviewers and members of the committee, Prof.

Anthony Ho, Prof. Fabio Roli, Prof. Pedro Comesaña Alfaro and Prof. Marco

Maggini for their insightful comments and suggestions. Moreover, I want to

acknowledge the REWIND, AMULET, MAVEN and LIFTGATE projects for

making possible the fruitful collaboration with very professional and friendly

researchers (and, of course, for financial support).

I would like to thank all of my laboratory colleagues in Florence and Siena

for their support and help: Tiziano, Pasquale, Massimo, Alessandro, Andrea,

Benedetta, Siméon, Giulia, Riccardo and Tommaso. A special thanks go to

David Vázquez-Pad́ın (University of Vigo): he patiently introduced me to

video processing, and shared with me the intuition and the research work

that led to the Variation of Prediction Footprint. Working with David has

been a great, exciting experience and I sincerely hope that our collaboration

will keep going like our friendship does.

Since I deeply believe that what a man does in his job is just an expression

of who he is, I want to thank all those persons who contribute to my education:

my family, all my friends, especially those of the Movement of Communion

and Liberation, and my wife Teresa, who always encouraged me (especially

through her example) to pursue the great opportunities I had in front of me.

Part I

Decision Fusion Methods for

Splicing Detection in Digital

Images

15

Abstract

Images have always played a key role in the transmission of information,

mainly because of their immediacy and presumed objectivity. In the last

twenty years, the advent of digital imaging further fostered the use of

pictures as the preferred way to convey convincing messages. However,

digital imaging also gave a great impulse to image manipulation, and

nowadays images are facing a trust crisis. Image Forensics has emerged

as a possible way to solve the above crisis, by enabling the blind investi-

gation of the processing history of an image. As more and more forensic

algorithms are becoming available, it becomes of interest to devise intelli-

gent methods to merge the information stemming from them, so to obtain

a more comprehensive and reliable analysis. In doing that, the analyst

may also exploit different kinds of background knowledge, some noticeable

examples are information about the compatibility relationships between

different forensic traces, and the reliability of each tool under different

working conditions.

After providing a brief outline of image forensics, in this part of the

thesis we deal with the problem of combining the information stemming

from a set of heterogeneous image forensic tools; in particular, we pro-

pose a decision fusion framework based on Dempster-Shafer Theory of

Evidence. Since this theory is not as widely spread as, say, the Bayesian

inference theory, the most basic notions are introduced prior to describ-

ing the fusion framework.

Chapter 2

Introduction to Image Forensics

SINCE the beginning of their centuries-old history, photographic images

were considered one of the strongest evidences supporting a fact: as the

saying goes, “seeing is believing”, and for years showing a shot of an event

was sufficient to prove that the event had really happened. Today this is no

longer true in general: no one trusts pictures printed on gossip magazines, as

they are admittedly fake in most cases. It is also known that even an amateur

user of Photoshop can forge credible fakes in minutes. Yet, there is a vast

range of scenarios where a single picture can really make the difference: po-

litical, military, law and medical applications are just a few examples. When

images are to be used in such applications, it is fundamental to investigate

their processing history before accepting them as evidences. In most cases,

this investigation must be performed blindly, meaning that there is no access

to the images before their diffusion: this makes active solutions like digital

watermarking [9] not viable, since they are based on hiding information inside

the media before sending it out.

In the last years, image forensics emerged as a discipline that blindly an-

alyzes images in the attempt to recover information about their processing

history, by searching for subtle traces left by processing operations. Notice

that this definition of “digital image forensics” has almost nothing to share

with the wide branch of methods allowing to enhance the quality of an image,

or to extract measures from its content1.

As a matter of fact, a credible image forensic analysis can not rely on a

single tool: forgeries can be created using a very wide range of methods, each

leaving different traces within the content; moreover image forensic tools are

1We may think of the two disciplines as forming a cascade: first the trustability of an

image is assessed, then its content is examined.

18 2. Introduction to Image Forensics

still not very reliable, so that a cross-analysis is often desirable.

In the rest of this chapter, we briefly outline the main achievements of

digital image forensics, and finally introduce the need for a synergic analysis,

where evidences coming from different analysis tools are combined to reach

more sound conclusions.

2.1 What image forensics can do

The history of a digital image consists of several steps: it begins when the

image is captured, which includes the automatic application of some in-device

processing, possibly including lossy encoding. Following, other processing

steps may occur: the perceptual quality of the image may be improved using

enhancement operators, or the semantic content may be altered by inserting

or removing objects. The image may also be replicated in several different

versions, with different size, colors and file format. In this heterogeneous and

multiform scenario, image forensics try to investigate the past of an image,

without knowing anything but the image itself [2]. As this discipline evolved,

different kinds of investigations have become possible; in the following we list

those that received the greatest attention:

• Source classification, whose goal is to determine whether the image

comes from a camera, a scanner, a mobile phone or it has been gen-

erated using computer graphics [10]. Techniques also exist allowing to

discriminate between different camera brands or even models [11].

• Source identification, which differs from the previous class in that the

exact device needs to be identified: given a group of cameras of the very

same brand and model, the goal is to understand which one was used

to capture the image. We can think of this as something similar to gun

ballistics, which tries to understand whether a bullet has been fired by

a specific gun: source identification is indeed known also as “camera

ballistics” [12].

• Reverse engineering of processing operators, which aims at investigating

the whole digital history of the image, for example detecting whether a

specific processing operator, or even a chain of processing operators, has

2.2. Methods for forensic analysis of digital images 19

been applied, possibly estimating their parameters and the chain order.

This branch of forensics is among the most difficult ones, because traces

left by different processing operations tend to alter of even cancel each

other.

• Authenticity verification, whose goal is to understand whether the image

has been maliciously manipulated so to alter its content, for example

by pasting pixels from another image (so called “cut-&-paste” attack)

or even from the image itself (“copy-move” attack).

• Image philogeny where, starting from a set of near-duplicate images, the

goal is to reconstruct the dependency tree, which means telling which

image originated which, and whether two images belong to the same

tree [13].

Such a wide range of applications suggests that there is more information

in a digital image about its history than we think. The next section briefly

sketches the main methods existing today for exposing such information.

2.2 Methods for forensic analysis of digital images

The basic idea underlying Image Forensics is that every step of the lifecycle

of a digital image leaves subtle, often imperceptible, footprints into the image

itself; the presence of these footprints can hence be investigated in order

to gather information about the “digital history” of the image. In the last

ten years, many techniques have been developed following this methodology,

that can roughly be classified into the following classes, based on the kind of

footprint they rely on:

• Acquisition based footprints. This class groups all those traces that

are left by the acquisition device during capturing. For example, most

cameras use a Color Filter Array (CFA) followed by an interpolation

filter to produce a color image starting from a single light sensor. As

a consequence, the digital image brings traces of both the employed

CFA pattern and the type of interpolation filter [14]. Moreover, the

light sensor itself leaves a characteristic noise in each captured image,

20 2. Introduction to Image Forensics

known as Photoresponse Non-Uniformity Noise (PRNU) that is unique

for that specific sensor, so that no two sensors exist leaving the same

noise pattern [12].

• Coding based footprints. The vast majority of digital images is stored

using the lossy JPEG algorithm, which processes the image in a block-

wise fashion leaving characteristic artifacts both perceptually and sta-

tistically. While such artifacts are typically considered as an annoying

consequence of lossy coding, they become a useful asset for assessing the

processing history of an image. This becomes even more true because

multiple compression steps may leave incremental traces and, what is

more interesting, when the image is created by splicing together differ-

ent pictures it is possible to distinguish between pixel blocks compressed

once, twice and so on [15].

• Editing based footprints. This kind of footprints are left during image

processing operations: manipulating images is getting easier thanks to

the aid of powerful editing softwares, but there is a wide range of imper-

ceptible inconsistencies that may be left into an image during process-

ing. For example, by barely resizing or rotating an image we are forcing

the software to interpolate pixel values, thus leaving detectable traces

within the digital signal [16]. Moreover, by pasting a patch of pixels

we introduce inconsistencies in the blurriness, contrast and saturation

of different areas of the same picture [17, 18].

• Geometric and physics based footprints. When creating a fake image,

one of the most challenging tasks is to arrange objects in such a way that

their geometric and physical properties remain consistent. In practice,

adapting the size, perspective, illumination and shadowing of an object

is not trivial even for the most clever photo editor. This especially holds

because our brain is not precise in computing vanishing points, adjust-

ing proportions and so on. As a consequence, geometric and physic

footprints have been successfully applied in image forensic [19, 20]. The

most attracting feature of these kind of footprints is their robustness,

as they remain present even after printing or recapturing2.

2Image recapture consists in printing or displaying the image on a screen and then taking

2.3. The importance of a synergic analysis 21

The above list is not exhaustive; however the literature is rich of books [1, 21]

and overview papers [2]. As stated in the Introduction of the thesis, our con-

tribution is focused on authenticity verification, and more precisely on splicing

detection. Indeed, this branch was (and still is) one of the most flourishing in

image forensics: new methods are continuously devised, belonging to different

classes among those described above. It is important to stress that there is

no direct link between goals and methods, meaning that the same footprint

can be leveraged on for different tasks; interestingly, splicing detection is by

far the application that benefits most from the analysis of different kinds of

footprints: for example, PRNU was initially studied as a tool for source iden-

tification, but it rapidly became one of the preferred means for authenticity

verification [12]. Similarly, the presence of CFA demosaicing artifacts has

been proposed initially for source classification [11], but it inspired tools for

authenticity verification [14] as well.

2.3 The importance of a synergic analysis

The discussion above suggests splicing detection as a favourable scenario for

studying the benefits that could be obtained by using several tools together

in a synergic way. Besides the availability of different analysis methods, the

intrinsic nature of image tampering also favours its choice as a case study

for the role of data fusion in image forensics: in most cases, the creation

of a forgery involves the application of more than a single processing tool,

thus leaving a number of traces that can be used to detect the presence of

tampering. We should also consider one more fact: while it may be easy for

a skilled, possibly “forensic aware” image retoucher to conceal some traces of

his work, it would be far more difficult for him to fool an heterogeneous set of

analysis tools that account for many different traces. That is to say: chances

for the analyst to reveal the manipulation increase significantly when many

different clues are put together, making the “perfect crime” much harder to

accomplish.

These considerations suggests to analyze the authenticity of images by

using more than one tamper detection tool. Furthermore, existing forensic

a new shot of it with a digital camera.

22 2. Introduction to Image Forensics

tools are far from ideal and often give uncertain or even wrong answers, so,

whenever possible, it is wise to employ more than one tool searching for the

same trace. On top of that, it may also be the case that the presence of

one trace inherently implies the absence of another, because the traces are

mutually exclusive by definition: for example, theoretically a block of pixels

cannot show traces of both aligned and not-aligned double compression. For

these reasons, taking a final decision about the authenticity of an image relying

on the output of a set of forensic tools is not a trivial task, thus justifying the

design of proper decision fusion methods explicitly thought for this scenario.

2.3.1 Decision fusion in image forensics: possible approaches

The problem of taking a final decision about a hypothesis by looking at the

output of several tools is an important task in decision fusion. There are

basically three kinds of approaches to tackle with it. The first is to perform

fusion at the feature level: a subset of the features extracted by the tools is

selected and used to train a global classifier. The second is to consider the

(usually scalar) output provided by the tools and fuse them (fusion at the

measurement, or score, level). The last approach consists in fusing the binary

answers of the tools, usually obtained by binarizing their soft outputs (fusion

at the abstract level). An effective example of how these three strategies can be

applied to a problem similar to the one addressed in this thesis is illustrated

in the work by Kharrazi et al. [22], where fusion is used in a steganalysis

framework. In fact, both in steganalysis and image forensics, tools usually

extract some features from the image, perform measurements/classification

by relying on them and finally produce an output, often probabilistic, which

can be thresholded to yield a binary classification.

Although being promising in terms of performance, fusion at the feature

level has some serious drawbacks, most importantly the difficulty of handling

cases involving a large number of features (commonly addressed as “curse of

dimensionality”) and the difficulty to define a general approach to feature

selection, since ad-hoc solutions are needed for different cases. Furthermore,

feature selection in most cases is followed by some machine learning, that by

definition is effective only when a training dataset can be prepared that is

representative of a large part of the global population of samples. If this can

2.3. The importance of a synergic analysis 23

be done for training a single detector, creating a representative dataset of

all possible image forgeries is practically unfeasible, especially in the case of

photorealistic ones (assuming they must be created by a human).

Working at the other extreme, the abstract level, suffers from the comple-

mentary problem: a large amount of information is discarded when outputs

are thresholded, so the discrimination power of the various tools is not fully

exploited.

In image forensics, most of the existing works are based on feature level

fusion [23] [24] [25]; a hybrid solution has been investigated by Bayram et al.

[26], but still focusing on feature fusion. Noticeably, a fusion approach based

on the same mathematical background we will build upon, that is Dempster-

Shafer Theory, was proposed by Zhang et al. [27]. Also in that work, however,

fusion is taken at the feature level hence inheriting the general drawbacks of

such an approach, noticeably the lack of scalability and the need to retrain

the whole system each time a new tool is added.

Fusion at the measurement level is a solution that gets around the above

problems: the responsibility of selecting features and training classifiers (or

other decision methods) is delegated to each single tool, thus favoring gener-

ality and expandability; at the same time, the loss of important information

about tool response confidence is at least partially prevented. Fusion at the

measurement level has been proposed in [28], where Sun et al. exploit Demp-

ster’s combination rule to devise an image steganalysis scheme that combines

three algorithms to improve detection accuracy. As it will become evident in

the next Chapter, Dempster’s combination rule is an important tool of DST,

but it is not sufficient alone to devise a framework that generalizes well to

heterogeneous sets of tools. Finally, Costanzo et al. [29] recently proposed a

framework based on fuzzy logic that combines tool outputs at the measure-

ment level. While the framework in [29] is conceptually similar to the one

proposed in this work, it requires the user to manually set a rather large set

of parameters.

Chapter 3

A Dempster-Shafer Framework for Splicing
Detection

IN this chapter we devise a framework for combining at the measurement

level the evidence coming from two or more forgery detection algorithms.

The goal is not to develop a specific multi-clue forgery detection tool, but to

define a theoretical model that allows fusing a generic set of forensic tools,

requiring as little prior information as possible. Hence, we rely on Dempster-

Shafer Theory of Evidence (DST) as the basic mathematical tool, since this

theory can model uncertainty and missing information in a very intuitive and

sound way, and does not force to specify prior probabilities in the modeling

phase. The proposed framework exploits knowledge about reliability of tools

and about compatibility between different traces of tampering, and can be

easily extended when new tools become available. It allows both a “soft” and

a binary (tampered/non-tampered) interpretation of the fusion result, and

can help in analyzing images for which taking a decision is critical due to

conflicting data.

To test the effectiveness of the framework, we apply it to the splicing

detection problem, which consists in determining whether a given region of

an image has been pasted from another. During this process some traces are

left into the image, depending on the modality used to create the forgery:

the presence of each of these traces can be revealed by using one (or more)

image forensic tools, each of which provides information about the presence

of the trace it is looking for. Note that, in splicing detection, most forensic

tools assume knowledge of the suspect region; that said, if no information is

available, we could still run all tools in a block-wise fashion, and fuse their

outputs at the block level.

The chapter is structured in two main parts: the first one (Section 3.1)

gives a brief introduction to DST, while the second (Section 3.2) presents

26 3. A Dempster-Shafer Framework for Splicing Detection

the proposed framework. The experimental validation of the framework is

addressed in Chapter 4.

3.1 Introduction to Desmpter-Shafer Theory of Ev-

idence

Dempster-Shafer Theory of Evidence (DST) [30, 5] is a widely employed

mathematical framework allowing to make reasoning and inference in con-

texts where uncertainty and lack of information are strong. Indeed, one of

the most attractive features of DST is the capability of modeling uncertainty

and doubt in an explicit and very simple way, especially compared to classical

probability theory. When using classical probability theory for defining the

probability of a certain event A, the additivity rule must be satisfied; so by

saying that Pr(A) = pA one is also implicitly saying that Pr(Ā) = 1 − pA,

thus committing the probability of an event A to that of its complementary

Ā. Most importantly, the additivity rule influences also the representation of

ignorance: complete ignorance about a dichotomic event A in Bayesian the-

ory is commonly represented by setting Pr(A) = Pr(Ā) = 0.5 (according to

the maximum entropy principle), but this probability distribution also models

perfect knowledge about the probability of each event being 0.5 (as for coin

tossing), thus making it difficult to distinguish between ignorance and per-

fectly known equiprobable events. Since reasoning in a Bayesian framework

makes an extensive use of prior probabilities, which are often unknown, a wide

usage of maximum entropy assignments is often unavoidable, leading to the

introduction of extraneous assumptions. To avoid that, DS theory abandons

the classical probability framework and allows to reason without the need

to introduce a-priori probabilities. This further motivate the choice of using

DST for developing our decision fusion framework, since in the image forensic

field it is very difficult to get good estimates of prior probabilities.

3.1.1 Shafer’s formalism

Let the frame Θ = {x1, x2, . . . , xn} define a finite set of possible values of

a variable X; a proposition about X is any subset of Θ. We are interested

in quantifying how much we are confident in propositions of the form “the

3.1. Introduction to Desmpter-Shafer Theory of Evidence 27

true value of X is in H”, where H ⊆ Θ (notice that the set of all possible

propositions is the power set of Θ, 2Θ). To give an example, let us think

of a patient that can either be affected by cancer or not: we can model

this scenario defining a variable C with frame Θ = {ac, nc} where ac is the

proposition “patient is affected by cancer”, nc is the proposition “patient is

not affected by cancer”, and (ac ∪ nc) is the doubtful proposition “patient is

or is not affected by cancer”. Properly choosing the set Θ is very important in

DST: it must represent the desired granularity of information that we want to

(or we can) reach, so that choosing Θ = {car, truck, bus, scooter,motorbike}
may be less appropriate than choosing Θ = {four-wheeled, two-wheeled} for

some tasks.

The link between propositions and subsets of Θ allows to map logical

operations on propositions into operations among sets. Each proposition is

mapped onto a single subset and is assigned a basic belief mass through a

Basic Belief Assignment, defined over the frame of the variable.

Definition 1. Let Θ be a frame. A function mΘ : 2Θ → [0, 1] is called a

Basic Belief Assignment (BBA) over the frame Θ if:

mΘ(∅) = 0;
∑
A∈2Θ

mΘ(A) = 1 (3.1)

where the summation is taken over every possible subset A of Θ.

Continuing the previous example, after examining the patient a doctor

could provide information that lead us to write the following basic belief

assignment:

mΘ(X) =

0.8 for X = {ac}
0.2 for X = {nc}
0 for X = {ac ∪ nc}

. (3.2)

Each set S such that mΘ(S) > 0 is called a focal element for m. In the

following, we will omit the frame when it is clear from the context, writing

m instead of mΘ; furthermore, when writing mass assignments only focal el-

ements will be listed (so the last row of eq. (3.2) would not appear). BBAs

are the atomic information in DST, much like probability of single events in

28 3. A Dempster-Shafer Framework for Splicing Detection

probability theory. By definition, m(A) is the part of belief that supports

exactly A but, due to lack of knowledge, does not support any strict subset

of A, otherwise the mass would “move” into the subsets. In the previous

example, if we had assigned mass 0.85 to proposition {ac ∪ nc} and 0.15 to

{ac} it would have meant that there is some evidence for the patient being

affected by cancer but, based on current knowledge, a great part of our confi-

dence cannot be assigned to none of the two specific propositions. Whenever

we have enough information to assign all of the mass to singletons1, DST

collapses to probability theory.

Intuitively, if we want to obtain the total belief for a set A, we must add

the mass of all proper subsets of A plus the mass of A itself, thus obtaining

the Belief for the proposition A.

Definition 2. Given the BBA in 1, the Belief function Bel : 2Θ → [0, 1] is

defined as follows:

Bel(A) =
∑
B⊆A

m(B).

Bel(A) summarizes all our reasons to believe in A based on the available

knowledge. There are many relationships between m(A), Bel(A) and other

functions derived from these; here we just highlight that Bel(A) +Bel(Ā) ≤ 1

∀A ⊆ Θ and 1− (Bel(A) +Bel(Ā)) is the lack of information (or the amount

of doubt) about A.

3.1.2 Combination rule

If we have two BBAs defined over the same frame, which have been obtained

from two independent sources of information, we can use Dempster’s com-

bination rule to merge them into a single one. Notice that the concept of

independence between sources in DST is not rigorously defined (as it is, for

example, in Bayesian theory): the intuition is that different pieces of evidence

must have been determined by different (independent) means [31].

Definition 3. Let Bel1 and Bel2 be belief functions over the same frame Θ

with BBAs m1 and m2. Let us also assume that K, defined below, is smaller

1A singleton is a set with exactly one element.

3.1. Introduction to Desmpter-Shafer Theory of Evidence 29

than 1. Then for all non-empty X ⊆ Θ the function m12 defined as:

m12(X) =
1

1−K ·
∑

A,B⊆Θ:
A∩B=X

m1(A)m2(B) (3.3)

where K =
∑

A,B:A∩B=∅m1(A)m2(B), is a BBA function defined over Θ and

is called the orthogonal sum of Bel1 and Bel2, denoted by Bel1 ⊕Bel2.

K measures the conflict between m1 and m2: the higher the K, the higher

the conflict. The meaning of K can be understood from its definition, since

it is obtained by accumulating the product of masses assigned to sets having

empty intersection (which means incompatible propositions). Furthermore,

we see that Dempster’s combination rule treats conflict as a normalization

factor: in practice, this means that the amount of conflicting evidence is

proportionally “redistributed” to non-conflicting propositions. Later in this

chapter, it will become evident that such a way of handling conflicting evi-

dence can lead to counter-intuitive results in some cases.

Recall the example in (3.2), and suppose that we obtain evidence coming

from another doctor, who is not a cancer specialist, about the variable C. Let

us call m1 the BBA in eq. (3.2) and m2 the new assignment; so we have:

m1(X) =

{
0.8 for X = {ac}
0.2 for X = {nc} m2(X) =

{
0.1 for X = {ac}
0.9 for X = {ac ∪ nc} .

Since the second doctor is not a specialist the information he provides is quite

limited: most of the mass is assigned to doubt. Fusing the two pieces of

information according to Dempster’s rule results in:

m12(X) =

0.8·0.1+0.8·0.9

1−(0.1·0.2) = 0.816 for X = {ac}

0.2·0.9
1−(0.1·0.2) = 0.184 for X = {nc}

.

We see that after fusion values are not far from those already assigned by

m1: this is perfectly intuitive, since the second doctor did not bring a clear

contribution to the diagnosis. Notice also that for the same reason, and for

the low confidence of the first doctor about absence of cancer, little conflict

is observed (K = 0.02).

30 3. A Dempster-Shafer Framework for Splicing Detection

Dempster’s rule has many properties [32]; in this work we are mainly

interested in its associativity and commutativity, that is:

Bel1 ⊕ (Bel2 ⊕Bel3) = (Bel1 ⊕Bel2)⊕Bel3 (3.4)

Bel1 ⊕Bel2 = Bel2 ⊕Bel1. (3.5)

Despite its desirable properties, Dempster’s rule is not idempotent; this means

that observing twice the same evidence results in stronger beliefs. This is

the reason why we need to introduce the hypothesis of independent sources

in Dempster’s combination rule. In practice, before letting a new source of

information enter the system, we must always look at how the new information

is collected, to ensure that we are not counting twice the same evidence. In our

example, we must be sure that doctors did not talk with each other, did not

use the same technology when performing measurements, and so on. Before

moving to the next topic, it is worth to spend some words about the way

Dempster’s rule manages conflicting evidence. When we combine evidence

using Dempster’s rule, it is assumed that masses are assigned by reliable

sources, acting like oracles: the responsibility of declaring doubt is demanded

to sources. When this fact is not properly accounted for, it becomes easy to

reach counter-intuitive conclusions. One noticeable example of this is Zadeh’s

paradox [33], that can be explained by re-visiting our example: let us suppose

that two doctors provide the following BBAs, where {ac} is the proposition

“patient is affected by cancer”, {ap} is the proposition “patient is affected by

pneumonia” and {af} is the proposition “patient is affected by flu”:

m1(X) =

0.9 for X = {ac}
0.1 for X = {ap}
0 for X = {af}

m2(X) =

0 for X = {ac}

0.1 for X = {ap}
0.9 for X = {af}

Not surprisingly, using Demspter’s rule to merge the above assignments results

in a strong conflict (K = 0.99), and the merged BBAs is:

m12(X) =

0 for X = {ac}
1 for X = {ap}
0 for X = {af}

,

3.1. Introduction to Desmpter-Shafer Theory of Evidence 31

meaning that, based on available knowledge, the patient is affected for sure

by pneumonia. Such a result is counter-intuitive at a first glance: pneumonia

was assigned only a 0.1 mass by both doctors, but after fusion it becomes a

certainty. Yet, if we think about doctors as oracles, as Dempster’s rule does,

then it becomes evident that pneumonia is the only possibility, because both

flu and cancer had been excluded, respectively, by Doctor 1 and Doctor 2.

Quoting A. C. Doyle, the rationale is that “when you have eliminated the

impossible, whatever remains, however improbable, must be the truth” [34].

In the example, doctors were totally resolved in excluding cancer and pneu-

monia (assigning a zero mass equals to declare the proposition impossible),

and only flu is left as a possibility by both of them.

Although many different combination rules have been proposed treating

conflict in a more cautious way, Dempster’s rule is safe to use as long as sources

of information are modeled taking into account their intrinsic restrictions; in

the end, if an oracle were available, information fusion would not be useful at

all.

3.1.3 Belief marginalization and extension

The combination rule expressed in (3) is applicable if the two BBAs, m1

and m2, are defined over the same frame, which means that they refer to

the same propositions. Whenever we need to combine BBAs defined over

different frames, we have to redefine them on the same target frame before

the combination. This can be done by using marginalization and vacuous

extension.

Definition 4. Let mΘ be a BBA function defined over a frame Θ, and let Ω

be another frame. The vacuous extension of mΘ to the product space Θ× Ω,

denoted with mΘ↑Θ×Ω, is defined as:

mΘ↑Θ×Ω(X) =

{
mΘ(A) if X = A× Ω, A ⊆ Θ

0 otherwise

This allows to extend the frame of a BBA without introducing extraneous

assumptions (no new information is provided about propositions that are not

in Θ). That said, vacuous extension is not the only possible way to extend a

BBA to a larger frame: it just provides the “least informative” extension.

32 3. A Dempster-Shafer Framework for Splicing Detection

The inverse operation of vacuous extension is marginalization.

Definition 5. Let mΘ be a BBA function defined on a domain Θ; its marginal-

ization to the frame Γ ⊆ Θ, denoted with mΘ↓Γ, is defined as

mΘ↓Γ(X) =
∑
A↓X

mΘ(A)

where the index of the summation denotes all sets A ⊆ Θ whose projection on

Γ is X.

To define the projection operator, let us introduce two product frames

Θ and Γ, that are obtained as the cartesian product of the frames of some

variables. Formally, we have Θ = F1×F2×· · ·×Fk and Γ = FS1×FS2 · · ·×FSz ,
where Fj is the frame of the j-th variable and S is a subset of the indices in

{1, . . . , k}. Each element of Θ will be a vector whose j-th component is a

value in Fj . For instance, if Θ = X × Y × Z one possible element of Θ is

(x1, y3, z1), where x1 ∈ X, y3 ∈ Y and z1 ∈ Z. The projection operator maps

each element θ ∈ Θ into an element of γ ∈ Γ by removing from θ all the

components whose indices are not in S. For example, if we project the set

Θ = X × Y × Z onto Γ = X × Z the element (x1, y3, z1) ∈ Θ reduces to

(x1, z1) ∈ Γ. The importance of extension and marginalization is that they

allow to combine over a common frame BBAs originally referring to different

frames, hence enabling us to fuse them with Dempster’s rule.

3.2 The proposed framework

As we try to use the theoretical tools provided by DST to develop a frame-

work for decision fusion, there are two main aspects that need to be discussed.

The first one is how to fruitfully combine the information provided by differ-

ent tools, once it is written in terms of Basic Belief Assignments. When we

considered the toy problem of fusing information coming from two doctors

(Section 3.1.2), we assumed they would directly provide their knowledge in

the form of consistent BBAs. Now that we are dealing with image forensic

algorithms, the way their output is mapped to BBAs becomes of fundamen-

tal importance, and needs to be carefully discussed. Therefore, the second

fundamental aspect that needs to be considered is how to convert the output

3.2. The proposed framework 33

provided by analysis instruments into Basic Belief Assignments. Fortunately

these two topics can be treated separately, and we take advantage of this

in the following: we first deal with the problem of merging the information

provided by different tools, assuming it is already written in terms of BBAs.

Then, starting from Section 3.3, we focus on the problem of mapping tool

outputs into BBAs.

3.2.1 Modeling forensic tools and traces using DST

We now formalize the problem of merging the information that comes from

different image forensic tools. To begin with, we clarify some of the termi-

nology: we will talk about tools searching for forensic traces. With “tool”

we mean an algorithm that, given an image and a suspect region, performs a

set of operations aiming at detecting the presence of a forensic trace. With

“trace”, we mean a property that may be present, either in the suspect region

or in the rest of the image, and that can be possibly searched for in different

domains (e.g., the DCT or the pixel domain). For example, when an image

undergoes two JPEG codings with misaligned quantization grids, some arti-

facts are left both at the pixel level (inconsistent blocking artifacts) and in the

DCT domain (double quantization of DCT coefficients). It becomes evident

that different tools can be devised to search for the same trace in different

domains, and that fusing their outputs can potentially improve the accuracy.

Of course, we also have tools searching for different traces: in these cases,

we will take advantage of knowing the compatibility relationships between

traces (for example, presence of one trace may imply absence of another). We

can now state the two basic assumptions beneath the proposed framework for

decision fusion:

• Compatibility relations among some or all the considered traces are

known (for instance, we may know that two tools search for mutually-

exclusive traces);

• Each tool gathers information independently of other tools (i.e., a tool

is never employed as a subroutine of another, and no information is

exchanged between tools), and by different means (each tool relies on a

different principle or effect);

34 3. A Dempster-Shafer Framework for Splicing Detection

These assumptions are very reasonable in the current image forensics scenario.

However, as it will be shown (Section 3.2.4) the first one can be relaxed

arbitrarily, at the cost of a lower performance gain with respect to the use

of single tools alone. The second assumption, instead, is needed to ensure

that we can fuse tool responses using Dempster’s rule. Intuitively, it means

that if we observe two different tools supporting the same proposition, we

are more confident than observing only one. On the other hand, if two tools

searching for the same trace by exploiting the same model are available, it

makes sense to discard the less reliable one, since its contribution is limited

or null. That said, and also considering that the concept of independence in

DST is not equivalent to statistical independence, we believe that possible

limited dependencies between algorithms would not undermine the developed

framework.

Formalization for a single tool

For sake of clarity, we start by formalizing the DST framework when only one

tool is available, let us call it ToolA, which searches for a forensic trace called

α and outputs a scalar value A. The key idea is to treat ToolA as a source

of information about the presence of the trace it is looking for. To this aim,

we define for α the frame Θα = {tα, nα}, where tα is the proposition “trace

α is present” and nα is the proposition “trace α is not present”. We model

the information provided by ToolA about the presence of α with the following

BBA over the frame Θα:

mΘα
A (X) =

AT for X = {(tα)}
AN for X = {(nα)}
ATN for X = {(tα) ∪ (nα)}

(3.6)

where AT, AN and ATN are functions mapping the response of the tool A into

mass assignments; as anticipated, the definition of these functions will be the

subject of Section 3.3. We see that this BBA assigns a mass to every element

of the power set of Θα; {(tα) ∪ (nα)} is the doubt that ToolA has about the

presence of the trace, so it refers to the proposition “trace α is either present

or not”. It is worth to remark the importance of allowing tools expressing

lack of certainty, especially in the image forensic field were no algorithm exists

3.2. The proposed framework 35

that is highly reliable under any possible situation. If every tool only declares

the actual degree of confidence about presence of the searched trace, this will

make its contribution more valuable when it comes to be merged with others.

Failing to do so, on the contrary, may result in counterproductive behaviors.

3.2.2 Introducing new tools

Suppose we want to introduce in our framework a new tool, ToolB, that satis-

fies the assumptions given at the beginning of this section. As we anticipated,

two situations are possible: the new tool may either search for a trace that is

already considered in the framework, or for a novel trace. Since Dempster’s

combination rule allows fusing only BBAs that are defined over the same

frame of discernments, these two possible cases are addressed differently.

Introduction of a tool looking for a known trace If the trace searched

by the new tool is already present in the framework (let us call it α, consis-

tently with Section 3.2.1), application of the procedure in Section 3.2.1 will

produce mΘα
B , which can be directly fused with mΘα

A by using Dempster’s

rule, yielding:

mΘα
AB(X) =

1

1−K ·

ATBT +ATBTN +ATNBT for X = {(tα)}
ANBN +ANBTN +ATNBN for X = {(nα)}

ATNBTN for X = {(tα) ∪ (nα)}
(3.7)

where K = ATBN + ANBT. This BBA contains the information about the

trace α gathered by the two distinct tools. We see that conflict is non-null,

and is obtained by summing the masses for propositions in which the tools

provide conflicting information about the presence of the trace. It is worth

repeating that before introducing a new tool into the framework, the user

should understand how the tool works and ensure that it does not replicate

the investigation of a tool that is already present, since this would violate

the request of independence of sources, and lead to a overestimation of the

presence of the considered trace.

