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Chapter 1

Introduction

If I were to awaken after having slept for a thousand years,

my first question would be:

Has the Riemann hypothesis been proven?

(David Hilbert)

1.1 Motivations

Few years ago, few people could predict that the entire digital world would

have started to produce data daily at the impressive rate we assist to-

day. Eric Schmidt, the CEO of Google, estimated at 2010 the Internet size

at roughly 5 million Terabytes1 of data and with a constant expansion of 100

terabytes per month. This seems to be crazy especially if we think that also

Internet follows the Moore’s Law, for instance in [ZZY+08] researchers claim

15 Exabytes = 5000000 Terabytes = 5 · 1018 Byte.
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that the Internet doubles in size every 5.32 years. Our world is becoming

strongly interconnected and by the Internet we are able to share everything.

Think about social networks (i.e. Facebook, Linkedin, MySpace, Twitter)

whereby people share thoughts, events, photos and videos with friends. It is

clear that behind this massive amount of data there are several issues related

to the security of the data itself. Potentially privacy sensitive data such as

our age, health, preferences, locations, politics and religious views are being

stored in computers that we do not own2. Moreover the data is generally

transferred to third parties in plain format (think about uploading photos or

videos on Facebook): people believe in the good will of third parties to behave

and handle their data in accordance to laws but also according to their own

privacy policies that very often people do not know or do not care about. A

recent example is Facebook [LBW08] that changed its privacy policy and kept

data stored even after a user had quit the service. Here is an excerpt from

the Facebook contract with users: You hereby grant Facebook an irrevocable,

perpetual, non-exclusive, transferable, fully paid, worldwide license (with the

right to sublicense) to (a) use, copy, publish, stream, store, retain, publicly

perform or display, transmit, scan, reformat, modify, edit, frame, translate,

excerpt, adapt, create derivative works and distribute (through multiple tiers),

any User Content you (i) Post on or in connection with the Facebook service

or the promotion thereof subject only to your privacy settings or (ii) enable a

user to Post, including by offering a Share Link on your website and (b) to

use your name, likeness and image for any purpose, including commercial or

advertising, each of (a) and (b) on or in connection with the Facebook service

or the promotion thereof. You represent and warrant that you have all rights

and permissions to grant the foregoing licenses. It is clear that these new

2In a recent interview to the Wall Street Journal (August 19th 2010) Eric Schimdt affirms

that to escape their virtually frivolous past, many users of sites such as Facebook will want

to change their name because of the potential future employers who will look through their

past over the Internet.
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platforms and networks are extremely vulnerable to private data disclosures3.

This is due to the massively distributed data storage and the resulting increase

in system and management complexities. Current ad-hoc security method-

ologies, combined with the sometimes shocking lack of security, will only lead

to more weaknesses as the amount of data and system complexity increase

during the coming years. On the other side, laws aiming at protecting private

data are continuously emanated. For instance, European privacy law is clear:

“a person’s information can only be used with their prior consent4”. However,

legal assurance is only half of the answer. Once our private data such as date

of birth, political views, preferences or other sensible information have been

compromised, it is very difficult, if not impossible, to “make it private”again

(as we see above in the excerpt of Facebook contract with user). For citizens,

to take advantage of the ubiquity of forthcoming services, privacy and security

of their data as well as its subsequent use has to be guaranteed - a priori.

There are many cases in which the constraints given by privacy and secu-

rity are even more stringent. A lot of people in everyday life use airplanes to

move around the world and as everyone knows following the September 11 at-

tacks, the controls in airports have been increased. New electronic passports

have been introduced for improved border controls and now they contain:

1) personal data, 2) face image and 3) the fingerprints. Each time someone

takes a flight the above information is available to the staff and to the police

for identity check. To be more specific, let us consider the following scenario.

There are two parties, say an Intelligence Agency and a remote controller, say

the security staff of an Airport. The Agency wants to trace the movements

3For instance consider that: Facebook allows users to de-associate themselves from un-

wanted data, but in the case of photographs, the data remains on the server. More details

in [JS05].
4Excerpt from: “Europeans must have the right to control how their personal information

is used. European privacy rules are crystal clear: your information can only be used with

your prior consent” by Viviane Reding, Information Society and Media European Commis-

sioner.
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of a suspect person. To do so, it exploits some biometric information of the

suspect person. In particular it tries to match the biometric sample it owns

with the biometric of the people that are going to take a flight. The Agency

wants to protect the identity of the suspect person (and hence his biometric)

while the Airport wants to protect the privacy of the passengers. From the

point of view of the client, the question is: if I am a good guy, why should

I reveal my biometric data to other parties? At the same time flight safety

must be assured, and clearly, from the point of view of the Agency, they are

interested in avoiding any risk. More generally, we can affirm that the use

of biometric data is becoming a common approach to handle people identi-

ties. Consider for instance that at Disney World Resort in Florida customers

use the fingerprint scanning for the clients that own a multiple-days ticket to

assure the not re-usability [Cam04].

When dealing with biometric data, there is usually a trade-off between

the security of the system that is assumed to be protected and the privacy of

the users who provide the biometries. Often government and law enforcement

agencies can access personal information to protect public safety and national

security: however, abuses of personal information can cause untold harm,

wasted resources, and generally lead to the detriment of society. Hence, there

is a high demand for technologies that permit the use of biometric data while

protecting the privacy of the data owners.

The most obvious and well-known way to secure personal data is to encrypt

and store it in a (trusted) database. Such an approach works only when the

owner of the data and the party in charge of processing or storing it trust

each other, and the goal of the cryptographic module is to protect the data

from a third party. This is not the case in many practical situations where the

owner of the to-be-protected data and the party that is in charge of storing or

processing it do not trust each other. Possible examples include the storage

of biometric information in a central database, the processing of personal

(e.g. medical) data for statistical analysis, or the analysis of people behaviors
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(e.g. log files) for inspection purposes. How is it possible to trade-off between

the request for privacy and the need to analyze personal information for a

legitimate purpose (possibly in the interest of the data owner itself)?

An effective and elegant way to answer the above question is to process

the data while they are encrypted. In the last thirty years5 the cryptographic

community has hardly worked to build a set of tools that allow to compute

with encrypted data. Though this may seem a very difficult task, some solu-

tions have been put forward recently by relying on the use of (i) homomorphic

encryption, whereby some algebraic operations are mapped into simple opera-

tions to be applied in the encrypted domain, and (ii) multi party computation,

where two or more non-trusted parties cooperate to carry out a computation

without revealing their own inputs. In this thesis we focus on the use of such

techniques for the protection of privacy in biometric systems.

1.2 Processing Encrypted Signals

Though the possibility of processing encrypted data (mainly by means of

homomorphic encryption) has been advanced more than thirty years ago

[RAD78], processing encrypted signals poses some new problems due to the

peculiarities of signals with respect to other classes of data more commonly

encountered in the cryptographic literature, e.g. alphanumeric strings or bit

sequences. The most straightforward difference is that signals are usually

represented by means of real numbers (and processed by means of floating

point arithmetic), while all the available cryptosystems work on integer rings.

Other important differences include:

• the non-precise nature of signals, that should be contrasted with the

bit-precise nature of the data cryptosystems usually deal with;

• the essential role played by the temporal or spatial structure of signals
5The first mention is in [RAD78] 1978 by Rivest et al.
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(in many cases what really matters is the way the signal varies with

time rather than the single values it assumes);

• the large size of many signals such as audio files, still images, and video

sequences, that poses very critical constraints on the complexity and

storage requirements.

Some recent studies spanning from digital watermarking [AKS03] through

secure compression [JIP+04] and access to encrypted databases [BDJ04], have

shown that the application of signal processing in the encrypted domain is in-

deed feasible. The cryptographic primitives used to process encrypted signals

belong to two main categories: homomorphic encryption [Rap04] and garbled

circuits [Yao82].

Homomorphic cryptosystems have the property that some elementary al-

gebraic operations in the plain domain are mapped into elementary oper-

ations in the encrypted domain. For instance, in the Pailler cryptosystem

[Pai99], an addition in the plain domain corresponds to a multiplication in the

encrypted domain. Other examples of homomorphic cryptosystems include

RSA [RSA78] that is multiplicatively homomorphic on product, Damgaard-

Jurik generalization of Pailler scheme cryptosystem [DJ01] and Bresson et al.

cryptosystem [BCP03] (that is additively homomorphic). If a homomorphic

cryptosystem is used, it is possible for a party that does not posses the de-

cryption key to perform some simple operations on the encrypted messages.

For instance, by relying on the Pailler cryptosystem it is possible to apply

any linear operator (with known coefficients) to an encrypted signal.

Despite its elegance and simplicity, the current state of the art in homo-

morphic encryption does not allow the efficient simultaneous preservation of

addition and multiplication even if an innovative result has been presented

by Gentry in [Gen09] where it is shown that algebraically homomorphic cryp-

tosystems exist. By this, it is clear that homomorphic cryptosystems do not

allow the application of non-linear operators, which, on the other side, are es-
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sential ingredients of any non-trivial operation to be applied to the encrypted

signals. To avoid the above limitation, the general approach is to use an in-

teractive protocol whereby Alice and Bob collaborate and exchange data to

securely computing a given functionality.

In the field of garbled circuits, introduced by Yao in 1982 [Yao82] and later

refined in [GMW87], it is known that any function can be computed in a secure

manner by implementing a boolean circuit of secure gates. With Yao’s circuit

approach one can implement circuits using both private-key and public-key

primitives. Approaches based on symmetric primitives are several orders of

magnitude faster than the asymmetric approaches. The circuit approach can

be relatively efficient in different security models even if it requires to transfer

from one party to the other a large amount data which yields an increase in

the communication complexity of the protocol.

Homomorphic encryption and interactive protocols provide the basis for

processing and analyzing signals in the encrypted domain, however the appli-

cation of these techniques to real scenarios poses a number of still unsolved

challenges. For instance develop a set of elementary signal processing basic

primitives. This is by itself a very challenging task, given that several prob-

lems need to be faced with including: computational complexity, difficulty of

representing real numbers or implementing floating point arithmetic on inte-

ger rings, implementation of non-linear operations by minimizing the resort

to interaction, etc. Some preliminary work in this direction is described in

[BPB08] where the problems one encounters when trying to implement the

DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform) algo-

rithms in the encrypted domain are tackled with.

Using and extending the above examples, researchers developed many

complex protocols to be applied in applications where the privacy and the

security of the inputs are crucial. The proposed applications range from

heuristic search in encrypted graphs [Fai10]; ElectroCardioGram (ECG) clas-

sification [BFK+09]; data mining [AS00]; face recognition [EFG+09, Erk10],
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remote diagnosis [BPSW07].

1.3 Contribution and Outline

This thesis focuses on the application of secure computation techniques

to biometric signals mostly based on homomorphic encryption. The use

of biometric signals for security applications is by itself a very hot research

field. As a matter of fact, in the last years a huge amount of research has been

carried out concerning measurement and analysis of biometric traits (e.g., fin-

gerprint, iris, face, gait, palm, voice, motion) [WJMM04], [Ash00], [JRP06b].

Particular attention has been given to generating unique identifiers to perform

person verification, identification, and recognition for access control, as well

as to detect suspicious behaviors for surveillance applications.

Protecting the privacy of biometric traits is also a hot topic. Security

and privacy are fundamental especially when biometric data are stored in

databases or transmitted in distributed information systems [PP05], [SPG+06].