36 3. A Dempster-Shafer Framework for Splicing Detection

Introduction of a tool looking for a new trace If ToolB searches for

a novel kind of trace, say β, we have to introduce it into the framework by

defining a new frame Θβ = {tβ, nβ}, where the propositions have the same

meaning as in (3.6). The response of ToolB will be used to assign masses to

the variable Θβ, leading us to m
Θβ
B . Since α and β are defined over different

frames, mΘα
A and m

Θβ
B cannot be fused directly. We need to introduce the

common frame Θαβ = Θα ×Θβ, so that we can (vacuously) extend both mA

and mB to it, yielding:

mA
Θα ↑ Θαβ (X) =

AT for X = {(tα, tβ) ∪ (tα, nβ)}
AN for X = {(nα, tβ) ∪ (nα, nβ)}
ATN for X = {(tα, tβ) ∪ (tα, nβ) ∪ (nα, tβ) ∪ (nα, nβ)}

(3.8)

mB
Θα ↑ Θαβ (X) =

BT for X = {(tα, tβ) ∪ (nα, tβ)}
BN for X = {(tα, nβ) ∪ (nα, nβ)}
BTN for X = {(tα, tβ) ∪ (nα, tβ) ∪ (tα, nβ) ∪ (nα, nβ)}

. (3.9)

Equations (3.8) and (3.9) show what “vacuous extension” means in practice:

for example, in the first line of (3.8) the mass AT is assigned to the set

{(tα, tβ) ∪ (tα, nβ)}, which is the proposition “trace α is present, regardless

of trace β”. As expected, the mass assigned by ToolA does not bring any

information about β. Application of Dempster’s combination rule to these

two BBAs gives us the desired combination:

mAB
Θαβ (X) =

ATBT forX = {(tα, tβ)}
ATBN forX = {(tα, nβ)}
ATBTN forX = {(tα, tβ) ∪ (tα, nβ)}
ANBT forX = {(nα, tβ)}
ANBN forX = {(nα, nβ)}
ANBTN forX = {(nα, tβ) ∪ (nα, nβ)}
ATNBT forX = {(tα, tβ) ∪ (nα, tβ)}
ATNBN forX = {(tα, nβ) ∪ (nα, nβ)}
ATNBTN forX = {(tα, tβ) ∪ (tα, nβ) ∪ (nα, tβ) ∪ (nα, nβ)}

(3.10)

Notice that, at this point, we are not considering whether traces α and β

are compatible or not: we will take this information into account only later

on, exploiting the associativity and commutativity of Dempster’s rule. Con-

sequently there is no reason why the two tools should be conflicting, as con-

3.2. The proposed framework 37

firmed by the fact that K = 0 in the above formula, since they are searching

for traces that are considered “unrelated”.

The procedures in Section 3.2.2 can be repeated when another tool ToolX

becomes available. The associativity of Dempster’s rule, defined in eq. (3.4),

allows to combine directly the BBA mXtot of the new tool with the one cur-

rently available (that takes into account all the tools already in the frame-

work), so we will always need to extend the frame of, at most, two BBAs:

this is a considerably smaller effort with respect to extending the BBA and

computing the combination rule for all the tools.

Notice that using traces as basic entities instead of tools responses im-

proves the extendability of the framework: as a matter of fact, while new

tools are being released quite often, many of them search for an already known

trace; if this is the case, introducing a new tool is very simple since only its

BBA has to be extended.

3.2.3 Managing configurations of tools

When combining multiple tools there is one practical fact that must be ac-

counted for: it may happen that, for a given image, only part of the tools

within the framework can be run, while others can’t. For example, some tools

may not be compatible with the image, due to its format, size, number of

channels and so on. Is it possible for the analyst to handle these variants

without increasing the complexity and extensiveness of the framework? DST

offers a nice way to solve this issue. Given a set Θ, the following BBA, known

as vacuous BBA, is the neutral element for Dempster’s combination rule:

mΘ
V (X) =

{
0 ∀ X ⊂ Θ

1 for X = Θ
. (3.11)

We see that mΘ
V (X) is a valid BBA assigning all of the mass to the whole frame

of discernment, which means that no knowledge is brought about elements of

Θ. For any BBA mΘ
X , we have:

mΘ
X ⊕mΘ

V = mΘ
X , (3.12)

meaning that mΘ
V can be fused an arbitrary number of times without modi-

fying the available information.

38 3. A Dempster-Shafer Framework for Splicing Detection

Let us go back to our problem, and assume that there is a ToolU, searching

for trace α, that cannot be run on the image under analysis. The analyst will

simply write the following:

mΘα
U (X) =

0 for X = {(tα)}
0 for X = {(nα)}
1 for X = {(tα) ∪ (nα)}

, (3.13)

and use the framework without changes, ToolU will not contribute at all to

the final belief about presence of trace α. In the extreme case where none

of the tools available to the analyst can handle the image, we still obtain a

valid BBA, telling that no information is available about searched traces. We

point out that, despite its plainness, the above feature is not easily enabled by

many machine learning techniques: every possible combination of tools would

result in a different feature space, thus requiring a different training.

3.2.4 Modeling traces relationships

Up to this point we have considered traces as if they were unrelated to each

other; as it will be shown in the following sections, this is usually not the case

in real applications. This kind of information can contribute significantly to

the joint interpretation of tools responses.

Suppose, for instance, that we have two traces α and β and that, due to

their nature, only some of their combinations are possible. For example, it

may be that the presence of α implies the absence of β, so, at least ideally, two

tools searching for these traces should never detect tampering simultaneously.

This information induces a compatibility relation between frames Θα and Θβ,

meaning that some of the elements of the cartesian product Θα × Θβ are

impossible. Strictly speaking, these elements should have never entered the

frame of discernment, because by definition such frame contains only possible

propositions, (Section 3.1.1). However, since we may not know in advance

which traces will be introduced in our framework, we need a way to include

this knowledge only in the late stage of fusion, and update the frame accord-

ingly. Fortunately, in DST we can easily model this information by using a

standard belief assignment: we define a BBA on the domain Θα×Θβ, that has

only one focal set, containing the union of all propositions (i.e, combination

3.2. The proposed framework 39

of traces) that are considered possible, while all others have a null mass. For

example the following BBA:

mcomp(X) =

{
1 for X = {(tα, nβ) ∪ (nα, tβ) ∪ (nα, nβ)}
0 for X = {(tα, tβ)} (3.14)

models the incompatibility between traces α and β. Once this BBA is speci-

fied, the simultaneous presence of α and β is no longer considered possible, and

any evidence supporting it will be treated as conflicting information. Thanks

to the commutative property of Dempster’s combination rule, this BBA can

be combined with those coming from traces in the final stage of fusion. In

such a way, information about tools relationships are exploited only at the

very end and hence do not hinder the extendability of the model.

Of course, we want to allow the analyst to specify traces relationships

without forcing him to do that. However, the given formulation can be used

also when the relationships between some of the traces are not known: it is

sufficient not to put unknown propositions in the impossible set of mcomp,

meaning that there is no clue against those propositions being possible.

The last step of the decision fusion process consists in fusing the com-

patibility BBA defined above with the BBA obtained combining evidences

from all the available tools, yielding a global BBA mFIN . Notice that in this

last application of Dempster’s rule all the conflict that may arise is due to

incompatibilities between traces. Although this conflict is normalized away

by Dempster’s rule, the value of K can be recorded and used to evaluate how

“unexpected” the output of tools were. Very high values of conflict may indi-

cate that the image under analysis does not respect the working assumptions

of one or more tools. The overall decision fusion approach described so far is

summarized in Figure 3.1 for the case of two tools.

It is worth noting that we did not need to introduce a-priori probabilities

about an image being original or forged, or prior probabilities of presence of

traces: in a Bayesian framework, this would have been difficult to obtain.

3.2.5 Dealing with many traces: hierarchical modeling

Since the extension to novel traces is based on the cartesian product of sets,

the number of variables in the framework grows exponentially with the num-

40 3. A Dempster-Shafer Framework for Splicing Detection

Combination
Rule

Final
evidence

ToolA
output

mA

mB

Domain
Extension

Only for tools
based on different

traces

BBA
mapping

BBA
mapping

Combination
Rule

mAB

Info about
traces

relationships

Possible
new tool

ToolB
output

Figure 3.1: Block diagram of the proposed fusion approach. Notice that,

when a new tool becomes available (represented in the dashed cloud), its BBA

directly enters the final stage of the fusion, without the need to recombine

information from previous tools.

ber of different traces. However, this consideration holds only if the user is

interested in a fusion approach that fully preserves the granularity of informa-

tion, meaning that, after fusing several different traces, the user wants to get

the beliefs about presence/absence of each single trace separately. In prac-

tice, however, the presence of many traces is probably due to the fact that the

framework is taking into account different classes of phenomena, e.g., traces

related to camera artifacts, JPEG coding, geometrical inconsistencies, and so

on. In such a scenario, it makes sense to treat each class of traces as a whole,

and directly consider the contribution of each class when taking the final deci-

sion. This hierarchical fusion can be easily implemented within the proposed

framework by using belief marginalization (see Definition 5) to collapse the

contribution of several traces of the same class into a single variable, thus

reducing the granularity of the information without hindering performance in

terms of splicing detection. In Figure 3.2 we draw an example of hierarchical

fusion applied to three different kinds of traces. Furthermore, compatibility

among classes of traces can be introduced as well, at the end of the fusion

chain.

3.2.6 Final decision rule

We are now ready to define the final output of the fusion procedure: we want

to decide whether a given region of an image has been tampered with or not.

3.2. The proposed framework 41

Fused Evidence
for JPEG-related

traces
JPEG-Tool 1 data

Fused Evidence
for Geometry-related

traces

Combination
Rule OVERALL

EVIDENCE

mFINAL

JPEG RELATED TRACES

Marginalize
(tampered vs.
non-tampered)

Trace-Based
Fusion

JPEG Traces
relationships

CAMERA RELATED TRACES

Marginalize
(tampered vs.
non-tampered)

Trace-Based
Fusion

Camera Traces
relationships

GEOMETRY RELATED TRACES

Marginalize
(tampered vs.
non-tampered)

Trace-Based
Fusion

Geometry Traces
relationships

Relationships between
classes of traces

JPEG-Tool 2 data

CAM-Tool 1 data
CAM-Tool 2 data

GEOM-Tool 1 data
GEOM-Tool 2 data

E.g. "Geometric traces are
compatible with JPEG- and
CAMERA- based traces"

mJPEG

mGEOM

mCAM

Figure 3.2: Block diagram illustrating the proposed approach to hierarchical

fusion of traces of different kind. The “Trace-Based Fusion” bubble represents

the schema in Figure 3.1.

To do so we consider the belief of two sets: the first one, T , is the union of all

propositions in which at least one trace is detected, the second one, N , is the

single proposition in which none of the traces is found (in the previous example

it would be N = (nα, nβ)). The output of the fusion process therefore consists

of two belief values, Bel(T) and Bel(N), calculated over the BBA mFIN

defined in Section 3.2.4. Optionally, we may also consider the normalization

factor K (as defined in Section 3.1.2) of the last fusion step, involving the

compatibility table. These outputs summarize the information provided by

the available tools, without forcing a final decision. If a binary decision about

image authenticity is required, an interpretation of these outputs must be

made; the most intuitive binarization rule is to classify an image as tampered

with when the belief for the presence of at least one trace is stronger than the

belief for the total absence of traces, that is to say when Bel(T) > Bel(N).

Of course, we will probably want to meet a minimum distance requirement

42 3. A Dempster-Shafer Framework for Splicing Detection

between the two: a Receiver Operating Characteristic (ROC) curve can thus

be obtained by classifying images according to Bel(T) > Bel(N)+δ, sampling

δ in [-1,1].

It is worth noting that evaluating belief values is a very simple task: only

elementary operations among scalar values in [0,1] must be calculated (see for

example mass assignments in equation (3.7)), since the model is built only

once for a fixed set of tools, and need to be extended only when new sources

of information become available.

3.3 From tool outputs to BBAs through background

information

By now we have been discussing how to manage and fuse BBAs, assuming

that they were provided by the forensic algorithms. Needless to say, this is

not usually the case: since we are working at the measurement level, each tool

is expected to output a scalar value that measures the presence of the trace

within the image. To be used within the framework described in the previous

section, this scalar output must be “mapped” to a BBA and, as it is shown in

Figure 3.1, this must be done for each tool separately. From a formal point

of view, denoting with Oi the set of possible outputs of the i-th forensic tool,

searching for trace α, we want to derive a function

µi : Oi →MΘα , (3.15)

where MΘα is the set of all possible BBAs defined on Θα = {tα, nα}.
Let us call oi the output of the i-th tool, searching for trace α; without

loss of generality, we can assume that higher values of the output indicate a

stronger presence of the trace. Probably, the most intuitive way to map the

output to a BBA is the following:

mi(X) =

{
oi for X = {(tα)}

1− oi for X = {(nα)} , (3.16)

which yields a valid BBA. Of course, this approach is very rigid, because it

assumes a linear relationship between the output of the tool and the belief

about the presence of the trace, which is false in most cases. Let us clarify

3.3. From tool outputs to BBAs through background information 43

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

200

400

600

800

Detection

N.
 o

f i
m

ag
es

Tool E detection histogram

Original
Tampered

0 0.5 1
0

0.2

0.4

0.6

0.8

1

Detection

M
as

s

Tool E mapping functions

µT
µN
µTN

Figure 3.3: Histogram of outputs obtained by running the forensic tool in

[35] on a set of images, some of which containing the forensic trace searched

by the tool and some not. Red bars represent the outputs obtained on images

containing the trace.

this point with an example: we ran the forensic tool2 presented in [35] on a

set of images, half of them containing the forensic trace and half of them not.

Then, we collected the outputs separately for the two kinds of images and

calculated their histograms, shown in Figure 3.3: as we can see, the output

for images not containing the trace (blue bars) collapsed in the first bin, while

outputs for the other class of images are more spread towards higher values.

After seeing this picture, it is clearly wrong to interpret an output value of

0.5 as “uncertainty about the presence of the trace”. The example above tells

one trivial yet interesting thing: tool outputs must be properly interpreted

before being merged with others. Here are several reasons for such a need:

tools measure different things, and their output does not necessarily have a

probabilistic meaning; when they are present, probabilistic models behind

tools are often approximative (e.g., containing over-simplifications that lead

to anomalous behaviors); finally, even the behavior of a fixed tool may vary

2This tool will be described later on in this chapter.

44 3. A Dempster-Shafer Framework for Splicing Detection

under different working conditions (e.g., when the analyzed region is very

small or saturated). Therefore, passing from tool outputs to BBAs is not

just a technical step, or a mere “conversion”: it is a translation from a scalar

measure to its interpretation in terms of belief about one proposition in the

frame of discernment, which means, in our framework, presence or absence of

the forensic trace. The question, then, moves to how such an interpretation

should be made.

One possible solution is to use a kind of “fuzzy-reasoning”, like in [29],

defining for each tool some functions allowing to map the output to masses.

Formally, this can be done by writing:

mi(X) =

µT(oi) for X = {(tα)}
µN(oi) for X = {(nα)}
µTN(oi) for X = {(tα ∪ nα)}

. (3.17)

In practice, functions µT, µN and µTN together form the mapping function

mentioned in equation (3.15). Following the example provided above, these

functions could be defined as in Figure 3.4, where only very low values of the

output are interpreted as absence of the trace, values above 0.5 are interpreted

as presence of the trace, and values between 0.1 and 0.4 are characterized

by a fair amount of doubt. The doubt models the fact that, based on the

experiment that originated the outputs in Figure 3.3, we do not know how

values in that range should be interpreted.

There is no doubt that this mapping is much more appropriate than the

trivial one defined in (3.16); this is confirmed by the fact that this method

has been actually employed in the works by Costanzo et al. [29] and also in

some of our works [36, 37]. Yet, one may object that this approach somewhat

“hides” the problem inside the definition of mapping functions, still leaving

much work to the user of the framework.

3.3.1 Interpretation of tool outputs based on DST

As an answer to the above issues, we adopted a different strategy based on

DST itself. The idea behind the strategy is still to interpret the output of

the tool based on its observed behavior on a suitable number of images, but

to do that in a more refined way. Let us suppose that the analyst has, for a

3.3. From tool outputs to BBAs through background information 45

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Detection

M
as

s

µ
T

µ
N

µ
TN

Figure 3.4: A possible way of defining output mapping functions for the

forensic tool in [35].

given tool, a training set T = {oi : i = 1 . . . N} of N training samples, where,

for the i-th sample, oi denotes the output of the tool. Each training sample

belongs to one of the possible classes in C = {C0, C1}, where C0 is the class

of images containing the searched trace, and C1 the class of images without

the trace.

As opposed to common classification problems, our goal here is not to

assign an unseen sample u to one class in C. Instead, we want to map it into a

basic belief assignment over the frame Θα, reflecting the confidence of the tool

about the presence of the searched trace. The key idea we build upon, that was

first introduced in [38], is to model the elements of T as a source of evidence

about u, and use Dempster’s rule to pool the evidence. Intuitively, the closer

a training sample is to u, the stronger will be the supporting evidence it

provides, as shown in Figure 3.5.

Formally, let Tu,k ⊂ T be the set of k training samples nearest to u

according to some distance d(·, ·). Then, an element ti ∈ Tu,k belonging to C0

46 3. A Dempster-Shafer Framework for Splicing Detection

k=3$

Tool$
Output$

TRAINING'
DATASET'

Trace$present$

Trace$absent$
$
Doubt$

u

4.6. From tool outputs to BBAs through background information 47

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi
1, . . . , p

i
P) : i = 1 . . . N} (4.21)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pi
j denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu
1 , . . . , pu

P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (4.13) and (4.14),

and these BBAs are merged according to equation (4.15) to yield mu(X). As

desired, the pooled BBA is strongly influenced by background parameters:

as one or more parameters move towards unfavorable values, samples in the

dataset are likely to mix between the two classes, resulting in a less informative

pooled BBA. Moreover, the final BBA will be increasingly doubtful as the

unseen sample moves in unpopulated parts of the space, where few training

samples are available: this perfectly models the fact that the analyst does not

know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

mu
1(X) mu

2(X) mu
3(X) mu(X)

4.6. From tool outputs to BBAs through background information 47

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi
1, . . . , p

i
P) : i = 1 . . . N} (4.21)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pi
j denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu
1 , . . . , pu

P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (4.13) and (4.14),

and these BBAs are merged according to equation (4.15) to yield mu(X). As

desired, the pooled BBA is strongly influenced by background parameters:

as one or more parameters move towards unfavorable values, samples in the

dataset are likely to mix between the two classes, resulting in a less informative

pooled BBA. Moreover, the final BBA will be increasingly doubtful as the

unseen sample moves in unpopulated parts of the space, where few training

samples are available: this perfectly models the fact that the analyst does not

know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

mu
1(X) mu

2(X) mu
3(X) mu(X)

4.6. From tool outputs to BBAs through background information 47

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi
1, . . . , p

i
P) : i = 1 . . . N} (4.21)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pi
j denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu
1 , . . . , pu

P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (4.13) and (4.14),

and these BBAs are merged according to equation (4.15) to yield mu(X). As

desired, the pooled BBA is strongly influenced by background parameters:

as one or more parameters move towards unfavorable values, samples in the

dataset are likely to mix between the two classes, resulting in a less informative

pooled BBA. Moreover, the final BBA will be increasingly doubtful as the

unseen sample moves in unpopulated parts of the space, where few training

samples are available: this perfectly models the fact that the analyst does not

know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

mu
1(X) mu

2(X) mu
3(X) mu(X)

4.6. From tool outputs to BBAs through background information 47

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi
1, . . . , p

i
P) : i = 1 . . . N} (4.21)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pi
j denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu
1 , . . . , pu

P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (4.13) and (4.14),

and these BBAs are merged according to equation (4.15) to yield mu(X). As

desired, the pooled BBA is strongly influenced by background parameters:

as one or more parameters move towards unfavorable values, samples in the

dataset are likely to mix between the two classes, resulting in a less informative

pooled BBA. Moreover, the final BBA will be increasingly doubtful as the

unseen sample moves in unpopulated parts of the space, where few training

samples are available: this perfectly models the fact that the analyst does not

know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

mu
1(X) mu

2(X) mu
3(X) mu(X)Combina7on$Rule$

Figure 3.5: Graphic representation of the proposed method for mapping tool

outputs to BBAs. The weight of each arrow connecting the unseen sample

u one side of the balances model the amount of mass assigned to the corre-

sponding proposition. As we can see, the farther the training sample is from

u, the more mass goes to doubt.

provides the following BBA over Θα:

mu
i (X) =

{
βe−γd(u,ti) for X = {tα}

1− βe−γd(u,ti) for X = {tα ∪ nα} , (3.18)

where β ∈ (0, 1) denotes the maximum belief we commit to a single training

sample, and γ controls the width of the kernel. On the contrary, an element

ti belonging to class C1 provides:

mu
i (X) =

{
βe−γd(u,ti) for X = {nα}

1− βe−γd(u,ti) for X = {tα ∪ nα} . (3.19)

As to the distance function, a reasonable choice is

d(u, ti) = ||u− ti||2,

3.3. From tool outputs to BBAs through background information 47

provided that values are well distributed within a common interval, for exam-

ple [0,1].

Equations (3.18) and (3.19) deserve a comment: a sample belonging to C0

assigns some evidence to the proposition “u comes from an image containing

the searched trace” and the rest of the evidence to the doubtful proposition

“the image may or may not contain the trace”. The same reasoning applies

for samples belonging to C1, as in equation (3.19). Notice that, when the

unseen sample u is very far from ti, this training sample will provide a BBA

that is completely doubtful, instead of partitioning the mass between the two

propositions tα and nα. On the other hand, such a partitioning may occur

after evidence pooling, when some of the k nearest neighbors belong to one

class and some to the other, and they are all near to u. This situation means

that the unseen sample lays in a “confused” part of the space: there are

training samples near to it, but they belong to different classes.

Once the BBA assigned by each element in Tu,k has been calculated, we

can use Demspter’s combination rule to pool the evidence, yielding:

mu(X) =
k⊕
i=1

mu
i (X), (3.20)

where ⊕ denotes the application of Dempster’s orthogonal sum defined in (3.3)

to all themu
i . The pooled BBA in (3.20) finally gives the desired interpretation

of the tool output in terms of presence of the searched trace, based on training

samples available to the analyst.

Compared to the simpler approaches proposed at the beginning of this

section, the method above has a clear theoretical foundation that also serves

as a guide for practical implementation, and requires virtually no input from

the analyst (the parameters β, k and γ can be tuned with an automatic

search). Yet, there is one aspect that is not directly considered, that is tools

reliability. As it was discussed in Section 3.1, in DST theory it is of paramount

importance to properly model the reliability of sources of information, so to

avoid paradoxical situations. Looking back to equation (3.19) we notice that

the maximum degree of certainty is mitigated by the parameter β, ensuring

that we will never blindly trust one single training sample. Moreover, for

tools with poor discrimination capabilities the pooled BBA (as defined in

48 3. A Dempster-Shafer Framework for Splicing Detection

equation (3.20)) will likely show distributed masses among the propositions

{nα} and {tα}, thus accounting for the lower reliability of the tool. That

said, by getting to the bottom of tool reliabilities we may be able to adapt

the interpretation of outputs based on the properties of the analyzed content,

and this is the object of the next section.

3.3.2 Introducing background information

Now that we have a theoretical model for interpreting tool outputs by the

light of training information, we can turn the attention to choosing which

information should be used for training. The goal is to understand whether

there is some background information that can help interpreting the output of

a tool before moving to the decision fusion stage. Let us start with a general

consideration: a common feature of all forensic tools is that when a footprint

becomes “less detectable”, algorithms relying on that footprint become less

reliable, meaning that they do not discriminate well between presence and ab-

sence of the trace. Therefore, if we know which are the measurable properties

that mostly affect the performance of a detector, we could use this informa-

tion to adapt the interpretation of the output, decreasing the certainty when

the tool is being used under unfavorable conditions and viceversa. Giving

a formal definition of the detectability of a generic footprint is beyond the

scope of this work; besides, the detectability of different footprints is affected

by different parameters, and a golden rule seems hard to derive. These consid-

erations suggest that the reliability of a given tool can be better investigated

by using a sound experimental approach, that is, by conveniently testing the

tool. To this end, we propose a possible procedure that the analyst may use

to validate the reliability of the various tools as a function of a set of mea-

surable parameters, so to establish if they actually impact the performance of

the tools.

Identification of relevant properties

Suppose we have a set F of forensic tools whose goal is to tell if a given image

contains a specific trace of forgery (we denote this hypothesis with H1) or not

(H0). For simplicity, we assume that each tool f ∈ F outputs a score sf (x)

(that may be, for example, the probability of the presence of the tampering

3.3. From tool outputs to BBAs through background information 49

trace the tool is looking for), and decides for H0 when sf (x) ≤ τ . In this

way, the tool partitions the space of possible images X in two regions: Λ0,

containing the images for which H0 is accepted, and Λ1, defined similarly

for H1. According to classical detection theory, the probability of correct

detection and false alarm for the specific tool and a given τ are defined,

respectively, as:

P fD =

∫
Λ1(τ)

p(x|H1) dx and P fFA =

∫
Λ1(τ)

p(x|H0) dx,

where p(x|H0) is the probability conditioned to the hypothesis that the image

does not contain the trace and p(x|H1) denotes the opposite case.

Now, let us assume that the analyst has access to a vector of independent

measurable properties p ∈ P, where P = P1×P2×· · ·×PP . We are interested

in relating the performance of each tool to subsets of P; for simplicity, we

restrict one property at a time to a subrange of its possible values R ⊂ Pj .
To do that, we define

Rj = P1 × . . .Pj−1 × {Pj ∩R} × . . .PP . (3.21)

In practice, Rj denotes the set of images whose j-th property takes value inR.

Notice that the assumption of independent properties is made so to simplify

the discussion; the framework can be adapted to account for the presence of

dependent properties by redefining the set P.

Using the above notation, we can write the probability of detection and

the probability of false alarm of f when the analysis is restricted to a specific

set of images (those for which the parameter j belongs to R):

P fD(Rj) =

∫
Λ1(τ)∩Rj

p(x|H1) dx, (3.22)

P fFA(Rj) =

∫
Λ1(τ)∩Rj

p(x|H0) dx. (3.23)

Equations (3.22) and (3.23) give the probabilities for a given threshold τ . By

varying τ , a ROC curve is generated, that is commonly used to evaluate the

discrimination capability of a detector. By taking the integral of the ROC,

the Area Under Curve (AUC) is obtained and, finally, the Gini coefficient

50 3. A Dempster-Shafer Framework for Splicing Detection

[39], denoted with ρ, can be used to summarize the performance of the tool:

ρ = 2×AUC− 1. (3.24)

By varying Rj in (3.21), the forensic analyst can investigate whether the

performance of a tool change significantly when different subsets of X are

considered.

3.3.3 Exploiting background information

Once the set of influencing properties has been determined, the problem is how

to exploit them for improving the output interpretation. Interestingly, the

system proposed in Section 3.3.1 can be adapted straightforwardly to account

for background information. The idea is to expand the dimensionality of the

“feature space”, treating each influencing property as part of the problem (see

Figure 3.6 for a graphical interpretation).

Formally, we modify equation (3.15) as

µi : Oi × P1 × · · · × PNi →MΘα , (3.25)

where Ni denotes the number of influencing properties for the i-th tool. In

other words, when the output of the tool for an image must be interpreted,

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi1, . . . , p
i
P) : i = 1 . . . N} (3.26)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pij denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu1 , . . . , p
u
P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (3.18) and (3.19), and

these BBAs are merged according to equation (3.20) to yield mu(X).

As desired, the pooled BBA is strongly influenced by background param-

eters: as one or more parameters move towards unfavorable values, samples

3.3. From tool outputs to BBAs through background information 51

k=3$

JPEG$
Quality$

Tool$
Output$

TRAINING'
DATASET'

Trace$present$

Trace$absent$
$
Doubt$

4.6. From tool outputs to BBAs through background information 47

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi
1, . . . , p

i
P) : i = 1 . . . N} (4.21)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pi
j denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu
1 , . . . , pu

P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (4.13) and (4.14),

and these BBAs are merged according to equation (4.15) to yield mu(X). As

desired, the pooled BBA is strongly influenced by background parameters:

as one or more parameters move towards unfavorable values, samples in the

dataset are likely to mix between the two classes, resulting in a less informative

pooled BBA. Moreover, the final BBA will be increasingly doubtful as the

unseen sample moves in unpopulated parts of the space, where few training

samples are available: this perfectly models the fact that the analyst does not

know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

mu
1(X) mu

2(X) mu
3(X) mu(X)

4.6. From tool outputs to BBAs through background information 47

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi
1, . . . , p

i
P) : i = 1 . . . N} (4.21)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pi
j denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu
1 , . . . , pu

P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (4.13) and (4.14),

and these BBAs are merged according to equation (4.15) to yield mu(X). As

desired, the pooled BBA is strongly influenced by background parameters:

as one or more parameters move towards unfavorable values, samples in the

dataset are likely to mix between the two classes, resulting in a less informative

pooled BBA. Moreover, the final BBA will be increasingly doubtful as the

unseen sample moves in unpopulated parts of the space, where few training

samples are available: this perfectly models the fact that the analyst does not

know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

mu
1(X) mu

2(X) mu
3(X) mu(X)

4.6. From tool outputs to BBAs through background information 47

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi
1, . . . , p

i
P) : i = 1 . . . N} (4.21)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pi
j denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu
1 , . . . , pu

P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (4.13) and (4.14),

and these BBAs are merged according to equation (4.15) to yield mu(X). As

desired, the pooled BBA is strongly influenced by background parameters:

as one or more parameters move towards unfavorable values, samples in the

dataset are likely to mix between the two classes, resulting in a less informative

pooled BBA. Moreover, the final BBA will be increasingly doubtful as the

unseen sample moves in unpopulated parts of the space, where few training

samples are available: this perfectly models the fact that the analyst does not

know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

mu
1(X) mu

2(X) mu
3(X) mu(X)

4.6. From tool outputs to BBAs through background information 47

the BBA is calculated not only from the output itself, but also considering

the value assumed by the influencing properties on the specific image. This

background information can be introduced easily by re-defining the training

dataset as follows:

T = {ti = (oi, pi
1, . . . , p

i
P) : i = 1 . . . N} (4.21)

where, for the i-th sample, oi still denotes the output obtained from the tool

and pi
j denotes the value assumed by the j-th background property, properly

scaled and normalized (see the Appendix for details). Similarly, also the

query vector is updated with background information: u = (ou, pu
1 , . . . , pu

P).

No other modification is needed: given a query vector, the nearest neighbors

are searched, they provide a BBA as those in equations (4.13) and (4.14),

and these BBAs are merged according to equation (4.15) to yield mu(X). As

desired, the pooled BBA is strongly influenced by background parameters:

as one or more parameters move towards unfavorable values, samples in the

dataset are likely to mix between the two classes, resulting in a less informative

pooled BBA. Moreover, the final BBA will be increasingly doubtful as the

unseen sample moves in unpopulated parts of the space, where few training

samples are available: this perfectly models the fact that the analyst does not

know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

mu
1(X) mu

2(X) mu
3(X) mu(X)Combina7on$Rule$

u

Figure 3.6: Graphic representation of the proposed way to include back-

ground information in tool output interpretation. In this example, only one

image property is considered (the JPEG quality factor) for clarity.

in the dataset are likely to mix between the two classes, resulting in a less

informative pooled BBA. Moreover, the final BBA will be increasingly doubt-

ful as the unseen sample moves in unpopulated parts of the space, where few

training samples are available: this perfectly models the fact that the analyst

does not know how much the tool can be trusted in such working conditions.

After obtaining mu(X) for each of the tools available to the analyst, the

decision fusion framework can be used to fuse them together and yield a global

belief about the authenticity of the image.

Chapter 4

Experimental Validation and Concluding
Remarks

THIS chapter investigates the effectiveness of the decision fusion frame-

work presented in Chapter 3. We compare it with two other possible op-

tions for decision fusion at the measurement level, using two different datasets;

we also investigate the impact of the inclusion of background information in

the fusion scheme. The chapter is structured as follows: first, we define the

case study we focus on, explaining the set of forensic traces we used to create

an instance of the proposed framework, together with the set of tools that

can detect those traces; as a second step, we deal with the interpretation of

tools outputs and their mapping to BBAs, showing which are the selected

image properties and motivating their choice. Having described the frame-

work setup, we describe dataset generation together with the training and

testing procedures. Finally, we compare the performance of the methods and

comment them.

4.1 State of the art methods

Before diving into a detailed description, we describe the methods we com-

pared our framework with. The first is the simple yet widely used logical

disjunction (also known as “OR rule”): the image is classified as tampered if

at least one tool detects its trace. Such a method was firstly proposed in foren-

sics by Bayram et al. [26]. Logical disjunction is indeed one of the simplest

and most widely used methods for decision fusion, and is quite well-suited to

the proposed case study1.

1Actually, this approach lays somewhere in the middle between the “abstract” and “mea-

surement” level, since we take the logical sum of banalized outputs, but we also properly

choose how to binarize them, without blindly relying on tools mechanism. Anyway, logical

54 4. Experimental Validation and Concluding Remarks

As we mentioned in the Introduction, several methods have been proposed

for decision fusion at the feature level in image forensics [23] [24] [25] [27], but

they are typically based on feature selection and are therefore not directly

comparable to the method proposed in this work. On the other hand, since

most methods end up using a classifier (usually an SVM) the best we can do

to compare our framework with them without exiting the measurement level

is to train a SVM by using the scalar output of the tools as input features, and

see how the SVM performs in discriminating between tampered and original

images. By the way, to the best of our knowledge, this rather simple idea was

never used in forensics before.