It is commonly known that there is a trade off between the security of the sys-

tems based on biometric solutions and the privacy of the biometric data itself.

In particular, the technologies behind practical privacy preserving algorithms

and protocols belong to several different disciplines including signal process-

ing, cryptography, information theory, each of which with a long standing

tradition of theoretical and practical studies. At the same time, only few is

known about their joint use, both at a theoretical and a practical level, the

separation-paradigm being by far the most popular approach. Furthermore,

most of the existing approaches while competitive at the theoretical level, have

never been experimented in practice thus making it difficult to judge their vi-

ability. Despite many recent advances made in the above fields in the last

years, the challenges set forth by the application of secure signal processing

tools to complex signals such as biometric signals (face images, fingerprints,

iris images, voice samples, etc) appear formidable. This leaves on the ground
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a great number of questions about the potentiality and limits offered by the

application of secure signal processing tools in biometric systems.

As a possible solution to these problems, biometric encryption, that is the

encryption of a personal identifier by means of a biometric trait, has been

recently proposed [DRS04]. Such techniques permit to extract a secure key

from a biometric trait and allow to store a biometric template, or secure

sketch [LSM06]. The problem with secure sketches, is that they leak infor-

mation about the original biometric trait and can be used for tracking users

in databases [STP09] [IW07]. Moreover, practical biometric authentication

protocols require the use of trusted third parties to certify the authenticity

of the biometric template [CS07]. The main goal of this thesis is to provide

privacy preserving solutions to handle biometric samples avoiding the leakage

of information that is intrinsic in the existing approaches and guaranteeing

the privacy of the users.

In particular we focus on the use of homomorphic cryptosystems to de-

velop privacy preserving protocols for person identification using encrypted

biometric samples. Without loss of generality, we can say that this kind of

applications can be essentially summarized as a query (the biometric sample)

to a database (a set of stored biometric samples). This high level description

could be useful to identify three approaches to the problem from the point of

view of privacy protection:

encrypted query to a plain database: in this case we want to protect

what we are searching;

plain query to an encrypted database: in this case we want to protect

the data on which we are searching;

encrypted query to an encrypted database: in this case we want to pro-

tect both the query and also the data.

In this thesis we focus on privacy preserving systems that can be cat-
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egorized as: (i) encrypted query to a plain database, specifically we detail

the privacy preserving version of the FingerCode algorithm (systems capable

to protect the client identity and the biometric sample); and (ii) encrypted

query to an encrypted database, in particular we exploit the Fuzzy Commit-

ment Scheme (systems capable to protect client identity and biometrics, but

also the biometric samples in the database). In the first case we will refer to

an application that works with fingerprint biometric samples, but this choice

is not a constrains to use the same solution with different biometric samples.

In the second case we propose a general solution not related to a specific

biometric.

The contribution of this thesis can be summarized as following:

1. we propose a construction that realizes a privacy preserving protocol

able to solve the problem of querying a plain database with an encrypted

query, to do that:

• we use an encrypted biometric sample to query a database of plain

biometric samples;

• we focus on fingerprint biometric and the FingerCode algorithm;

• we provide results related to a real world implementation of the

described protocol;

2. we propose a construction for a privacy preserving protocol that solves

the problem of querying with an encrypted query an encrypted database.

For this case:

• we use an encrypted biometric sample to query a database of en-

crypted biometric samples;

• we focus on the Fuzzy Commitment Scheme and we provide a gen-

eral solution without focusing on a specific biometric.
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In the above context, the outline of this thesis can be summarized as follows:

• First of all we introduce the basic cryptographic primitives we need

(Chapter 2), in particular the Paillier cryptosystem that is the main

tool we use in our work. We explore the homomorphic properties of

this cryptosystem and give a brief review of Paillier’s variants and other

homomorphic cryptosystems. The security model and the mathematical

background to measure the complexities in bit operations, bandwidth

and rounds will be described. At the end, all the cryptographic tools

will be available to realize our constructions.

• Chapter 3 is devoted to examine biometrics and biometric systems. We

will show that it is possible to design systems that work with different

kinds of biometric samples and we will describe different ways to solve

the problem of privacy protection in biometric systems. At the end all

the background about biometric systems will be pointed out, this will

be useful to better understand the two particular systems on which our

constructions are based.

• FingerCode is the main topic of Chapter 4. The plain version of this

algorithm will be investigated and its privacy preserving version will be

detailed. To better understand the goal of the privacy preserving ver-

sion of FingerCode we will rely on a real life scenario. After a detailed

discussion we will evaluate all the complexities involved in the proto-

col and the related security. Finally some results about a real world

implementation will be shown.

• Similar to the FingerCode case, Chapter 5 examines the Fuzzy Com-

mitment Scheme approach to protect biometries passing from a plain

version to an encrypted one. Initially we will introduce the problem

and the plain version of the algorithm. Then, we recall a scenario to

clarify the main goals and requirement of the privacy preserving ver-
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sion. Finally the entire protocol will be described by paying attention

to analyze its complexity and security.

• In Chapter 6 we draw the conclusions of this thesis.
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Chapter 2

Cryptographic Tools for Privacy

Preserving Protocols

Probability does not exists.

(Bruno De Finetti)

2.1 Homomorphic Cryptosystems

The problem of computing with encrypted data is a central one in the

field of cryptography and goes back to the early days of modern cryp-

tography, about thirty years ago [RAD78]. The problem has a fundamental

importance both from a theoretical and a practical perspective. Often and

especially in the case of number theoretic cryptosystems, the possibility of

computing with encrypted data is a direct consequence of a common prop-

erty of the cryptosystems: the malleability. More in detail:
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Definition 2.1. Melleability. We say that a cryptosystem is malleable if

given an encryption of a plaintext m, it is possible to generate another ci-

phertext which decrypts to f(m), for a known function f , without necessarily

knowing or learning m.

Although from a security point of view malleability is a weakness of a

cryptosystem because it allows to modify the plaintext using just the cipher-

text, in our context it is the key that allows to compute on encrypted data

and thus permits to a third part to process private data. In fact, the most

important application of this property is probably secure function evaluation.

In its basic (two party computation) form, secure function evaluation allows

two users, namely the Client (Alice) and the Server (Bob), to securely eval-

uate a known function (sometimes in form of a boolean circuit) using their

private inputs. In other words, we require that executing the evaluation pro-

tocol does not reveal any knowledge about the inputs beyond what can be

deduced merely from the computed output(s). Note that in general, this kind

of protocols require interaction between the parties. Starting from the pio-

neering works of Yao [Yao82] (about the two party computation case) and

Goldreich, Micali and Widgerson [GMW87] related to the general multi party

computation case, the problem has been extensively studied in a variety of

settings and under different assumptions.

In particular, due to the interactive nature of the protocols, great attention

has been paid to the issue of reducing as much as possible the number of

communication rounds required to realize the computation. In this sense, an

intriguing line of research has been focused on encryption schemes (known as

homomorphic encryption schemes) that allow one party to perform some basic

operations on the encrypted messages by working only with the corresponding

ciphertexts. Interestingly, the most known (see [GM84] [NS98] [Pai99] and

[DJ01]) public key schemes are based on hard problems in number theory and

present some form of homomorphism.

An homomorphic encryption scheme over an algebraic ring, can allow
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different kind of homomorphisms, in particular:

Definition 2.2. Given a public key cryptosystem and the relative public and

private keys, respectively PuK and PrK, we indicate with J.K the encryption

function and with D (.) the decryption function. We say that a cryptosystem

is homomorphic if at least one of the following properties hold:

Additive Homomorphism: an operation ◦ exists such that:

D (JxK ◦ JyK) = D (Jx+ yK) = x+ y

i.e., ◦ maps addition in the encrypted domain;

Multiplicative Homomorphism: an operation • exists such that:

D (JxK • JyK) = D (JxyK) = xy

i.e., • maps multiplication in the encrypted domain;

Algebraic Homomorphism: two operations ◦ and • exist, such that, con-

temporaneously, ◦ maps addition and • maps multiplication in the en-

crypted domain.

Table 2.1 shows a list of cryptosystems with their homomorphic properties.

For several years the researcher community has believed that fully homo-

morphic cryptosystems were really difficult if not impossible to realize, but in

2009 in a breakthrough result by Gentry [Gen09] [vDGHV10], the first fully

homomorphic encryption scheme was proposed. Gentry’s paper shows how

to use ideal lattices to construct an encryption scheme that allows to encrypt

single bits and that is homomorphic with respect to addition and multipli-

cation. Even though this result is a major theoretical achievement because

secure fully homomorphic encryption was previously considered impossible to

construct [BL96], the scheme itself and its recent improvements are still too

inefficient to be used in practice. Very recently Melchor et al. in [MGH96] and
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Table 2.1: Homomorphic Properties and Homomorphic Cryptosystem.

Cryptosystem Add Mult Both

RSA (1978, [RSA78]) NO YES NO

Goldwasser-Micali (1982, [GM84]) YES NO NO

ElGamal (1985, [ElG85]) NO YES NO

Benaloh (1994, [Ben94]) YES NO NO

Paillier (1999, [Pai99]) YES NO NO

Boneh-Goh-Nissim (2004, [BGN05]) YES only 1 YES

Gentry (2009, [Gen09]) YES YES YES

Gentry et al. in [GHV10], have conceived less general forms of homomorphic

encryption schemes based on lattices which are more efficient than existing

fully homomorphic schemes but still unsuitable for most applications. Such

schemes are less general in the sense that they allow only a limited number

of multiplications.

In recent years new solutions have been developed to process data and

signals in the encrypted domain ([EFG+09], [BFK+10] [FB10]). Such solu-

tions employ standard cryptographic tools, such as multi party computation

and homomorphic encryption, and although some initial positive results have

been obtained, the development of secure signal processing protocols in the

real world is still complex and cannot be done with automatic approaches or

procedures. This is mainly due to the fact that the proposed solutions are

still not efficient enough to be employed in large scale applications and to

take advantage of this in the real world. So actually, the best way to obtain

the efficiency needed is to design optimized protocols that are able to solve

a well established problem in a given scenario, i.e. to find ad hoc and high

performance solutions in a fixed setting.
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2.2 Security

In this section we introduce a few concepts that will be useful in the rest

of the thesis. In particular we briefly introduce concepts and notations

related to the security of the cryptosystems: hardness of computational and

decisional problems and also the security model we used for our privacy pre-

serving protocols: the honest but curious model.

2.2.1 Cryptosystem Security

In this work we mainly focus on cryptosystems that are based on hard prob-

lems in number theory. Generally speaking a cryptosystem is said to be secure

if the related computational problem is computational infeasible to be solved.

Definition 2.3. Hardness of Computational Problem: given c = JmK a

ciphertext, it is computational infeasible to find the corresponding plaintext

m.

This is equivalent to affirm that the encryption function cannot be easily

inverted. Sometimes a stronger security level is required, this is widely known

as IND-CPA that means INDistinguishability under Chosen – Plaintext At-

tack or semantic security. In this case a cryptosystem needs to be probabilistic

that is: for each plaintext it is possible to generate a set of valid ciphertexts.

The definition of IND-CPA has been introduced in [GM84]. Simply speaking

we can say that in a cryptosystem with this kind of security there is no ad-

versary able to distinguish between encryptions of different plaintexts, even

when he is allowed to compute encryptions by himself. To see this in detail

we recall briefly the Semantic Security challenge:

1. A pair of PuK, PrK are generated by the challenger, the PuK is

available to the attacker;

2. The attacker is able to perform all the operations he wants (encryption

or other operations);
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3. The attacker chooses two plains: m0 and m1 and sends them to the

challenger;

4. The challenger flips a bit b and sends back JmbK;

5. The attacker outputs b;

if the attacker is not able to understand b the cryptosystem is IND-CPA

secure. The best way to prove the IND-CPA is to prove that the decisional

problem related with the computational one is hard. In particular:

Definition 2.4. Hardness of Decisional Problem: given a ciphertext c and

a plaintext m it is infeasible to decide if c = JmK.

If for a given cryptosystem the Definition 2.4 is true (or it is assumed to

be true) then the cryptosystem is IND-CPA.

2.2.2 Honest but Curious Model

When we run a multi party computation protocol we would like to have

the same correctness and reciprocal privacy (assured for instance by a

third party) than in the plain domain (trusted domain). In this thesis we con-

centrate on the honest but curious model, where both parties follow the pro-

tocol but try to infer additional information from the transcript of messages

seen in the protocol. Far from trivial, this model covers many typical practi-

cal settings such as protection against insider attacks. Further, designing and

evaluating the performance of protocols in the honest but curious model is a

first step towards protocols with stronger security guarantees. Indeed, most

protocols and implementations of protocols for practical privacy-preserving

applications focus on the honest but curious model [LP09].

In the honest but curious model we assume that each party executes the

protocol properly, but tries to compute as much additional information as

possible with no time limitation. So the parties may deviate from the protocol
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only in their internal computation, but the messages are in accordance with

the protocol.

Moreover in most cases we compose sub–protocols to obtain more compli-

cated functionalities, in this context it is really important to know that if all

sub–protocols are proven secure in the honest but curious model than their

sequential composition inherits this security property [Gol04].

2.3 Complexity

In this section we focus on the computational complexities involved in the

privacy preserving protocols. We can analyze complexity from three differ-

ent points of view:

Number of Bit Operations : this is also called computational complexity

and indicates the number of basic operations that the protocol needs;

Number of Rounds : the protocols we focus on are client–server protocols,

i.e. they require some message exchange to carry out the computation,

a measure of the efficiency of a privacy preserving protocol is the number

of the interactions (the number of message passing among the parties)

it requires;

Bandwidth : this is just the amount of bit exchanged during the protocol

execution.

To measure the number of bit operations we use the Big-O notation

[Kob94], so assuming that the biggest number involved in the computation

has ` bits, namely the size of a ciphertext, we have that the cost to compute

and addition between two numbers is add = O(`); mult = O(`2) to compute a

multiplication and finally exp = O(`3) bit operations to compute an exponen-
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tiation. We often need to compute exponentiation1 by −1 (or other negative

numbers), this operation is equivalent to compute the multiplicative inverse

in the space of the ciphertexts (namely Z∗n2), this operation can be computed

by using the extended GCD and its computational complexity is equivalent

to compute an exponentiation, so O(`3). For the sake of simplicity in the rest

of this thesis we will use as measure of computational complexity the number

of exponentiations: exp.

While the number of rounds is a very simple concept, we spend a few

words about the bandwidth. The bandwidth depends of many factors, but

probably the most important one is the cryptosystem and so the size of the

ciphertext. Sometimes it is possible to implement the cryptosystem over ad-

equate elliptic curves [Ser99] that realize an algebra. This approach permits

to save up bandwidth due to the fact that it is possible to use a smaller secu-

rity parameter. We use this technique in our privacy preserving FingerCode

construction (Chapter 4 see also Table 2.2) even if the operations on the ellip-

tic curves could be a little bit less efficient from a computational complexity

perspective.

2.4 Paillier Cryptosystem

Before giving a detailed description of the Paillier cryptosystem with its ho-

momorphic properties, we will introduce the mathematical basis needed

to prove the security of the scheme itself. Thus we briefly focus on the in-

tractability of the Composite Residuosity Class Problem that is a generaliza-

tion of the Higher Residuosity Problem (See Definition 2.5).

We start with a few basic concepts of number theory. Let n = pq where

p and q are prime numbers such that n is a secure RSA modulus. Due

to Chinese Remainder Theorem [IRR90] we know that Zn is isomorph with

1This is due to the fact that the exponentiation to a plaintext correspond to a multipli-

cation in the Paillier domain, as we will see later in this Chapter.
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Zp × Zq (the product of rings [Her05]), this isomorphism induces a group

isomorphism over the multiplicative group, so, we have Z∗n ' Z∗p × Z∗q where

Z∗p and Z∗q are cyclic groups of order p− 1 and q− 1 respectively. Now, if d is

such that d|(p− 1) (d divides p-1) the set composed by the all d-th powers of

all elements in Zp realizes a subgroup of Z∗p, moreover if GCD(d, q− 1) = 1 it

follows that all the elements of Z∗q can be expressed as d-th powers and by this

we have that the set of all d-th powers generates a subgroup of Z∗n. Trivially

if GCD(d, q − 1) = h than we have a set of q−1
h d-th powers in Z∗q . The

case d = 2 is well-known in number theory, in this case we speak of quadratic

residuals.

Definition 2.5. Hardness of the Higher Residuosity Problem. Given

n = pq with p and q prime numbers, an integer number d such that d|(p− 1)

and an integer x ∈ Zn, it is computationally infeasible to decide if an integer

γ exists such that x = γd mod n. If d = 2 the problem is called Quadratic

Residuosity Problem (See [NS98] for further details).

The Higher Residuosity Problem states that it is not possible to efficiently

decide if a given integer is or is not a d-th power in the ring Zn. A generaliza-

tion of this problem is the basic infeasible problem for the Paillier cryptosys-

tem (See Definition 2.6).

Definition 2.6. Hardness of the Composite Residuosity Problem. Given

c ∈ Z∗n2 and γ ∈ Z∗n it is computationally infeasible to find m ∈ Zn such that:

c = γmrn mod n2 (2.1)

for some r ∈ Z∗n.

Definition 2.7 shows a definition for the decisional problem associated with

the computational one.

Definition 2.7. Decisional Composite Residuosity Problem. Given

c ∈ Z∗n2, γ ∈ Z∗n and m ∈ Zn it is computationally infeasible to decide if

c = γmrn mod n2 (2.2)



26 2. Cryptographic Tools for Privacy Preserving Protocols

for some r ∈ Z∗n.

All the above problems are considered intractable and so suitable as basis

for the Paillier cryptosystem (detailed discussion can be found in [Pai99]).

Given the above definition and hardness assumption it can be proved that

the Paillier cryptosystem is a randomized IND-CPA cryptosystem.

To illustrate the way Paillier cryptosystem works, we start by defining the

public and private keys, respectively PuK and PrK. Given an RSA modulus

n = pq, we define L(u) as the following function:

L(u) =
⌊
u− 1
n

⌋
, (2.3)

and we compute the Least Common Multiple λ = LCM(p−1, q−1), choosing

γ such that:

GCD
(
L
(
γλ mod n2

)
, n
)

= 1, (2.4)

then let µ = L
(
γλ mod n2

)−1 mod n. Finally we let:

PuK = (γ, n)

PrK = (λ, µ).
(2.5)

Given a plaintext m ∈ Zn and a random r ∈ Z∗n we compute the encryption

of m in the following way:

c = JmK = γmrn mod n2 (2.6)

and the decryption as:

m = D (c) = L
(
cλ mod n2

)
µ mod n. (2.7)

In general we indicate with s = dlog2 ne the Paillier security parameter

and we define ` = 2s the bit size of a ciphertext. The most updated NIST2

2National Institute of Standard and Technology. The mission of the Institute is to:

”promote U.S. innovation and industrial competitiveness by advancing measurement science,

standards, and technology in ways that enhance economic security and improve quality of

life.”
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Table 2.2: NIST Recommendation for Key Management.

Date Symmetric Asymmetric Elliptic Curve

2010 80 1024 160

2030 112 2048 224

> 2030 128 3072 256

>> 2030 192 7680 384

>>> 2030 256 15360 512

recommendation for security parameters are reported in Table 2.2 (more detail

in [BBJ+09]).

Following Equation 2.6 and Equation 2.7 we remind that for Paillier cryp-

tosystem the computational complexity is: enc ≈ dec = exp.

Paillier cryptosystem has several properties. In the following we point out

the most important ones with the related proofs. Given x, y, k, r ∈ Zn we

have:

Property 2.1. Additive Homomorphism.

• D
(
JxK JyK mod n2

)
= x+ y mod n

Property 2.2. Scalar Homomorphism.

• D
(
JxKk mod n2

)
= kx mod n

Property 2.3. Self–Blinding.

• D
(
JxK rn mod n2

)
= x mod n

Proof 2.1. Additive and Scalar Homomorphism. Given Jm1K, Jm2K
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and k, r1, r2 ∈ Zn we have:

c =

= (Jm1K Jm2K)k =

= (γm1rn1 γ
m2rn2 )k mod n2 =

=
(
γm1+m2(r1r2)n

)k mod n2 =

= γk(m1+m2)(r1r2)kn mod n2 (2.8)

now we define r = (r1r2)k thus:

γk(m1+m2)(r1r2)kn mod n2 = γk(m1+m2)rn mod n2 (2.9)

finally D
(
γk(m1+m2)rn mod n2

)
= k(m1 +m2).

Proof 2.2. Self–Blinding. Given JmK and r ∈ Zn we have:

JmK rn mod n2 =

= γmrnmr
n mod n2 =

= γm(rmr)n mod n2 =

= γmr̂n mod n2 = (2.10)

setting r̂ = rmr, we have that this operation does not change the plaintext,

but only the randomization. Similarly in the case:

JmK γrn mod n2 =

= γmrnmγ
rn

mod n2 =

= γm(rmγr)n mod n2 =

= γmr̂n mod n2 = (2.11)

where r̂ = rmγ
r.
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2.5 Damgaard – Jurik cryptosystem

Two years after the publication of Paillier’s work, Damgaard et al. in

[DJ01] proposed a generalization of Paillier cryptosystem. In particu-

lar this generalization allows to use moduli of the form ns+1 where s ≥ 1

moreover the security can be proven, similar to Paillier, using the Composite

Residuosity Problem (Definition 2.6) and the Decisional Composite Residu-

osity Problem (Definition 2.7). The possibility to use an s ≥ 1 affects the

cryptosystem expansion factor. More in details, cryptosystems like RSA real-

ize a transformation that does not change the size of the data to be encrypted.

In fact the plaintext and the ciphertext domain are the same Zn. This means

that the plains and the ciphers have the same bit size: blog2 nc. With ran-

domized cryptosystems this does not happen, because for the same plain more

than one cipher exists. In the Paillier cryptosystem we have plain in Zn and

ciphers in Zn2 this implies that the data has an expansion factor of:

2blog2 nc
blog2 nc

= 2.

The Damgaard – Jurik cryptosystem tries to avoid this problem because it

has plains in Zns and ciphers in Zns+1 this produces an expansion factor equal

to:
(s+ 1)blog2 nc
sblog2 nc

=
s+ 1
s

= 1 +
1
s

that, generally, is smaller than 2.