Finally, limiting to the proposed framework and to the SVM-based method,

we compare performance obtained with and without using background infor-

mation, so to investigate the benefits brought by using this kind of clue.

4.2 Reference case study and datasets

As already stated, we evaluated the validity of the new DST fusion framework

by focusing on the detection of splicing attacks: a portion of an image (source)

is cut and pasted into another image (host), thus producing a new content that

is finally saved. Because most images are stored in JPEG format, a great deal

of research has been carried out for the identification and detection of traces

left by splicing attacks in JPEG images, so that several tools are available to

search for them. In our experiments, we fused the outputs provided by five

of these tools, searching for a total of three different traces.

4.2.1 Traces and tools

To explore all the features of the proposed scheme, we chose a set of algorithms

such that some of them search for the same trace, and for which some com-

binations of traces are not possible. Namely, we are considering the following

traces (see Figure 4.1 for a graphical explanation):

1. Misaligned JPEG compression (JPNA): this trace shows up when the

investigated region is cropped from a JPEG image and pasted into the

disjunction is one of the most used approaches among the post-classification ones [22], so

we decided to compare our method against it.

4.2. Reference case study and datasets 55

target picture without preserving JPEG grid alignment, performing a fi-

nal JPEG compression. Therefore, pasted pixels undergo two misaligned

compressions, while others do not.

2. Double quantization (JPDQ): when a portion of uncompressed pixels2

is pasted into a JPEG image, and the final result is JPEG saved, the

untouched region undergoes a double compression. This causes its DCT

coefficients to be doubly quantized, leaving a characteristic trace in their

statistics.

3. JPEG ghost (JPGH): this trace appears when a region is cut-and-

pasted, respecting grid alignment, from a JPEG source image into the

host one (which has not been JPEG compressed). When the obtained

splicing is JPEG saved, the inserted part undergoes a second compres-

sion, while the outer part is compressed for the first time, thus intro-

ducing an inconsistency.

Given the above definitions, some combinations of traces are not possible. For

example, an attack that introduces the JPDQ trace also introduces JPGH,

while the contrary is not necessarily true; but, if both JPGH and JPNA are

introduced, then also JPDQ must be present. These facts are best represented

by using a tabular form (Section 3.2.4) with the compatibility relations, as in

Tab. 4.1.

2or pixels that have been compressed according to a different grid.

56 4. Experimental Validation and Concluding Remarks

Final image;

JPNA trace

present

(Not aligned to
8x8 grid)

Source image

(JPEG)

Host image

(JPEG)

JPEG

compr.

(a)

Host image

(JPEG)

Source image

(uncompressed)

Final image;

JPDQ trace

presentJPEG

compr.

(b)

JPEG

compr.

Final image,

JPGH trace

present

Host image

(uncompressed)

Source image

(JPEG)

(Aligned to
8x8 grid)

(c)

Figure 4.1: In these schemes three different configurations of cut&paste at-

tacks are reported. The attack in (a) introduces a misaligned double compres-

sion, the one in (b) introduces the double quantization effect in the untouched

part of the final image and the attack in (c) introduces the ghost effect in the

pasted region.

4.2. Reference case study and datasets 57

Trace Possible Excluded

JPNA Y N N Y N Y Y N

JPDQ N Y N Y N Y N Y

JPGH N Y Y Y N N Y N

Table 4.1: Detection compatibility: each column of the table forms a combi-

nation of presence (Y) and absence (N) of traces. We see that only 5 out of

8 combinations are possible.

Now that we have introduced the traces considered in our experiments,

we list the adopted forensic tools (see Tab. 4.2). We employed two tools

looking for JPNA, namely the one by Luo et al. [40] (ToolA) and the one

by Bianchi et al. [41] (ToolD); two tools looking for JPDQ, the one by Lin

et al.[4] (ToolB) and the one by Bianchi et al. [35] (ToolE); and the tool by

Farid that searches for ghost traces [42] (ToolC).

Trace Tools

JPNA ToolA [40], ToolD [41]

JPDQ ToolB [4], ToolE [35]

JPGH ToolC [42]

Table 4.2: Coupling between traces and tools: for each trace, the list of

adopted tools able to detect it is given.

As mentioned at the beginning of this section, usually the simple presence

of a trace does not imply a splicing attack, but only that a common processing

over the image occurred (for example, cropping a couple of rows from the top

of the image would introduce a JPNA trace). Instead, inconsistencies in

the presence of a trace through the image (i.e., high detection values for the

suspect region and low for the other or vice-versa) are far more suspect. For

this reason, each tool3 is run both on the suspect region and on the remaining

part of the image, and the absolute difference between the two is considered

as the final output of each tool.

3ToolC is excluded since it already considers inconsistencies over the image.

58 4. Experimental Validation and Concluding Remarks

4.2.2 Normalization of outputs

In order to pass from outputs to BBAs, it is important to recall that formulas

(3.18) and (3.19) weigh the contributions of neighboring samples in the dataset

based on their distance from the observed point. Since tool outputs and

reliability properties are very different in nature and can assume different

ranges of values, it is important either to select a sufficiently refined distance

function or to normalize them properly. We opted for the second option: in

the following, we first give a brief description of how each of the selected tools

works, and then define the approach we adopted to obtain a scalar output from

it. We will denote by x̂W the output of tool W , and by xW its normalized

version:

• ToolA searches for misaligned compression by measuring inconsisten-

cies in blocking artifacts in the spatial domain. Because features are

classified by using an SVM (which we trained on a separated dataset,

according to the original work) we train a model supporting probability

estimates [43]. The resulting outputs are well spread in the interval [0,1]

and need no further processing;

• ToolB and ToolE search for double quantization traces by employing

two different statistical models to analyze the histogram of the DCT co-

efficients of the image. Both tools provide a probability map which gives,

for each 8×8 pixel block, the probability of being original (i.e.,showing

double quantization) or tampered (not showing double quantization).

The final detection value is taken as the median (over the suspect re-

gion only) of the probability map. Being likelihood ratios, the outputs

from these tools are very concentrated around 0 and 1, making their use

problematic. We normalized the outputs using the following formulas:

x̂B = (log10(xB)/15)+1, and x̂E = log10(xE)/6+1 for ToolB and ToolE

respectively.

• ToolC searches for JPEG ghost artifacts by re-compressing the image

at several different qualities and taking the difference between the given

image and the re-compressed one. As such, this is a tool working in the

spatial domain, like ToolA. Ghost effect is detected when the difference is

small for the suspect region and not for the rest of the image. To evaluate

4.2. Reference case study and datasets 59

how much the two regions are separated, we used the KS statistic [42].

The value of this statistic can be directly used in the mapping phase

without normalization;

• ToolD searches for misaligned double compression exploiting the fact

that DCT coefficients exhibit an integer periodicity when the DCT is

computed according to the grid of the primary compression. Being the

shift of the grid unknown, the algorithm searches among all possible

shifts the one that minimizes a specific metric (see [41] for details). We

scale and invert this metric from [0,6] to [0,1] and normalize it as follows:

x̂D =
log2(xD)

20 log2(1.5)
+ 1.

4.2.3 The synthetic forgery dataset

In order to generate a sufficiently large dataset, we collected a total of 630 un-

compressed images representing a variety of scenes (indoor, outdoor, people,

landscapes, etc.), all cropped to size 1536×1536 pixels. We considered as pos-

sible values for the size of the tampering: 64×64, 128×128, 256×256, 512×512,

and 1024×1024 pixels. Each tampering was created by pasting, in the center

of the image, a region cut from another version of the same image. This tam-

pering strategy creates forgeries that are virtually undetectable to the eye

(see Figure 4.2 for some examples), and also mimics the work of an image

editing expert, which would limit discontinuities along the boundary of the

tampered region. By varying the way the splicing is produced, see Table 4.3,

we generated splicings containing all the possible combinations of traces listed

previously.

For tampered images, we let the quality of the first JPEG compression

(Q1) take values in the set {60, 65, . . . , 100}, and the quality of the final com-

pression is chosen as Q2 = min{Q1 + δ, 100}, where δ is chosen at random

from the set {5, 10, 15, 20}.4 Untouched images are compressed only once with

Q = {65, 70, . . . , 100}. By combining the above settings, from each uncom-

pressed image the following files have been created:

4We do not investigate the case where Q2 < Q1 because it is a setting which most image

forensic cannot deal with.

60 4. Experimental Validation and Concluding Remarks

Figure 4.2: Some sample forgeries from the synthetic dataset: the spliced

region, highlighted by the dashed square, has been taken from another version

of the same image, thus creating an imperceptible forgery.

• 40 non-tampered JPEG images, by using all possible values for QF1,

and taking all possible sizes for the suspect (although not tampered)

region;

• 40 forged images, by using all of the 5 possible sizes of the tampering and

two random coupling for Q1 and Q2, thus obtaining 10 images forged

according to each different procedure.

The dataset therefore consists of a total of 50400 JPEG images, half of them

tampered. Each different class of splicing consists of 25200/4 = 6300 sample

images. During the creation of the dataset, we annotated both the average

value and the standard deviation of pixels in the suspect region (in the case of

a color image, the image is converted to the YCbCr space and the Y channel

is considered). The resulting dataset is available for downloading5, together

with the output obtained from the 5 considered tools.

4.2.4 The realistic forgery dataset

We also studied a more realistic scenario: a team of students created 70 forg-

eries (some examples are given in Figure 4.3) using common photo editing

5http://clem.dii.unisi.it/~vipp/index.php/download/imagerepository

http://clem.dii.unisi.it/~vipp/index.php/download/imagerepository

4.2. Reference case study and datasets 61

Class Procedure Result

Class 1 Region is cut from a JPEG im-

age and pasted, breaking the

8x8 grid, into an uncompressed

one; the result is saved as

JPEG.

Inner region shows

JPNA trace, exter-

nal region does not.

Only tool A detects

this trace.

Class 2 Region is taken from an un-

compressed image and pasted

into a JPEG one; the result is

saved as JPEG.

Outer region shows

both JPDQ and JPGH

traces, inner does not.

Tools B, E and C

detect this trace

Class 3 Region is cut from a JPEG im-

age and pasted into an uncom-

pressed one in a position mul-

tiple of the 8x8 grid; result is

saved as JPEG.

The inner region

shows JPGH effect,

the outer does not.

Only Tool C detects.

Class 4 Region is cut from a JPEG

image and pasted (without re-

specting the original 8x8 grid)

into a JPEG image; the result

is saved as JPEG

The inner region shows

JPNA, the outer shows

JPDQ and JPGH.

All tools detect this

trace.

Table 4.3: Procedure for the creation of different classes of tampering in the

training dataset.

software, respecting only a constraint about JPEG quality factors (the qual-

ity factor of the final compression is always higher than the one of the host

image). Students were asked to provide both tampered images (along with

ground truth masks) and original ones, for a total of 136 images. Although be-

ing rather small (creating good forgeries is a time consuming procedure) this

dataset is crucial to understand how well the considered frameworks general-

ize to unseen cases. We will refer to this dataset as the “realistic” dataset.

According to a realistic scenario, this dataset is used only for testing, and

training will always be performed on images of the synthetic dataset.

62 4. Experimental Validation and Concluding Remarks

Figure 4.3: Some sample forgeries from the realistic dataset: in the leftmost

image the license plate has been pasted, while faces of celebrities have been

substituted in the other two pictures.

4.2.5 Choice of reliability properties

Let us now apply the BBA mapping approach proposed in Section 3.3.2 to the

above case study. We define a product set of four possibly relevant properties

P = Q× Z×A× S,

defined as follows:

• Q - compression strength: lossy coding after the manipulation process

discards some information, thus concealing the already vanishing foot-

prints left by the processing. Stronger compressions are against the

analyst, because they erase the footprints more deeply.

• Z - size of the analyzed region: most forensic tools rely either on a

statistical model or on the extraction and classification of some features.

In both cases, working with more data results in a more reliable analysis.

• A - average value of pixels in the analyzed region: many forensic tools

do not work well in saturated regions (i.e., having very low or very high

luminance values). This holds especially for DCT-based algorithms,

where the truncation errors due to saturation introduce anomalies in

DCT coefficients.

• S - standard deviation of pixels in the analyzed region: uniform (i.e.,

having very low standard deviation) content yields an extremely sparse

DCT representation, that can hardly lead to a reliable forensic analysis.

4.2. Reference case study and datasets 63

We used the synthetic forgeries dataset to investigate the dependency of the

performance of tools on the above properties. Figure 4.4 shows the ROC

curves obtained by each tool in F for different ranges of the property Q,

along with the value of ρ calculated for each curve: we can definitely state

that this property strongly influences the performance of tools in F and,

noticeably, some tools are more sensitive than others (compare, for example,

the variation of the ρ value for JPGH and JPDQ).

64 4. Experimental Validation and Concluding Remarks

ToolA ToolB

ToolC ToolD

ToolE

Figure 4.4: ROC curves for tools in F for different ranges of last JPEG com-

pression quality factor: RQ(a, b] denotes the set of all images in the dataset

whose last compression quality factor falls within (a, b]. In each plot, the

probability of detection P fD is plotted against the probability of false alarm

P fFA.

4.3. Training procedure 65

Instead of plotting similar figures for each of the investigated properties,

we summarize with Table 4.4 the analysis for other elements of P. We see that

all the properties affect the performance of the tools and, most noticeably, not

all the tools are affected in the same way. Consider, for instance, the size of the

analyzed region (parameter Z): it strongly affects the performance of ToolC

and ToolA but does not influence significantly ToolD. When performing a

joint analysis, such an information can greatly help the analyst in reaching a

correct global decision.

Since reliability parameters are very different in nature, it is necessary

to normalize their values before using them. We used the following order-

preserving functions to normalize them in the interval [0,1] (W denotes the

normalized version of Ŵ):

• Size of the suspect region: denote with X and Y the height and width

of the image, then:

S =
log2(

√
X ∗ Y)− 3

6
.

• Compression Quality Factor: QF = Q̂F/100.

• Average pixel value: AVG = ˆAVG/255.

• Standard deviation (STD): for natural images, the standard deviation

will unlikely assume values higher than 100. Therefore, the scaled pa-

rameter is obtained as: STD = ˆSTD/100.

4.3 Training procedure

For all the fusion techniques used in the tests we need to run a training phase.

For creating train and test datasets, we divided the synthetic forgery dataset

in two parts, with 80% of the images used for training and 20% for testing.

The whole procedure is repeated 10 times to increase the statistical signifi-

cance of the experiment. It is worth noting that, in the proposed framework,

training affects only the BBA mapping phase, so it is performed separately

for each tool. On the contrary, a SVM cannot be trained separately for each

tool: it must “see”, for each training image, the joint outputs coming from all

66 4. Experimental Validation and Concluding Remarks

Tool
R1

Z:

(0,64]

R2
Z:

(64,128]

R3
Z:

(128,256]

R4
Z:

(256,512]

R5
Z:

(512,1024]

ToolA 0 0.08 0.21 0.31 0.40

ToolB 040 0.39 0.36 0.31 0.21

ToolC 0.63 0.67 0.71 0.75 0.80

ToolD 0.74 0.75 0.74 0.73 0.72

ToolE 0.37 0.62 0.72 0.75 0.78

R1
A:

(0,30]

R2
A:

(30,60]

R3
A:

(60,150]

R4
A:

(150,230]

R5
A:

(230,255]

ToolA 0.15 0.19 0.23 0.14 -0.23

ToolB 0.09 0.35 0.38 0.25 0.19

ToolC 0.49 0.68 0.73 0.62 0.20

ToolD 0.58 0.78 0.80 0.60 0.36

ToolE 0.50 0.63 0.70 0.54 0.04

R1
S:

(0,5]

R2
S:

(5,10]

R3
S:

(10,15]

R4
S:

(20,40]
R5

S: (40,60]

ToolA 0.07 0.13 0.18 0.21 0.30

ToolB 0.28 0.28 0.34 0.38 0.33

ToolC 0.51 0.69 0.70 0.73 0.74

ToolD 0.46 0.65 0.76 0.79 0.80

ToolE 0.31 0.60 0.65 0.71 0.73

Table 4.4: Impact of parameters Z, A and S on the performance of five image

forensic tools. Intervals are chosen so to emphasize extreme values for each

parameter.

tools, so to learn how to fuse them. Accordingly, training the SVM by provid-

ing it forged images containing all possible combination of traces would not

be realistic, since it would require a dataset whose size grows exponentially

with the number of traces. We find it more reasonable to limit the training

dataset to original images and images containing all the forensic traces, i.e.,

images belonging to “Class 4” (see table 4.3). Of course, this restriction is

applied to all the tested techniques. We also point out that tool outputs and

4.3. Training procedure 67

values of reliability properties have been normalized in the same way (Section

4.2.1) before being used with all the methods. In the following, more specific

information about the training procedures for each method are given.

• SVM fusion. We used a radial basis function (RBF) kernel, whose

parameters C and γ are selected through a grid search. The search was

repeated independently two times, one for the SVM that is trained with

both tool outputs and background information (C = 4, γ = 4), and one

for the SVM trained only with tool outputs (C = 256, γ = 0.5).

• DST fusion. The output interpretation procedure presented in Section

3.3.2 was used for mapping tool outputs to BBAs. As for the SVM, the

experiment was repeated twice, once including background information

and once not. As to the parameters for the BBA mapping, we ran a

grid search and chose, for both the experiments, β = 0.8, γ = 8 and

k = 12.

• OR-based fusion. Since ROC curves are used to compare the various

methods, we need to train an aggregate ROC for the five algorithms,

which represents their behavior in terms of probability of detection (pD)

and false alarm (pFA) after being combined with the OR operator. To

obtain these curves, we uniformly sampled (with precision 10−3) the

ROC of each algorithm, considering only images that satisfy the cor-

responding working assumptions, as reported in Table 4.3. For each

algorithm we saved the threshold associated with each pFA. During

the test phase, given a target overall probability of false alarm p̂FA, we

chose for each algorithm the threshold corresponding to a probability of

false alarm of p̂FA/5, and we used that threshold to binarize the out-

put. Binarized outputs for each image were then combined with the OR

operator, giving the final classification, that allows drawing a point of

the overall ROC.

Concerning the realistic dataset, as we said, this dataset is used only for

testing, while training is performed using synthetic images. When experi-

ments are carried on the realistic dataset, 100% of the synthetic dataset is

used to generate the training set, still according to the rules described above.

68 4. Experimental Validation and Concluding Remarks

4.4 Results and discussion

The five forensic tools were run on the datasets, gathering the selected reli-

ability properties from the images, and their outputs were combined by the

different fusion methods. We use ROC curves to compare tool performance,

also calculating the Gini coefficient to allow a more compact evaluation. Each

ROC curve is obtained by averaging the results obtained on the 10 train-test

selections; we also plot uncertainty bars showing the maximum and minimum

probability of detection retained for different false alarm probabilities. For

sake of clarity, we separately comment the results obtained for the synthetic

dataset and those obtained for the realistic dataset.

Results on the synthetic dataset First of all, we show in Figure 4.5

the ROC curve obtained by executing each stand-alone forensic algorithm

on the whole dataset. The reader will probably be surprised by the poor

performance obtained by single algorithms, but they are perfectly reasonable

since each algorithm is used to analyze all classes of images, not only those

that are detectable with it. This approach is close to reality: a real analyst

does not know in advance which kind of tampering could have been performed

on the image under analysis. On the contrary, when a forensic algorithm is

developed and evaluated in scientific literature, it is typically tested with

images that are either original or tampered in a “detectable way”. Although

being useful to evaluate the discriminative power of a specific footprint, this

approach may lead to a rather optimistic evaluation of tool performance.

As to the comparison between decision fusion frameworks, Figure 4.6

shows the results obtained with the three considered methods. We can state

that the proposed method retains slightly better performance compared to

the SVM: this is an encouraging result, especially if we consider that both

training and test forgeries are synthetically generated in this dataset, and

that we have a high ratio of training examples versus features (about 10,000

training examples in front of 9-dimensional, normalized features). Interest-

ingly, logical disjunction also shows good performance on this dataset. The

most evident conclusion we can draw from this experiment is that all fusion

methods guarantee a sensible performance gain compared to single tools, thus

confirming that decision fusion helps moving towards a more comprehensive

4.4. Results and discussion 69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ilit
y

ToolA ρ = 0.15
ToolB ρ = 0.31
ToolC ρ = 0.63
ToolD ρ = 0.43
ToolE ρ = 0.44

Figure 4.5: Performance obtained by each forensic tool alone on the synthetic

test dataset. Although tools do not require a training phase, uncertainty bars

are reported because their evaluation is repeated on different selections of the

test dataset.

forensic analysis.

Let us now focus on the contribution brought by background information

to the DST- and SVM- based methods. Figure 4.7 shows the performance

of the proposed framework and those of the SVM system with and without

the use of such an information. We can see that by including background

information the analyst yields a clear advantage, regardless of the chosen

fusion framework. This gain gets even more interesting if we consider that

including background information has a negligible cost in terms of complexity,

at least up to a small number of properties. On the other hand, the analyst

should beware of selecting a vast set of influencing parameters, since this can

potentially expose the framework to the “curse of dimensionality”.

Results on the realistic dataset Focusing on the realistic dataset, Figure

4.8 shows single tools performance. We can see a variation in performance

compared to curves in Figure 4.5, a fact that is not surprising because of

the different nature of hand-made forgeries: small size and irregular shape of

70 4. Experimental Validation and Concluding Remarks

the tampered area, post-processing following the cut-&-paste operation, and

possibly other factors affect the forensic analysis.

The most interesting results are those obtained by the decision fusion

methods on the realistic dataset. As Figure 4.9 shows, the proposed method

strongly outperforms both the OR- and SVM- based approaches on such a

dataset. The most evident fact is that the SVM-based method seems to suffer

significantly the deep mismatch between the characteristics of the training

and testing datasets. In fact, we believe that such a mismatch is unavoidable

in practical situations, because it would be very hard to create a huge hand-

made realistic dataset, resembling all possible kinds of operations the forger

could do. It is much more reasonable, in our opinion, to define formally and

unambiguously an automatic method to generate the training set, and then

use the trained fusion system on realistic data. This is actually what is done

by the proposed DST-based framework.

We still have to evaluate the impact of background information on the

performance obtained on the realistic dataset: as shown in Figure 4.10, also

from this point of view, the DST-based method is preferable, since it success-

fully exploits the presence of background information. On the other hand,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ilit
y

DST ρ = 0.82
SVM ρ = 0.77
OR ρ = 0.76

Figure 4.6: Performance obtained on the synthetic dataset by the proposed

fusion framework and by the other methods.

4.4. Results and discussion 71

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ilit
y

DST ρ = 0.82
DST No Background ρ = 0.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ilit
y

SVM ρ = 0.77
SVM No Background ρ = 0.69

Figure 4.7: Comparison between performance of the background information

aware fusion methods and their simpler version, that does not use such an

information; results refer to the synthetic dataset.

the SVM method seems to be penalized by background information for low

false-alarm rates, that are by far the most important in a forensic scenario.

72 4. Experimental Validation and Concluding Remarks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ilit
y

ToolA ρ = 0.23
ToolB ρ = 0.46
ToolC ρ = 0.53
ToolD ρ = 0.07
ToolE ρ = 0.47

Figure 4.8: Performance obtained by each forensic tool alone on the realistic

test dataset. Differently from Figure 4.5, uncertainty bars are not present

because the whole realistic dataset is always used as the test set.

It is probably useful to remark that there are no differences in the “feature

vectors” provided to the DST and SVM methods, meaning that both tool

outputs and values of reliability properties are normalized in the same way,

as explained in Section 4.2.5. Therefore, we should rather refer again to the

mismatch between training and testing examples to explain the difference in

the impact of background information on the two frameworks.

4.4.1 Noticeable case studies

Besides presenting the results obtained on the synthetic and realistic datasets

as a whole, we believe it is interesting to isolate some noticeable case studies

where the DST and SVM methods provide significantly different results. In

order to select such examples, we focused on those images of the realistic

dataset for which, using the threshold that give for both schemes a false

alarm probability of 10%, the DST method provides a correct classification

while the SVM does not. As the significant distance between the two ROC

4.4. Results and discussion 73

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ilit
y

DST ρ = 0.68
SVM ρ = 0.58
OR ρ = 0.55

Figure 4.9: Performance obtained on the realistic dataset by the proposed

fusion framework and by the other considered methods.

curves in Figure 4.9 suggests, at this “working point” there are several cases

for which the DST method outperforms the SVM, specifically 16 out of 136

total images. Among these, we select and comment 5 of them in the following.

For each case study, we report:

• the image and the suspect region on which algorithms have been run;

• the properties associated to the analyzed region that have been fed to

the SVM and BBA-mapping modules;

• the output of forensic tools, and their interpreted version (available only

for the DST method);

• the final, scalar output of the DST and SVM fusion frameworks.

Case study 1 (true negative) In the first case study (Figure 4.11), the

DST method correctly classifies the image as original (the scalar output is

0.243), while the SVM labels it as tampered (scalar output: 0.652). Table 4.5

74 4. Experimental Validation and Concluding Remarks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ilit
y

DST ρ = 0.68
DST No Background ρ = 0.62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Alarm Probability

D
et

ec
tio

n
Pr

ob
ab

ilit
y

SVM ρ = 0.58
SVM No Background ρ = 0.56

Figure 4.10: Comparison between performance of the background informa-

tion aware fusion methods and their simpler version, that does not use such

an information; results refer to the realistic dataset.

reports the values of relevant properties and the output from each forensic

tool. We denote with m(T), m(N) and m(D) the interpretation provided by

4.4. Results and discussion 75

Figure 4.11: Image related to case study 1.

Compression Size Avg. value St. Dev.

90 1413 74.45 38.50

Tool A Tool B Tool C Tool D Tool E

Output 0.53 0.00 0.17 0.00 0.03

m(T) 1.00 0.01 0.00 0.00 0.12

m(N) 0.00 0.99 1.00 1.00 0.88

m(D) 0.00 0.00 0.00 0.00 0.00

Table 4.5: Background properties values, tool outputs and their mapping to

BBAs related to case study 1.

the BBA-mapping module for propositions “the trace is present”, “the trace

is absent” and doubt respectively.

The most interesting fact of this case study is the strong conflict between

the two tools searching for the JPNA trace (namely, Tool A and Tool D),

highlighted in red in the table. This is already evident looking at the output

(first line of the table), but it becomes even more dramatic if we consider the

interpretation resulting from the BBA-mapping module. The direct conse-

quence of such a conflicting situation is that belief stemming from these two

76 4. Experimental Validation and Concluding Remarks

Compression Size Avg. value St. Dev.

85 100 129.09 22.66

Tool A Tool B Tool C Tool D Tool E

Output 0.23 0.00 0.43 0.03 0.08

m(T) 0.01 0.00 0.01 0.00 0.48

m(N) 0.99 1.00 0.99 1.00 0.52

m(D) 0.00 0.00 0.00 0.00 0.00

Table 4.6: Background properties values, tool outputs and their mapping to

BBAs related to case study 2.

tools cancels, and is re-distributed based on the information available from

other tools. Since none of the three remaining tools found any trace, the

image is thus classified as original.

Case study 2 (true negative) Also in this case (Figure 4.12 and Table

4.6), the DST method correctly classifies the image as authentic (output value

is 0.005), while the SVM detects tampering (0.713). The most relevant aspect

of this case study resides in the BBA-mapping: notice that while the output

of Tool C is 0.43, a value that is near to the decision threshold for that tool

[42], the interpretation of such a value is definitely towards absence of the

trace (values are highlighted in red). This is likely due to the fact that the

resolution of the image is rather low, so that the suspect region consists of

just a few hundreds pixels. For such small regions, it is not surprising to

reach higher values of the KS statistic employed by Tool C also for untouched

regions.

Case study 3 (true positive) Let us now consider a case (Figure 4.13 and

Table 4.7) where the DST framework correctly detects tampering (output is

1.000) while the SVM wrongly labels the image as authentic (0.086). Once

again, conflicting information plays a fundamental role: we see that tools

searching for trace JPDQ (ToolB and ToolE) provide totally conflicting out-

puts. The conflicting belief is thus redistributed across plausible assignments

4.4. Results and discussion 77

Figure 4.12: Image related to case study 2.

and, since the Tool C detected the JPGH trace, and the presence of only that

trace is sufficient to declare the region tampered (according to Table 4.1), the

final belief supports totally the tampering hypothesis.

Case study 4 (true positive) The last case study (Figure 4.14 and Table

4.8) highlights an important feature of the DST framework. As we can see

from Table 4.8, in this case only Tool C detects traces of tampering, while

all the other tools are highly confident that their trace is not present. As

we explained in previous chapters, this fact should not lower the belief of the

analyst about the presence of tampering: it may well be the case that only one

trace was left during forgery creation. Therefore, as long as the combination

with absence/presence of other traces is plausible, detecting that trace is

sufficient to label the image as tampered. This is exactly the case at hand,

78 4. Experimental Validation and Concluding Remarks

Figure 4.13: Image related to case study 3.

Compression Size Avg. value St. Dev.

75 377 89.95 39.94

Tool A Tool B Tool C Tool D Tool E

Output 0.01 0.99 0.65 0.07 0.00

m(T) 0.00 1.00 1.00 0.00 0.00

m(N) 1.00 0.00 0.00 1.00 1.00

m(D) 0.00 0.00 0.00 0.00 0.00

Table 4.7: Background properties values, tool outputs and their mapping to

BBAs related to case study 3.

since the solely presence of trace JPGH is plausible (according to Table 4.1).

The DST output for this image assigns 1.00 to the proposition “the image

is tampered”. On the other hand, the SVM probably let other tools output

“smoothen” its decision, ending up with a fused score of 0.436.

4.4.2 Comments

Based on our experiments, we can finally state that the proposed method is

preferable in realistic conditions because it is more “robust”, meaning that

differences between the training and testing datasets have a smaller impact on

4.4. Results and discussion 79

Figure 4.14: Image related to case study 4.

Compression Size Avg. value St. Dev.

100 1100 97.47 57.08

Tool A Tool B Tool C Tool D Tool E

Output 0.01 0.00 0.80 0.08 0.00

m(T) 0.00 0.02 1.00 0.00 0.00

m(N) 1.00 0.98 0.00 1.00 1.00

m(D) 0.00 0.00 0.00 0.00 0.00

Table 4.8: Background properties values, tool outputs and their mapping to

BBAs related to case study 4.

performance. It should also be noted that, in contrast to SVM, the training

phase of the DST method treats each tool separately. This fact has sev-

eral advantages, most noticeably the possibility of adding new tools without

re-training the whole system, and the possibility to select different sets of

influencing parameters for each tool (although this was not necessary in the

case we considered here). On the other hand, the weakest point of the pro-

posed framework resides in the specification of compatibility relationships,

since the number of combinations grows exponentially with the number of

different traces, as discussed in Section 3.2.5. However, as we pointed out,

80 4. Experimental Validation and Concluding Remarks

this fact holds only when the analyst wants to maintain a full granularity of

the information. This means, besides evaluating the final belief as we did in

the previous experiments, to be able to compute the belief for the presence of

each single trace separately.

4.5 Concluding remarks

After several years of research image forensic is still a blooming discipline,

with a constant increase of the number of available tools, investigating a

wide range of manipulations. Since each tool analyzes a very specific trace

of tampering, one tool alone cannot suffice for an image forensic analyst.

Motivated by this fact, in this part of the thesis we have proposed a decision

fusion framework based on DST, and we have shown that it provides a more

robust and versatile instrument compared to the use of single tools alone.

During the development of this framework, it became evident that interpreting

the output of image forensic tools is not a trivial task, since their performance

vary significantly depending on the analyzed content. For this reason, we

proposed a simple method to assess which are the properties of the image that

impact tool performance the most, and we developed a DST-based approach

for mapping tool outputs to basic belief assignments, also taking into account

background information. The final result is a comprehensive framework that

allows introducing new tools in a rather simple way, and that keep the promise

of increasing the reliability of the analysis, as the experimental results showed.

While we believe that the proposed framework provides a useful contribu-

tion to Image Forensics, we also think that it should be regarded as a starting

point rather than a final work. To motivate such a claim, in this section we

outline two possible developments of the framework, on which we are currently

working.

4.5.1 Decision fusion for unsupervised forgery localization

One important fact that remained slightly hidden during the discussion of the

DST-fusion framework is that it requires that the analyst selects the suspect

region within the image. This step is crucial, since each tool is expected to

4.5. Concluding remarks 81

output a single scalar value, which is obtained by comparing in some way

the selected region with the rest of the image. In some cases, this kind of

user intervention is not practical, for several reasons: i) the user can hardly

suspect about a region where something was hidden; ii) when a huge amount

of images have to be analyzed, accurate inspection can be expensive; iii)

the results produced by tools may vary even significantly when the same

object is selected in different ways, and no golden rule exists in principle:

an “abundant” selection may contain pixels from the background, while a

“conservative” selection may result in small regions, leading to a less reliable

statistical analysis. Based on these considerations, it would be desirable to

develop unsupervised tools that allow forgery localization, e.g. by producing

a probability map that associates to each (block of) pixel the probability of

being tampered.

The above problem has been addressed in several ways in the image foren-

sic literature: a first class of unsupervised forgery localization algorithms looks

for the presence of tampered objects by decomposing the image under anal-

ysis into subparts. In region-wise approaches, the image is first segmented

into homogeneous regions and then each region is analyzed separately [44];

in block-wise approaches, the image is split into sliding square windows, and

each image block is processed independently. Inconsistencies in the presence

or the absence of specific footprints related to acquisition, coding, or editing

of one or more sub-parts of the image indirectly reveal that some processing

has been applied on a particular region of the image [3, 45]. Concerning the

limits of these methods, in the region-wise approach very often the segmen-

tation does not produce reliable results without a priori information about

the possible tampered area. In the block-wise approach, usually a sufficiently

large portion of the image (e.g. a B × B block, with B ≥ 100) is needed for

a reliable statistical analysis of the footprint, so that only a coarse grained

localization of tampering is possible.

A last class of unsupervised tamper localization algorithms is represented

by forensic schemes designed to localize in an automatic way the tampered

regions with a fine-grained scale, near to pixel-level resolution. These methods

usually consider pixels of the image (or coefficients in a transform domain) as

a mixture of two components, namely the tampered part and the untouched

82 4. Experimental Validation and Concluding Remarks

part. If the two models can be separated, the likelihood ratio criterion gives

a measure of the confidence for each pixel of being tampered. Thus, the

output of these methods is a likelihood map indicating for each image pixel

(or small image block) its probability of being tampered. To the best of

our knowledge, only few algorithms exploiting the presence of double JPEG

compression [4, 35, 15] or the artifacts due to CFA interpolation [14] belong

to this category. The main limit of these approaches is the strong dependence

of the results on local and global properties of the image (content, dimension,

compression etc) and by the noiseness of the output map, so that it is always

necessary to apply a postprocessing (often assisted) phase to obtain reliable

results.

An important limit of all the approaches proposed so far is that they are

based on the observation of a single forensic trace. By the light of our study

about the importance of decision fusion for forgery detection, we argue that

also fusing the output of several forgery localization tools could produce much

more reliable localization maps.

The most intuitive approach to extend our data fusion framework to

forgery localization would be to simply apply the whole procedure separately

to each single element of the map (also called “analysis block”, from now

on). However, this choice is potentially misleading because of the nature of

forgery localization tools. Indeed, as stated above, the accuracy of forgery

localization tools is strongly affected by the local properties of the image: for

example, very smooth or saturated regions are critical for many tools (see,

for example, [14, 35]), so that values assumed by the map in those regions are

less reliable. As a consequence, attention must be paid to properly interpret

the output of the tools applied locally.

There is another fundamental difference between forgery detection and

forgery localization. Independently from the analysis domain (e.g., pixel or

DCT domain), unsupervised forgery localization tools typically assume that

the image is the mixture of two components: one component deriving from

parts of the image that were manipulated, and one deriving from unaltered

parts [35, 15, 4]. When for some reason the two components are not correctly

separated, the produced localization map is practically useless, although it

assigns a sensible value to each region; Figure 4.15 shows an example of such

4.5. Concluding remarks 83

20 40 60 80 100 120 140 160 180

0

50

100

150 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20 40 60 80 100 120 140 160 180

0

50

100

150 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.15: A forged image (the baloon is pasted) and the forgery localiza-

tion map obtained with the tool in [35] on the tampered file (center plot) and

on a re-compressed version of the tampered file (right-most plot). As we can

see, in the latter case the map is not discriminative as it takes values near

to 0.5 everywhere; on the contrary, the same value in the center plot clearly

characterizes non-tampered regions.

a situation.

Based on the above discussion, we can state that extending the proposed

framework to forgery localization is not trivial, though very interesting. Some

preliminary work on this topic confirms that the obtainable benefits are in

line with those observed for forgery detection.

4.5.2 Decision fusion as a means for countering anti-forensics

As a new challenge to Image Forensics, anti-forensic (AF) methods are emerg-

ing, whose goal is to remove the footprints left during processing, making

forensic analysis harder [46]. On the other hand, AF tools may leave their

own footprints, and counter-anti-forensic (CAF) tools are being designed to

detect them as well.

In such a scenario, the forensic analyst needs to simultaneously tackle with

both the variety of detectable footprints and the presence of an adversary

equipped with AF tools. If CAF tools are available to the analyst, a more

robust analysis can be carried out, provided that outputs from IF tools and

their CAF versions are interpreted properly, thus going back to information

fusion. To the best of our knowledge, so far information fusion and CAF have

been investigated only separately.

In a recent work [47] we began investigating the possibility offered by the

84 4. Experimental Validation and Concluding Remarks

adoption of a data fusion framework in a CAF scenario. Also in this case, one

could opt for the intuitive solution of using all the available tools in an additive

fashion (“OR” fusion rule), that means classifying the image as tampered

when either an IF or a CAF tool detects the footprint it is looking for. This

approach, however, does not take into account the following facts: i) IF tools

may be searching for mutually exclusive traces, so some combinations of tool

outputs could be excluded; ii) for a given footprint, IF and CAF algorithms

are expected to be in contradiction, so if both kinds of tools detect their

footprint this should at least raise some doubts about the correctness of the

outputs; and iii) detecting some kinds of anti-forensic processing does not

necessarily imply that the image is a fake (e.g., full-frame linear filtering may

be seen as an AF technique, but usually it has to be considered a common,

innocent operation). Based on the first results presented in [47], we can state

that decision fusion becomes even more interesting in the presence of a forger

who tries to conceal traces of tampering. Indeed, in such a situation it is

fundamental for the analyst to gather as many clues as possible to reveal the

presence of malicious activity.

There are several open issues in this direction: first, it would be interesting

to put at work the theoretical advancements that are being pursued in the

field of Adversarial Signal Processing, some of which include decision fusion

in presence of an adversary [48]. It would also be interesting to investigate to

which extent IF and CAF tools can be mixed together, in a balance between

complexity of the system and granularity of the analysis.

4.5.3 Conclusion

As we can read on newspapers, the necessity of assessing the integrity and

authenticity of digital images is growing every day. The awareness of people

about the easiness with which fake contents can be created and about their

dramatic impact on public opinion is also increasing; this is witnessed by some

internet websites and services that appeared on the net in the few months: two

noticeable examples are www.stopfake.org and www.izitru.com. During

our studies, we had the possibility to see Image Forensics grow and reach new

important results; we hope to have given a contribution to the development of

a more comprehensive and practical way of interpreting the forensic analysis

4.5. Concluding remarks 85

of a digital image.

We believe the next years will bring image forensics at the next level,

widening the interest of the commercial and forensic communities. The feed-

back coming from such communities can play a key role, because at the present

time image forensic tools are often developed thinking to scenarios that do

not exist outside the laboratory. On the other hand, there are issues that are

considered “accessory” by our research community, like computational com-

plexity, that impact severely the practical applicability of a solution. For these

reasons, we believe it is necessary for image forensic researchers to establish

contacts with the industry and law-enforcement agencies, so to let practical

needs enter the lab and play a role in algorithm design and testing.

Part II

The Variation of Prediction

Footprint: a Novel Tool for

Video Forensics

89

Abstract

Recent advances in video compression have made possible the adoption

of digital video technologies in many different fields, such as digital tele-

vision broadcasting, video-telephony or Internet video streaming, among

others. If we consider security applications, digital videos are even more

important than images: every day millions of hours of video are recorded

and stored by surveillance systems, that are meant to be used for secu-

rity purposes. Once more, it is of fundamental importance to assess the

authenticity of such footage before accepting it as an evidence.

Today video editing is no longer reserved to experts: many commercial

and open-source software allow editing a video in a few minutes. As in

the rest of this thesis, we are mainly interested in a particular kind of

manipulation, namely splicing. As opposed to images, there are two ways

to maliciously splice a video: the first one is to tamper with each frame

separately, e.g., by introducing or hiding objects from frames; the second

is to remove or insert a whole (group of) frames, without modifying the

content of single pictures. Another important difference with respect to

images is that digital videos are always stored in compressed format; as

a consequence, any manipulation requires the forger to decompress the

video, modify it, and finally re-compress it. This fact makes the detection

of double compression an important task in video forensics.

After a brief introduction to video forensics (Chapter 5), our contribu-

tions are presented in Chapter 6: specifically, in Section 6.1 we propose a

new footprint, called Variation of Prediction Footprint (VPF), and show

that it can be used for double encoding detection. By leveraging on the

VPF, we devise two forensic methods addressing both the localization of

frame insertion and removal (Section 6.2) and the localization of manip-

ulations within single frames (Section 6.3). Finally, Chapter 7 provides

some concluding remarks and outlines the open issues. The works pre-

sented in this part of the thesis have been developed in collaboration with

the University of Vigo (Spain).

Chapter 5

Introduction To Video Forensics

COMPARED to digital image forensics, video forensics is still an emerging

field, for several reasons: creating fake images is much easier than cre-

ating fake videos; images are usually available in a few possible format, while

videos can be encoded with many different schemes and, finally, videos usually

undergo a stronger compression compared to images, making the forensic anal-

ysis more difficult. This contrasts with the fact that nowadays digital videos

are probably used more than images for security tasks (e.g., video-surveillance

systems are everywhere), so their trustability must be strengthened.

The goal of this chapter is to briefly review the state of the art in video

forensics, with an emphasis on video splicing detection. Before digging into

video forensic (Section 5.2), we find it appropriate to summarize some basic

concepts of video coding (Section 5.1).

5.1 Video coding principles

The following paragraphs review briefly those aspects of video coding that

are essential to understand the following chapters; the reader can easily find

more details about video coding, e.g. in [49]. A digital video is basically

a sequence of still pictures shot at a sufficiently high rate (typical values

are 25 or 30 frames per second). The resulting signal can be conveniently

compressed by reducing both spatial and temporal redundancy. In order to do

that, common video coding algorithms like MPEG-2 [50], MPEG-4 [51] and

H.264 [52] employ a block-based hybrid approach, and divide pictures into

different types: intra-coded pictures, referred to as I-frames, and predictive-

coded pictures, commonly named P-frames and B-frames (see Figure 5.1).

During encoding, frames are grouped into GOPs (group of pictures) according

92 5. Introduction To Video Forensics

Y

U V

Y

Group of Pictures (GOP)

Frame components

Macroblock

8x8 DCT Block

Video sequence

I P P IB

Figure 5.1: Structural elements in common video coding schemes.

to a structure that always starts with an I-frame and then allows a certain

number of predictive frames. The total number of frames composing a GOP

is called GOP size. When encoding a frame, the encoder divides it into

macroblocks (MBs) and codes each MB separately; the most common size for

MBs is 16×16 pixel, although this value can be adaptively chosen by some

coding algorithms. For I-frames, MBs are always encoded without referencing

to other frames, so that only spatial redundancy is eliminated. In order to

achieve compression while maintaining a good perceptual quality, an approach

similar to that used for JPEG image coding is adopted: the MB is sub-divided

in 8 × 8 pixels tiles, and each tile is DCT transformed. The coefficients are

quantized according to a matrix W (i, j), where the element in position (i, j) is

the quantization step for the same-positioned DCT coefficient. The employed

matrix W is usually either the one defined by the video coding standard or is

specified in the header of the video file; in both cases, it remains the same for

all intra coded MBs. In order to allow the encoder to use different quantization

strengths, the matrix can be multiplied by a scalar value k, so that the actual

quantization step used for the (i, j)-th coefficient is given by k ×W (i, j). Of

course, higher values of k result in stronger compression and, hence, lower

quality. The trade-off between quality and compression ratio can be adjusted

either by fixing k, thus obtaining a constant bitrate (CBR) coding, or by

5.2. Previous works in video forensics 93

adjusting k dynamically based on the content of frames, resulting in a variable

bitrate (VBR) coding. While VBR coding usually results in better perceptual

quality, it is computationally heavier and does not fit well applications like

video streaming.

Concerning predictive-coded pictures, the encoder adaptively chooses for

each MB whether to use intra- or inter- prediction. In order to make this

choice, the encoder searches the reference frame for a MB that matches well

with the one at hand. If a good candidate is found, the displacement due

to motion is compensated and the difference is evaluated, obtaining the so-

called “prediction error”. This error is usually a rather sparse signal, and

it is compressed similarly to I-MBs: the DCT is calculated, and coefficients

are quantized. The quantization matrix differs from the one used for I-MBs,

because it is designed so to account for the different nature of the signal, in

fact the prediction error contains more energy in high-frequency components.

When a good candidate cannot be found, the encoder still has the option

to encode the MB using intra-prediction, so that P- and B- frames can also

contain I-MBs. Finally, the encoder also has the possibility to skip a MB, if

the MB can be directly copied from a previous frame: these MBs are denoted

as S-MBs. P- and B- frames differ in that P-frames can only make reference

to previous frames, while also future frames are considered by B-frames (the

“B” actually stands for “bidirectional”). Of course, using B-frames requires to

encode pictures in an order different from the “natural” one: for a given GOP,

the reference frames must be encoded first, before B-frames. The heavier

processing and the necessity of keeping a frame buffer limit the use of B-

frames in scenarios with restricted resources or with tight time constraints

(e.g., real time encoding on mobile devices).

5.2 Previous works in video forensics

Video forensics is receiving increasing attention from the scientific community,

so that many algorithms are emerging to analyze the integrity and the pro-

cessing history of videos, as shown in a recent survey on this topic [6]. One of

the most attracting topics has been the detection of multiple video encoding.

The reason for such an interest is that, since videos are always compressed by

94 5. Introduction To Video Forensics

the acquisition device during capturing, any further processing will require to

decode the video, perform changes and then “save” the manipulated video by

recompressing it. Therefore, it is reasonable to see double encoding as a nec-

essary condition for the presence of manipulations in a digital video. On the

other hand, multiple compressions do not necessarily imply video forgery, and

very different analysis techniques have been developed to assess the integrity

of a digital video. In the following, we treat separately these two tasks.

5.2.1 Multiple encoding detection

When the research community began working on video forensics the first

idea was to borrow as much as possible from image forensics. As a result, a

large family of methods has been developed relying on the analysis of DCT

coefficients. Su et al. [53] exploit the fact that the MPEG-2 video standard

defines different quantization matrices for intra- and inter- coding modes;

namely, the quantization steps for high frequencies are much higher in intra-

coding mode. Due to this fact, when an I-frame is re-compressed as a P- or

B- frame, its high-frequency DCT coefficients will be zero most of the times;

on the other hand, frames that are encoded twice as predicted frames do not

show this effect. Thus, authors propose to simply measure, for each frame,

the energy of high-frequency DCT coefficients and use it to detect tampering

using a threshold-based detector. The method can also detect double encoding

when the GOP structure changes. Experimental results reported in [53] show

a virtually perfect detection probability but also a high false alarm probability,

namely 32%.

In [54], Liao et al. propose a method to detect double quantization in

H.264 videos. Also in this case, authors leverage on the double quantization

effect, and study the histogram of quantized DCT coefficients in the I-frames

of the video. Experiments show that the method works only when the second

encoding is at a higher quality than the previous one. Under these assump-

tions, an SVM classifier yields accuracies over 90%.

Tanfeng et al. propose to analyze the distribution of first significant digits

(FSD) of DCT coefficients in I-frames: they derive a 12-dimensional vector

from it, that is used to train a Support Vector Machine. The method can

both detect double encoding and classify the second encoding as being at a

5.2. Previous works in video forensics 95

higher or lower bitrate than the first one. However, authors point out that

this method has not been tested in cases where the two encodings are carried

by different implementation of the MPEG-2 standard. Still based on FSD

distribution analysis, Milani et al. developed a SVM classifier based on Ben-

ford’s law [55]. This empirical law, which applies to many real-life sources of

data, states that the distribution of the FSD of samples obeys a logarithmic

decreasing law, so that “1” is the FSD in about 30% of the samples, “2” in

18% of them, and so on until “9”, which occurs less than 5% of the times. The

classifier in [55] is able to to tell how many compressions a given video under-

went up to a maximum of 3 coding steps. Experiments show that the method

performs very well in distinguishing never compressed video from compressed

ones and, under some constraints on the quality of compressions in the chain,

in distinguishing between videos encoded two or three times (75% of the test

videos are labelled with the correct number of encodings).

Su et al. devised a method for double MPEG-2 compression is proposed

that works also in presence of CBR coding [56]. The idea is to analyze only

I-frames: MBs are partiotioned according to the quantization parameter that

was used during encoding then the histogram of two specific DCT coefficients

is considered for each group separately. Authors show that these histograms

follow a monotonically decreasing trend when the video is encoded once, while

they exhibit a convex shape in the presence of double encoding. Such a convex

pattern is iteratively searched for, measured, and compared to a threshold to

classify the video. Experimental results show an overall average between true

positive rate (TPR) and true negative rate (TNR) of 94% when the video

is re-encoded at the same quality (6 Mbps), which drops to 89% when the

second encoding is carried with a bitrate of 4Mbps.

A promising approach has recently been proposed by Jiang et al. in [57] to

detect double MPEG-4 encoding. Taking inspiration from a work by Pevny

et al. on steganography [58], authors model adjacent DCT coefficients as

a Markovian process. To do so, they evaluate the difference between adja-

cent coefficients (limiting the analysis only to some of them), and compute

a transition probability matrix. Then, as in [58], they exploit some intrinsic

regularities of such matrices to summarize them in a 162-dimensional vector,

that is used to train a SVM classifier. The method is tested on videos encoded

96 5. Introduction To Video Forensics

twice in VBR mode, with relatively small quantization scale factors (up to

10); in these settings, performance are very interesting (mean value between

TPR and TNR is around 95%) even when the second encoding is performed

at a lower quality than the first one. The authors also show that, for some

specific combinations of the first and second quantization, double encoding

becomes undetectable with their method.

Leaving the DCT domain, Luo et al. propose to measure the strength

of block artifacts (BAS) that are left during MPEG-2 encoding [59]. They

generate several re-encoded versions of the video, removing each time one

more frame from the beginning of the sequence, and then they measure the

average BAS for each video. They show that, normally, this feature follows

a periodic behavior; instead, when a video is compressed twice breaking the

alignment between the GOP structures, an abnormal behavior appears, that

in principle allows to detect the processing [59]. The authors do not provide

a way to automatically detect such an abnormal behavior, nor they provide

an analysis of the performance of the method over a set of test videos.

Up to now only a few works faced with the problem of detecting double

compression performed using different codecs (also referred to as transcoding).

Xu et al. consider the Fourier transform of DCT coefficients histogram, and

they observe that such signal fits well a quadratic polynomial function if

the video is encoded once using MPEG-4 [60]. On the contrary, spikes are

present when the video is the re-encoded version of a previously MPEG-2

coded stream. By evaluating the goodness of the fitting, authors claim they

are able to detect MPEG-2 to MPEG-4 transcoding. Performance depend on

the bitrate used for the encoding: videos that were firstly encoded at higher

bitrates will prove harder to be classified.

Starting from a video that is assumed to be double encoded, Bestagini

et al. propose a way to identify the coding standard used for the first com-

pression [61]. Their idea is to exploit the idempotency property of common

coding schemes: assuming that VBR mode had been used for the first encod-

ing, they re-encode the video under analysis with every possible encoder and

every possible combination of the quantization parameters, then they mea-

sure the similarity between the resulting sequence and the analyzed video.

The similarity shows a peak when the last encoding settings match those of

5.2. Previous works in video forensics 97

the first one. Performance are good when the second encoding undergone by

the video is carried at very high quality, but rapidly decrease for stronger

compression. Furthermore, the computational complexity of this approach is

very high.

5.2.2 Video splicing detection

When talking about detection of forgeries in digital videos, it is helpful to

distinguish between:

• inter-frame forgeries, where (group of) frames are entirely deleted, in-

serted or replicated;

• intra-frame forgeries, where the attacker alters the content of single

frames (e.g. by introducing or removing objects).

Being very different, these attacks have been investigated using different tech-

niques. An effective method for detecting the removal of frames was proposed

by Wang et al. in [62]: the de-synchronization (induced by the tampering)

between the GOP used for the first and for the second encoding is detected,

by searching for a periodic behavior in the magnitude of motion vectors. This

idea has been further investigated and improved by Stamm et al. in [63], where

an unsupervised approach is devised for detecting frame removal/insertion and

different strategies for GOP structuring are considered. A completely alter-

native method was developed by Su et al. in [53], leveraging on the different

characteristics of quantization matrices employed for intra- and predictive-

coded frames: if an I-frame is re-encoded as a P or B frame, a different quan-

tization matrix will be used that preserves more energy in the high-frequency

DCT coefficients. This fact is studied to detect periodic anomalies in the

energy of some DCT coefficients, thus detecting that a de-synchronization in

the GOP structure occurred. Finally, the same authors of [53] showed that

their method for double encoding detection can also be used to detect frame

removal [56].

Intra-frame forgery localization is probably the less studied field in video

forensics, and most of the existing approaches work only under strict assump-

tions [6]. The most recent method is the one proposed by Wang et al. in [64],

98 5. Introduction To Video Forensics

where a DQ analysis is applied separately for each macroblock. The underly-

ing idea is that when some of the MBs of a frame show the effects of double

quantization while others don’t, the last ones have been probably pasted from

another sequence. This idea is borrowed from JPEG image forensics and, as

such, the analysis makes sense only for frames that have been encoded twice

as intra. The authors worked around this problem by assuming that Motion-

JPEG encoding has been performed (i.e., only intra-coded pictures are used),

thus heavily restricting the applicability of the method. Furthermore, in [64]

the double quantization analysis is performed separately on each MB, leading

to a computationally intensive analysis.

Chapter 6

Double Encoding Detection and Forgery
Localization for Digital Videos

IN this chapter we propose a new video forensic footprint, called Variation

of Prediction Footprint (VPF), and investigate its application to three dif-

ferent problems in video forensics. The chapter is thus divided in three main

sections: the first one, Section 6.1, introduces the VPF and shows its usage as

a tool for double video encoding detection, with estimation of the first com-

pression GOP size in a double encoding setup. Then, Section 6.2 deals with

the problem of detecting inter-frame video forgeries, showing how the VPF

can be employed to detect this kind of manipulation. Finally, Section 6.3

considers the intra-frame forgery detection task and, by combining VPF and

double quantization analysis, introduces a tool for authenticity verification

also in this scenario.

Since the considered video forensic tasks are rather different, their exper-

imental validation cannot be conveniently discussed in an aggregate manner

(for example, it was not possible to use the same set of videos to test all the

methods). For this reason, we discuss the experimental validation of each

method within the section presenting the method itself.

6.1 Variation of prediction footprint for double en-

coding detection

As it emerged in Section 5.2.1, the state of the art is rich of methods targeting

double encoding detection. Nevertheless, existing methods can hardly detect

double encoding when different coding algorithms are used (e.g., MPEG-2

for the first compression and H.264 for the second); when this is possible, it

comes at the cost of a computationally heavy analysis [61]. Furthermore, a

100 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

shared drawback of most existing techniques is the way they are affected by

the second encoding, since their performance drop very rapidly as the strength

of the last compression increases.

Motivated by these shortcomings and with the aim of generalizing the

double encoding detection to a scenario with several codecs, different GOP

sizes and distinct bitrates, we propose the VPF as a robust and very distinctive

footprint based on the variation of the macroblock prediction types in the re-

encoded P-frames. An advantage of this footprint is its presence in the twice

encoded video without the need for further re-compression. Furthermore,

given that the VPF appears only in P-frames that were intra-coded in the

first encoding, we also describe a method to estimate the size of the GOP

used in the first compression. It will become clear in the following sections

that estimation of the GOP size is not only an important step toward assessing

the processing history of a digital video, but can also enable further forensic

analysis, e.g., tampering detection.

In the next section, we introduce our scenario for double encoding de-

tection, analyzing why the VPF appears. In Section 6.1.2, we explain how

this particular footprint can be measured and introduce a method for the

estimation of the GOP size of the first compression. Section 6.1.3 presents

the experimental results for evaluating the detection accuracy and the perfor-

mance of the estimator.

6.1.1 The intuition behind the VPF

Although common video acquisition devices are becoming everyday more pow-

erful, they are not capable of storing uncompressed videos, because this would

require an exaggerated amount of persistent memory. As a consequence, ac-

quisition devices compress the video during capturing, possibly at a very good

quality. Since this encoding has to be carried in real-time, it is usually not

possibile to exploit advanced features like B-frames (that require encoding

pictures in non-temporal order, using a buffer), adaptive choice of GOP size,

and so on. For these reasons, we assume that a video is captured using a

device that performs a compression with an arbitrary yet fixed GOP size,

denoted by G1, and a fixed constant bitrate, represented by B1. Then, we

6.1. Variation of prediction footprint for double encoding detection 101

P I P1st

P P P2nd

29 30 31

(a) G1 = 30, G2 = 50 (b) Frame 29 (c) Frame 30 (d) Frame 31

Figure 6.1: Example where the VPF is present in frame 30. Leftmost picture

shows the types of frames with indices 29, 30 and 31 for both compressions.

The remaining three pictures represent the macroblock types for each frame.

Red color is used for I-MB, blue color for P-MB and green color for S-MB.

Both first and second encodings are carried out using the x264 library, with

a QP fixed to 20.

assume that the video is decoded and re-encoded: the second compression

(that, for the moment, we assume to be temporally aligned with the first one)

is carried out on the uncompressed sequence, but with a different GOP size,

i.e., G2 such that G2 6= G1, and a fixed constant bitrate, i.e., B2, that can

be equal or different from the one used in the first compression. Considering

this double encoding framework, we observe that a specific variation of the

number of macroblocks coded as I-MB and S-MB shows up in the P-frames

encoded as I-frames in the first compression.

To get a better understanding of this effect, let us consider the scenario

illustrated in Figure 6.1: a double encoding with G1 = 30 and G2 = 50 is

considered. The conversion between the types of frames for the indices 29, 30

and 311 is illustrated in Figure 6.1(a): we can see that frames 29 and 31 are

predictive coded both in the first and in the second compression, while frame

30 turns from being an I-frame to a P-frame. Checking the corresponding

macroblock types for the frame 30 in Figure 6.1(c), we can easily appreciate

a noticeable increase of I-MBs and a considerable reduction of S-MBs. Hence,

the VPF is present in frame 30.

The explanation of this effect is based on the different way an I-frame is

encoded with respect to a P-frame. Generally, the quantization matrix or

1Note that we consider that the frame indices start counting from 0.

102 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

the quality factor for encoding an I-frame differs from the one considered for

a P-frame because I-frames are used directly or indirectly as a reference for

encoding several future frames. Besides, the following effects are observed:

• Change of a P-MB or S-MB in homogeneous regions into an I-MB. In

general, the use of an I-MB in a P-frame is intended for encoding more

efficiently a region where there is not a good match in the reference

frames, like a new uncovered region. In this case, the compression of a

reconstructed I-frame with a P-frame (whose reference frame will prob-

ably not be so correlated with this uncompressed frame) will lead to a

less efficient encoding in general. However, if the changes introduced

by the I-frame are small in homogeneous regions (for instance, like a

change in the DC component of a whole block), then those blocks will

be more efficiently coded as I-MBs than P-MBs where at least a motion

vector should be considered and more bits would be needed. This is the

main reason why I-MBs appear in smooth regions.

• Change of S-MB in static regions into a P-MB. The use of skipped

macroblocks is very likely for any encoder given that neither residual

information nor a motion vector is needed and a lot of bits are saved.

Nevertheless, in the case we are studying, when a reconstructed I-frame

replaces the encoding of a P-frame, small variations are introduced in

static regions with respect to the reference frame and, thus, the use of

a S-MB is no longer possible. Consequently, a P-MB must be used for

satisfying the perceptual requirements.

As we stated earlier, even if each codec implements prediction and quanti-

zation in a different way, the final result is always coherent with the behavior

described above, at least for those codecs based on DCT transform and mo-

tion compensation. Of course, the presence of VPF will also depend on the

particular implementation of each codec, but since the main objective of any

implementation is to reduce the bitrate according to a predefined quality, the

observed behavior is consistent with any specific implementation.

As a conclusion, if we can detect these variations in the number of predic-

tion types I-MB and S-MB, then we will be able to detect if a double encoding

6.1. Variation of prediction footprint for double encoding detection 103

of the same sequence has been carried out and, if this is the case, we have a

way to estimate the size of the first GOP from these variations.

6.1.2 Measuring the VPF

In this section we show how the VPF can be used to detect double encoding

and to estimate the GOP size of the first compression. The method we intro-

duce is essentially based on two steps: first, the frames showing the VPF are

localized, and the strength of the footprint is measured; secondly, since the

obtained signal should show relevant peaks in correspondence of the positions

of the I-frames of the first compression, a periodicity analysis is carried out.

In the rest of this section, the following notation is used: for a given video

sequence x(n), with n = 0, . . . , N − 1, being N the total number of frames,

we denote with i(n) and s(n) respectively the number of I-MBs and S-MBs

present in the n-th frame. We also recall that G1 and G2 are the GOP sizes

used for the first and the second compression, respectively.

Peak extraction In this phase, we jointly consider the two signals i(n) and

s(n). From Section 6.1.1, we know that in correspondence of those P-frames

of the video that were encoded as intra in the first compression, the number

of I-MB will increase while the number of S-MB will decrease. Obviously, we

cannot consider directly i(n), since for the I-frames of the second encoding

all the macroblocks are I-MBs, resulting in very strong peaks that are not

related to the first encoding. However, since G2 is known, we can ignore

peaks at frames kG2, where k = 0, . . . , bN/G2c. To do so, we substitute those

elements of the array with the average value obtained from the previous and

the following ones: i(kG2) = (i(kG2 + 1) + i(kG2 − 1))/2.

For the sake of clarity, we will denote by P the set of frames where the

effect described in Section 6.1.1 is present. Specifically we define

P = {n ∈ {0, . . . , N − 1} : i(n− 1) < i(n) ∧
i(n) > i(n+ 1) ∧ s(n− 1) > s(n) ∧ s(n) < s(n+ 1)}.

Based on this definition, we define a new vector that quantifies the strength

104 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

of the effect for every n ∈ P as follows

v(n) =

{
E(n), if n ∈ P
0, otherwise

, (6.1)

where E(n) measures the strength of the effect in the n-th frame, defined as

E(n) = |(i(n)− i(n− 1))(s(n)− s(n− 1))|+
+ |(i(n+ 1)− i(n))(s(n+ 1)− s(n))| .

(6.2)

Indeed what we expect is, first, an increase in the number of I-MBs together

with a decrease in the number of S-MBs and, then, a decrease in the number of

I-MBs together with an increase in the number of S-MBs. This phenomenon is

illustrated in Figure 6.2(a). Therefore, by taking the product of the variations

of i(·) and s(·) we measure the magnitude of the effect we are considering, as

shown in Figure 6.2(b).

Periodicity analysis The second step consists in investigating the peri-

odicity of the extracted feature. If no periodic behavior is detected we can

classify the video as singularly encoded; conversely, if a periodicity is present,

then it will allow us to estimate G1.

Usually, the periodicity of a signal is well-exposed in the frequency domain,

e.g. by taking its Fourier transform. However, this approach is well-suited for

cases where many periods of the signal are available, otherwise the frequency

representation is noisy and periodicity estimation is inaccurate. On the other

hand, we want our method to work also with a limited number of frames, so

the frequency representation is not the best tool in our case.

For these reasons, we propose a simple yet effective approach for estimating

the periodicity of peaks in v(n), that is based on two steps: candidate GOP

selection, and candidate evaluation.

Candidate GOP selection aims at determining a set of possible values for

G1. Since we are searching, in a sequence of integers, an element generating a

subsequence of multiples of itself, it makes sense to restrict the search to the

set of the Greatest Common Divisors (GCD) between all possible couples of

elements of the sequence. Therefore, we define the set C of candidate GOPs

6.1. Variation of prediction footprint for double encoding detection 105

(a)

(b)

Figure 6.2: (VPF analysis carried on a double encoded video, with G1 = 30

and G2 = 50: in (a) the number of I-MBs and S-MBs as a function of the

frame number is plotted, while (b) shows the derived strength signal, obtained

according to equations (6.1) and (6.2).

as

C ={c ∈ {2, . . . , N} : ∃ n1, n2 ∈ P,GCD(n1, n2) = c}.

Notice that evaluating C requires at most N2 runs of the GCD algorithm,

whose complexity is quadratic in the number of base-10 digits of its argument

(dlog10Ne at most, in our case). However, since the signal v(n) is typically

sparse (in the experiments presented in Section 6.1.3, ∼ 90% components are

null on average), the computational effort is surely affordable.

In the GOP estimation stage, each candidate value c ∈ C is associated

with a goodness-of-fit value φ : C → R, that measures how well the choice of c

106 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

models the periodicity of the signal v(n). Before giving the formal definition

of φ(c), we briefly give the intuition behind this measure. Due to content

related issues, like sudden changes of scene or strongly textured regions, the

signal v(n) could contain some noisy components, or could be missing some

expected peaks at multiples of G1. It is essential to define a goodness-of-fit

measure that takes into account, for each candidate value c, the following

aspects:

1. The strength of peaks that are located at multiples of c, given by

φ1(c) =
∑
i=kc

v(i) , with i ∈ P, k ∈
[
0,

⌊
N

c

⌋]
.

2. The absence of peaks that would be expected at multiples of c, quantified

as

φ2(c) =
∑
i=kc

β , with i /∈ P, k ∈
[
0,

⌊
N

c

⌋]
,

where β is a constant penalization factor for missing peaks, that can be

taken as β = 0.1×maxn{v(n)}.

3. The strength of the most relevant periodic component with a period

smaller than c, defined as

φ3(c) = max
z∈{1,...,c−1}

bN/zc∑
k=0

v(kz)

 .

Then, we combine these three measures to define the function φ(c) as

φ(c) = φ1(c)− φ2(c)− φ3(c), (6.3)

where it is evident that φ2 and φ3 act as a penalization for the candidate c.