In DJ cryptosystem, we can define public and private keys in the following

way. Given n = pq a secure RSA modulo, we set λ = LCM(p− 1, q − 1) and

choose γ ∈ Z∗ns+1 in the following way:

γ = (n+ 1)αβ mod ns+1 (2.12)

where α is such that GCD(α, n) = 1 and β ∈ Z∗n. Due to the fact that α = 1

and β = 1 satisfy the above condition, DJ cryptosystem is often used in the
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simplified version in which γ = n+ 1. Then by using the Chinese Remainder

Theorem compute d such d = 1 mod ns and d = 0 mod λ. Lastly let:

PuK = n

PrK = λ.
(2.13)

Now, given a plaintext m ∈ Zns and a random r ∈ Zns+1 it is possible to

compute the encryption of m as:

c = JmK = γmrn
s

mod ns+1, (2.14)

and the decryption is computed via a recursive application of the Paillier

decryption function on:

cd mod ns+1 = (n+ 1)m mod ns+1 (2.15)

to obtain m. DJ cryptosystem inherits the same homomorphic properties of

Paillier’s scheme.

2.6 Blinding

Very often to realize a privacy preserving protocol non linear functions are

needed that cannot be computed by using only homomorphic encryption

schemes. In those cases Bob (the server) asks to Alice (the client) some help

to carry out a portion of the computation. This means that there is some

kind of interaction between the parties (rounds) and during this everything

must be kept secret, that is, when Bob sends its data to Alice, he wants to

be sure that she is not able to understand anything about the data itself and

vice versa [Koc96]. Formally we state Definition 2.8.

Definition 2.8. Blind Computation with Encrypted Data. Bob has

some data JxK encrypted with the public key of Alice and needs to compute

the functionality f with the help of Alice. Due to the fact that Alice owns

the private key she is able to obtain x and Bob does not want to reveal it to
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Alice. So he chooses a suitable r and by homomorphic properties computes

Jx+ rK and sends it to Alice. She is able to decrypt and obtain x+ r but she

cannot retrieve x, thus she computes: Jf(x+ r)K and sends it back to Bob that

obtains the required computation. Obviously, it is necessary that f̃ exists such

that:

f̃ (Jf(x+ r)K , r) = Jf(x)K

and f̃ can be applied on encrypted data. Figure 2.8 summarizes the flow of

actions for blinding.

Alice Bob

×

JxK r

Jx + rKD (.)

f

x + r

Jf(x + r)K
f̃

Jf(x)K

P
P
L

Figure 2.1: Blind Computation with Encrypted Data (PPL indicated the Privacy

Preserving Line).

This practise is also powered from the fact that additive blinding is infor-

mation theoretic secure, so it provides a perfect security on the data allowing

at the same time the possibility of computing on encrypted data. The above

approach is quite often used, and several sub–protocols have been developed

using this approach. To exemplify the blinding procedure outlined above, we

now describe the sub–protocol, EncMul, that allows to compute the product

of two Paillier ciphertexts obtaining JxyK = EncMul(JxK , JyK). Suppose (See
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Figure 2.2) that Bob owns JxK and JyK encrypted with the public key of Alice.

He can obfuscate both cryptograms by adding two random numbers due to

homomorphic additive properties and obtain Jx+ rxK and Jy + ryK. Now he

sends these cryptograms to Alice, she decrypts and multiplies them finding:

w = xy + xry + yrx + rxry, she encrypts w and sends it back to Bob that

computes:

JwK JxK−ry JyK−rx JrxryK−1 =

= JwK J−xryK J−yrxK J−rxryK =

= Jw − xry − yrx − rxryK =

=

u
vxy + xry + yrx + rxry︸ ︷︷ ︸

w

−xry − yrx − rxry

}
~ =

= JxyK (2.16)

obtaining exactly the product of the two encryptions.

Computing EncMul requires 2 rounds (one from Bob to send the obfus-

cated ciphertexts and one from Alice to send back the result) and a bandwidth

of 3` (3 ciphertexts are exchanged) with a computational complexity equal

to: 3 exp needed to compute JxK−ry , JyK−rx and JrxryK−1; 5 mult needed to

obfuscate JxK, JyK and to compute the additions to JwK; 2 dec to obtain in

plain x+ rx and y + ry and finally 1 enc to encrypt the result, for a total of

6 exp operations.

2.7 Application to Processing Encrypted Data

The techniques introduced in this chapter have been widely used, some-

times in conjunction with other advanced tools like garbled circuits3, to

3Garbled circuits are an efficient method for secure function evaluation of boolean cir-

cuits. The general idea of garbled circuits, that has been introduced by Yao [Yao86], is to

encrypt (garble) each wire with a symmetric encryption scheme. In contrast to homomor-
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Figure 2.2: EncMul Sub–Protocol.

realize systems that are able to solve a variety of problems. We briefly recall

some of them to give an idea of the possibilities allowed by this kind of ap-

proach. The number of possible applications is virtually endless. Among the

most interesting scenarios investigated so far we mention: private database

access [AS00], in which the client accesses a server by means of an encrypted

phic encryption, the encryptions/garblings cannot be operated directly, but requires helper

information which is generated and exchanged in a setup phase in form of a garbled table

for each gate.
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query; private data mining [LP08], in which two or more parties wish to

extract aggregate information from a dataset formed by the union of their

private data; watermarking of encrypted signals [KLC+08], for digital rights

management within buyer-seller protocols; recommender systems [ABF+08],

in which users data is analyzed without disclosing it.

In [BPB08] a system to compute the Fast Fourier Transform in the en-

crypted domain is described. In [BFK+09] a privacy-preserving system has

been described where Bob classifies an ElectroCardioGram (ECG) signal with-

out learning any information about the ECG signal and Alice is prevented

from gaining knowledge about the classification algorithm used by the Server.

The system relies on the concept of Linear Branching Programs (LBP) and a

related cryptographic protocol for secure evaluation of private LBPs [BFK+10]

based on homomorphic encryption and garbled circuits. The paper faces with

the study of the trade-off between signal representation accuracy and sys-

tem complexity both from practical and theoretical perspectives. As a result,

the inputs to the system are represented with the minimum number of bits

ensuring the same classification accuracy of a plain implementation.

In [Fai10], a novel technique has been proposed to compute the well-known

A∗ algorithm, on the encrypted weights of a graph. A∗ is a best first graph

search algorithm that uses an heuristic function helping to choose the best

candidates during the traversing of common graphs [HNR68]. Graphs are

data structures widely used to represent: social networks; computer networks;

geographic maps; game moves; possible paths in a given environment and

many more. In the considered setting two parties are interested to compute

the shortest path between two nodes in a context where: part of the graph

topology (only the numbers of nodes) is publicly known; Alice knows the

weights for each edges and Bob owns the heuristic to use for searching in.

Moreover, Alice wants to keep secret her weights and Bob the heuristic used.

In [FB10], a scenario in which two parties are interested in computing

a given functionality in a privacy preserving way has been considered, but
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this functionality needs a sub–protocol that computes the Gram – Schmidt

Orthogonalization on encrypted vectors. The main goal of the paper is a

detailed description comprehensive of security proof and complexity evalu-

ation. There are a lot of applications in which this kind of sub–protocol

could be embedded as a basic privacy preserving primitive, including: QR de-

composition [GVL96]; linear least squares problems [Bjo67]; face recognition

[ZZZ04]; improving performances of neural networks [Orf90]; wavelets com-

putation [CQ92]; principal component analysis [SP07] and image compression

[MQQ+06].

In [EFG+09] a privacy-enhanced face recognition system is proposed. In

particular the construction allows to efficiently hide both the biometric using

an encrypted version of the widely known Eigenfaces algorithm and it is able

to keep secret the result from the server that performs the matching operation.

Similarly in [OPJM10] is an ad hoc system for face recognition in the privacy

preserving framework is proposed, specifically designed for usage in secure

computation.
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Chapter 3

Biometric Systems

11:15, restate my assumptions:

1. Mathematics is the language of nature.

2. Everything around us can be understood through numbers.

3. If you graph these numbers, patterns emerge.

Therefore: There are patterns everywhere in nature.

(”Pi” 1998)

3.1 Introduction to Biometric Systems

Generally speaking biometrics is the science of measuring an individual’s

physiological and/or behavioral properties (or features) in an automatic

way. More in details the term biometric recognition is used to indicate the use

of distinctive physiological (e.g., fingerprints, face, retina, iris) and behavioral

(e.g., gait, signature) characteristics, called biometric identifiers (or simply

biometrics) for automatically recognizing individuals.

Physiological biometric is based on data derived from a direct measure-

ment of a part of the human body, while behavioral biometric is based on
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measurements and data derived from a human action, but it is possible to

affirm that all biometric identifiers are a combination of physiological and

behavioral characteristics and they should not be exclusively classified into

either physiological or behavioral characteristics. For example, fingerprints

may be physiological in nature, but the usage of the input device (e.g., how

a user presents a finger to the fingerprint scanner) depends on the person’s

behavior. Thus, the data produced is a combination of physiological and be-

havioral characteristics. Often, a similarity can be noticed among relatives,

children, and siblings in their voice, gait, and even signature. The same ar-

gument applies to face: faces of identical twins may be extremely similar at

birth but afterwards, the faces change based on the person’s behavior and

history (e.g., lifestyle differences leading to a difference in bodyweight, etc.).

Advances in automation and the development of new technological sys-

tems, such as cellular phones and the Internet, have led users to more frequent

use of technical devices that require some kind of authentication. Personal

identification has taken the form of token–based or knowledge–based meth-

ods, such as secret passwords and PINs (Personal Identification Numbers),

ID cards, keys or passes. Everyday–life examples include ATMs, cellular

phones or Internet access on a personal computer. A password should never

be guessed, so it should be as long as possible, it should not appear in a dictio-

nary, and should include special symbols such as +, -, %, or #. Moreover, for

security purposes, a password should never be written down, never be given

to another person, and should be changed at least every three months [Bis91].

Considering that people use many passwords (laptop PCs, log on LANs, POS

cards, cellular phones) and that the expense and annoyance of a forgotten

password is enormous, it is clear that users are forced to sacrifice security due

to memory limitations. While passwords are very machine–friendly, they are

still far from being user–friendly.

One of the possible solutions to the above problems can be found in the use

of biometry. Because biometric identifiers cannot be easily misplaced, forged,
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or shared, they are considered more reliable for person recognition than tra-

ditional methods. Biometric recognition may provide user convenience (e.g.,

money withdrawal without ATM card or PIN), better security (e.g., diffi-

cult to forge access), and higher efficiency (e.g., lower overhead for computer

password maintenance).

Biometric technologies are becoming the foundation of an extensive set of

highly secure identification and personal verification solutions. As the level of

security breaches and transaction fraud increases, the need for highly secure

identification and personal verification technologies is becoming apparent.

The problem of associating an identity to an individual can be split in

two distinct types of problems: verification that is confirming or denying a

person’s identity1 (one to one comparison); and recognition that is establishing

a subject’s identity in a set of possible candidates (one to many comparison).

It is obvious that a lot of situations exist that require the identification of a

subject in the real world, for instance consider the case of video-surveillance

in public locations like: subways, airports or train stations.