Once the goodness of every candidate in C has been evaluated, we can classify

the video as singularly or doubly encoded and, in the latter case, provide an

estimate for G1. The video x(n) is assigned to a class with the following rule:

C(x) =

{
1, if maxc∈C φ(c) > Tφ

0, otherwise
, (6.4)

6.1. Variation of prediction footprint for double encoding detection 107

where Tφ is a threshold, C(x) = 1 for videos classified as doubly encoded,

and C(x) = 0 for videos classified as singularly encoded. Whenever a video

is classified as doubly encoded, the estimate of G1 is

Ĝ1 = arg max
c∈C

φ(c). (6.5)

6.1.3 Experimental validation

In this section we evaluate the performance of the proposed approach for dou-

ble encoding detection and for GOP size estimation. To this end, a realistic

setting is considered, which is often challenging for video forensics. We built

the datasets for our experiments using 14 video sequences2 with CIF reso-

lution, i.e., 352×288 pixels, that are available in YUV-uncompressed format.

Given that these sequences have different lengths, we always limit ourselves to

the first 250 frames (that is, 10 seconds of video at 25 fps), in order to inves-

tigate the reliability of the proposed approach in the presence of short clips.

Furthermore, in all the experiments, video encoding is performed specifying a

target constant bitrate (CBR) and not by fixing the quantization parameters,

since this is the typical encoding setting in a realistic scenario. As it was pre-

viously mentioned, adaptive GOP structures are not considered in this work.

For all the tests, we have used the libavcodec and x264 libraries (through

FFmpeg) to encode/decode the videos.

Since we propose to use the VPF both for double encoding detection and

GOP size estimation, we split the experiments into two parts; this choice also

accounts for the different nature of these tasks, since detection and estimation

need different evaluation criteria.

Double encoding detection

To test the discrimination capability of the proposed approach, we use the

mentioned 14 raw sequences to create a dataset consisting of:

• 672 singularly encoded videos, by using all combinations of encoders

and parameters in the right column of Table 6.1;

2Freely available at this website: http://trace.eas.asu.edu/yuv/

Chosen sequences are: akiyo, bridge-close, bridge-far, coastguard, container, foreman, hall,

highway, mobile, news, paris, silent, tempete, waterfall.

108 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

• 672 doubly encoded videos, randomly sampling for each sequence 48

joint configurations for first and second encoding from those allowed by

Table 6.1.

Since the proposed detection method relies on a threshold-based rule (see

eq. (6.4)), we use ROC curves to evaluate its performance: we report in

Figure 6.3 both the ROC of the proposed method on the whole dataset, and

the performances obtained separately, differentiating the encoder employed

for the second compression (which of course, is known to the analyst). It

is worth noting that when the second encoding is carried out using H.264

(as we have seen, the most commonly used codec nowadays), the detector

yields its best performance (94% detection rate for a false positive rate of

5%). This fact is not surprising: as usual in forensics, when the quality of

the last compression is very low the footprint could be hidden by spurious

effects. H.264 is known to provide better quality with respect to MPEG-x

codecs for a fixed bitrate, thus limiting the negative impact on the detection

of the VPF and, consequently, on the correct classification of the video. That

said, the proposed method retains considerable accuracy also when MPEG-x

codecs are used, and yields on average a detection rate of 80% when only 5%

of false positives are allowed.

First GOP size estimation

In order to evaluate the performance of GOP size estimation we created a

dataset of 32,256 doubly encoded videos, by compressing each of the 14 avail-

able sequences with all combinations of settings given in Table 6.1. Each

sequence is analyzed in about 1.4 seconds on a desktop computer3, but the

actual analysis, that starts when types of macroblocks have been extracted,

takes only 0.025 seconds.

We investigate the results of the estimation from different points of view:

as a function of 1st and 2nd bitrate, as a function of the 1st and 2nd encoder,

and as a function of the 1st and 2nd GOP size. Each time we investigate a pa-

rameter, all the other settings are marginalized out, i.e., results are averaged

over them. Each estimate is classified as exact (that is, Ĝ1 from eq. (6.5)

3Intel Core2Duo @3.4GHz, 8GB RAM, running Ubuntu 10.04.

6.1. Variation of prediction footprint for double encoding detection 109

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Prob. of false alarm

P
ro

b.
 o

f d
et

ec
tio

n

Average, AUC:0.926
MPEG2, AUC:0.903
MPEG4, AUC:0.893
H264, AUC:0.972

Figure 6.3: ROC curve for the proposed double encoding detector.

Parameters 1st encoding 2nd encoding

Encoder {MPEG-2, MPEG-4, H.264} {MPEG-2, MPEG-4, H.264}

Bitrate (kb/s) {100, 300, 500, 700} {100, 300, 500, 700}
GOP size {10, 15, 30, 40} {9, 16, 33, 50 }

Table 6.1: Parameters for Creating Doubly Encoded Sequences

actually matches G1) or wrong, since we believe that having just an approxi-

mation of G1 is not meaningful from a forensic point of view. Finally, since we

are considering 14 different source sequences, for each experiment we report:

i) average performance; ii) performance for the video sequence yielding best

results (paris in all the experiments); iii) performance for the video yielding

worst results (waterfall in all the experiments).

In the top of Figure 6.4 we report the performance as a function of B1 - B2.

We see that lower bitrates for the first encoding result in higher performance,

in agreement to what we said in Section 6.1.1: since low bitrates require

strong quantization, acting like a lowpass filter, the number of blocks that

110 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

will be more conveniently encoded as I-MB increases. This is especially true

for videos where uniform regions are present, like the paris sequence (which

yields the best results), while textured content hides this phenomenon, as

confirmed by the waterfall sequence (which is rich of textures). From the

second compression point of view, it is confirmed that low bitrates negatively

affect the performance, since they reduce the possible choices for the encoder

when assigning macroblock types; nevertheless, even in the worst conditions,

the proposed footprint is able to correctly estimate G1 half of the times. The

middle plot of Figure 6.4 shows the performance for different combinations of

codecs. We see that reliability increases when the second encoding is carried

out with H.264, in agreement to what we observed in Section 6.1.3 about the

presence of VPF in doubly encoded videos.

Finally (bottom of Figure 6.4) we evaluate the performance for different

combinations of G1 and G2. Results show an intuitive fact: as G1 increases,

the accuracy of the method drops. The most straightforward justification for

this phenomenon is that, since we are using a fixed number of frames for the

estimation, the higher G1, the less number of periods we are able to observe.

This, as expected, results in noisier estimates. Another interesting fact is that

results improve as G2 increases: in fact, this reduces the number of spurious

effects induced by the GOP structure of the second compression.

6.1. Variation of prediction footprint for double encoding detection 111

20

40

60

80

100

Bitrate sequence

E
xa

ct
 M

at
ch

 (
%

)

100
700

100
500

100
300

100
100

300
700

300
500

300
300

300
100

500
700

500
500

500
300

500
100

700
700

700
500

700
300

700
100

paris waterfall Average (14 sequences)
B

1
B

2

20

40

60

80

100

Codec sequence

Ex
ac

t M
at

ch
 (%

)

H.264
H.264

H.264
MPEG2

H.264
MPEG4

MPEG2
H.264

MPEG2
MPEG2

MPEG2
MPEG4

MPEG4
H.264

MPEG4
MPEG2

MPEG4
MPEG4

paris waterfall Average (14 sequences)
Cod. 1
Cod. 2

20

40

60

80

100

GOP sequence

E
xa

ct
 M

at
ch

 (
%

)

10
9

10
16

10
33

10
50

15
9

15
16

15
33

15
50

30
9

30
16

30
33

30
50

40
9

40
16

40
33

40
50

paris waterfall Average (14 sequences)
G

1
G

2

Figure 6.4: Performance of the method as a function of the B1-B2 bitrate

(top), of the codec combination (middle), and of the G1 - G2 combination

(bottom).

112 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

6.2 Detection of frame removal and insertion

As we anticipated in the introduction to this thesis, double encoding detection

can often become a building block to devise splicing detection algorithms, as

witnessed by many works in image forensics that are based on this idea [4, 35,

40]. Inspired by this paradigm, in this section we describe a novel method that,

by building on the VPF analysis, enables detection of inter-frame forgeries in

digital videos. Specifically, we first modify the VPF detection algorithm so to

make it robust to frame removal between the two encodings; then, we design

an algorithm that iteratively uses this generalized method to detect whether

a misalignment in the frame structure of the video occurred between the two

encodings. If this is the case, we detect the point where the misalignment

occurs and also classify the attack distinguishing between frame deletion and

insertion.

Compared to existing methods targeting the same task, the proposed ap-

proach has the advantage of being able to work when different coding al-

gorithms are used in the first and second compression, a situation that is

very common when dealing with DVs. Although this aspect was partially

investigated also in [63], where different strategies for GOP structuring were

simulated, the proposed algorithm has been practically tested using different

off-the-shelf encoders, under various encoding configurations. Noticeably, the

method retains acceptable performance even when the second compression

is stronger than the former. Finally, the method inherits the computational

simplicity induced by the nature of the VPF, so that the integrity of the video

can be analyzed even without going through the decoding chain.

6.2.1 Shift-invariant VPF

Let us suppose that a video is captured, then some frames are removed using

some editing software, and the final video is saved (i.e., re-encoded). If we

maintain the assumptions stated at the beginning of Section 6.1.1, we still

expect to find the VPF in the altered video but, due to the removal of frames,

the peaks will no longer be periodic throughout the whole video. Instead, we

expect to find a phase discontinuity located at the point where the cut took

place, provided that the user did not eliminate a number of frames that is an

6.2. Detection of frame removal and insertion 113

exact multiple of G1. In the following, we show how to search and exploit such

a discontinuity. First we modify the VPF measuring algorithm so to allow

double encoding detection even when a group of leading frames is removed,

and also estimate the number of removed frames. Then, we propose an itera-

tive algorithm that, leveraging on the modified method, detects removal and

insertion of frames within the video.

Increasing the robustness of VPF

We begin by noticing that even the removal of one frame at the beginning of

the video (between the two encodings) would prevent the method described in

Section 6.1 to work correctly. Indeed, periodic peaks would still appear, but

since the set C is obtained by making use of the GCD operator, the correct

value for G1 could not be in C (neglecting noisy peaks). This becomes evident

if we consider that when the r leading frames are removed before re-encoding,

peaks would be located at kG1− r; for r 6= zG1, z ∈ N, such numbers are not

divisible by G1 and therefore the GCD between couples of elements in this

set cannot be G1. This limitation is clearly due to the fact that our original

method was explicitly thought to detect double encoding, without considering

any form of frame manipulation.

In order to overcome this drawback, we propose to evaluate the inherent

periodicity of v(n) by working on its autocorrelation Rvv(τ), evaluated for lags

τ = 0, . . . , N − 1. By using the very same approach for periodicity estimation

presented in Section 6.1.2, but working on Rvv(τ) instead of v(n), we achieve

robustness against the removal of a set of leading frames. Furthermore, once

we have an estimate Ĝ1 of the period, we can also easily estimate the number

of removed frames modulo Ĝ1; this quantity will be termed shift from now

on for brevity, and it will be denoted by ŝ. Let us introduce the following

function:

ψ(s) =

∑⌊
N−s
Ĝ1

⌋
i=0 v(iĜ1 + s)

N
, (6.6)

that is the mean of the signal v(·) at multiples of Ĝ1 displaced by s. Then,

we can estimate the shift as:

ŝ = arg max
s∈{0,...,Ĝ1−1}

ψ(s). (6.7)

114 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

6.2.2 Iterative analysis for localizing frame removal

The VPF analysis works even when the number of available frames is limited:

according to our experiments, 4·G1 frames are usually sufficient to obtain a

correct estimate of G1. This fact suggests that the video could be analyzed

by splitting it into many sub-parts rather than as a whole. While this would

not help in the case of a video that is just compressed twice, it would allow us

to search for inconsistencies within a manipulated video. Such an approach

would not be possible with the original method, since it is not invariant to

frame shifting. However, by using the modified version proposed in Section

6.2.1, we can use a moving-window analysis to estimate the shift ŝ at every

iteration. Let us assume that the analysis window is moved by one frame

at each iteration. In the case of a double compressed video (without frame

removal), the shift is expected to be a periodic function of period G1, which

decreases linearly from G1 − 1 to 0 and then starts again from G1 − 1, as in

top of Figure 6.5. On the contrary, if the number of removed frames is not

a multiple of G1, the proposed method would detect the correct value for G1

both before and after the manipulation, but the shift would present a phase

discontinuity in correspondence to the first removed frame, as in the bottom

of Figure 6.5.

Inspired by this fact, we propose the following procedure to detect these

discontinuities and remove those that are due to noise. Given a video, we first

compute the signal v(n) as defined in Section 6.1.2. In order to get a reliable

estimate of G1 even in the presence of a manipulation, we analyze the signal

v(n) with a sliding window of size W , shifting it by one frame at a time. At

each step, we use the modified approach proposed in Section 6.2.1 to estimate

G1, thus obtaining a signal g(n), n = 0, . . . , N −W containing the estimate

of G1 at each window position. Then, the overall estimate of G1 for the video

is defined as:

G̃1 = mode(g(n)), (6.8)

where mode is the statistical mode of the signal. Using G̃1, we repeat the

window-based analysis to estimate the value of the shift at each window,

according to equation (6.7), thus obtaining the shift array σ(n), n = 0, . . . , N−
W that was plotted in Figure 6.5. To better highlight the phase discontinuity

in this signal, we remove the periodic component due to the shift of the

6.2. Detection of frame removal and insertion 115

0 50 100 150 200 250 300 350 400
0

5

10

15

Frame number

m
(n

)

0 50 100 150 200 250 300 350 400
0

5

10

15

Frame number

m
(n

)

Figure 6.5: An example of the shift signal σ(n) for a double compressed

sequence (top) and a manipulated sequence (bottom).

window, and define:

σh(n) = mod (n+ σ(n), G̃1). (6.9)

In the ideal case, σh(n) should be a step function with value 0 until the cut is

reached, then it should move to the value C mod G1, where C is the number

of removed frames. Due to noise in the original signal v(n), however, other

peaks may be present in σh(n) that are not related to manipulations. Such an

impulsive noise can be safely mitigated by median filtering the signal σh(n).

Since we are mostly interested in the position of the discontinuity, the first

order derivative σ′h(n) is computed from the filtered signal, and the set L is

defined as:

L = {l : σ′h(l) 6= 0, l ∈ {0, 1, . . . , N −W}}. (6.10)

If the set L is empty, no frame removal or insertion is detected. If the set is

not empty, a further analysis is carried out before classifying the video as ma-

nipulated. Indeed, we know that frame removal would cause a durable change

in the step function σh(n), since once the phase is broken the displacement

should remain constant. This information helps us in discarding elements in

116 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

L that are due to noisy measurements; we propose to adopt the algorithm

in Figure 6.6, where the value ∆ denotes the minimum allowed distance be-

tween two consecutive peaks. The underlying idea is the following: when two

elements l, l′ ∈ L are found, first their “sign” (positive or negative derivative)

is compared; if the signs are the same, it means that we have two successive

increments/decrements in the value of σh(n), and this is not plausible un-

der the assumption of a single cut. So, based on the distance between the

discontinuities, we decide whether to detect a cut in the former and discard

the latter, or simply discard the former and continue with the analysis. On

the other hand, if the two discontinuities are not of the same sign, we check

whether σh(n) takes the same values prior and after the discontinuities: if this

is the case, a cut is detected in l and l′ is discarded, otherwise l is discarded

and the analysis continues.

6.2.3 Localization of frame insertion

Let us now suppose that the manipulated video is obtained by inserting a

group of frames coming from a different sequence, that was encoded using

a constant GOP size G#
1 different from G1. Under these conditions, the

described algorithm is expected to detect two cutting points, one at the be-

ginning and one at the end of the injected sequence, where the phase discon-

tinuity changes again. Let us denote as l1 and l2 the frame indexes where the

first and the second discontinuity are localized, respectively. In order to dis-

tinguish between two independent frame removals and a frame insertion, we

can verify whether the estimate of the GOP value between l1 and l2 coincides

with the estimate on the rest of the sequence or not. Formally, we propose to

calculate:

G̃
#
1 = mode(g(n)), l1 ≤ n ≤ l2 (6.11)

G̃1 = mode(g(n)), n < l1 ∨ n > l2. (6.12)

Finally, frame insertion is detected if G̃
#
1 6= G̃1, and G̃

#
1 is chosen as the

estimate of the GOP size for the pasted sequence.

6.2. Detection of frame removal and insertion 117

Figure 6.6: Algorithm for cut detection, given the set of indices where the

signal σ′h(n) is not null.

6.2.4 Experimental validation

In this section we evaluate the performance of the proposed method for inter-

frame forgery detection. Classification between single- and double-encoded

videos is not addressed here because such a functionality has already been

tested in Section 6.1.3.

We generated the dataset starting from the set of 14 YUV uncompressed

CIF resolution videos mentioned in Section 6.1.3. Each sequence has been ex-

118 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

tended to 1250 frames using mirrored frames repetition, thus avoiding abrupt

changes in content. Throughout the experiments, we used MPEG-2, MPEG-4

and H.264 as possible encoders4. Bitrates were taken from the set {100, 300,

700} (CBR compression mode was used); values for G1 were allowed to take

values in {12,15,31}, while values for G2 were taken in {10,20,25}. By taking

all possible combinations of the above parameters, a total of 10206 double

compressed videos were generated. To generate videos with frame deletion,

each sequence was decoded after the first compression, a group of 100 frames

was removed from a random point, then the second encoding was performed.

This originated 10206 manipulated test sequences.

Given these two sets of videos, we run the analysis, using W = 100,

∆ = 50, and using a width of 200 for the median filter. Since the VPF is

affected by the encoding settings, the performance also depends on them; the

two most important parameters are the codec and bitrate used for the first and

second compression (see Section 6.1.3). For this reason, we plot marginalized

results in Table 6.2 for the first/second compression codec and in Table 6.3

for the first/second compression bitrate. Accuracies were computed averaging

the true negative rate and the true positive rate; a video was considered as

correctly classified when the localized cutting point was less than W frames

away from the true cutting point.

4The libavcodec and x264 libraries were used, through FFmpeg.

6.2. Detection of frame removal and insertion 119

C1/C2 MPEG-2 MPEG-4 H.264

MPEG-2 83.38 % 81.70 % 95.46 %

MPEG-4 81.83 % 79.39 % 96.25 %

H.264 76.10 % 76.19 % 88.32 %

Table 6.2: Accuracy in distinguishing double compressed and manipulated

(by frame-removal) videos. Rows contain the first codec, columns the second.

B1/B2 100 300 700

100 85.44 % 89.68 % 91.27 %

300 77.95 % 86.55 % 88.80 %

700 75.93 % 81.04 % 81.94 %

Table 6.3: Accuracy in distinguishing double compressed and manipulated

(by frame-removal) videos. Rows contain first bitrate (Kb/s), columns the

second.

C1/C2 MPEG-2 MPEG-4 H.264

MPEG-2 77.48 % 77.91 % 89.99 %

MPEG-4 75.15 % 74.24 % 90.52 %

H.264 70.79 % 72.80 % 84.16 %

Table 6.4: Accuracy in distinguishing between frame insertion and frame

removal. Rows contain the first codec, columns the second.

B1/B2 100 300 700

100 86.15 % 89.71 % 90.72 %

300 70.39 % 85.30 % 89.93 %

700 55.58 % 67.51 % 81.47 %

Table 6.5: Accuracy in distinguishing between frame insertion and frame

removal. Rows contain first bitrate (Kb/s), columns the second.

120 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

To evaluate the performance of frame insertion localization, we designed

the following experiment: starting from singularly compressed sequences, we

selected two of them at random, decoded them, and pasted 350 frames from

one sequence into the other one; finally, the spliced sequence was compressed.

Since frame insertion can be detected only when the GOP sizes of the spliced

sequences are different, we allowed G1 to take values in {12, 15} while G#
1

was set to 10. The GOP size of the second encoding, that is G2, was chosen

in the set {33, 40}. As stated in Section 6.2.3, the localization of frame

insertion follows the localization of multiple cutting points. For this reason,

we tested the capability of the method of distinguishing between the two

manipulations. To this end, frame insertion within a video was considered

as correctly localized (true positive) when the beginning of the insertion was

detected no more than W frames away from its actual position and G#
1 was

correctly estimated. On the other hand, true negatives are obtained when

no frame insertion was localized in a video in which only frame removal took

place. Accuracies, obtained by averaging the true positive and true negative

rates, are reported in Table 6.4 for different first/second employed codecs and

in Table 6.5 for different first/second encoding bitrate (results are averaged

across all possible encoding configurations for the pasted segment).

6.3 Intra-frame tampering localization

through VPF and double quantization

analysis

In this section we present a method for localizing intra-frame forgeries in

MPEG-2 videos. In this tampering scenario the forger starts from a video

sequence, decodes the video and alters the content of a group of frames, e.g.,

by introducing and/or removing objects. As a final step, the video is re-

encoded so to be stored and/or transmitted. The method proposed in this

section works under the assumption that both encoding are carried out by

using MPEG-2 in VBR mode (fixed quantizer, see Section 5.1), and that a

different GOP size is chosen for the first and second encoding.

Since the proposed approach is composed of two separate analysis steps,

we first give a sketch of the idea (Section 6.3.1) and then describe each step

6.3. Intra-frame tampering localization through VPF and DQ analysis 121

in detail (Sections 6.3.2 and 6.3.3).

6.3.1 Sketch of the method

Forgery localization has been extensively investigated in image forensics, lead-

ing to the creation of a family of methods that takes an image as input and

produce a probability map as output, associating each pixel (or block of pix-

els) with a probability of being tampered. Within this family, methods based

on double quantization (DQ) analysis are very effective in terms of localization

accuracy. DQ analysis exploits the trace left by multiple JPEG compressions

of the image: at each compression step, the image is transformed in the DCT

domain and the resulting DCT coefficients are quantized. Double quantization

leaves characteristic traces in the signal, that can be leveraged to understand

whether the whole image has been compressed more than once, and also to

detect inconsistencies between the number of quantizations undergone by dif-

ferent regions of the image. It goes without saying that this kind of analysis

is applicable when the target image is available in JPEG format.

Turning to videos, application of DQ-based forgery localization on frames

is not possible in general. Indeed, in contrast to JPEG compression, video

coding algorithms employ error prediction: even when the video is compressed

twice with the very same coding parameters, at each encoding a new predic-

tion is made for all P-frames thus generating completely new prediction errors.

This makes it nearly impossible to model mathematically the behavior of co-

efficients of predicted frames. As a consequence, while it is still possible to

detect traces of double compression in P-frames, the absence of an accurate

mathematical model prevents forgery localization.

Although DQ analysis is not applicable to P-frames, there is still a chance

for intra coded frames, for which the compression algorithm is much more

similar to JPEG (see Section 5.1). More precisely, if a frame is compressed

as intra both by the first and the second codec, we can treat it like a still

image that has been JPEG compressed twice. This is especially true for the

MPEG-2 codec, while the more recent MPEG-4 and H.264 allow variable

block size decomposition and intra-frame prediction, thus deviating consis-

tently from the JPEG analogy. Therefore, we study the possibility of using

DQ analysis for forgery localization in MPEG-2 videos, and only for frames

122 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

that were encoded as intra both in the first and second encoding. In order

to localize such frames we use the VPF: after estimating the GOP size of the

first encoding we can easily retrieve the location of frames that have been

intra coded twice; a DQ analysis is then carried on these frames, employing

a mathematical model tailored for MPEG-2 compression. Figure 6.7 gives a

schematic representation of the approach.

(a)

P P P P P P

P P P P PP P P P

I I I I I I

III

(b)

Figure 6.7: Schematic representation of the proposed approach: a subset of

the frames is selected, then tampering localization is carried separately on

each frame to obtain a forgery map (a). Specifically, those frames that have

been intra-coded twice are selected (b).

6.3.2 Detection of frames encoded twice as intra

Let us assume that a video, composed by N frames, has been encoded twice

using G1 and G2 as the GOP size for the first and second encoding respectively,

where G1 6= m·G2,∀m ∈ N (this condition is necessary since all the I-frames of

the second compression must be excluded from the VPF analysis, see Section

6.1.2). Assuming a fixed GOP structure, the set of indices of the frames that

6.3. Intra-frame tampering localization through VPF and DQ analysis 123

have been intra-coded twice is

CG1,G2 = {n ∈ N : n = m · lcm(G1,G2) ∧ n ≤ N, ∀m ∈ N},

where lcm(G1,G2) represents the least common multiple between G1 and G2.

The cardinality |CG1,G2 | of the set is given by:

|CG1,G2 | = 1 +

⌊
N

lcm(G1,G2)

⌋
,

where b·c stands for the floor function. By using the method presented in

Section 6.1, G1 can be estimated, allowing to perform DQ-based forgery lo-

calization every lcm(G1,G2) frames. For relatively prime values of G1 and G2

the analysis can be carried out only once every G1 ·G2 frames. On the other

hand, the GOP size is usually chosen from a set of possibilities, like 12 for

PAL videos, 15 for NTSC videos, while hand-held devices like mobile phones

often choose a GOP size around 30. At a frame rate of 25 fps, combinations

of the mentioned values for G1 and G2 result in a satisfactory time resolution

for the analysis.

A critical observation regards the use of the method proposed in Section

6.1: such a method, in fact, was tested on double encoded videos, without

either intra- or inter- frame modifications between the two encodings. On the

contrary, here we are assuming that the video is manipulated (by altering the

content of a group of frames) before the second compression takes place. The

robustness of the VPF in this scenario is addressed in Section 6.3.4.

6.3.3 Double quantization analysis for MPEG-2

intra-coded frames

According to the scenario we are considering, tampered frames that have been

encoded twice as intra will consist of two groups of pixels: those that have not

been modified, and which underwent a double quantization, and those that

have been introduced between the two encodings (Figure 6.8). Even when

these latter pixels come from a compressed sequence, they will unlikely be

pasted respecting the 8×8 quantization grid of the host frame and, therefore,

will not show traces of double quantization after the second encoding, thus

124 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

Figure 6.8: Idea underlying DQ-based forgery localization: pixels that do not

expose traces of double quantization are considered as tampered.

making localization possible. This idea was firstly introduced in [4] and further

refined in [35].

If we consider the histogram of a specific set of DCT coefficients (e.g., those

in position (0,1) in all 8×8 blocks), we should see a mixture of two components:

a comb-shaped component due to unaltered, double compressed regions, and

a “standard” component due to newly introduced regions. As shown in Figure

6.9, we denote by hDQ(x) the normalized histogram5 of DCT coefficients that

underwent a double quantization, and by hSQ(x) the normalized histogram of

coefficients that underwent a single quantization. The mixture of these two

components can be modeled, as suggested in [35] as:

hmix(x) = αhDQ(x) + (1− α)hSQ(x), (6.13)

where α is a scalar value determining the balance of the mixture. If we had

access to hDQ and hSQ, we could associate each coefficient separately to the

probability of belonging to one of the two components. Unfortunately, the

only histogram available to the analyst is hmix. The key idea, first proposed

in [35], is to search for an estimate of both hSQ and hDQ.

Concerning hSQ, we follow the approach in [35] and resort to the well

known calibration technique, that was introduced in [65]. Given a quantized

signal, calibration allows to obtain a reliable estimate of the histogram of the

original (unquantized) signal. In the case of a quantized frame, calibration

simply requires to dequantize and inverse transform the frame, remove a few

5Given the histogram of a distribution of samples, its normalized version is obtained by

dividing each bin count by the total number of samples (i.e., the sum of all bin counts).

6.3. Intra-frame tampering localization through VPF and DQ analysis 125

Figure 6.9: Graphical explanation of the DQ effect in presence of a tampered

region.

rows and/or columns, and then go back to the DCT domain. We will denote

by hcal(x) the histogram of calibrated DCT coefficients, that will be used as

an approximation of never-quantized coefficients. Since k2 is available from

the video bitstream, we can write:

hSQ(x) ' h̃(x) = ∆k2(hcal(x)), (6.14)

where ∆ indicates the quantization function, that will be described later in

detail for the case of MPEG-2 compression.

After obtaining an estimate of hSQ, we need to estimate also the other

component of the mixture, that is hDQ. Also in this case, we can follow

the reasoning proposed in [35]: if we knew the quantization multiplier of

the first compression, k1, we could count how many bins of the histogram of

unquantized coefficients fall within each bin of hDQ, starting from the estimate

we have of hSQ (see Figure 6.10 for a graphical description). For the moment,

let us call n(x, k1, k2) the function implementing such a count, allowing us to

126 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

Figure 6.10: Graphical representation of the method for estimating hDQ.

write:

hDQ(x) = n(x, k1, k2) · ˜h(x); (6.15)

we will derive n(·) for the case of MPEG-2 compression later.

Let us now denote with H0 and H1 the hypothesis of being tampered

and original, respectively, for the i-th coefficient. In the considered scenario

(Figure 6.9), we can write:

p(xi|H0) = hSQ(xi) ' h̃(xi) (6.16)

and

p(xi|H1) = hDQ(xi) = n(xi) · h̃(xi), xi 6= 0. (6.17)

By Bayes rule, and assuming equal priors:

p(H1|xi) =
P (xi|H1) · P (H1)

P (xi|H1) · P (H1) + P (xi|H0) · P (H0)
(6.18)

=
1

1 + P (xi|H0)·P (H0)
P (xi|H1)·P (H1)

(6.19)

=
1

1 + n(xi)
, (6.20)

where ni(x) is the n(x) function for the i-th coefficient.

These steps are carried out separately for each DCT coefficient (usually

only the first dozen of AC coefficients are used for the analysis). Then, for each

6.3. Intra-frame tampering localization through VPF and DQ analysis 127

8 × 8 block, the probability of being tampered is “accumulated”, assuming

statistical independence between DCT coefficients, as:

p = 1/

 ∏
i|xi 6=0

ni(xi) + 1

 . (6.21)

In order to be able to compute the above probabilities, we still need to: i)

define a way to estimate k1, since it is not available to the analyst; ii) derive

the function n(·) for the MPEG-2 quantization scheme. To face with these

problems, we necessarily deviate from the method proposed in [35] for JPEG

images. In fact, some significant differences exist between the two cases:

• the dequantization formulas are different: MPEG-2 dequantization in-

volves rounding towards zero [50], an operation that is not necessary in

JPEG;

• in JPEG, the 8×8 quantization matrix defined in the header determines

the quality factor; in MPEG-2, instead, there is a reference quantization

matrix, defined in the standard, that is parameterized by the multiplier

k to adjust the quantization strength (see Section 5.1);

• in JPEG, the quantization matrix is the same for the whole image;

this holds also for MPEG-2 when a fixed quantizer is used, while the

quantization matrix may change from frame to frame or MB to MB, for

instance, for CBR coding.

Each of these facts has a direct implication on the method in [35]:

• because of the different dequantization formula, the function n(·) will

likely change for MPEG-2;

• since all quantization coefficients are obtained by multiplying the refer-

ence matrix by k, it is not necessary to estimate a different quantization

step for each coefficient (we can directly estimate k);

• in the case of CBR coding, that is left for future work, MBs that are

not quantized using the same k must be analyzed separately.

128 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

That said, in the following we derive the function n(x) for MPEG-2 quan-

tization scheme. Let us denote the never-compressed DCT coefficient on the

i-th row and j-th column of an 8×8 block with x(i, j), where i, j ∈ {0, . . . , 7}.
Similarly, we denote with u1(i, j) the quantized version of the coefficient. Ac-

cording to the MPEG-2 standard [50], and following the proposed notation,

the de-quantized version6 of the DCT coefficients coming from a single com-

pressed intra-coded frame is:

x1(i, j) = sign (u1(i, j))

⌊
W (i, j) · |u1(i, j)| · k1

16

⌋
(6.22)

for all coefficients apart from the DC, where | · | is the absolute value opera-

tor, W (i, j) denote an element in the 8 × 8 quantization matrix, and k1 and

k2 are the multipliers that parametrize the quantization matrix in the first

compression and in the second compression, respectively.

Starting from (6.22), the most intuitive way to define the quantization is:

u1(i, j) =

[
16 · x(i, j)

k1 ·W (i, j)

]
, (6.23)

where [·] represents the rounding to nearest integer operation.

Now, let us denote by u2(i, j) the re-quantized version of x1(i, j) (i.e., the

double quantized coefficient): according to (6.22) and (6.23), omitting the

position indices for brevity, we have:

u2 =

 16

k2 ·W

sign

([
16 · x
k1 ·W

])W ·
∣∣∣[16·x
k1·W

]∣∣∣ · k1

16

 .
Let us now determine the interval of values of x that are mapped to u2

after the double quantization process. By definition u2 is integer, so:

u2 = [n] =⇒ u2 −
1

2
≤ n < u2 +

1

2
.

Hence, in our case:

u2 − 1
2 ≤ 16

k2·W ·
(
sign

([
16·x
k1·W

])
·
⌊
sign

([
16·x
k1·W

])
·W ·

[
16·x
k1·W

]
·k1

16

⌋)
< u2 + 1

2 ,

6Note that the MPEG-2 standard only defines the decoding algorithm, while developers

are free to choose the specific implementation of the encoding algorithm.

6.3. Intra-frame tampering localization through VPF and DQ analysis 129

Figure 6.11: Graphical representation of (6.24).

and, taking out the leftmost factor of the central term:

k2·W
16

(
u2 − 1

2

)
≤ sign

([
16·x
k1·W

])
·
⌊
sign

([
16·x
k1·W

])
·W ·

[
16·x
k1·W

]
·k1

16

⌋
< k2·W

16

(
u2 + 1

2

)
.

Being n(x) a simmetric function, we can focus the attention on the specific

case:

sign

([
16 · x
k1 ·W

])
= 1,

without loss of generality. In this case, we have

k2 ·W
16

(
u2 −

1

2

)
≤

W ·
[

16·x
k1·W

]
· k1

16

 < k2 ·W
16

(
u2 +

1

2

)
.

Now let us make use of the following property: given a, b ∈ R, we have

a ≤ bcc < b =⇒ dae ≤ c < dbe, (6.24)

as graphically illustrated in Figure 6.11. Application of (6.24) to our case

yields:

⌈
k2 ·W

16

(
u2 −

1

2

)⌉
≤
W ·

[
16·x
k1·W

]
· k1

16
<

⌈
k2 ·W

16

(
u2 +

1

2

)⌉

16

W · k1

⌈
k2 ·W

16

(
u2 −

1

2

)⌉
≤
[

16 · x
k1 ·W

]
<

16

W · k1

⌈
k2 ·W

16

(
u2 +

1

2

)⌉
.

130 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

Figure 6.12: Graphical representation of (6.25).

Similarly to the previous, the following property holds for a, b ∈ R (see

Figure 6.12):

a ≤ [c] < b =⇒ dae − 1

2
≤ c < dbe − 1

2
. (6.25)

Using this property, we obtain:⌈
16

W ·k1

⌈
k2·W

16

(
u2 − 1

2

)⌉⌉
− 1

2 ≤ 16·x
k1·W <

⌈
16

W ·k1

⌈
k2·W

16

(
u2 + 1

2

)⌉⌉
− 1

2

k1 ·W
16

(⌈
16

W · k1

⌈
k2 ·W

16

(
u2 −

1

2

)⌉⌉
− 1

2

)
︸ ︷︷ ︸

L(x)

≤ x < k1 ·W
16

(⌈
16

W · k1

⌈
k2 ·W

16

(
u2 +

1

2

)⌉⌉
− 1

2

)
︸ ︷︷ ︸

R(x)

from which we can finally get:

n(x) = R(x)− L(x) =
k1 ·W

16

(⌈
16

k1 ·W

⌈
k2 ·W

16

(
u2 +

1

2

)⌉⌉
−
⌈

16

k1 ·W

⌈
k2 ·W

16

(
u2 −

1

2

)⌉⌉)
.

(6.26)

In the above equation, k1 is the only parameter that must be estimated,

given that k2 and the values of W are available from the bitstream. The

multiplier k1 is defined by its relation with the quantizer scale factor used in

the first encoding Q1 (see Section 5.1), yielding to a possible value in the set

K1 = {2Q1 : 1 ≤ Q1 ≤ 31}.
As we said before, if we assume to have the correct k1, the histogram of

doubly quantized coefficients can be obtained from h̃(x) as n(x; k1) · h̃(x), and

6.3. Intra-frame tampering localization through VPF and DQ analysis 131

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 6.13: An intra-frame tampering (left figure) and the produced prob-

ability map (right figure). For showing purposes, a 3 × 3 median filter has

been applied to the map.

we could write the probability distribution of the observed coefficients as the

following mixture:

p(x; k1, α) = α · n(x; k1) · h̃(x) + (1− α) · h̃(x), (6.27)

where α ∈ [0, 1]. As suggested in [35], an effective way to get an estimate of k1

is to iteratively search the value k̂1 that minimizes the difference between the

observed histogram h(x) and p(x; k1, α), choosing the optimal α in the least

square sense (formula is given in [35]). With respect to the JPEG case, the

minimization is simplified by the fact that the quantization matrix is known,

and all the coefficients share the same k1. Thus, we define the following vector

h = [h1(−B
2) . . . h1(−1) h1(1) . . . h1(B2) h2(−B

2) . . . hC(B2)]T

where B+1 is the number of bins of h(x) and C is the number of considered

coefficients. Similarly we define h̃ and n. Then, we can write:

p(k1, α) = α · n(k1) · h̃ + (1− α) · h̃,

where “ · ” denotes component-wise vector product. Finally, k̂1 is obtained

as

k̂1 = arg min
k1∈K1

||h− p(k1, α)||2.

By using all the coefficients to estimate k1, a more robust estimation is ob-

tained; this is a crucial benefit, especially if we consider that: i) values in W

132 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

are quite high even for small i and j, ii) the spatial resolution of videos is

usually lower than that of images; and both these facts reduce the number

of DCT coefficients that can be exploited for the estimation. Using k̂1 and

the n(x) function defined in (6.26) for the MPEG-2 case, we can compute the

probability in (6.17). Finally, the probability that an 8× 8 block is tampered

is obtained through equation (6.21). Figure 6.13 shows a forged frame along

with the probability map generated by the proposed method.

6.3.4 Experimental validation

Experiments have been carried out on a set of videos, selected so to have

heterogeneous scenes7, cropped to a resolution of 720×576 pixels. All videos

have been encoded with MPEG-2 VBR, fixed quantizer, using the FFmpeg

coding software8.

Experimental validation was carried out as follows (Figure 6.14): the video

is first compressed with a quantizer scale factor Q1; then it is decoded and

a square block of 200×200 pixels is replaced with the same content coming

from the uncompressed version of the video; finally, the resulting video is

re-encoded with a factor Q2. Using the uncompressed version of the same

video as a source for tampered pixels, it is possible to create a forgery that is

imperceptible to the eye, thus mimicking the work of an expert.

Given that the performance of VPF do not strongly depend on the size

of GOPs, we employed fixed GOP sizes G1 = 12 and G2 = 15 for the first

and second compression respectively. Furthermore, we limited ourselves to

use P-frames, since GOP estimation in presence of B-frames is not possible

with VPF. As shown in [35], forgery localization generally works when the

second compression is not as strong as the first one. For this reason, we

chose Q1 ∈ {6, 8, 10, 12}, Q2 ∈ {2, 3, 4, 5}, and all the possible combinations

between these two sets are used for generating tampered videos. Finally, since

the model proposed in Section 6.3.3 has been derived assuming that the fixed

quantizer is uniform, the dead-zone of the quantizer implemented in FFmpeg

was fixed to the interval [−∆/2,∆/2] (where ∆ denotes the quantization step),

7Selected videos are: ducks take off, in to tree, old town cross, park joy, shields, sun-

flower and touchdown pass, freely available at http://media.xiph.org/video/derf/.
8http://www.ffmpeg.org/

http://media.xiph.org/video/derf/
http://www.ffmpeg.org/

6.3. Intra-frame tampering localization through VPF and DQ analysis 133

YUV

YUV0

First
Compression Decompression

MPEG2

Tampering

YUV

Second
Compression

YUV1M1

YUV

YUV2

MPEG2
M2

Tampered
MPEG-2 video

Figure 6.14: Adopted procedure for generating tampered videos.

by setting the parameter ibias equal to 128. Note that the model can be

easily adjusted to work with different dead-zones.

First of all, we investigated the reliability of the VPF-based GOP esti-

mation in the considered scenario since, in the case of a wrong estimation,

the proposed method would fail. The GOP size was retrieved from the avail-

able set of tampered videos and the number of exact estimations of G1 was

calculated. The estimation never failed under the considered settings, thus

confirming that VPF can be safely used.

After retrieving the GOP size of the first compression (denoted with Ĝ1)

for each tampered video, DQ analysis was carried out, specifically in frames

indexed by elements in the set CĜ1,15, defined in Section 6.3.2. Only the

first 5 AC coefficients in the zig-zag ordering were used for the analysis. The

probability map produced from each frame was then thresholded and com-

pared to the ground truth mask, allowing us to calculate the true positive

and false positive rate; these values were averaged over all videos sharing the

134 6. Double Encoding Detection and Forgery Localiz. for Digital Videos

0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1
Q1 = 6

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Q2 = 2

Q2 = 3

Q2 = 4

Q2 = 5

0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1
Q1 = 8

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Q2 = 2

Q2 = 3

Q2 = 4

Q2 = 5

0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1
Q1 = 10

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Q2 = 2

Q2 = 3

Q2 = 4

Q2 = 5

0 0.1 0.2 0.3 0.4
0.5

0.6

0.7

0.8

0.9

1
Q1 = 12

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Q2 = 2

Q2 = 3

Q2 = 4

Q2 = 5

Figure 6.15: ROC curves obtained for the examined combination of Q1 and

Q2. From top left to bottom right, increasing values of Q1 are considered,

and performance for varying values of Q2 are plotted (notice that curves have

been magnified to improve readability). As expected, lower values for the

second compression facilitate the localization.

same combination of Q1 and Q2. By varying the threshold, for all the ex-

plored combinations of Q1 and Q2 ROC curves were obtained (Figure 6.15)

and their AUC calculated (Table 6.6).

As the table clearly shows, the localization accuracy obeys the same rules

6.3. Intra-frame tampering localization through VPF and DQ analysis 135

HHH
HHHQ1

Q2
2 3 4 5

6 0.98 0.97 0.68 0.63

8 0.98 0.98 0.96 0.93

10 0.98 0.98 0.91 0.94

12 0.98 0.98 0.97 0.94

Table 6.6: AUC obtained with the proposed method for different combina-

tions of the first and second quantizer scale factors.

holding for images: for a given Q1, lower values of Q2 facilitate the local-

ization, because the two components of the mixture are more clearly distin-

guishable since the peaks in the histogram are better separated. For the same

reason, if we fix the value for Q2, higher values of Q1 favour the performance

of the method. We can conclude, then, that larger differences between Q1

and Q2 correspond to higher reliability of the produced map.

Moreover, although this is not visible from the reported results, we can

state that the proposed method is not reliable on very uniform regions. The

reason is that such regions have a very sparse representation in the DCT

domain, making it difficult to tell apart double and single compressed coeffi-

cients (they will likely be zero in both cases). Such an information could be

exploited to help the analyst: for example, in the output map those regions

where the tool is likely to be unreliable could be marked with a specific flag.

Chapter 7

Concluding Remarks

SPLICING detection in digital videos is a very interesting and open field

today, also considering the fact that video editing is really one click away:

even portable devices allow basic manipulations, like cropping and trimming,

that can significantly alter the meaning of the recorded content. The VPF

analysis and the derived methods that we introduced in this part of the thesis

are an attempt to widen the forensic analyst arsenal for video integrity and

authenticity verification. We believe the main strength of the VPF relies in

the simplicity of the phenomena being studied, that makes it fit most of the

diffused encoding standards (with the noticeable exception of Motion-JPEG

coding, where all frames are intra-coded, thus preventing the presence of

the VPF). On the other hand, the tools we proposed are undoubtedly open

to generalizations and improvements, which are outlined in the rest of this

chapter.

7.1 Widening the generality of VPF

Probably the main limitation to the applicability of the VPF-based analysis

is that several video editing tools adopt B-frames to encode the produced

video, sometimes even as a default option. Throughout our discussion we

never considered the impact of B-frames on the presence of the VPF but

(as confirmed by some preliminary experimental investigation) such impact

is definitely not negligible. This fact is not surprising, since we focus the

analysis on prediction of MBs, and in B-frames such a prediction follows a

more elaborated path. Therefore, while we can state that the VPF analysis

is not adoptable in its current form when the second encoding features B-

frames, we can argue that some traces of double encoding are still left in the

way MB-s are predicted, though in a different way. This is indeed the first

138 7. Concluding Remarks

extension to the VPF we are going to investigate in the future.

As a second point, we noticed that the performance of the VPF analysis

are somewhat content dependent. Also in this case, there is a rather intuitive

justification for this fact: MBs containing very smooth, untextured content

are likely to be predicted differently than “complex” MBs. On the one hand

this can be seen as a limitation of the VPF, but on the other hand it opens to

the possibility of a more robust study: video frames most of the times contain

both uniform and textured regions, so that we could adaptively select a subset

of MBs and limit the analysis to them. Moreover, since modern camcorders

capture video at very high resolutions - and considering that MBs are not

bigger than 16-by-16 pixels - chances of finding MBs with uniform content

increase.

Finally, we must admit that the VPF has a rather empirical foundation

at the moment, and a deeper theoretical investigation about its originating

factors is needed. However, providing a rigorous and general mathematical

modeling for MB prediction is hard (if not impossible), because coding stan-

dards do not contain indications on how this phase should be implemented,

and developers are left completely free.

7.2 Future works on inter- and intra- frame forgery

detection

Since the methods we proposed in sections 6.2 and 6.3 rely strongly on the

VPF, they also inherit its limitations. Similarly, they will also benefit from

the possible improvements to the VPF analysis that were proposed previously

in this chapter. Besides that, there are some other, more specific, possible

extensions to such methods.

Concerning the proposed inter-frame forgery detection system, the local-

ization of cutting/insertion points is not as precise as that allowed by motion-

vector based schemes [62, 63], as it depends on the width of the analysis win-

dow: larger windows allow more reliable analysis, but this comes at the price

of a lower localization resolution. Moreover, due to its intrinsic nature, the

method cannot detect frame manipulations when the attacker removes/inserts

a whole GOP, thus re-establishing the exact periodicity of the analyzed signal;

7.2. Future works on inter- and intra- frame forgery detection 139

a specific analysis technique should be devised for this specific forgery setting.

Finally, the method has not been evaluated in the presence of global processing

of the video, e.g. resizing of frames. This is a potential threat to the reliability

of the analysis: for example, resolution adjustment is not unfrequent when

the video is imported and then exported using an editing software. However,

since all frames would undergo the same resampling operation, there is hope

that the impact of resizing on MB prediction is not strong, and the same

reasoning applies to other kind of processing that are not content-dependent.

We are willing to perform a deep experimental investigation to shed light on

this aspect.

As to the intra-frame forgery localization method, we had to impose rather

heavy requirements: first, we only considered the CBR coding mode, where a

fixed quantizer is used throughout the same frame. Generalization to differ-

ent quantizers is feasible at the cost of a more complex analysis: DQ analysis

could be carried separately, grouping MBs based on their quantization factor;

nevertheless this would lead to a lower reliability of the localization map, be-

cause model parameters would be estimated on a lower number of samples.

Moreover, we assumed that no cropping occurred between the two compres-

sions, because this would delete DQ traces: also in this case, it is possible

to extend the method so that it searches for traces of non-aligned double

quantization (this kind of analysis has been proposed in [41] for images). An-

other practical constraint regards compression quality: the video should not

be re-encoded at lower quality, otherwise DQ traces would not be detected.

Compared to previous ones, we believe this requirement is not very limit-

ing: the first encoding is typically performed by the capturing device, whose

storage availability is limited, thus calling for strong compression. On the con-

trary, tampering is usually performed on a PC, where coding time and storage

capabilities are not a concern; it is reasonable to think that the user employs

less aggressive compression to avoid decreasing the quality of the produced

video. Finally, we recall that the only supported codec is MPEG-2, whose

popularity is decreasing in favour of more recent coding algorithms such as

H.264. Unfortunately, modern coding algorithms employ advanced techniques

(like adaptive choice of macro-block size, intra-frame spatial prediction, etc.)

that strongly complicate double quantization analysis.

140 7. Concluding Remarks

7.3 Conclusions

During our work, and by interacting with people working on the field, we got

the understanding that video forensics is still at an embryonal development

stage. This is evident both from the theoretical point of view (the amount of

mathematical models developed for digital video forensic is incomparable to

that existing for images) and from the application point of view, meaning that

there are few published tools for video authenticity verification, and no tools

at all in the market. On the other hand, if we peek into the field of forensic

image and video analysis (i.e., the branch of forensic science that tries to

enhance the quality of multimedia contents so to improve their intelligibility),

we see that videos are far more investigated than images. Thus, we can argue

that digital videos are considered of great importance as digital evidences in

the forensic environment. Since it is slowly but constantly becoming clear to

the forensic community that the integrity and authenticity of digital evidences

should be verified before trusting them, we can easily foresee a strong increase

in the need for video authentication tools; hopefully, this will further motivate

research in this fascinating field.

Part III

Fake Quality and Splicing

Detection in MP3 Audio

Tracks

143

Abstract

Audio recordings are one of the most important assets in the forensic

environment. Be them obtained by an authorized recording of a conver-

sation, by electronic eavesdropping or by wiretapping, gigabytes of audio

recordings are captured everyday to be used in the court. Compared to

the visual counterpart, a decent audio manipulation is much easier to

realize: this was already true in the analog world, and has become even

more true in the digital era. Thus, the combination of high forensic rel-

evance and easiness of manipulation rapidly raised the problem of audio

integrity and authenticity verification.

While up to the ’90s methods were investigated to authenticate magnetic

tape recordings, recently the attention moved to the digital side and nowa-

days there are several ways to investigate the authenticity of an audio

track. However, it is surprising that digital image and audio forensics,

despite being born almost simultaneously, followed two totally separated

branches: techniques that worked brilliantly well for images were never

applied to audio signals and viceversa. One noticeable example is the

detection of cut-&-paste based on traces of double compression: while

double quantization analysis has been investigated deeply for digital au-

dio, its application to authenticity verification was never attempted.

The contribution of this part of the thesis goes in this direction, and is

two-fold: first, we propose a novel approach for the detection of double

MP3 encoding, with an emphasis on fake quality detection. Then, sim-

ilarly to what we did for video forensics, we build on the proposed tech-

nique to provide a tool for forgery localization, still under the assumption

of MP3 coding. While our studies focused only on MP3 coding, the un-

derlying principles can be extended without problems to different lossy

audio compression standards.

Chapter 8

Introduction to Audio Forensics

AUDIO forensics is the discipline studying the acquisition, the analysis

and the evaluation of audio recordings that can be used in a court as

bodies of evidence [7]. As such, the main goals of audio forensics in its broader

definition are:

• assess the authenticity and integrity of a recording;

• process the signal in order to enhance its intelligibility, e.g., for making

a recorded conversation more understandable;

• analyze the signal so to extract information from it, like the identity of

speakers, the transcription of dialogues, or even information about the

recording environment.

Audio forensic can be considered more mature, from an historical point

of view, compared to image and video forensic. This is certainly due to the

importance that this kind of examination had in some important legal cases

dating back to to ’60s. It was actually in the development of the United States

versus McKeever case, that the judge outlined the first rules for assessing

the authenticity of an audio recording. Among the list of conditions (fully

explained in [7]), there are requirements about audio integrity (“that the

recording has been preserved in a manner that is shown to the court”) and

authenticity (“that changes, additions, or deletions have not been made in

the recording”). Of course, the judge did not provide methods for assessing

whether the conditions were met.

A few years later, audio forensic played an important role in the Watergate

scandal, when a panel of audio experts were asked to analyze the authenticity

of one of the recorded Nixon’s conversations. After analyzing the magnetic

146 8. Introduction to Audio Forensics

tape, the panel concluded that there were traces of severe manipulations,

namely erasures.

Although the mentioned historical cases date back to the analog era, many

lessons learned at that time are still valid. It is easy to guess that authenticity

verification has become even more difficult with digital audio recordings, since

“physical” traces related to magnetic tapes are no longer of help. There are

mainly two kinds of manipulations that can mine the authenticity of an audio

recording:

• cut-type, were part of the recording is erased or replaced;

• signal processing, where non-linear effects are applied to the signal or

the signal is mixed with extraneous content.

In both cases, it is fundamental to assess whether the track was compressed

after editing, because the reliability of some of the most effective techniques

for authenticity verification is undermined by lossy coding.

8.1 Previous works in audio forensics

Although audio forensics pursue a wide range of goals, in the scope of this

thesis we are mainly interested in those techniques related to authenticity and

integrity verification. For this reason, in the following we will only mention

the most relevant works targeting this application, with a particular emphasis

on those based on the analysis of quantization artifacts.

8.1.1 Techniques based on the Electric Network Frequency

One of the most popular and effective branch of techniques in audio forensics

is related to the analysis of Electric Network Frequency (ENF) [66]. ENF

is the characteristic frequency of a networked electricity supply transmission

system, whose typical nominal values are 50Hz or 60Hz. When a digital

recorder is used to capture an audio track, the power line related signal will

be “embedded” within the registration. Interestingly, this holds not only for

recorders connected to the power supply, but also for battery-powered device

as long as they are used in the proximity of electro-magnetic fields emanating

from the network.

8.1. Previous works in audio forensics 147

While electric companies do their best to keep the ENF as close al possible

to its nominal value, small fluctuations (in the order of 10−2 Hz) are unavoid-

able. An important property of such fluctuations is that they are consistent

throughout the entire network: experimental evidence confirmed that, at a

given time, the actual ENF has the same value across Europe (apart from

UK, which is not connected), and the same rule holds in different parts of the

world. Building on this fact, Grigoras [67] showed that it is possible to date an

audio recording, by comparing the observed ENF within the track with a refer-

ence database. Moreover, by looking for partial matching and inconsistencies,

also authenticity verification can be performed [67]. The main drawback of

the above technique is that a reference database is needed, together with a

reliable engine for searching possible matches. Recently, a different approach

to authenticity verification based on ENF has been proposed by Rodŕıguez

et al. [68], whose idea is to exploit the bare presence of the ENF (not its

fluctuations). The audio signal is analyzed with a sliding window, estimating

the phase of the ENF-related signal at each time: if the track is manipulated,

e.g., by a cut-&-paste attack, the phase of the ENF related sinusoid should

show a tell-tale discontinuity. The main obstacles to the use of ENF related

techniques probably resides in the fact that many recording devices feature a

band-pass filter that removes low frequencies, including 50Hz. In such cases

it may still be possible to analyze traces of the ENF at harmonic frequencies,

but the analysis becomes much less accurate.

8.1.2 Techniques based on quantization analysis

The audio forensic community also worked significantly on the analysis of the

effects of lossy compression, with an emphasis on fake-quality detection, that

is when an audio file is recompressed at higher bit-rate to pass off it as a

high-quality track. To defeat Fake-Quality MP3, Yang et al. [69] observed

that there are many more quantized Modified-DCT (MDCT) coefficients with

small values in a single compressed MP3 file than in a fake-quality MP3 file, no

matter which bit rate the fake quality MP3 was transcoded from. According

to this, a detector was proposed that just measures the number of MDCT

coefficients assuming ±1 values and compares this value to a given threshold

T : if it is lower than T , the file is a fake-quality one, otherwise it is a single

148 8. Introduction to Audio Forensics

compressed one. The same authors in [70] proposed to detect double MP3

compression through the use of support vector machine classifiers with feature

vectors formed by the distributions of the first digits of quantized MDCT

coefficients; in particular, a global method was proposed, where the statistics

on the first significant digit of all quantized MDCT coefficients are taken, and

the probability distributions of nine digits are used as features (9 dimensions)

for training a SVM. A so called band distribution method is also proposed,

where a procedure of band division is added before computing the statistics

on the first digits, allowing to increase the performance. To detect double

MP3 compression, Liu et al. [71, 72] proposed to extract some features of the

MDCT coefficients and use them to train a SVM; more specifically, a set of

statistical features of zero MDCT coefficients and non-zero MDCT coefficients

from the frequency range as well as individual scale bands are exploited.

As to forgery detection, Yang et al. [73, 74] developed a method for MP3

audio files: based on the observation that tampering breaks the original frame

segmentation, frame offsets are used to locate forgeries automatically, allow-

ing to detect common forgeries such as deletion, insertion, substitution, and

splicing. However, experimental results are carried out on audio files that

have not been re-encoded in MP3 format after the manipulation. Böhme et

al. presented in [75] a method to determine the encoder of MP3 data on

the basis of statistical features extracted from the data; the work also ad-

dresses the classification of MP3 files re-compressed with different encoders,

but considering the same value of bit rate for the second compression. Finally,

Moehrs et al. [76] considered the inverse decoder problem, where only the un-

compressed samples are known to the analyst and the goal is to recover the

parameters of a possible previous compression. The same problem is tackled

with in a work by D’Alessandro et al. [77], where some properties of the fre-

quency spectrum of the song under analysis are exploited; the same classifier

used to differentiate between different MP3 quality levels was also applied to

detect transcoded MP3s, but for this scenario the presented experiments are

rather limited.

8.2. Basics of MP3 audio coding 149

Figure 8.1: High level block diagram of MP3 coding (a) and decoding (b).

8.2 Basics of MP3 audio coding

Audio coding is a very broad field, that of course cannot be reviewed in this

thesis. Here we limit ourself to just one coding algorithm, namely MPEG-1

Layer III (abbreviated with MP3 from now on), since it is the one that is

treated in our work. Also within this coding scheme, we discuss only those

characteristics that are strictly necessary to the understanding of our work,

omitting many details.

The basic idea underlying MP3 coding is the same of all perceptive coding

schemes: those parts of the signal that are less audible by the human ear can

be discarded without a significant perceptual loss. Audio is processed by

splitting it into frames of 1152 samples per channel. Since the human hearing

apparatus has different sensitivity to different frequencies, the first operation

that is carried during MP3 coding is the conversion to spectral components,

using an analysis filterbank, that generates 32 separate sub-bands (leftmost

side of Figure 8.1), each one to be treated separately.

For each band, an adaptive Modified Discrete Cosine Transform (MDCT)

is computed. This transform is specifically thought to be computed on ad-

jacent blocks of a signal, where the last half of a block coincides with the

150 8. Introduction to Audio Forensics

first half of the following block. The size of blocks can vary between short

blocks (containing 6 spectral points) and long blocks (18 points); the choice is

regulated by a psychoacoustic model. For a long block a total of 576 (32×18)

spectral coefficients are generated (192 for short blocks) and this forms a

granule; two granules together form one MP3 frame.

The following step, that is crucial for the forensic analysis we are going

to undertake, is quantization of the spectral coefficients of each band: this

is a critical step, since the quantization noise must be kept below the so-

called masking threshold to guarantee a negligible perceptual impact. To

this aim, this step is carried differently for each sub-band and, within each

sub-band, for different MDCT coefficients. The impact of quantization is

evaluated using a core element of MP3 coding, that is the psychoacoustic

model. This model is used to adaptively determine the number of code bits to

be allocated to each sub-band, by iteratively searching an acceptable balance

between distortion and quantization. The quantization is non-uniform, since

smaller steps are used for low valued coefficients. After quantization, the 576

MDCT coefficients are Huffman coded and organized in the output bitstream.

Chapter 9

Double Encoding Detection and Forgery
Localization for MP3 Tracks

THIS chapter introduces a novel audio forensic tool for MP3 compressed

audio files, based on analyzing the effects of double compression in the

statistical properties of quantized MDCT coefficients. The method relies on

a single measure derived from the statistics of MDCT coefficients, allowing

to apply a simple threshold detector to decide whether a given MP3 file is

single compressed or it has been compressed twice, without resorting to SVM

classifiers. Moreover, the proposed method is able to derive the bit-rate of

the first compression by means of a Nearest Neighbour classifier. The ability

of the algorithm to detect double MP3 compressed files remains valid also

on tracks of reduced length, allowing its application to the localization of

single/double compressed segments within an MP3 audio file. By building on

this feature, we develop an authenticity verification method that, under some

assumptions, is able to localize spliced regions within MP3 tracks.

The chapter is structured in two main parts: first, the method is presented

(Section 9.1) and its application to fake quality detection are discussed, then

the extension to forgery localization is explained (Section 9.2). Experimental

validation, including comparison with two state of the art methods [70, 72],

is the object of Chapter 10.

9.1 Detection and classification of double compres-

sion

The core idea of the algorithm is to measure the similarity between the his-

togram of quantized MDCT coefficients of the MP3 file under analysis, that

has possibly undergone a double compression, and the histogram of the MDCT

152 9. Double Encoding Detection and Forgery Localization for MP3 Tracks

coefficients computed on a single compressed version of the same file. Intu-

itively, if the distance between the two distributions is low, we deduce that

the file under analysis has not been MP3 encoded twice, viceversa the file will

be considered as double compressed.

Obtaining a reliable estimate of the distribution of the single quantized

MDCT coefficients from the corresponding quantized or double quantized co-

efficients appears to be a difficult task. However, it has already been observed

in the image forensic literature [78, 8] that the DCT coefficients obtained by

applying a slight shift to the grid used for computing the block DCT usually

do not exhibit quantization artifacts (calibration technique [8]). In a similar

way the distribution of the single compressed MDCT coefficients can be ap-

proximated by generating a simulated single compressed signal (referred to

as calibrated signal from now on), starting from the file under analysis. This

can be achieved by decompressing the MP3 file, removing a given number of

Pulse Code Modulation (PCM) samples of the decompressed audio and then

recompressing the remaining samples to the same compression quality of the

signal under analysis.

To demonstrate that the idea is effective, an uncompressed audio track, 4

sec long, has been MP3 compressed at several bit-rates in the set {64, 96, 128, 192}
kbit/s, and then recompressed to 160 kbit/s, in such a way to obtain 4 dou-

ble compressed versions, 3 with increasing bit-rate, and one with decreasing

bit-rate. Then, the uncompressed file was also compressed once at 160 kbit/s.

The above procedure has been applied to each of these MP3 files to obtain a

calibrated signal, by removing the first 10 PCM samples to the decompressed

signal and recompressing the remaining samples to 160 kbit/s. Then, the his-

tograms of MDCT coefficients extracted from the input original files and from

the corresponding simulated single compressed files have been compared.

In Figure 9.1, the histograms corresponding to the MP3 file double com-

pressed at 64 kbit/s and then at 160 kbit/s, and to the calibrated MP3 file

compressed once at 160 kbit/s are shown. It is evident that the first histogram

exhibits the characteristic pattern of a distribution of coefficients that have

undergone a double compression, whereas in the second one these artifacts

have been removed, and thus the difference between the two histograms is

significant. Similar results are obtained when the first compression was car-

9.1. Detection and classification of double compression 153

−200 0 200
0

500

1000

1500
Original

−200 0 200
0

500

1000

1500
Simulation

Figure 9.1: Histograms of MDCT coefficients of an MP3 file double com-

pressed at 64 kbit/s and then 160 kbit/s (left), and of the corresponding

calibrated signal at 160 kbit/s (right).

−200 0 200
0

500

1000

1500
Original

−200 0 200
0

500

1000

1500
Simulation

Figure 9.2: Histograms of MDCT coefficients of an MP3 file single compressed

at 160 kb/s (left), and of the calibrated signal at 160 kbit/s (right).

ried at higher bit-rates, but still lower than 160 kbit/s, even if the effect of

the double quantization becomes smaller.

On the contrary, if the same procedure is applied to a single compressed

MP3 file, the histograms of the input file and the corresponding calibrated

154 9. Double Encoding Detection and Forgery Localization for MP3 Tracks

−200 0 200
0

500

1000

1500
Original

−200 0 200
0

500

1000

1500
Simulation

Figure 9.3: Histograms of MDCT coefficients of an MP3 file double com-

pressed at 192 kb/s and then 160 kb/s (left), and of the calibrated signal at

160 kbit/s (right).

one are very similar, as it is shown in Figure 9.2.

A similar situation shows up when a double compression has been applied,

but with the first bit-rate (i.e., 192 kbit/s) equal or higher than the second

one (i.e., 160 kbit/s), see Figure 9.3: in this case, the histogram of the MP3

file under analysis does not exhibit the double compression artifacts, and the

histograms of the two signals are very similar, thus not allowing to detect the

double compression. The removal of these artifacts is due to the fact that the

second compression is so strong that deletes the traces left by the previous

one.

According to the previous analysis, we derived an algorithm composed

by the processing blocks illustrated in Figure 9.4: we decompress the MP3

file obtaining a sequence of PCM samples; next, the Trimming removes a

given number of PCM samples starting from the beginning of the PCM se-

quence, in such a way that the trimmed sequence is no more aligned with the

MP3 frame borders. The Filterbank + MDCT block filters the PCM sam-

ples and transforms them, achieving a set of unquantized MDCT coefficients.

Trimming and recompression allow to remove possible double quantization

artifacts, while maintaining the original characteristics of the signal. The Pa-

rameter extraction block allows to extract from the original MP3 bitstream

9.1. Detection and classification of double compression 155

.mp3 .wav .wav cutted

unquantized

values

single quantized

values

original quantized values

quantization pattern

Figure 9.4: Scheme of the proposed method.

the quantization parameters, i.e., the quantization pattern and the original

quantization values. The quantization pattern is needed by the Re-quantizer

to calibrate the signal. In addition, the Re-quantizer smooths the sequence of

simulated coefficients through a Laplace Smoothing [79], a technique used to

smooth discrete data (in particular, we adopted the smoothing parameter α

equal to 1). This operation aims at filling possible empty bins present in the

histogram, and avoiding numerical errors due denominators close to zero in

the following computations. The original quantized values and the calibrated

values are then compared through the Histogram distances block.

By indicating with X and Y , respectively, the histograms of the observed

and calibrated MDCT coefficients, we compute a similarity measure. Among

the possible measures that can be used to compute the distance between two

histograms, we adopted the Chi-square distance Dχ(X,Y) [80], defined as:

Dχ(X,Y) =

N∑
i=1

(Xi − Yi)2

2(Xi + Yi)
(9.1)

where N is the number of bins of the histograms.

The computed distance measure, that will be denoted by Dχ from now

on, is the basis of the method that we propose to detect whether an MP3 file

156 9. Double Encoding Detection and Forgery Localization for MP3 Tracks

has been single or double compressed.

As it will be shown in Chapter 10, by analyzing Dχ it is possible to retrieve

additional information about the compression undergone by the MP3 file, in

particular concerning the difference between the second and the first bit-rate

(∆ = BR2 − BR1): when such a value is positive, we can classify double

compressed MP3 audio tracks according to the first bit-rate. In fact, the

values assumed by Dχ range quite differently according to the second bit-

rate and ∆, thus allowing to cluster double compressed MP3 audio tracks by

applying a Nearest Neighbour classifier.

9.2 Application to forgery localization

Knowledge about double encoding of an MP3 track can also provide evidence

of local tampering. Let us assume that a part of an MP3 track has been

edited to alter the original audio recording. It is reasonable to assume that

the editing operation will also remove the features due to MP3 compression.