Focusing on the engineering point of view, the problem of authenticat-

ing a person can be reduced to the problem of authenticating a concrete

entity related to the person, by this, we can identify two principal cases: au-

thentication based on something that you posses like the ATM card or

something that you know like a username and a password. A completely

different approach is to identify a person by using the physical characteristics

of the person himself. As mentioned before this method is called biometric

recognition and can be categorized, with the above notation, as something

that you are. A good biometry should have the following four properties

[Cla94]:

universality: every person owns the biometry. This means that is a common

peculiarity among people;

1Sometimes also the term identification is used, in this case it refers to a binary matching.
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Table 3.1: Comparison Among the most Common Biometries - Intrinsic Properties.

Biometric Universality Uniqueness Permanence Collectability

Fingerprint Medium High High Medium

Face High Low Medium High

Hand Medium Medium Medium High

Iris High High High Medium

Signature Low Low Low High

Voice Medium Low Low Medium

DNA High High High Low

uniqueness: two persons do not own two identical biometries or the proba-

bility of this event is negligible, for instance the iris is really distinctive;

permanence: the characteristic is time invariant, for instance the hand ge-

ometry change during the growth while DNA does not;

collectability: the characteristic can be measured quantitatively and easily

with a measurement tool.

Table 3.1 shows the above properties for a set of common biometry.

Other three properties have to be added to those above, that are strictly

related to the practical implementation of the biometric systems:

performance: the resources required to achieve a good identification accu-

racy, for instance biometric systems based on DNA are really expensive

and require many days to perform an identification task;

acceptability: the confidence on the system by people. The measurement

system has to be non invasive and user–friendly;

circumvention: robustness under fraudulent techniques, this means that it

should be really difficult (or impossible) to replicate a biometric trait of
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Table 3.2: Comparison Among the most Common Biometries - Implementation

Properties.

Biometric Performance Acceptability Circumvention

Fingerprint High Medium Medium

Face Low High Low

Hand Medium Medium Medium

Iris High Low High

Signature Low High Low

Voice Low High Low

DNA High Low Low

a third person.

Table 3.2 summarizes the above additional properties for some common biome-

tries.

A biometric–based authentication system is generally composed by two

main phases: the enrollment and the matching. During the enrollment phase

a new biometric sample is used to generate a template or another compact

representation of the data that is stored in a database. In the matching phase,

the client provides a new sample of his biometry that is matched against the

enrolled one to check the identity. Figure 3.1 summarizes the flow of the

matching phase: a) the biometric sample is acquired; b) a compact represen-

tation is computed (features extraction); c) a matching is looked for using a

specified metric defined in the features space.

A biometric system is essentially a pattern recognition system for person

identification relying on the authenticity of a specific physiological or behav-

ioral characteristic possessed by the user. An important issue in designing a

practical system is to determine how an individual is identified. Depending on

the context, a biometric system can be either a verification (authentication)
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Acquisition Features
Extraction

Matching

Database

Figure 3.1: Architecture of a Pattern Recognition system.

system or an identification system.

For the sake of simplicity we can say that verification answers to the

question ”Am I whom I claim I am?”, this clearly involves confirming or

denying a person’s claimed identity. Similarly in the identification case, one

has to establish a person’s identity answering to ”Who am I?”. Each of these

problems have their own complexities and could probably be solved best by

a certain biometric system.

Verification (1:1 one-to-one matching) is the process of establishing the

validity of a claimed identity by comparing a verification template to an en-

rolled template. Verification requires that an identity be claimed, after which

the individual’s enrollment template is located and compared with the ver-

ification template. Some verification systems perform very limited searches

against multiple enrolled records. For example, a user with three enrolled

fingerprint templates may be able to place any of the three fingers to be ver-

ified, and the system performs three 1:1 matches against the user’s enrolled

templates until a match is found.

Recognition (1:N, one-to-many recognition) is the process of determining

a person’s identity by performing matches against multiple biometric tem-

plates. Identification systems are designed to determine identity based solely

on biometric information. There are two types of identification systems: pos-

itive identification and negative identification. Positive identification answers

the ”Who am I?” question, although the response is not necessarily a name
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– it could be an employee ID or another unique identifier. A typical positive

identification system would be a prison release program where users do not

enter an ID number or use a card, but simply look at an iris captured by a

device and then try to find a match in a database. Negative identification sys-

tems search databases in the same fashion, comparing one template against

many, but are designed to ensure that a person is not present in a database.

This prevents people from enrolling twice in a system, and is often used in

large-scale public benefits programs in which users could try to be enrolled

multiple times to gain benefits using different names.

3.2 Biometrics

In this section we give some details about the most common and widely used

biometries, in particular we focus on: fingerprint, face, iris, signature, voice

and DNA. Let us now detail the characteristics of each of the above biometric

traits.

3.2.1 Fingerprint

Fingerprints are the graphical ridges present on human fingers. These biomet-

ric traits are believed to be unique for each person, in general they are different

also from finger to finger and have been intensively used in forensics, for many

years, for criminal investigations. Generally speaking a fingerprint image can

be captured in one of the two following ways: a) scanning an inked impres-

sion of a finger (inked fingerprint) or b) using a fingerprint scanner device

(live–scan fingerprint). Fingerprint images can be represented as: a picture,

a sequence of finger ridges or a set of features, said minutiae, extracted from

the conformation of ridges. The prevalent approaches to fingerprint identifi-

cation can be summarized as follows:

1. invariant properties of the gray–scale image;
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2. global ridge pattern (fingerprint classes);

3. local ridge patterns;

4. minutiae.

The lines that flow across fingerprints are called ridges and the spaces between

ridges are called valleys. One of the best known approaches to fingerprint

feature extraction is called minutiae matching. There are several types of

minutiae, but the most important are: ridge ending and ridge bifurcation.

Those minutiae are stored with some additional information like: location in

the image or direction. Sometimes, in this approach, two other features are

used: the core, that is the center of the fingerprint and the delta that is a

singular point from which three patterns deviate (See Figure 3.2).

Figure 3.2: Fingerprint Minutiae.

Commonly a digital fingerprint image is stored in gray scale: 8 bits for

intensities for a range going from 0 to 255. The image size is a square from

1.27 cm to 2.54 cm with a resolution of 500 dpi (200 dpc). Image processing

tools are applied to remove noise and enhance fingerprint images, for instance:

adaptive matched filter and adaptive threshold filter. The first one is used to
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highlight ridges and the second one to obtain the binarization of the image

(from 8 bit representation to 1 bit representation). After these operations,

the edges are thinned to squeeze ridges in lines of 1 single pixel. Extracting

minutiae requires to find ridge endings and ridge bifurcations, this procedure

could introduce extraneous features that can be removed by using empirical

thresholds. The minutiae are stored in a vector with at least two additional

information the (x, y) coordinate location, the direction and the type of minu-

tiae; this vector is called minutiae template, its size ranges from 400 bytes to

1024 bytes. To implement the matching technique a similarity function is

used that gives the similarity of two feature vectors. Note that in the space

of the minutiae it is not possible to define a metric, so generally speaking, the

similarity functions are complex decision rules. Generally the feature vector

is compared with all the other vectors stored in the database, so, to speed up

the process, sometimes an order (importance) is given to the single minutiae

stored in the vector.

Other techniques are based on correlation matching. In this case the algo-

rithm works directly on two images and the main operation is the computation

of the difference between of the two images. This approach could be very dif-

ficult because the images have to be aligned, rotated, zoomed and shrunk in

the same way. Yet another approach consists in the use of the so-called Fin-

gerCode [JPHP00]. The FingerCode is a widely used algorithm in biometric

systems, we will speak extensively about this approach later in the thesis.

3.2.2 Face

Face is one of the most accepted biometric traits because it is the standard

method of identification used in human interactions, moreover acquiring faces

is non-intrusive and can be done with low cost devices. Two principal methods

are used to identify people by faces:

1. transform-based approach (eg. eigenfaces) [TP91]
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2. attribute-based approach (requiring geometric properties extraction see

Figure 3.3) [AGR96].

Figure 3.3: Face Geometry Measurement.

Algorithms for face recognition can be really complex because they must

be tolerant to: aging effect, facial expressions, variation of poses and camera

position. Generally speaking the features can be extracted manually or auto-

matically: in the first case a human operator defines which are the features.

The second case is the most common and the most interesting one from the

point of view of practical implementations. Neural networks are often used

to efficiently extract features (see for example [WAH97]). Other methods are

related to statistical informations. A face can be represented as a linear com-

bination of a principal component vector, that is computed from a dataset of

images [TP91]: this approach is called eigenfaces (See Figure 3.4). A common

problem of the eigenface technique is that it is not invariant to face position

or size and so generally the images are required to be acquired in canonical

form2.
2With canonical form we refer to the fact that each face has to be in the same position

and all the images need to have the same shrink factor and size. For instance the photos

used in the passport are canonical photos.
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Figure 3.4: Eigenface Samples.

3.2.3 Iris

The visual texture of the iris is commonly believed to be unique for each

person and for each eye [Dau93] so it is strongly suitable for biometric appli-

cations. Given the high number of degrees of freedom intrinsic in the iris (circa

249 [Dau03]), it is possible to identify a person with a very high confidence,

moreover it is possible to affirm that quite all the variables that generate the

iris are independent [Dau93] and so this biometry is really distinctive. The

process of acquiring an iris image employs a non–contact device that gener-

ally uses a CCD with a resolution of 512 dpi. Iris is quite difficult to measure

because there are several factors that are involved in this process. Probably

the most important one is that to record an iris image a great cooperation

between the operator and the subject is needed; the iris image in fact must be

registered with a high accuracy of the focal distance, for this reason users can

feel the iris more intrusive than other biometries. By manipulating the iris
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image it is possible to extract a constant length binary vector, called IrisCode

[Dau06]. This byte vector permits an extremely fast method of recognition.

The information in the iris pattern (See Figure 3.5) can be extracted using

different approaches for instance a demodulation with complex wavelets (see

[DD95]).

Figure 3.5: IrisCode.

After the localization of the iris in the image, a double dimensionless

coordinate system is applied to define a mapping of the tissue in a way that

is invariant to pupillary constriction or zoom factor. As already said the

iris is detailed using a wavelet transform and the pattern is encoded into 256

bytes: the IrisCode. Due to the fact the IrisCode is really distinctive, a simple

Hamming Distance can be used to identify a subject. The Hamming Distance

is implemented by using the bitwise XOR, so the complexity to execute Iris

Recognition is very low and so it is very attractive especially in systems that

use very large databases (i.e. airport, subway) [Dau05].

3.2.4 Voice

The voice is an individual characteristic [Fur97], in general it is considered

non sufficiently unique (low uniqueness) to guarantee an exact match in large

databases. This because the voice signal is degraded in quality by microphone,
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digitalization and communication channel. Moreover voice is a behavioral

biometry and it is strongly affected by person’s health, stress and emotions.

There are two different approaches to voice recognition:

1. text–dependent: speaker verification is carried out on a set of predeter-

mined phrases, this is the most common approach;

2. text–independent: speaker verification is carried out on a generic phrase.

This is a very difficult task to achieve.

From the point of view of the circumvention, the voice is not so good

due to the fact that some people are very skilled in mimicking voice. The

most commonly used feature is the cepstral feature, which is the logarithm

of the Fourier Transform coefficients in several bands (this feature is widely

used in music classification [JLZ+02]). The feature vector is compared with

the speaker model using pattern recognition techniques like: Dynamic Time

Warping [WG97], Hidden Markov Model [LHW98], Neural Networks [FMA94]

or Vector Quantization [CG90]. The result of this matching is a measure of

similarity of the given features with the speaker model. Initially the data

acquired is filtered by using an antialiasing filter and then converted into a

digital format (12 or 16 bit at 8000 to 20000 samples per second). As said,

one of the most used features is the cepstrum, but several others features can

be extracted from the voice, in particular an AutoRegressive model (AR) can

be applied to obtain a model for the speaker (often a 8-degree AR model is

used) and in this case the features are computed from the coefficients of the

model by changing their domain. In this way AR coefficients are transformed

using: Reflection Coefficients [RSR78], LogArea Ratio [Ita75] or LP cepstrum

[RSR78]. Pattern matching uses a distance measure to evaluate the similarity

between the feature vector and the templates stored in the database, in this

scenario some common solutions are: Vector Quantization Source Modeling

[EW06] or Nearest Neighbors [HBP02].
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3.2.5 DNA

The DNA is a one dimensional code that identifies each person uniquely,

except for mono–zygote twins. Although people think that DNA is the best

way to identify a person with no error, this principally comes from television

fiction; in real world applications, there are three fundamental limits to the

use of DNA for identity recognition:

contamination and sensitivity : it is quite simple to steal a piece of DNA,

so everyone is able to obtain a third person DNA (i.e. hair);

real–time identification : with the actual technology it is still quite diffi-

cult the manipulation of the DNA to obtain relevant information (3 to

5 days are needed to extract a DNA profile);

privacy : certain diseases can be detected by examining DNA, so abuse of

genetic code could be discriminant for instance in hiring practices.

DNA samples are used to generate a DNA fingerprint (or DNA profiling);

to do so the portion of DNA usable is really short, in fact to compute a DNA

fingerprint just 10% of the DNA extracted in the portion of non-coding short

tandem repeat3 is used. More specifically the lengths of variable sections of

repetitive DNA, such as short tandem repeats and minisatellites4, are com-

pared between people [CM94]. Figure 3.6 shows samples of DNA fingerprints.

From the point of view of the uniqueness, it can be shown that the proba-

bility of two people having the same profile is about 10−9, but it is also known

that it is impossible to distinguish between mono–zygote twins. This kind of

fingerprint extracted from DNA cannot be altered by surgery or treatment

and for this reason is widely used for paternity test and forensics (i.e. CODIS5

3A tandem repeat in DNA occurs when a pattern of two or more nucleotides are repeated

and the repeated sequences are directly adjacent to each other.
4A minisatellite is a section of DNA that consists of a short series of bases.
5Combined DNA Index System is the software used by the FBI laboratories to store and

search among DNA profiles.
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Figure 3.6: DNA Fingerprint.

database).

3.3 Protecting Biometric Data

3.3.1 Generalities

Biometric templates are uniquely associated with each person and thus rep-

resent the strongest form of personal identifiable information. If from one

hand, such fact strengthens the authentication process, on the other hand

the possibility that a biometric template could be stolen or exchanged raises

concerns on its possible uses and abuses. A first concern seems to be the

possibility that a government agency or a company which maintains personal

data monitors and tracks the actions and the behavior of each individual.

This may augment the enormous amount of information which already both

public and private organizations can collect by tracking, for instance, credit

cards or mobile phones.

Another basic concern regards the loss of anonymity when biometries is

used in a pervasive way. The control on the release of personal information
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should always be kept with its owner, so that he could maintain the capability

to avoid that other parties know who he is and avoid Big Brother scenarios

and identity misuses.

The users commonly perceive biometric authentication and identification

techniques as a threat to their privacy rights. In particular there are some

aspects that reinforce this perception [JRP06a]. The first one is related to

the fact that the acquisition of the biometric traits is considered as an exact

and permanent filing of the user’s activities and behaviors. For example, it

is very common think that most biometric systems have 100% identification

accuracy and that the biometric samples and templates are necessarily stored

and/or sent over a network, exposing them to further risks of being exposed.

Actually, the latter is a well-funded concern. In fact, while it should be

granted to the user that the biometric information collected is not used for

any other activities in addition to those expressly declared, in some cases it

is hard to grant this aspect, especially if the biometric samples themselves

are sent over an open network. The second issue is related to the possibility

to track the user activities associated to the biometric acquisition, even in

the far future. This raises in the users the perception of the possibility that

their movements are tracked along with buying and life style. Commonly this

issue is associated to a sort of phobia, in which a superior entity is capable of

observing and acquiring knowledge on each activity of the user.

In a negligible part of the population, the usage of a biometric system is

also perceived as uncomfortable or dangerous. For example, the fingerprint

sensor – when previously used by other people and not properly cleaned – can

be considered as unpleasant or disgusting. Face and iris acquisition systems

might induce apprehension to have the eyes damaged by lasers and/or IR

sources. Very interestingly, users often overlook other privacy related prob-

lems arising when biometrics are involved.

The first point concerns the possible usage of biometric information for

operating Proscription Lists. For example, a user can be classified from a
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previous behavior or activity in a specific class, and then – as a consequence

of this classification – some services and accesses can be denied. Important

examples of this situation are the black lists maintained by call centers and

service providers especially designed to identify and to manage users consid-

ered as offending or no–collaborative. Other examples are the bad–credit lists

filled by investors and mutual founds companies. Indeed, proscription lists

can be employed also without the adoption of biometric systems (and actu-

ally they are), but the usage of biometric technologies can make the situation

by far more dramatic.

The second point concerns the fact that many biometric features can be

used to obtain personal information about the users, such as medical informa-

tion of past illnesses or the current (and future) clinical trends. For example,

the retinal pattern acquired by a biometric system can provide valuable in-

formation about the presence of hypertension, diabetes and others illnesses

[JJW+93]. Much more personal information can be extracted from DNA

samples [IR97].

The real risk of privacy invasiveness can be analyzed in more detail with

respect to both the final application the biometric system is dedicated to and

the biometric trait which is involved. Biometric covert applications (such

as surveillance systems without explicit authorization from the users) are

considered to be more privacy invasive. On the other hand, the biometric

systems for identification or verification that are optional are considered to

be more privacy compliant. In this case, users can decide to not be checked by

the biometric system, and they can adopt a different identification/verification

strategy.

Privacy is considered to be exposed to a greater risk when the biometric

system performs an identification instead of a simple verification, in the last

case the identity is claimed, so there is no worry about revealing the identity.

That is related to the fact that the identification process encompasses a 1–

to–many comparison, which, in most cases, is not carried out in the same
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place of the acquisition (typically, the biometric data is sent trough a network

to a database for the comparison). Also the duration of the retention of

the biometric data impacts the privacy risk. If retention expires in a fixed

period of time, the privacy risk is reduced. Best practice notions require that

for every project which encompasses biometric data retention should always

explicitly state its duration.

Different risks are present with respect to the application scenario: the

biometric setups in the public sector are considered to be more susceptible to

privacy invasiveness than the same installations in the private sector.

Also the role of the individuals that use the biometric system has a great

impact on the privacy. The most relevant privacy invasion is related to the

association of the fundamental rights of the individual to a biometric identity

test. The privacy risks are lower in applications where the individuals retain

usage rights over the biometric data.

Another useful taxonomy concerns the different approaches for biometric

data collection and storing. The IBG6 classifies four different classes concern-

ing privacy protection: Protective, Invasive, Neutral, Sympathetic [IBG03].

A privacy–protective system is designed to protect or limit the access to per-

sonal information, providing a means for an individual to establish a trusted

identity. In this case, the biometric systems use biometric data to protect

personal information which might otherwise be copied, stolen or misused. A

privacy–sympathetic system limits access/usage to personal data. A privacy–

sympathetic approach encompasses the specific design of elements able to

protect biometric data from unauthorized access and usage. Also the stor-

age and the transmission of biometric data must be informed, if not driven,

by privacy concerns. In a privacy–neutral system, privacy aspects are not

important or the potential privacy impact is light. Privacy-neutral systems

are designed to be difficult to misuse with regards to privacy issues, but they

do not have the capability to protect personal privacy. A privacy–invasive

6International Biometric Group http://www.biometricgroup.com/.
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system facilitates or enables the usage of personal data in a fashion which

is contrary to privacy principles. In privacy–invasive systems, personal data

are used for purposes broader than what originally intended. Systems which

facilitate the linkage of personal data without an individual’s consent, and

those in which personal data are loosely protected belong to this class.

3.3.2 Privacy Protection of Biometric Data

As already said a typical biometric authentication system consists of two

phases. During the enrollment phase, Alice provides her biometric data, from

which features are extracted and a template is created and stored, either in

a central database, or on a mobile device. During the authentication phase,

a client who claims to be Alice would give her biometric data again, and the

same feature extraction algorithm is applied. The result is then compared

with the stored template. If they are sufficiently similar according to some

similarity measure, the client is authenticated.

There has been intensive study on how to secure the biometric templates

in recent years and a comprehensive coverage of many proposed solutions can

also be found in [JNN08]. These techniques can be roughly categorized into

three types:

1. approaches based on non–invertible transformations where similarity of

biometric samples would be preserved through the transformation, but

for which it is difficult to find the original template from a transformed

one (e.g., [ASNM05] [RCCB07])

2. methods based on helper-data, where a recently proposed cryptographic

primitive, the secure sketch, (or a variant of it) is employed, such that

given a noisy biometric sample, the original biometric data can be recov-

ered with the help of some additional information (i.e., a sketch), which

makes it possible to use biometric data in the same way passwords are

used. These techniques include [JW99] [JS06] [SLM07a]
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3. methods based on micro and macro data like the concepts of k–anonymity

where portion of biometric data is released but requiring that it can be

indistinctly matched to at least k respondents [SS98] or [Sam01].

The use of homomorphic encryption techniques to add a privacy protection

layer in biometric application is a natural extension of the potentiality of this

kind of cryptographic tools to achieve the goal of protecting the biometric

traits. In particular processing biometric traits requires tools that are really

common in the pattern recognition field. It is clear that the application of

these tools to encrypted data, is an open problem, because computation in

the encrypted domain is difficult and strictly related to specific cases and

applications (see [OPB07], [LLM06]). The approach to privacy preserving can

be seen as a Privacy Preserving Database Access, specifically: Alice wants to

access a database owned or managed by Bob. In this setting we can identify

three specific settings:

a) encrypted query to plain database: in this case we want to protect

what we are searching (this is the approach we will use in Chapter 4);

b) plain query to encrypted database: in this case we want to protect

the data on which we are searching;

c) encrypted query to encrypted database: in this case we want to pro-

tect the query and also the data, in this class includes the technique

proposed in Chapter 5.

In this explanation, the application of privacy preserving protocols achieves

the goal of protecting biometries (owned by Alice) against the party in charge

of checking the identity (Bob), and vice versa it protects the information

stored in the database from external users (an example is presented in [EFG+09]).



3.3. Protecting Biometric Data 57





Chapter 4

Privacy Preserving FingerCode

Archimedes will be remembered when Aeschylus is forgotten,

because languages die and mathematical ideas do not.

(Godfrey Harold Hardy)

In the present chapter we will introduce our construction to realize a privacy

preserving version of the FingerCode algorithm.