If such a track is recompressed in MP3 format, then the original part will

exhibit the typical artifacts of double compression, whereas the edited part

will be very similar to a single compressed track. A similar behavior can

be expected when a portion of an audio track is deleted: with a very high

probability, such a deletion will introduce a desyncronization of the audio

frames; hence, in case of recompression, the audio frames up to the deletion

point will be double compressed, whereas the audio frames after the deletion

point will appear as single compressed.

In order to exploit the proposed feature Dχ for tampering localization,

a straightforward strategy is to divide the analyzed audio track into several

short segments and to evaluate Dχ for each segment. In the presence of a

genuine audio track, we expect to have similar values on all audio segments.

Conversely, in the presence of tampering, the segments corresponding to the

manipulated part will behave differently than the original part. In particular,

we will assume that a tampered part is characterized by a lower value of Dχ ,

corresponding to single compressed audio tracks. An example of this behavior

is visible in Figure 9.5, where we show the values of the proposed feature for

a genuine audio track and an audio track with a local tampering, analyzed by

9.2. Application to forgery localization 157

using audio segments 1/8 seconds long.

In the following, we propose a simple procedure to localize the manipu-

lated parts in MP3 tracks. The first step is to divide the track into several

segments and to compute the value of Dχ for each segment. The set of values

obtained in such a way are then clustered using the expectation maximiza-

tion (EM) algorithm [81]. Namely, we assume that the distribution of Dχ can

be modeled as a mixture of two approximately Gaussian components, corre-

sponding to the original part and the tampered part. The EM algorithm will

produce two clusters characterized by the respective cluster centers, D1 and

D2, corresponding to the mean value of the Gaussian component representing

each cluster.

Let us assume, without loss of generality, that the cluster centers sat-

isfy D2 > D1. According to the previous analysis, a given audio track will

be classified as tampered if the EM algorithm finds two non-empty clusters.

Furthermore, when a track is classified as tampered, the audio segments be-

longing to the cluster with the lower mean, i.e., D1, will reveal the position

of the tampered part. The rationale of the proposed approach is evident by

looking at Figure 9.6, showing the distributions of Dχ for a tampered audio

track and an original audio track. In the case of a genuine MP3 track, all the

values are similar, and the EM algorithm will find a single cluster. Conversely,

in the case of a tampered MP3 track, the values form two distinct clusters,

corresponding to the original part and the manipulated part, which are well

separated by the EM algorithm.

It should be noted that such an approach to turn a double encoding de-

tection method into a forgery localization method is not necessarily restricted

to the technique described in Section 9.1. As we will show in Chapter 10, any

double encoding detection scheme can be employed, provided that it works

on small sized windows.

158 9. Double Encoding Detection and Forgery Localization for MP3 Tracks

0 20 40 60 80 100 120 140 160 180
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Window

C
hi

−
S

qu
ar

e
di

st
an

ce

Single compressed windows

0 20 40 60 80 100 120 140 160 180
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Window

C
hi

−
S

qu
ar

e
di

st
an

ce

Single compressed windows

Double compressed windows

Figure 9.5: Clustering of Dχ values over consecutive temporal windows: (a)

genuine audio track, where all segments are single compressed; (b) tampered

audio track: the central part of the MP3 track has been edited (mixed with

extraneous content) and recompressed; since the editing operation removes

traces of prior quantization, the original segments exhibit the artifacts of

double compression, whereas the edited ones are similar to a single compressed

track.

9.2. Application to forgery localization 159

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

20

40

60

80

100

120

140

Chi−Square distance

N
um

. o
f w

in
do

w
s

Single compressed windows

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

5

10

15

20

25

30

Chi−Square distance

N
um

. o
f w

in
do

w
s

Single compressed windows

Double compressed windows

Figure 9.6: Histogram of Dχ values on two analyzed audio tracks: (a) genuine

audio track; (b) tampered audio track. The different colors highlight the two

Gaussian components found by the EM algorithm.

Chapter 10

Experimental Validation

THIS chapter provides a thorough experimental validation of our method

for the forensic analysis of MP3 tracks. To this end, we generated a

dataset, as described in Section 10.1, and we compared the performance of

our approach to those of two state of the art systems proposed in [71, 72] by

Liu, Sung, Qiao and in [70] by Yang, Shi, Huang.

For sake of clarity, we present separately the experimental validation of

double compression detection with bit-rate estimation (Section 10.2) and

forgery localization 10.3). Finally, we draw some conclusions in Section 10.4,

also outlining possible future developments.

10.1 Dataset for the experiments

In order to test our calibration-based method on an heterogeneous dataset,

we collected uncompressed audio files coming from different sources. More

specifically, we included four different categories of recordings:

• Music: royalty free music audio tracks, with 5 different musical styles

(jazz, latin, africa, country, funk);

• Speech: audio files containing dialogues;

• Outdoor : audio files relative to outdoor recordings;

• Commercial : files containing dialogues combined with music, as often

happens in advertising;

Each category collects about 17 minutes of audio. Throughout all the ex-

periments, we employed the latest release of the lame codec (available at

162 10. Experimental Validation

http://lame.sourceforge.net), namely version 3.99.5. This choice was moti-

vated by the widespread adoption of this codec and by the fact that it is an

open source project.

10.2 Double compression detection and first com-

pression bit-rate estimation

In order to evaluate the performance of the system we split the available

recordings into segments 4 seconds long. Since about 17 minutes of un-

compressed audio were available for each category, we obtained 250 uncom-

pressed audio files per category, for a grand-total of 1,000 uncompressed audio

files. Each file was compressed, in dual mono, with bit-rate BR1 chosen in

{64, 96, 128, 160, 192} kbit/s, obtaining 5, 000 single compressed MP3 files.

Finally, the files were compressed again using as BR2 one of the previous bit-

rates (also the value used in the first compression was considered) obtaining

25,000 MP3 double compressed files. Among these, 10, 000 files have a differ-

ence ∆=BR2-BR1 between the second and the first bit-rate which is positive,

taking value in {32, 64, 96, 128} kbit/s; 10, 000 files have a negative difference

∆ taking value in {−128,−96,−64,−32} kbit/s and 5, 000 files have ∆ = 0.

The overall dataset is thus composed by 30,000 MP3 files, including 5, 000

single compressed files.

As a first experiment, we computed the values assumed by Dχ for all

the 30, 000 files belonging to the test dataset. The Chi-square distance was

calculated by evaluating the MDCT histograms on 2,000 bins, with step size

equal to one. In Figure 10.1, the Chi-square distances are visualized: single

compressed files and double compressed files with negative or null ∆ show a

distance D near to zero, whereas the other files have D rather higher than

zero. By comparing D with a threshold τ is possible to discriminate the

two kinds of signals: double compressed signals with ∆ > 0 and the other

ones. By adopting a variable threshold τ , we then computed a ROC curve,

representing the ability of the detector to separate single compressed from

double compressed MP3 files (including ∆ > or ≤ 0). The ROC curve is

shown in Figure 10.2(left): it reflects the bimodal distribution of distances of

double compressed files (blue and green colored in Figure 10.1) and highlights

10.2. Double compression detection and first compr. bit-rate estimation 163

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

Audio files

C
hi

−
sq

ua
re

 d
is

ta
nc

e

Single compressed
Double compressed ∆ > 0
Double compressed ∆ ≤ 0

Figure 10.1: Chi-square distances computed for the 30.000 audio segments

composing the dataset.

that the detector is able to distinguish only one of the two components (the

one with ∆ > 0). Let us now separate the ROC curve in a curve corresponding

to double compressed signals with positive ∆, and one curve for signals with

negative or zero ∆, as shown in Figure 10.2 (right). We can see that when

double compressed signals with positive ∆ are considered we obtain an almost

perfect classifier, while when negative or zero ∆ is analyzed, we are close to

a random classifier.

As anticipated in Section 9.1, Dχ assumes a large range of values, as it

can be clearly observed in Figure 10.1. In order to highlight the relationship

between these values and BR2 and ∆, we examined in more detail the 10,000

double compressed signals with positive ∆, plotting their Chi-square distances

in Figure 10.3. Such values were plotted according to the different ∆: in

164 10. Experimental Validation

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

∆ > 0
∆ ≤ 0

Figure 10.2: ROC curve obtained by varying the threshold τ of the classifier

(left). Separation of cases with positive ∆ and negative or zero ∆ (right)

particular, there are 4,000 files with ∆ = 32 (yellow), 3,000 files with ∆ =

64 (violet), 2,000 files with ∆ = 96 (sky-blue), and finally 1,000 files with

∆ = 128 (black), and grouped for different BR2: {96, 128, 160, 192}. Figure

10.3 shows that the values of Chi-square distance tend to cluster for different

∆ factors and different BR2 values (see plotting with same color). On the

one hand, increasing ∆ values give increasing Chi-square distances. On the

other hand, given a value of ∆, for different bit-rate of the second compression

we obtain slightly different values of distance. This suggests the possibility

of optimizing the detector by considering a specific threshold for each bit-

rate of the second compression (a parameter observable from the bitstream).

Moreover, the different values of the feature for different ∆ can be used to

classify the bitrate of the first compression, as detailed in the following.

As to detection, we performed a set of experiments in order to compare

the detection accuracy of the proposed scheme with respect to the accuracy of

the methods proposed in [71, 72] by Liu, Sung, Qiao (LSQ method) and in [70]

by Yang, Shi, Huang (YSH method). The results are shown in Tables 10.1,

10.2 and 10.3 respectively. The classifiers have been trained on 80% of the

dataset and tested on the remaining 20%. Results have been averaged over

20 independent trials. In our case, different thresholds have been employed

10.2. Double compression detection and first compr. bit-rate estimation 165

 BR2 = 96 BR2 = 128 BR2 = 160 BR2 = 192
0

0.05

0.1

0.15

0.2

0.25

Double compressed files

C
hi

−
sq

ua
re

 d
is

ta
nc

e

∆ = 32
∆ = 64
∆ = 96
∆ = 128

Figure 10.3: Chi-square distances computed for double compressed files with

positive ∆, grouped according to both the values assumed by ∆ and BR2.

Table 10.1: Detection accuracy of the proposed method for different bit-rates.
BR1 vs BR2 64 96 128 160 192

64 - 99.9 99.9 99.9 99.9

96 49.9 - 99.9 99.9 99.9

128 49.9 49.9 - 99.9 99.9

160 69.5 47.9 49.1 - 96.7

192 56.1 66.4 57.8 67.4 -

for different BR2 values, while for the other methods, different support vector

machines (SVMs) have been trained for different BR2 values. Our system

achieves nearly optimal performances for all combinations in which ∆ > 0.

Also the other methods generally achieve good performances for ∆ > 0, es-

pecially the LSQ method. Conversely, for ∆ < 0 the proposed method is not

166 10. Experimental Validation

Table 10.2: Detection accuracy of LSQ method for different bit-rates.
BR1 vs BR2 64 96 128 160 192

64 - 100.0 99.9 99.9 100.0

96 97.7 - 99.5 99.7 100.0

128 96.3 98.4 - 98.1 100.0

160 88.8 98.4 98.4 - 99.9

192 72.9 96.0 95.9 94.7 -

Table 10.3: Detection accuracy of YSH method for different bit-rates.
BR1 vs BR2 64 96 128 160 192

64 - 99.9 99.9 99.9 99.3

96 96.2 - 99.7 99.7 98.8

128 80.2 99.0 - 99.2 98.1

160 84.5 94.1 96.3 - 98.0

192 67.6 88.5 89.9 90.3 -

able to reliably detect double MP3 compression, whereas the other methods

have better performances.

All the results shown in Tables 10.1, 10.2 and 10.3, have been achieved

considering audio tracks 4 s long. We evaluated the degradation of the per-

formance of the three detectors when the duration of the audio segments is

reduced from 4 s to [2, 1, 1/2, 1/4, 1/8, 1/16] s. The reason behind this

experiment is that analyzing very small portions of audio potentially opens

the door to fine-resolution splicing localization (i.e., detect if part of an audio

file has been tampered). Instead of taking all the MDCT coefficients of the 4

seconds long segment, only the coefficients belonging to a subpart of the seg-

ment are retained, where the subpart is just one half, one fourth and so on.

For BR2=192 kbit/s and BR2=128 kbit/s the detection accuracies (averaged

with respect to BR1) have been plotted with varying audio file duration in

Figure 10.4 for our method, the LSQ method and the YSH method.

The proposed system and LSQ achieve a nearly constant detection per-

formance up to 1/8 s audio segments, whereas the performance of the YSH

method drops for audio segments under 2 s. We achieve very good perfor-

10.2. Double compression detection and first compr. bit-rate estimation 167

 4 2 1 1/2 1/4 1/8 1/16
50

55

60

65

70

75

80

85

90

95

100

Audio segment size [s]

A
cc

ur
ac

y
[%

]

Our − BR2 = 192
Our − BR2 = 128
LSQ − BR2 = 192
LSQ − BR2 = 128
YSH − BR2 = 192
YSH − BR2 = 128

Figure 10.4: Detection accuracy with varying audio file duration for BR2=192

kbit/s and BR2=128 kbit/s.

mance in the case of high quality MP3 files: indeed, for BR2 equal to 192

kbit/s, we have almost perfect classification performance irrespective of the

audio segment duration. Conversely, for BR2 equal to 128 kbit/s, even if the

performance is only slightly affected by the segment duration, our method

remains inferior with respect to the other two.

By taking into account the feature distribution highlighted in Figure 10.3,

we then considered the capability of the proposed feature to classify the double

compressed signal according to the first compression bit-rate, as BR1=BR2-

∆. A Nearest Neighbour classifier has been adopted for each different BR2

and the corresponding classification accuracy results are shown in Table 10.4

for BR2=192 kbit/s and 10.6 for BR2=128 kbit/s. The rows of the tables

represent the actual bit-rate of the first compression, and the columns the

values assigned by the classifier. A comment about this experiment is in

168 10. Experimental Validation

Table 10.4: Classification accuracy of the proposed method for BR2 = 192.
Actual vs Pred. single 192 160 128 96 64

single 81.7 18.3 0.0 0.0 0.0 0.0

192 23.0 77.0 0.0 0.0 0.0 0.0

160 0.0 0.6 99.4 0.0 0.0 0.0

128 0.0 0.0 7.9 81.7 10.4 0.0

96 0.0 0.0 0.0 11.1 77.6 11.3

64 0.0 0.0 0.0 1.0 24.1 74.9

Table 10.5: Classification accuracy of LSQ method for BR2 = 192.
Actual vs Pred. single 192 160 128 96 64

single 88.0 12.0 0.0 0.0 0.0 0.0

192 12.8 87.2 0.0 0.0 0.0 0.0

160 0.0 0.0 100.0 0.0 0.0 0.0

128 0.0 0.0 0.1 99.9 0.0 0.0

96 0.0 0.0 0.0 0.0 100.0 0.0

64 0.0 0.0 0.0 0.1 0.3 99.6

order: as shown in the previous section, the proposed method will hardly

detect double compression for negative or null ∆. Similarly, the output of the

classifier on double encoded signals with negative or null ∆ is not reliable.

In particular, since a single compressed signal can be considered as a signal

compressed at infinite quality, the classifier cannot distinguish between single

encoded signals and double encoded signals with negative ∆.

For comparison, only the LSQ method is considered, since the YSH method

was not proposed for compression classification. The corresponding results ob-

tained on 4 s audio segments for BR2= 192, 128 kbit/s are shown in Tables

10.5 and 10.7 respectively.

As in the case of detection, we evaluated the dependence of classification

on audio file duration. The average classification accuracy for different BR2

(i.e. {192, 160, 128, 96, 64} kbit/s) and decreasing audio file duration (i.e.

{4, 2, 1, 1/2, 1/4, 1/8, 1/16} s) are shown in Figure 10.5 for both our method

(a) and LSQ (b). The accuracy is averaged over every possible BR1 in the

10.3. Tampering localization 169

Table 10.6: Classification accuracy of the proposed method for BR2 = 128.
Actual vs Pred. single 192 160 128 96 64

single 34.0 36.9 24.6 4.5 0.0 0.0

192 29.6 44.1 19.6 6.7 0.0 0.0

160 12.0 1.8 86.2 0.0 0.0 0.0

128 0.3 15.7 0.2 83.8 0.0 0.0

96 0.0 0.0 0.0 3.1 96.6 0.4

64 0.0 0.0 0.0 0.6 7.6 91.7

Table 10.7: Classification accuracy of LSQ method for BR2 = 128.
Actual vs Pred. single 192 160 128 96 64

single 89.0 5.7 0.8 4.5 0.0 0.0

192 6.1 81.5 10.6 1.8 0.0 0.0

160 1.1 11.0 87.6 0.2 0.0 0.0

128 4.7 2.0 0.1 93.3 0.0 0.0

96 0.0 0.0 0.0 0.1 99.9 0.1

64 0.0 0.0 0.0 0.0 0.0 100.0

dataset, thus providing a fair overall index of classification accuracy, that can

be used to compare different methods and show a clear performance trend for

different audio segment lengths.

In this scenario, LSQ appears to have a better classification performance,

even if our system performs reasonably well for higher bit-rates. It is also

worth noting that the performances of both methods suffer only a slight

degradation for the shorter audio segments, which suggests good localization

capabilities.

10.3 Tampering localization

As explained in Section 9.2, our method for double compression analysis can

be used as a tool for audio forgery localization. Although this possibility was

not considered in the corresponding papers, previous experiments seem to

prove that also the YSH and LSQ methods can be used for such a task, by

170 10. Experimental Validation

analyzing the track using small windows. We thus designed a set of experi-

ments to test the applicability of each of the considered algorithms to forgery

localization. Starting from the same 4 categories mentioned at the begin-

ning of this chapter (containing 17 minutes of uncompressed audio each), we

split files in segments of 10 seconds, thus obtaining 100 uncompressed file per

category for a grand-total of 400 signals. Among these, 240 were chosen at

random to build a training set, while the rest were used as the test set. Since

the goal is to localize tampered segments within a signal, test signals were

created as follows:

1. the signal was MP3 compressed at a bitrate BR1 ∈ {96, 128, 160} kbit/s;

2. the signal was decoded and a portion of 1 second, located at the center of

the track, was replaced with the same-positioned samples coming from

the uncompressed signal;

3. the resulting track was re-compressed at a bitrate BR1 + ∆, with ∆

taking values in {-32, 0, 32} kbit/s.

In such a way, we created a cut-and-paste tampering that is virtually unde-

tectable by a human listener (the pasted content is the same, only without

the first compression); this also avoids facilitating the detector by introducing

abrupt changes in audio content.

The above procedure creates files where 1/10 of the track is tampered, and

the rest is untouched. While this scenario is reasonable for testing localization

capabilities, it does not fit well to training a classifier (needed for YSH and

LSQ), where a more balanced distribution of positive and negative examples

is preferable. Keeping in mind that each signal will be analyzed using small

windows, and that each window will be classified as single- or double- encoded,

we generated the training dataset as follows:

1. the signal was MP3 compressed at a bitrate BR1 ∈ {96, 128, 160} kbit/s;

2. the signal was decoded and the part of the track between second 5 and

6 was cut and appended at the end of the signal;

3. the resulting track was re-compressed at a bitrate BR1 + ∆, with ∆

taking values in {-32, 0, 32} kbit/s.

10.3. Tampering localization 171

In such a way, samples in the first half of the track will show traces of dou-

ble encoding, while samples in the second half will not, due to the induced

misalignment of the quantization pattern.

Table 10.8: Tampering localization accuracy obtained by each algorithm for

different sizes of the analysis window.

(a) 1/16 s.

∆ = +32 ∆ = 0 ∆ = −32

BR2 OUR YSH LSQ OUR YSH LSQ OUR YSH LSQ

64 - - - - - - 50.0 64.8 60.5

96 - - - 49.0 76.3 57.4 50.0 71.7 56.9

128 93.3 92.3 77.3 49.3 82.2 53.6 50.0 80.5 65.0

160 90.7 92.8 73.9 50.1 84.7 51.0 - - -

192 89.8 93.3 93.1 - - - - - -

(b) 1/8 s.

∆ = +32 ∆ = 0 ∆ = −32

BR2 OUR YSH LSQ OUR YSH LSQ OUR YSH LSQ

64 - - - - - - 50.0 67.5 58.0

96 - - - 50.0 78.4 60.2 50.0 73.5 57.5

128 89.2 91.7 76.1 50.1 83.1 58.7 50.0 82.4 64.4

160 88.1 91.5 68.7 49.9 86.4 53.3 - - -

192 89.2 90.9 91.9 - - - - - -

(c) 1/4 s.

∆ = +32 ∆ = 0 ∆ = −32

BR2 OUR YSH LSQ OUR YSH LSQ OUR YSH LSQ

64 - - - - - - 50.0 73.0 56.9

96 - - - 50.0 82.6 61.8 50.0 75.5 56.3

128 91.2 92.6 79.9 50.0 86.8 63.1 50.0 84.2 67.8

160 92.0 95.2 74.2 50.0 89.6 60.3 - - -

192 92.0 92.2 93.4 - - - - - -

172 10. Experimental Validation

Similarly to what we did in previous experiments, it is of interest to eval-

uate the localization performance of each algorithm for different sizes of the

analysis window: a smaller size causes noisier measurements but higher tem-

poral resolution, allowing the analyst to detect subtle modifications, like turn-

ing a “yes” into a “no”. The set {1/4, 1/8, 1/16} s was chosen as possible

values for the size of the window. When analyzing a signal, the analyst knows

both the size of the window he wants to employ and the bitrate of the last

compression undergone by the signal. In light of this, the training procedure

for LSQ and YSH can be done separately, creating a SVM for each BR2 (in

our case, BR2 ∈ {64, 96, 128, 160, 192}) and for each window size. We chose

RBF kernels and used 5-fold cross validation to determine the best values for

C ∈ {23, 24, . . . 212} and γ ∈ {2−4, 2−3, . . . , 25}. Concerning our system, we

used the training samples to get a good initialization point for the EM algo-

rithm: specifically, we computed the average value of the χ2 distance obtained

for single compressed sequences and double compressed sequences available

in the training set, resulting in µ1 = 0.004 and µ2 = 0.015 respectively. The

algorithm stops when either the log likelihood stabilizes (difference between

two iterations lower than 10−15) or a maximum of 500 iterations is reached.

Performance of YSH and LSQ were evaluated as follows: given a test file,

the proper SVM was selected based on the observed bitrate and the chosen

window size; then the file was decoded and coefficients were classified, moving

the analysis window. After repeating the same procedure for all the signals,

we computed the true positive (TP) and true negative (TN) probabilities and

considered the final accuracy to be

ACC =
TP + TN

2
.

A similar approach was used to evaluate our method. After executing

the EM algorithm, if a mixture of two Gaussians was found, we labelled as

tampered those windows belonging to the model with lower mean; if only one

Gaussian component was found, all the windows were classified as untouched.

Finally, the localization accuracy of the algorithm was computed with the

same formula described above.

Results are reported in Table 10.8, for different sizes of the analysis win-

dow and separated according to the difference between the first and second

10.3. Tampering localization 173

compression bitrate (main rows), while the final value of BR2 is given in the

columns (this is the only information available to the analyst). Since possible

values for BR1 were limited to be in {96, 128, 160}, some combinations of BR2

and ∆ are not explored. As we can see, the proposed system yields compara-

ble performance to the YSH and outperforms LSQ when BR2 is higher than

BR1. For null or negative ∆s, coherently with previous results, our model is

not able to discriminate forged regions.

174 10. Experimental Validation

 4 2 1 1/2 1/4 1/8 1/16
0

10

20

30

40

50

60

70

80

90

100

Audio segment size [s]

A
cc

ur
ac

y
[%

]

Our − BR2 = 192
Our − BR2 = 160
Our − BR2 = 128
Our − BR2 = 96
Our − BR2 = 64

(a)

 4 2 1 1/2 1/4 1/8 1/16
0

10

20

30

40

50

60

70

80

90

100

Audio segment size [s]

A
cc

ur
ac

y
[%

]

LSQ − BR2 = 192
LSQ − BR2 = 160
LSQ − BR2 = 128
LSQ − BR2 = 96
LSQ − BR2 = 64

(b)

Figure 10.5: Accuracy of the classifiers with varying audio file duration: (a)

our; (b) LSQ.

10.4. Conclusions and open issues 175

10.4 Conclusions and open issues

In this part of the thesis we presented a method to localize the presence of

double compression artifacts in an MP3 audio file, with the aim of uncov-

ering possibly tampered parts. Our algorithm is based on a simple feature

measuring the effect of double compression, that allows to decide whether an

MP3 track has been compressed once or twice and also to derive the bit-rate

of the first compression. In addition, our scheme together with two state-

of-the-art methods designed for detecting doubly compressed MP3 files have

been applied to analyze short temporal windows, in such a way to allow the

localization of tampered portions in an MP3.

The proposed algorithm is very effective when the bit-rate of the second

compression is higher than the bit-rate of the first one, but offers limited

performance in the opposite case, where it is outperformed by state-of-the-art

methods, based on SVM classifiers. On the other hand, we must keep in mind

that the proposed approach does not exploit machine learning techniques, as

the other schemes do, so its performance are less affected than those of other

methods by the choice of a suitable training set.

In our opinion, the main contribution of our work regards the tampering

localization scenario. To the best of our knowledge, this is the first time that

techniques used for detecting double compression in MP3 audio tracks are

used for this purpose. We also point out that the authors in [71, 72] and

[70] did not investigate how their methods would perform on very short audio

segments. The results we got provide some interesting insights. For example,

we see that more complex features, which achieve very good results in the

simple detection scenario, may not be well suited for the localization scenario.

This is evident for LSQ, whose performance are significantly lower than those

achieved in the simple detection scenario. We believe that this is due to the

difficulty of providing a good training set for the localization scenario, which

negatively affects methods based on machine learning. Moreover, we also see

that in the high quality scenario a simple feature based on calibration may

obtain performance very close to that of state-of-the-art techniques, without

requiring a SVM.

There are some interesting issues that can be considered for further re-

search. For example, the detection and localization accuracies of the different

176 10. Experimental Validation

algorithms may be affected by the actual codec(s) used in the first and second

compressions. Since the proposed method is based on a simple histogram

distance, we believe that different encoder/decoders should not affect much

the performance. Nevertheless, more complex features may be affected by the

encoder, especially if the detector is trained on a different encoder. Another

aspect is the use of a variable bitrate (VBR) encoding strategy: since our

approach does not consider the MDCT coefficients according to the different

quantization factors, we think that the different quantization factors induced

by VBR will not affect significantly the proposed approach. However, we leave

analysis of VBR to future work.

Chapter 11

Other Works: Image Counter-Forensics

BESIDES playing the role of the analyst on different kinds of media, we

also took some steps on the opposite side of the battlefield, by collabo-

rating to the development of counter-forensic techniques.

As suggested by the name, counter-forensics aims at concealing the traces

introduced by processing tools when the user edits/tampers a multimedia con-

tent [82]. Up to a very recent time only targeted approaches existed, which

aim at deceiving a specific detector: the idea is to exploit knowledge of the

forensic algorithm and try to erase the traces it looks for, while preserving

perceptual quality. Within this class of methods, we developed a counter-

forensic scheme for hiding traces of median filtering [83]. Median filtering

detection is an important task in image forensics, since this operator is fre-

quently used both for benign and malicious processing (median filtering is

itself a good counter-forensic tool). The basic idea of the counter-forensic

technique presented in [83] is to apply a linear filtering to the median filtered

image, using a kernel that is automatically searched through an optimization

algorithm. The objective function of the optimization aims at maximizing the

fidelity between the processed image and the attacked one, while removing

footprints searched by the forensic detector. Our system was tested against

three median filtering detectors, obtaining good performance both in terms

of trace concealment and perceptual quality [83]. However, this approach has

two important limitations:

1. it needs to iteratively evaluate the output of the forensic detector for

solving the optimization problem;

2. the produced image contains other kinds of artifacts, that could be

detected using different (perhaps more sophisticated) forensic tools. For

example, one could check whether the image has been filtered.

178 11. Other Works: Image Counter-Forensics

These limitations are both significant. The first one implies that the forensic

detector must be available to the forger (at least as a black-box) and that

the produced image is safe only with respect to that specific detector. The

second one opens the door to a “cat-and-mouse” game where several iterations

of the forensic/counter-forensic loop are carried out. Noticeably, these two

limitations are not specific to the method in [83]: they apply to all targeted

counter-forensic approaches.

As an answer to the above problem, the research community started inves-

tigating a different approach to counter-forensic, which aims at designing uni-

versal CF methods [48]. Instead of concealing the specific footprint searched

for by a detector, universal methods aim at making the statistical proper-

ties of the image equal or very close to those of unprocessed images. If they

succeed, the attacker has the warranty that no detector (based on those sta-

tistical properties) can discriminate between attacked and authentic images.

Of course, devising universal methods is not easy, so that some assumptions

on the complexity of the statistical analysis carried by the analyst have to be

made.

We contributed to the development of one of the first methods within the

universal class, that is effective against histogram-based detectors [84, 85].

The underlying idea is the following: first the forger processes the image (no

restriction are made to the kind of processing), then he modifies the produced

image so to make its histogram very close to that of an original image. In

order to do so, the proposed counter-forensic scheme works in three phases

(illustrated in Figure 11.1):

1. Histogram retrieval : given the histogram of the manipulated image,

search a similar histogram in a database of original images;

2. Histogram mapping : solve an optimization problem to find the best way

to modify the histogram, so to bring it as close as possible to the re-

trieved one, while satisfying some constraints concerning the maximum

distortion;

3. Pixel remapping : actually change pixels in the image according to the

histogram mapping, keeping the perceptual distortion as low as possible.

179

Histogram
Retrieval

Pixel
remapping

Histogram
Mapping

Image
Processing

Original
image

Attacked
image

Counter-attacked
image

Counter-Forensic scheme

Figure 11.1: A schematic representation of the universal counter forensic

approach presented in [84].

Experimental results confirmed that this method successfully deceives detec-

tors whose analysis is based on the image histogram while preserving a high

perceptual fidelity: using the method by Stamm et al. [18] as a benchmark,

the AUC of the detector drops to about 0.55, while the average SSIM between

the image before and after counter-forensic is above 0.98 [84].

The above approach was recently extended to detectors that analyze the

histogram of DCT coefficients [86]. Moving from pixels to the DCT domain

is not a trivial task because of the perceptual impact of remapping operations

in the DCT domain. To tackle with this problem, we proposed to tune the

admissible distortion using Watson’s model [87], that relates changes in the

DCT domain to their perceptual impact.

Despite a good amount of promising results, there is still much to do in

universal counter-forensics. For example, our approach against histogram-

based detectors cannot be directly extended to deceive detectors that rely

on higher order statistics. Moreover, computational complexity makes our

method not suitable to combat detectors that jointly analyze the histograms

extracted from several color channels or DCT frequencies. Nevertheless, the

research community is reaching considerable achievements at the theoretical

level [48, 88, 89, 90, 91] by combining elements of information theory and

game theory. In fact, some of these achievements laid the basis of our works

in this field.

Chapter 12

Conclusion

THIS thesis presented several multimedia forensic tools for splicing de-

tection in digital images, video and audio. Besides summarizing our

contributions, this final chapter outlines some important open issues that, we

believe, should be pursued in the near future, and provides a few remarks on

multimedia forensics as a whole.

12.1 Summary

The possibility of blindly investigating whether a digital content represents

something that really happened or it is a forged composite is of interest in

several fields, prominently forensic investigations. This fact motivated a sig-

nificant research effort towards the development of blind techniques allowing

to detect or even localize forged segments within multimedia contents.

In the first part of the thesis we focused on image forensics. When we

began our research activity a considerable number of tools had already been

developed, searching for a wide variety of possible manipulations. On the

other hand, the forensic analyst can hardly rely on one tool alone, because

tools have limited reliability and search for very specific traces. Motivated by

this fact, we worked to develop a decision fusion framework tailored to the

image forensic scenario. We opted for Dempster-Shafer Theory of evidence

as the underlying theory, since it allows to work without prior probabilities

and to easily model uncertainty. The most noticeable features of the devised

framework are that: i) it allows the analyst to directly specify the known

compatibility relationships between forensic traces, and ii) it automatically

interprets tool outputs based on background information, so to account for

the reliability of tools under the specific working conditions. Experimental

results showed that the proposed framework is a valid choice for the analyst,

182 12. Conclusion

as it outperforms advanced machine learning methods such as SVMs (under

the reasonable hypothesis of a limited training set).

The second part of the thesis moved the attention to video forensics. This

branch of research is somewhat delayed compared to image forensics: while

there is a large family of tools for detecting double compression, splicing de-

tection has been sparsely investigated. As we learned from image forensics

literature, however, double compression analysis can often be used as a tool

for splicing detection. Motivated by this fact, we first developed the VPF, a

new footprint that can be used to detect double encoding and estimate the

size of the GOP used in the first compression. Then, by building on the VPF,

we exploited double quantization analysis in order to localize forged regions

in frames of MPEG-2 videos. It is interesting to observe how the mentioned

technique actually uses “two levels” of double compression analysis: first, it

searches for double compression of the sequence as a whole through the VPF;

then, on a limited subset of frames, it adapts the double quantization mathe-

matical framework (originally devised for JPEG images) to localize forgeries.

Although experimental results are satisfactory, we should not forget that the

method relies on a rather narrow set of hypotheses: only MPEG-2 coding is

allowed, with a fixed GOP structure both in the first and the second encoding,

and with higher coding quality in the second compression.