4.1 Introduction

Several approaches to automatic fingerprint matching have been proposed

in the literature. Probably the most popular ones are based on the minu-

tiae pattern of the fingerprint and in general are called minutiae–based ap-

proaches. A large part of these methods require extensive preprocessing op-

erations (i.e. extraction of ridge orientation and direction, flow estimation,

ridge segmentation, ridge thinning, minutiae detection) in order to reliably
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extract the minutia features [JHPB97]. For this reason, methods based on

minutiae do not seem suitable for an implementation in a secure two party

computation framework. Another class of fingerprint matching approaches do

not use the minutiae features of the fingerprint, but try to match directly the

fingerprint images [WWP00], or match features extracted from the image by

means of certain filtering or transform operations. In particular the algorithm

described in [Lee99] is based on a specific representation of the fingerprints

which yields a relatively compact and fixed length code, called FingerCode

[JPHP00] that it is suitable for matching as well as storage on a smartcard.

Using the FingerCode, the matching is really fast and the representation is

amenable to be indexed. This technique utilizes both the global flow of ridges

and valleys and the local ridge characteristics, to generate a short fixed length

code representing the fingerprints while maintaining a high recognition accu-

racy. Our construction is based on an adaption of the FingerCode algorithm

that works in the encrypted domain.

4.2 FingerCode–Based Authentication

In the following we examine the two main blocks that are the basis of bio-

metric systems based on the FingerCode template representation: feature

extraction and matching.

4.2.1 FingerCode Construction

The feature extraction algorithm can be split in four main steps:

• determine a reference point in the fingerprint image;

• tessellate the region of interest around the reference point;

• apply a filter in the region of interest using eight1 different directions of

a bank of Gabor filters;
1Eight directions are required to completely capture the local ridge characteristics in
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• compute the average absolute deviation from the mean of gray values

in individual sectors of the filtered image to define the feature vector or

the FingerCode.

These steps are summarized in Figure 4.1.

Figure 4.1: FingerCode Authentication System.

a fingerprint while only four directions are required to capture the global configuration

[JPH99].
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Identification of the Reference Point

Any point that can be consistently detected in a fingerprint image can be

used as a registration point even if in general a point positioned almost at

the center of the image is preferable because with high probability it is quite

near to the center of the fingerprint. Moreover, in a fingerprint, the core

point is a good point because of its robustness. In the FingerCode algorithm

the core point is defined as the central point (xc, yc) of the fingerprint. A

core point detection algorithm is needed to perform this measurement. In

the following description we refer to [HWJ98]. The first step is an estimation

of the orientation field that can be done using the least square orientation

estimation algorithm proposed in [JHB97]. This algorithm uses techniques

related to the orientation field and the Poincaré index2 to identify the reference

point (the core point) in a fingerprint. Figure 4.2 shows two examples of the

estimated center positions.

Figure 4.2: Core Detection.

When the core is found the image has to be split in sectors. The number

of sectors depends on the application and the accuracy we want to obtain.

Figure 4.3 shows an example of the division in sectors.

2”The index of a vector field with finitely many zeros on a compact, oriented manifold

is the same as the Euler characteristic of the manifold.” [Wei].
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Figure 4.3: The reference point x, the region of interest and 80 sectors superimposed

on a fingerprint.

Normalization and Filtering of Sectors

Fingerprint images present a strong orientation tendency and have a well–

defined spatial frequency in each local neighborhood that does not contain

singular point(s) (See Figure 4.4). Gabor filters are band–pass filters which

have both orientation–selective and frequency–selective properties and have

optimal joint resolution in both spatial and frequency domains [Dau85]. By

applying properly tuned Gabor filters to a fingerprint image, the true ridge

and furrow structures can be greatly accentuated. These reinforced ridges

and furrow structures, constitute an efficient representation of a fingerprint

image. An even symmetric Gabor filter has the following general form in the

spatial domain:

G(x, y; f, θ) = exp

{
−1

2

[
x′2

δ2x
+
y′2

δ2y

]}
cos(2πfx′), (4.1)

where: x′ = x sin θ + y cos θ, y′ = x cos θ − y sin θ, f is the frequency of the

sinusoidal plane wave along the direction q from the x-axis, and δx, δy spec-

ify the Gaussian envelope along x and y axes, respectively, which determine

the bandwidth of the Gabor filter. In general, the filter frequency f is set
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Ridges in a local region. Fourier spectrum.

Figure 4.4: Fingerprints have well–defined local frequency and orientation.

to the average ridge frequency (1/K), where K is the inter–ridge distance.

Commonly in a 500 dpi fingerprint image the average inter–ridge distance is

approximately 10 pixels. If f is too large, spurious ridges may be created in

the filtered image, whereas if f is too small, nearby ridges may be merged

into one. The bandwidth of the Gabor filters is determined by δx and δy. The

selection of the values of δx and δy is based on the following trade-off. If they

are too large, the filter is more robust to noise, but is more likely to smooth

the image, ridge and furrow details in the fingerprint are lost. On the other

hand, if they are too small, the filter is not effective in removing noise, a good

choice is δx = 4.0 and δy = 4.0.

A fingerprint image is decomposed into four component images corre-

sponding to four different values of θ (0o, 45o, 90o, and 135o) with respect

to the x-axis (Figure 4.5). A fingerprint image is convolved with each of the

four Gabor filters to produce the four component images. Convolution with a

0o-oriented filter accentuates ridges parallel to the x-axis and smoothes ridges

which are not parallel to the x-axis. Similarly filters tuned to other directions

enhance different directions.
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0o Orientation. 45o Orientation.

90o Orientation. 135o Orientation.

Figure 4.5: Gabor filters (size = 33× 33, f = 0.1, δx = 4.0, δy = 4.0).

The final image is similar to the original one but the ridges have been

reinforced in a given direction (Fig. 4.6). Before decomposing the fingerprint

image, each sector in the region of interest has to be normalized to obtain a

constant mean and variance. The normalization is necessary to remove the

effects of sensor noise and differences in finger pressure during measurement.

Let I(x, y) denote the gray value at pixel (x, y), Mi and Vi, the estimated

mean and variance of sector Si, respectively, and Ni(x, y) the normalized

gray-level value at pixel (x, y). For all the pixels in sector Si, the normalized
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0o Orientation. 45o Orientation.

90o Orientation. 135o Orientation.

Figure 4.6: Fingerprint after Gabor filtering (size = 33 × 33, f = 0.1, δx = 4.0,

δy = 4.0).

image is defined as:

Ni(x, y) =





M0 +
√

(V0)×[I(x,y)−Mi]2

Vi
, if I(x, y) > Mi

M0 −
√

(V0)×[I(x,y)−Mi]2

Vi
, otherwise.

(4.2)

where M0 and V0 are the desired mean and variance values, respectively.

Normalization is a pixel–wise operation which does not change the clarity of

the ridge and furrow structures. If normalization is carried out on the entire

image, then it cannot compensate the intensity variations in the different parts
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of the same finger that are due to finger pressure differences, a problem that

is solved by normalizing each sector separately.

Generation of the Template

In each component image, a local neighborhood with ridges and furrows that

are parallel to the corresponding filter direction exhibits a higher variation,

whereas a local neighborhood with ridges and furrows that are not parallel

to the corresponding filter tends to be diminished by the filter which results

in a lower variation. The spatial distribution of the variations in local neigh-

borhoods of the component images thus constitutes a characterization of the

global ridge structures and is captured well by the standard deviation of gray

scale values. The standard deviation within the sectors defines the feature

vector.

Let Ciθ(x, y) be the component image corresponding to θ for sector Si.

For ∀i, i = 0, 1, . . . , 47 and θ ∈ [0o, 45o, 90o, 135o], a feature is the standard

deviation Fiθ defined as:

Fiθ =
√ ∑

(x,y)∈Si

(Ciθ(x, y)−Miθ)2, (4.3)

where Miθ is the mean of the pixel values in Ciθ(x, y). The resulting 192-

dimensional feature vector, also called FingerCode for typical fingerprint im-

ages from different classes, is shown as gray level images with four disks, each

disk corresponding to one filtered image (see Figure 4.7). The gray level in

each sector of a disk represents the feature value for that sector in the corre-

sponding filtered image. Generally speaking we can individuate five kind of

fingerprint each defined by the peculiarity of loops, whorls and arches: whorl,

right loop, left loop, arch and tented arch. One can see that visually this

representation appears to discriminate the five fingerprint classes reasonably

well. Six concentric bands around the center point are used. Each band is

20-pixels wide (b = 20), and segmented into eight sectors (k = 8). The inner-

most band is not used for feature extraction because the sectors in the region
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Whorl. Right Loop. Left Loop.

Arch. Tented Arch.

Figure 4.7: For each kind of fingerprint there are four disks that represent various

orientations of the Gabor filter (0o, 45o, 90o and 135o). Each disk corresponds to

one particular filter and there are 48 features (shown as gray values) in each disk

(8× 6 = 48 sectors) for a total of 192 (48× 4) features.

near the center contains very few pixels. Thus, a total of 8 × 6 = 48 sectors

(S0 through S47) are used for matching.

4.2.2 Matching

FingerCode matching is based on the Euclidean distance between Finger-

Codes. Consistency with regard to translation is due by the use of the refer-

ence point even if the features are not rotationally invariant. An approximate

rotation invariance is achieved by cyclically rotating the features in the Fin-

gerCode itself. A one step cyclic rotation of the features in the FingerCode
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as described by Equation (4.4) corresponds to the feature vector that would

be obtained if the image was rotated by 22.5o. A rotation by R steps cor-

responds to a R × 22.5o rotation of the original image. A positive rotation

implies clockwise rotation while a negative rotation implies counterclockwise

rotation. The FingerCode obtained after R rotation steps is given by:

V R
iθ = Vi′θ′

i′ = (i+ k′ +R) mod k′ +
⌊
i

k

⌋
k′

θ′ = (θ + 180o + 22.5oR) mod 180o (4.4)

where k′ = 8 is the number of sectors, i ∈ [0, 1, . . . 79] and the rotations are

θ ∈ [0o, 22.5o, 45o, 67.5o, 112.5o, 135o, 157.5o]. Due to this, for each fingerprint

in the database, it is necessary to store five templates corresponding to the

following five rotations of the corresponding FingerCode: V −2
iθ , V −1

iθ , V 0
iθ, V

1
iθ,

and V 2
iθ. The input FingerCode is compared with the five templates stored in

the database to obtain five different matching scores. The minimum matching

score corresponds to the best alignment of the input fingerprint with the

database fingerprint.

Some implementations use 10 templates generated with a rotation of the

fingerprint equal to 15o. This solution guarantees more robustness against

image rotation, but it requires more storage space and computational time.

4.3 The Addressed Scenario

We consider the following scenario: a client, Alice is equipped with a

specific-biometric device (a fingerprint reader) and is interested to

learn if the acquired fingerprint belongs to the database of authorized entities

that is managed by a server, namely Bob. For instance we may consider the

following real–world scenario. To access a building (i.e. a bank cavoux) the

user must provide his biometric, this could happen either touching a device
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near the access door or using a portable device that can be connected to an

apposite plug near the door (see Fig. 4.8). Another example could be a Police

(a) A door with fingerprint reader. (b) A USB fingerprint reader.
Figure 4.8: Real world devices for fingerprint scanning.

department that given a biometric sample is interest to extract from database

managed by a third party all the entries matching with a given threshold.