Still building on the VPF, we also investigated the detection of frame

deletion and insertion. We developed a tool allowing to detect this kind of

manipulations in a rather reliable way, provided that the second compression

is not stronger than the former. While this tool supports all commonly em-

ployed coding algorithms (MPEG-2, MPEG-4, H.264), its main limitation is,

probably, the limited precision in localizing the point of the stream where the

editing took place.

The final part of the thesis dealt with audio forensics. We investigated

the analysis of MP3 tracks, with a focus on fake quality detection and forgery

localization. Also in this case, we were able to leverage on the heritage of

image forensics and steganalysis: we casted the calibration technique to MP3

compression algorithm, thus obtaining the first double encoding detector in

audio forensic that is not based on machine learning. Then, mindful of the

12.2. Open issues 183

rule that a good double compression detector can brilliantly serve as forgery

localization tool, we extended our approach in this direction yielding a splicing

localization algorithm that can detect manipulations as short as a tenth of

a second. Interestingly, it was possible to apply the same extension also to

other double compression detectors that were available in the literature.

12.2 Open issues

Before drawing the final remarks, we would like to focus the attention on

two topics that have received few attention up to today, namely multimodal

analysis and contextual analysis.

Multimodal analysis is about jointly interpreting information coming from

different media to detect anomalies or inconsistencies. The most effective ex-

ample is the joint analysis of video and audio tracks, that are usually captured

together by camcorders. If it is difficult to tamper with a video without leav-

ing noticeable artifacts, it is even more complicated to create a forged audio

track that is also consistent with the new frame flow. Effects like reverberation

or reflection can help the analyst to detect anomalies by comparing the audio

with the environment shown in a video. If we exclude few examples (only the

work by Milani et al. [92], to the best of our knowledge), multimodal analysis

received little attention in the forensic literature.

As to contextual analysis, it refers to the task of detecting whether a

multimedia content is used out of the correct context, so to mislead the user. It

is easy to understand that deliberately placing a picture in the wrong position

can totally subvert its meaning, or the meaning of surrounding content, even

without changing one pixel. We may say that altering the semantic meaning of

a picture can be done either by manipulating the picture or by “manipulating

the context” wherein the picture is placed. Of course, this kind of investigation

sets big challenges, also due to the difficulty of interpreting the semantic

meaning of multimedia objects and text. We may consider the existent studies

on image phylogeny as a first step in this research direction: given a set of

near-duplicate images, phylogeny methods aim at recovering the dependency

graph telling which picture originated which [13]. The same idea has been

investigated for videos [93]. However, the computational complexity of such

184 12. Conclusion

methods already raises a warning about the feasibility of contextual analysis

in the general case.

12.3 Final remarks

Multimedia Forensics is composed by branches with significantly different

levels of advancement. Limiting our discussion to authenticity verification,

audio forensics has the most ancient roots, as it entered the court tens of

years ago. Probably, this is due to the fact that tampering with magnetic

tapes was much easier than manipulating analog photographies. However,

the discovery of the ENF criterion significantly boosted also digital audio

authenticity verification. Image forensic received a lot of attention, and today

we have tens of different tools, together with many elegant mathematical

formulations of topics like multiple quantization or resampling. However there

is a concern about practical applicability of image forensic tools, so that only

few of them are ready to be used in real world cases today. Finally, video

authenticity verification is for sure the less advanced field at the moment.

This contrasts with the fact that digital videos have paramount importance

in the security field: for example, recordings from surveillance camera are

used in many trials, and international terrorism sadly take advantage of video

realisticity to upload violent content on the web.

Finally, we spend some words on the main limitations shared by multime-

dia forensic methods for splicing detection. As long as the literature is con-

cerned, the first enemy of multimedia forensic is counter-forensics, as it aims

at erasing the (already fragile) traces left during manipulation. In practice,

however, the real enemy is the way digital contents are commonly archived and

shared. When an image is uploaded on, say, Flickr or Facebook, it is resized

and recompressed by default; something similar happens to a video when it

is uploaded on Youtube. Unfortunately, such operations are a very effective,

though involuntary, counter-forensic mean. In general, we can say that the

main problem for the multimedia forensic analyst is that he has to work on

contents whose integrity is seldom preserved: for example, no one would fear

Flickr as a potential danger to image authenticity, yet it compromises the

integrity of the signal by heavily modifying it. The only way for multimedia

12.3. Final remarks 185

forensic to face with this problem is to devise more robust methods, searching

for traces that survive these kind of processing. One noticeable example is

given by geometrical and physical features (shadows, lighting conditions, per-

spective consistency); however, such techniques require the manual aid of a

clever and patient analyst. Another effective counter-measure is the synergic

use of many different tools, hoping that at least some traces of manipulation

survive the whole chain linking the forger to the analyst.

Although being aware of all its limits, we believe that multimedia forensics

can bring an important contribution in security and justice, so that it is

easy to foresee an increasing interest in this topic in the near future. Since

the perfect crime does not exist, every little contribution can happen to be

fundamental: indeed, the multimedia forensic analyst should never forget that

his contribution in a legal case will rarely be the deciding factor (it will more

likely be a small part of the complex system in the mind of a judge), yet it

may prove important in many situations.

Bibliography

[1] A. Redi, W. Taktak, and J.-L. Dugelay, “Digital image forensics: a booklet for

beginners,” Multimedia Tools and Applications, vol. 51, pp. 133–162, January

2011. [Online]. Available: http://dx.doi.org/10.1007/s11042-010-0620-1 1, 2.2

[2] A. Piva, “An overview on image forensics,” ISRN Signal Processing, vol. 2013,

2013. [Online]. Available: http://www.hindawi.com/isrn/sp/2013/496701/ 1,

2.1, 2.2

[3] M. Chen, J. Fridrich, M. Goljan, and J. Lukas, “Determining image origin and

integrity using sensor noise,” IEEE Transactions on Information Forensics and

Security, vol. 3, no. 1, pp. 74–90, 2008. 1, 4.5.1

[4] Z. C. Lin, J. F. He, X. Tang, and C. K. Tang, “Fast, automatic and fine-

grained tampered JPEG image detection via DCT coefficient analysis,” Pattern

Recognition, vol. 42, no. 11, pp. 2492–2501, November 2009. 1, 4.2.1, 4.5.1, 6.2,

6.3.3

[5] G. Shafer, A Mathematical Theory of Evidence. Princeton: Princeton University

Press, 1976. 1, 3.1

[6] S. Milani, M. Fontani, P. Bestagini, M. Barni, A. Piva, M. Tagliasacchi, and

S. Tubaro, “An overview on video forensics,” APSIPA Transactions on Signal

and Information Processing, vol. 1, November 2012. 1, 5.2, 5.2.2

[7] R. Maher, “Audio forensic examination,” IEEE Signal Processing Magazine,

vol. 26, no. 2, pp. 84–94, 2009. 1, 8

[8] J. Fridrich, M. Goljan, and D. Hogea, “Steganalysis of JPEG images: Break-

ing the F5 algorithm,” in Information Hiding, ser. Lecture Notes in Computer

Science, F. Petitcolas, Ed. Springer Berlin Heidelberg, 2003, vol. 2578, pp.

310–323. 1, 9.1

http://dx.doi.org/10.1007/s11042-010-0620-1
http://www.hindawi.com/isrn/sp/2013/496701/

188 BIBLIOGRAPHY

[9] M. Barni and F. Bartolini, Watermarking systems engineering: enabling digital

assets security and other applications, ser. Signal Processing and Communica-

tions Series, M. Dekker, Ed. CRC Press, 2004. 2

[10] N. Khanna, A. K. Mikkilineni, G. T. Chiu, J. P. Allebach, and E. J. Delp, “Foren-

sic classification of imaging sensor types,” in IS&T/SPIE Electronic Imaging

2007. San Jose, USA: International Society for Optics and Photonics, January

2007, pp. 65 050U–65 050U. 2.1

[11] S. Bayram, H. Sencar, N. Memon, and I. Avcibas, “Source camera identification

based on cfa interpolation,” in ICIP 2005, IEEE International Conference on

Image Processing, vol. 3, Genoa, ITA, September 2005, pp. III–69–72. 2.1, 2.2

[12] J. Fridrich, “Digital image forensic using sensor noise,” IEEE Signal Processing

Magazine, vol. 26, no. 2, pp. 26–37, 2009. 2.1, 2.2

[13] Z. Dias, A. Rocha, and S. Goldenstein, “Image phylogeny by minimal spanning

trees,” IEEE Transactions on Information Forensics and Security, vol. 7, no. 2,

pp. 774–788, 2012. 2.1, 12.2

[14] P. Ferrara, T. Bianchi, A. De Rosa, and A. Piva, “Image forgery localization

via fine-grained analysis of CFA artifacts,” IEEE Transactions on Information

Forensics and Security, vol. 7, no. 5, pp. 1566–1577, October 2012. 2.2, 4.5.1

[15] T. Bianchi and A. Piva, “Image forgery localization via block-grained analysis

of jpeg artifacts,” IEEE Transactions on Information Forensics and Security,

vol. 7, no. 3, pp. 1003–1017, June 2012. 2.2, 4.5.1

[16] A. Popescu and H. Farid, “Exposing digital forgeries by detecting traces of

resampling,” IEEE Transactions on Signal Processing, vol. 53, no. 2, pp. 758–

767, February 2005. 2.2

[17] G. Cao, Y. Zhao, and R. Ni, “Edge-based blur metric for tamper detection,”

Journal of Information Hiding and Multimedia Signal Processing, vol. 1, no. 1,

pp. 20–27, 2010. 2.2

[18] M. Stamm and K. Liu, “Forensic detection of image manipulation using statis-

tical intrinsic fingerprints,” IEEE Transactions on Information Forensics and

Security, vol. 5, no. 3, pp. 492–506, September 2010. 2.2, 11

[19] E. Kee, J. O’Brien, and H. Farid, “Exposing photo manipulation with inconsis-

tent shadows,” ACM Transactions on Graphics, vol. 32, no. 4, pp. 28:1–28:12,

2013. 2.2

BIBLIOGRAPHY 189

[20] M. Johnson and H. Farid, “Exposing digital forgeries in complex lighting envi-

ronments,” IEEE Transactions on Information Forensics and Security, vol. 2,

no. 3, pp. 450–461, September 2007. 2.2

[21] H. T. Sencar and N. Memon, Digital image forensics: There is more to a picture

than meets the eye. Springer, 2012. 2.2

[22] M. Kharrazi, H. T. Sencar, and N. Memon, “Improving steganalysis by fusion

techniques: A case study with image steganography,” Transactions on Data

Hiding and Multimedia Security I, pp. 123–137, 2006. 2.3.1, 1

[23] Y.-F. Hsu and S.-F. Chang, “Statistical fusion of multiple cues for image tam-

pering detection,” in Asilomar Conference on Signals, Systems and Computers,

Pacific Grove, CA, October 2008, pp. 1386–1390. 2.3.1, 4.1

[24] G. Chetty and M. Singh, “Nonintrusive image tamper detection based on

fuzzy fusion,” International Journal of Computer Science and Network Secu-

rity, vol. 10, no. 9, pp. 86–90, September 2010. 2.3.1, 4.1

[25] D. Hu, L. Wang, Y. Zhou, Y. Zhou, X. Jiang, and L. Ma, “Ds evidence theory

based digital image trustworthiness evaluation model,” in MINES 2009, Inter-

national Conference on Multimedia Information Networking and Security, vol. 1.

Hubei, CHN: IEEE, November 2009, pp. 85–89. 2.3.1, 4.1

[26] S. Bayram, B. Sankur, N. Memon, and İ. Avcıbaş, “Image manipulation detec-

tion,” Journal of Electronic Imaging, vol. 15, no. 4, pp. 041 102–041 102, 2006.

2.3.1, 4.1

[27] P. Zhang and X. Kong, “Detecting image tampering using feature fusion,” in

ARES 2009, International Conference on Availability, Reliability and Security.

Fukuoka, JP: IEEE, March 2009, pp. 335–340. 2.3.1, 4.1

[28] Z.-W. Sun, H. Li, and Z.-C. Ji, “Fusion image steganalysis based on Dempster-

Shafer evidence theory,” Control and Decision, vol. 26, no. 8, pp. 1192–1196,

2011. 2.3.1

[29] M. Barni and A. Costanzo, “A fuzzy approach to deal with uncertainty in image

forensics,” Signal Processing: Image Communication, vol. 27, no. 9, pp. 998–

1010, 2012. 2.3.1, 3.3, 3.3

[30] A. P. Dempster, “Upper and lower probabilities induced by a multivalued map-

ping,” Annals of Mathematical Statistics, vol. 38, pp. 325–339, 1967. 3.1

[31] R. Yager, “Aggregating non-independent Dempster-Shafer belief structures,” in

IPMU 2008, International Conference on Information Processing and Manage-

ment of Uncertainty in Knowledge-Based Systems, Malaga, ES, June 2008, pp.

289–297. 3.1.2

190 BIBLIOGRAPHY

[32] A. Benavoli, L. Chisci, B. Ristic, A. Farina, and A. Graziano, Reasoning under

uncertainty: from Bayesian to Valuation Based Systems. Application to target

classification and threat evaluation. Rome, ITA: SELEX Sistemi Integrati, 2007.

3.1.2

[33] L. A. Zadeh, “Review of a mathematical theory of evidence,” AI magazine,

vol. 5, no. 3, p. 81, 1984. 3.1.2

[34] A. C. Doyle, The sign of four. Lippincott’s Monthly Magazine, 1980. 3.1.2

[35] T. Bianchi, A. De Rosa, and A. Piva, “Improved DCT coefficient analysis for

forgery localization in JPEG images,” in ICASSP 2011, IEEE International

Conference on Acoustics, Speech and Signal Processing, Prague, CZ, May 2011.

3.3, 3.3, 3.4, 4.2.1, 4.5.1, 4.15, 6.2, 6.3.3, 6.3.3, 6.3.3, 6.3.3, 6.3.3, 6.3.3, 6.3.3,

6.3.4

[36] M. Fontani, T. Bianchi, A. De Rosa, A. Piva, and M. Barni, “A Dempster-

Shafer framework for decision fusion in image forensics,” in WIFS 2011, IEEE

International Workshop on Information Forensics and Security, Foz do Iguaçu,

BR, December 2011, pp. 1–6. 3.3

[37] M. Fontani, T. Bianchi, A. De Rosa, A. Piva, and M. Barni, “A Framework

for Decision Fusion in Image Forensics Based on Dempster-Shafer Theory of

Evidence,” IEEE Transactions on Information Forensics and Security, vol. 8,

no. 4, pp. 593–607, 2013. 3.3

[38] T. Denoeux, “A k-nearest neighbor classification rule based on Dempster-Shafer

theory,” IEEE Transactions on Systems, Man and Cybernetics, vol. 25, no. 5,

pp. 804–813, 1995. 3.3.1

[39] L. Ceriani and P. Verme, “The origins of the Gini index: extracts from Vari-

abilità e Mutabilità (1912) by Corrado Gini,” Journal of Economic Inequality,

vol. 10, no. 3, pp. 421–443, September 2012. 3.3.2

[40] W. Luo, Z. Qu, J. Huang, and G. Qiu, “A novel method for detecting cropped

and recompressed image block,” in ICASSP 2007, IEEE International Confer-

ence on Acoustics, Speech and Signal Processing, vol. 2, Honolulu, USA, April

2007, pp. II–217 –II–220. 4.2.1, 6.2

[41] T. Bianchi and A. Piva, “Detection of non-aligned double JPEG compression

with estimation of primary compression parameters,” in ICIP 2011, IEEE In-

ternational Conference on Image Processing, Brussels, BE, September 2011, pp.

1929 –1932. 4.2.1, 4.2.2, 7.2

BIBLIOGRAPHY 191

[42] H. Farid, “Exposing digital forgeries from JPEG ghosts,” IEEE Transactions

on Information Forensics and Security, vol. 4, no. 1, pp. 154–160, 2009. 4.2.1,

4.2.2, 4.4.1

[43] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”

ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27,

2011, software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm. 4.2.2

[44] M. Barni, A. Costanzo, and L. Sabatini, “Identification of cut & paste tampering

by means of double-JPEG detection and image segmentation,” in ISCAS 2010,

IEEE International Symposium on Circuits and Systems, Paris, FR, May 2010,

pp. 1687–1690. 4.5.1

[45] A. Swaminathan, M. Wu, and K. J. R. Liu, “Digital image forensics via intrinsic

fingerprints,” IEEE Transactions on Information Forensics and Security, vol. 3,

no. 1, pp. 101–117, 2008. 4.5.1

[46] R. Böhme and M. Kirchner, “Counter-forensics: Attacking image forensics,”

in Digital Image Forensics, H. T. Sencar and N. Memon, Eds. Springer

New York, 2013, pp. 327–366. [Online]. Available: http://dx.doi.org/10.1007/

978-1-4614-0757-7 12 4.5.2

[47] M. Fontani, A. Bonchi, A. Piva, and M. Barni, “Countering anti-forensics by

means of data fusion,” in IS&T/SPIE Electronic Imaging. International Society

for Optics and Photonics, February 2014, pp. 90 280Z–90 280Z. 4.5.2

[48] M. Barni and F. Perez-Gonzalez, “Coping with the enemy: Advances in

adversary-aware signal processing,” in ICASSP 2013, IEEE International Con-

ference on Acoustics, Speech and Signal Processing, Vancouver, CA, May 2013,

pp. 8682–8686. 4.5.2, 11, 11

[49] A. C. Bovik, Handbook of image and video processing. Academic Press, 2010.

5.1

[50] ISO, “Information technology - generic coding of moving pictures and associated

audio information - part 2: Video,” International Organization for Standardiza-

tion, Geneva, Switzerland, ISO/IEC IS 13818-2, 2008. 5.1, 6.3.3

[51] ISO, “Information technology - coding of audio-visual objects - part 2: Visual,”

International Organization for Standardization, Geneva, Switzerland, ISO/IEC

IS 14496-2, 2009. 5.1

[52] ISO, “Information technology - Coding of audio-visual objects - Part 10: Ad-

vanced Video Coding (AVC),” International Organization for Standardization,

Geneva, Switzerland, ISO/IEC IS 14496-10, 2010. 5.1

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1007/978-1-4614-0757-7_12
http://dx.doi.org/10.1007/978-1-4614-0757-7_12

192 BIBLIOGRAPHY

[53] Y. Su, W. Nie, and C. Zhang, “A frame tampering detection algorithm for

MPEG videos,” in IEEE Joint International Information Technology and Artifi-

cial Intelligence Conference, vol. 2, Chongqing, CHN, August 2011, pp. 461–464.

5.2.1, 5.2.2

[54] D. Liao, R. Yang, H. Liu, J. Li, and J. Huang, “Double H.264/AVC compression

detection using quantized nonzero AC coefficients,” in IS&T/SPIE Electronic

Imaging 2011, San Francisco, USA, February 2011, pp. 78 800Q–78 800Q–10.

[Online]. Available: +http://dx.doi.org/10.1117/12.876566 5.2.1

[55] S. Milani, P. Bestagini, M. Tagliasacchi, and S. Tubaro, “Multiple compression

detection for video sequences,” in MMSP 2012, IEEE International Workshop

on Multimedia Signal Processing, Banff, CA, September 2012, pp. 112–117. 5.2.1

[56] J. Xu, Y. Su, and Q. Liu, “Detection of double MPEG-2 compression based on

distributions of DCT coefficients,” International Journal of Pattern Recognition

and Artificial Intelligence, vol. 27, no. 01, p. 1354001, 2013. 5.2.1, 5.2.2

[57] X. Jiang, W. Wang, T. Sun, Y. Shi, and S. Wang, “Detection of double com-

pression in MPEG-4 videos based on Markov statistics,” IEEE Signal Processing

Letters, vol. 20, no. 5, pp. 447–450, 2013. 5.2.1

[58] T. Pevny, P. Bas, and J. Fridrich, “Steganalysis by subtractive pixel adjacency

matrix,” IEEE Transactions on Information Forensics and Security, vol. 5, no. 2,

pp. 215–224, June 2010. 5.2.1

[59] W. Luo, M. Wu, and J. Huang, “MPEG recompression detection

based on block artifacts,” in IS&T/SPIE Electronic Imaging 2008, San

Jose, USA, February 2008, pp. 68 190X–68 190X–12. [Online]. Available:

+http://dx.doi.org/10.1117/12.767112 5.2.1

[60] J. Xu, Y. Su, and X. You, “Detection of video transcoding for digital forensics,”

in ICALIP 2012, International Conference on Audio, Language and Image Pro-

cessing, Shanghai, CHN, July 2012, pp. 160–164. 5.2.1

[61] P. Bestagini, A. Allam, S. Milani, M. Tagliasacchi, and S. Tubaro, “Video codec

identification,” in ICASSP 2012, IEEE International Conference on Acoustics,

Speech and Signal Processing, Kyoto, JP, March 2012, pp. 2257–2260. 5.2.1, 6.1

[62] W. Wang and H. Farid, “Exposing digital forgeries in video by detecting double

MPEG compression,” in MM&Sec 2006, ACM Multimedia and Security Work-

shop, Geneva, CHE, September 2006, pp. 37–47. 5.2.2, 7.2

[63] M. Stamm, W. Lin, and K. Liu, “Temporal forensics and anti-forensics for mo-

tion compensated video,” IEEE Transactions on Information Forensics and Se-

curity, vol. 7, no. 4, pp. 1315–1329, 2012. 5.2.2, 6.2, 7.2

+ http://dx.doi.org/10.1117/12.876566
+ http://dx.doi.org/10.1117/12.767112

BIBLIOGRAPHY 193

[64] W. Wang and H. Farid, “Exposing digital forgeries in video by detecting double

quantization,” in MMSEC 2009, ACM Multimedia and Security Workshop. New

York, USA: ACM, September 2009, pp. 39–48. 5.2.2

[65] T. Pevny and J. Fridrich, “Estimation of primary quantization matrix for

steganalysis of double-compressed JPEG images,” in IS&T/SPIE Electronic

Imaging 2008, vol. 6819, San Jose, USA, February 2008, pp. 681 911–681 911–13.

[Online]. Available: http://dx.doi.org/10.1117/12.759155 6.3.3

[66] C. Grigoras, “Digital audio recording analysis - the electric network frequency

criterion,” International Journal of Speech Language and the Law, vol. 12, no. 1,

pp. 63–76, 2005. 8.1.1

[67] C. Grigoras, “Applications of ENF criterion in forensic audio, video, computer

and telecommunication analysis,” Forensic science international, vol. 167, no. 2,

pp. 136–145, 2007. 8.1.1

[68] D. P. N. Rodŕıguez, J. A. Apolinário, and L. W. P. Biscainho, “Audio authen-

ticity: Detecting ENF discontinuity with high precision phase analysis,” IEEE

Transactions on Information Forensics and Security, vol. 5, no. 3, pp. 534–543,

2010. 8.1.1

[69] R. Yang, Y. Q. Shi, and J. Huang, “Defeating fake-quality MP3,” in MMSEC

2009, ACM Multimedia and Security Workshop, Princeton, USA, September

2009, pp. 117–124. 8.1.2

[70] R. Yang, Y. Q. Shi, and J. Huang, “Detecting double compression of audio

signal,” in IS&T-SPIE Conference on Media Forensics and Security, San Jose,

CA, January 2010. 8.1.2, 9, 10, 10.2, 10.4

[71] Q. Liu, A. Sung, and M. Qiao, “Detection of double MP3 compression,” Cogni-

tive Computation, vol. 2, pp. 291–296, 2010. 8.1.2, 10, 10.2, 10.4

[72] M. Qiao, A. H. Sung, and Q. Liu, “Revealing real quality of double

compressed MP3 audio,” in MM2010, International conference on Multimedia.

Florence, ITA: ACM, 2010, pp. 1011–1014. [Online]. Available: http:

//doi.acm.org/10.1145/1873951.1874137 8.1.2, 9, 10, 10.2, 10.4

[73] R. Yang, Z. Qu, and J. Huang, “Detecting digital audio forgeries by check-

ing frame offsets,” in MMSEC 2008, ACM Multimedia and Security Workshop,

Oxford, UK, September 2008, pp. 21–26. 8.1.2

[74] R. Yang, Z. Qu, and J. Huang, “Exposing MP3 audio forgeries using frame

offsets,” ACM Transactions on Multimedia Computing, Communications, and

Applications, vol. 8, no. 2S, pp. 35:1–35:20, September 2012. [Online]. Available:

http://doi.acm.org/10.1145/2344436.2344441 8.1.2

http://dx.doi.org/10.1117/12.759155
http://doi.acm.org/10.1145/1873951.1874137
http://doi.acm.org/10.1145/1873951.1874137
http://doi.acm.org/10.1145/2344436.2344441

194 BIBLIOGRAPHY

[75] R. Böhme and A. Westfeld, “Feature-based encoder classification of compressed

audio streams,” Multimedia Systems, vol. 11, no. 2, pp. 108–120, 2005. [Online].

Available: http://dx.doi.org/10.1007/s00530-005-0195-2 8.1.2

[76] S. Moehrs, J. Herre, and R. Geiger, “Analysing decompressed audio

with the inverse decoder - towards an operative algorithm,” in Audio

Engineering Society Convention 112, 4 2002. [Online]. Available: http:

//www.aes.org/e-lib/browse.cfm?elib=11346 8.1.2

[77] B. D’Alessandro and Y. Q. Shi, “MP3 bit rate quality detection through fre-

quency spectrum analysis,” in MMSEC 2009, ACM Workshop on Multimedia

and Security. Princeton, USA: ACM, Setember 2009, pp. 57–62. 8.1.2

[78] J. Lukáš and J. Fridrich, “Estimation of primary quantization matrix in double

compressed JPEG images,” in Digital Forensic Research Workshop, Cleveland,

USA, August 2003, pp. 5–8. 9.1

[79] C. Manning, P. Raghavan, and H. Schütze, Introduction to Information Re-

trieval. Cambridge, United Kingdom: Cambridge University Press, 2008. 9.1

[80] G. Snecdecor and W. Cochran, Statistical Methods, ser. Statistical Methods.

NJ, USA: John Wiley & Sons, 1991, no. v. 276. 9.1

[81] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society:

Series B 39, pp. 1–38, 1977. 9.2

[82] M. Kirchner and R. Böhme, “Tamper hiding: Defeating image forensics,” in

Information Hiding. Springer, 2007, pp. 326–341. 11

[83] M. Fontani and M. Barni, “Hiding traces of median filtering in digital images,”

in EUSIPCO 2012, European Signal Processing Conference, Bucharest, ROU,

August 2012, pp. 1239–1243. 11, 11

[84] M. Barni, M. Fontani, and B. Tondi, “A universal technique to hide traces

of histogram-based image manipulations,” in MMSEC 2012, ACM Multimedia

and Security Workshop. Coventry, UK: ACM, September 2012, pp. 97–104.

[Online]. Available: http://doi.acm.org/10.1145/2361407.2361424 11, 11.1, 11

[85] M. Barni, M. Fontani, and B. Tondi, “A universal attack against histogram-

based image forensics,” International Journal of Digital Crime and Forensics,

vol. 5, no. 3, pp. 35–52, 2013. 11

[86] M. Barni, M. Fontani, and B. Tondi, “Universal Counterforensics of Multiple

Compressed JPEG Images,” in IWDW 2014, IEEE International Workshop on

Digital-Forensics and Watermarking, Taiwan, TW, October 2014. 11

http://dx.doi.org/10.1007/s00530-005-0195-2
http://www.aes.org/e-lib/browse.cfm?elib=11346
http://www.aes.org/e-lib/browse.cfm?elib=11346
http://doi.acm.org/10.1145/2361407.2361424

BIBLIOGRAPHY 195

[87] A. B. Watson, “DCT quantization matrices visually optimized for individual im-

ages,” in IS&T/SPIE’s Symposium on Electronic Imaging: Science and Technol-

ogy. San Jose, USA: International Society for Optics and Photonics, September

1993, pp. 202–216. 11

[88] M. Barni and B. Tondi, “The security margin: A measure of source distinguisha-

bility under adversarial conditions,” in GlobalSIP 2013, IEEE Global Conference

on Signal and Information Processing, Austin, USA, December 2013, pp. 225–

228. 11

[89] M. Barni and B. Tondi, “Binary hypothesis testing game with training data,”

arXiv preprint arXiv:1304.2172, 2013. 11

[90] F. Balado, “The role of permutation coding in minimum-distortion perfect coun-

terforensics,” in ICASSP 2014, IEEE International Conference on Acoustics,

Speech and Signal Processing, Florence, ITA, May 2014, pp. 6240–6244. 11

[91] C. Pasquini, P. Comesana-Alfaro, F. Perez-Gonzalez, and G. Boato,

“Transportation-theoretic image counterforensics to first significant digit his-

togram forensics,” in ICASSP 2014, IEEE International Conference on Acous-

tics, Speech and Signal Processing, Florence, ITA, May 2014, pp. 2699–2703.

11

[92] S. Milani, P. F. Piazza, P. Bestagini, and S. Tubaro, “Audio tampering detection

using multimodal features,” in ICASSP 2014, IEEE International Conference

on Acoustics, Speech and Signal Processing, Florence, ITA, May 2014, pp. 4563–

4567. 12.2

[93] Z. Dias, A. Rocha, and S. Goldenstein, “Video phylogeny: Recovering near-

duplicate video relationships,” in WIFS 2011, IEEE International Workshop on

Information Forensics and Security, Foz do Iguaçu, BRA, 2011, pp. 1–6. 12.2

The Ph.D. School

of Information

Engineering of the

University of Siena

is a school aiming

at educating

scholars in a

number of fields of research in the

Information Engineering area. The

Ph.D. School of Information Enginee-

ring is part of the Santa Chiara High

School of the University of Siena. A

Scientific Committee of external

experts recognized Ph.D. Schools

belonging to Santa Chiara as excel-

lent, according to their degree of

internationalization, their research,

and educational activities.

Visual and audio contents always played a key role in communications, because

of their immediacy and presumed objectivity. This has become even more true in

the digital era, and today it is common to have multimedia contents stand as proof

of events. Digital contents, however, are also very easy to manipulate, thus calling

for analysis methods devoted to uncover their processing history. Multimedia foren-

sics is the science trying to answer questions about the past of a given image,

audio or video file, questions like “which was the recording device?", or “is the

content authentic?". In particular, authenticity assessment is a crucial task in many

contexts, and it usually consists in determining whether the investigated object has

been artificially created by splicing together different contents.

In this thesis we address the problem of splicing detection in the three main media:

image, video and audio. Since a fair amount of image splicing detection tools are

available today, we contribute to image forensics by developing a comprehensi-

ve decision fusion framework, allowing to intelligently merge the output of different

algorithms. On the other hand, authenticity verification of digital videos is a rather

unexplored field: we thus contribute by introducing a novel video forensic

footprint, called Variation of Prediction Footprint, and we show how it can be used

to detect double video encoding as well as removal, insertion and manipulation of

frames. Finally, we tackle the problem of fake quality and forgery detection in MP3

compressed audio tracks.

	Introduction
	Overview and contribution
	Activity within research projects
	Publication list
	Acknowledgments

	I Decision Fusion Methods for Splicing Detection in Digital Images
	Introduction to Image Forensics
	What image forensics can do
	Methods for forensic analysis of digital images
	The importance of a synergic analysis
	Decision fusion in image forensics: possible approaches

	A Dempster-Shafer Framework for Splicing Detection
	Introduction to Desmpter-Shafer Theory of Evidence
	Shafer's formalism
	Combination rule
	Belief marginalization and extension

	The proposed framework
	Modeling forensic tools and traces using DST
	Introducing new tools
	Managing configurations of tools
	Modeling traces relationships
	Dealing with many traces: hierarchical modeling
	Final decision rule

	From tool outputs to BBAs through background information
	Interpretation of tool outputs based on DST
	Introducing background information
	Exploiting background information

	Experimental Validation and Concluding Remarks
	State of the art methods
	Reference case study and datasets
	Traces and tools
	Normalization of outputs
	The synthetic forgery dataset
	The realistic forgery dataset
	Choice of reliability properties

	Training procedure
	Results and discussion
	Noticeable case studies
	Comments

	Concluding remarks
	Decision fusion for unsupervised forgery localization
	Decision fusion as a means for countering anti-forensics
	Conclusion

	II The Variation of Prediction Footprint: a Novel Tool for Video Forensics
	Introduction To Video Forensics
	Video coding principles
	Previous works in video forensics
	Multiple encoding detection
	Video splicing detection

	Double Encoding Detection and Forgery Localiz. for Digital Videos
	Variation of prediction footprint for double encoding detection
	The intuition behind the VPF
	Measuring the VPF
	Experimental validation

	Detection of frame removal and insertion
	Shift-invariant VPF
	Iterative analysis for localizing frame removal
	Localization of frame insertion
	Experimental validation

	Intra-frame tampering localization through VPF and DQ analysis
	Sketch of the method
	Detection of frames encoded twice as intra
	Double quantization analysis for MPEG-2 intra-coded frames
	Experimental validation

	Concluding Remarks
	Widening the generality of VPF
	Future works on inter- and intra- frame forgery detection
	Conclusions

	III Fake Quality and Splicing Detection in MP3 Audio Tracks
	Introduction to Audio Forensics
	Previous works in audio forensics
	Techniques based on the Electric Network Frequency
	Techniques based on quantization analysis

	Basics of MP3 audio coding

	Double Encoding Detection and Forgery Localization for MP3 Tracks
	Detection and classification of double compression
	Application to forgery localization

	Experimental Validation
	Dataset for the experiments
	Double compression detection and first compr. bit-rate estimation
	Tampering localization
	Conclusions and open issues

	Other Works: Image Counter-Forensics
	Conclusion
	Summary
	Open issues
	Final remarks

	Bibliography