We require that Alice trusts Bob to correctly perform the matching al-

gorithm for the fingerprint recognition. In addition she should not learn

anything about the database managed by Bob, beyond the outcome of the

matching process. On the other hand Bob should not get any information

about the biometric trait provided. To be more specific, Bob that owns a list

of enrolled users allowed to access the service, should only verify if the fin-

gerprint template provided by Alice corresponds to one of the enrolled users,

without knowing which particular user is accessing the system.

Our approach to this scenario is somewhat different from those considered

in [EFG+09] [SSW09], where at the output of the computation the identity

associated to the matching face is revealed to the client, and where the best

matching face is identified. On the contrary, in the case considered here,

the need to look for the best match is avoided thus permitting a significant

simplification of the protocol. Our construction allows also to select and

report the identifiers of all (if more than one are present) the enrolled identities
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whose distance to the user’s FingerCode is lower than a given threshold. Thus

we propose the following two variants. The first one considers applications

where the client is interested only into knowing if the users’s fingerprint is in

the database or not (without an identifier). The second one handles the case

of a client who wishes to verify if a given claimed identity is in the database

and if the just acquired fingerprint matches with such identity.

The developed protocols are entirely based on the use of homomorphic

cryptosystems and permit a notable bandwidth saving (about 25 − 39%), if

compared with the best previous work [SSW09]. The computational complex-

ity is still quite low and suitable for practical applications. Moreover, even if

our protocols are presented in the context of a fingerprint-based system, they

can be generalized to any biometric system that shares the same matching

methodology, namely distance computation and thresholding.

In our scenario Alice owns a pair of (matching) keys PuK and PrK for a

public-key cryptosystem. We assume that Bob has a certified copy of PuK3.

As in [EFG+09, SSW09], our solutions adopt the following three basic

steps:

Vector Extraction: on a first stage the target biometric (i.e. the informa-

tion acquired by the biometric device) is converted to a quantized char-

acteristic feature vector x̄; in our specific case, the fingerprint image is

processed as described in Section 4.2 in order to extract the FingerCode

vector; similar processes are available in literature for other biometric

systems (i.e. the iriscode [Dau06]);

Distance Computation: the distances (according to some appropriate met-

ric) between the target vector x̄ and the vectors corresponding to each

ID in the database are computed; in our case, we are going to use the

Euclidean distance as required by the FingerCode system;
3Jumping ahead, the protocols require the use of two different encryption schemes (Pail-

lier and EC-ElGamal, see below): to simplify the presentation we are assuming the PuK

contains the different public-keys of the required cryptosystems.
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Selection of the Matching Identities: one (or more) IDs matching the

target ID are selected.

In particular regarding the last step, we slightly change the original seman-

tic of the problem: instead of querying about the nearest matching enrolled

identity in the database as mentioned before, we are interested in getting all

the matching enrolled identities. In other words: the required outcome for

Alice is the list of all the identities in the database whose characteristic fea-

ture vectors are near enough to be considered a successful match (i.e., the

distance is lower than a general threshold τ). With some biometric systems,

if we assume well-chosen parameters (like the threshold τ), one may assume

that a measure of a specific biometric sample matches with just one person:

the owner of that biometric trait4. If, for some application-related reasons,

the same person is enrolled in the database more than once, it should be fine

to return all these identities to the client. However, for specific biometric

systems or applications, it could not be equivalent and/or desirable.

4.3.1 Security Analysis

In this Section we show the main differences between the standard scenario

and the privacy preserving one. For the sake of simplicity we recall the sce-

nario described in the previous Section as a sequence of actions focusing on

the most important ones.

In the standard scenario Bob is the trusted authority, so during the en-

rollment Alice asks Bob to be enrolled in the system, if everything is fine Bob

stores in his database the FingerCode computed using the fingerprint pro-

vided by Alice. In this case Alice must trust Bob because he can access the

biometric trait and also the template, additionally Bob is in charge to protect

the database from third parties attacks. In the matching phase, Alice uses a
4Often to improve the performances of the algorithms, for every user several rotations of

the same fingerprint are stored in the database. This is done to achieve a better accuracy

during the matching phase.
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finger-scanner to compute a plain version of her FingerCode. Note that the

finger-scanner owns to Bob and so Alice must be confident with the device

and Bob must assure that the matching procedure is protected against third

parties and correctly computed. Bob manages the database and the finger-

print. The database contains plain data: the enrolled templates. The fresh

fingerprint (used in the matching phase) is not encrypted.

In the privacy preserving scenario the enrollment phase is identical to the

standard case. Bob is required only to protect the database, but Alice is not

forced to trust Bob during the matching phase. Alice generates her keys PuK

and PrK and she uses a finger-scanner that requires also the PuK to produce

the encrypted template. Bob and Alice together apply a privacy preserving

protocol to decide if Alice can be allowed to the system. Bob manages the

database with the plain templates. During the matching phase each user

manages his cryptographic keys, the fingerprints (the enrolled the fresh one)

and the encrypted templates.

4.4 Parameters and Model

We will denote the symmetric security parameter by t and the asymmet-

ric one (i.e., bit-length of RSA moduli) as usual by s. Recommended

parameters for short-term security are t = 80 and s = 1024, whereas for

long-term security t = 128 and s = 3072 are recommended [BBJ+09].

In all the scenarios we consider a server Bob with a database of n enrolled

entities, where each of them is represented by a characteristic FingerCode of

k components each of λ-bits integers. We will denote with τ the biometric-

threshold that, given a specific metric, allows to say if two biometric measures

match or not. In order to support the specific matching logic on the Finger-

Code, we will assume that for each enrolled identity m = 5 different vectors5

5Additional templates related with rotated fingerprint (Section 4.2).
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are stored in the database as well as an eventual identity-specific thresholds6

τ i.

The values of the k, λ and m parameters must be tuned according to the

current fingerprint dataset. For example, working with a dataset of n = 900

fingerprints captured with a standard fingerprint sensor, a proper configura-

tion is the following: 2 − 5 concentric bands, 4 − 16 sectors, 2 − 8 Gabor

filters, quantized with 4 − 8 bits and stored with five different orientations

(k = 16− 640, λ = 4− 8 and m = 5). Typical bit lengths of the FingerCode

range from 64 to 5120 bits.

Finally, we work in the honest but curious model as common in privacy

preserving applications, where parties are assumed to follow the protocol but

may try to learn additional information from the protocol trace beyond what

can be derived from the inputs and outputs of the algorithm when used as a

black-box (Section 2.2.2).

4.5 Basic Building Blocks

In addition to the Paillier cryptosystem we will use a couple of sub-protocols.

4.5.1 The sub-protocol BitMin

In this section we introduce the sub-protocol BitMin used in the following

Section 4.6 , which is a variant of the protocol proposed in [EFG+09]. As

usual: we consider a client Alice and a server Bob. The latter has got the

encryption of two λ-bit integers JXK and JY K7.

6Sometimes and for specific application it is possible to personalize the sensitivity of the

system by setting several user-defined threshold. In general, this approach improves the

performances of the system even if the choice of the thresholds could not be an easy task.
7We assume that encrypted input and output values of this protocol are computed using

the Paillier public-key of Alice. Furthermore we note that, in the context of our protocol,

BitMin is usually applied on inputs with a bit-length of λ′ = 2λ+dlog2ke+1. In this section
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The protocol BitMin allows Bob to compute the encrypted bit JbK such

that:

b =

{
0 if X < Y

1 if X ≥ Y.
(4.5)

and uses as building block a variant of the comparison protocol proposed

in [DGK07] and recalled later in this Section. The protocol BitMin is given in

Figure 4.9 and works as follows.

Alice BobP
P
L

D (.)

JXK, JY K

JdK = JzKJrK r

Jd̂K = Jd mod 2λK
DGK

r̂ = r mod 2λ

JbK =(
JzKJdK−1Jr̂KJρK−2λ

)2−λ

JρK

JzK = J2λKJXKJY K−1

Figure 4.9: The Protocol BitMin.

As a first step the server homomorphically computes JzK =
q
2λ +X − Y

y
.

Since X and Y are λ-bit long, z is an λ + 1-bit integer. Moreover one can

interestingly see that the most significant bit of z (which we denote zλ) is 0

we assume λ-bit integers in order to simplify the protocol description.
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if and only if X < Y . Thus in order to learn if X < Y it suffices to compute

zλ. This can be done as follows.

Bob additively blinds z with a suitable random value r, obtaining JdK, he

sends JdK to Alice, then they run the sub-protocol DGK after which Bob will

learn JρK such that ρ = 0⇔ d̂ < r̂ (where d̂ and r̂ are, respectively, d mod 2λ

and r mod 2λ). We notice that the information about d̂ < r̂ is useful to

compute zλ. In fact observe that:

b = zλ = 2−λ(z − ẑ) = 2−λ(z − ((d− r) mod 2λ)) (4.6)

where it is possible to compute (d− r) mod 2λ = (d mod 2λ)− (r mod 2λ) +

ρ · 2λ. Since ρ = 0⇔ d̂ < r̂ it is easy to see the correctness of zλ.

In the rest of the paragraph we use some results about the DGK protocol

that will be detailed later in this Section. The BitMin is a simple protocol that

requires a number of rounds equal to 4: 1 to exchange the result and 3 due to

DGK protocol. Only 1 ciphertext is sent from Bob to Alice, so the bandwidth

is a Paillier ciphertext plus the bandwidth of DGK, thus: ` + 2λs
3 + 1, we

recall that ` = 2s, so: `
(
1 + λ

3

)
+ 1. Finally the number of bit operations

is the sum of: 3 mult + 1 exp to compute JdK, 1 dec + 1 enc to obtain
r
d̂
z

and 4 mult + 3 exp to reach JbK; that is 7 mult + 6 exp. Considering that

the exponentiations are the most complex operations and recalling that DGK

exponentiations are 4λ we have: (6 + 4λ) exp.

Table 4.1: Computational Complexities – BitMin sub-protocol.

#exp Bandwidth Rounds

6 + 4λ `
(
1 + λ

3

)
+ 1 4
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The sub-protocol DGK

The DGK comparison protocol of [DGK07] allows both parties (i.e. the client

Alice and the server Bob) to learn the bit ρ of the predicate d < r where d and

r are two λ-bit integers owned by Alice and Bob respectively. The original

DGK protocol is given in Figure 4.10 and works as follows.

Alice BobP
P
L

[d0], ..., [dλ−1]

Scramble([e0], ..., [eλ−1])
D(·)

if 0 ∈ {e0, ..., eλ−1}
than ρ = 1
else ρ = 0

ρ

[ci] = [di][1− ri]
∏λ−1

j=i+1
[wj ]∀i

[wi] = [di][ri][di]−2ri∀i

[ei] = [ci]
Ri ∀i

Figure 4.10: The sub-protocol DGK.

As in the other protocols, Alice has a pair of keys PuK ad PrK for an addi-

tively homomorphic cryptosystem: the original protocol uses the DGK [DGK07]

cryptosystem, we will use a different scheme as stated later. We are going to

use another notation for such ciphetexts: [x]. In particular, the chosen cryp-

tosystem is a known variant of the well-known ElGamal cryptosystem [ElG85].

Such a scheme differs from the original in two points: it is additively homo-

morphic and all the computation is carried over a suitably chosen EC. The use

of EC allows to obtain a great bandwidth saving, indeed, exploiting the point

compression [CCMR06], the ciphertext can be transmitted using 2 · (2t + 1)
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bits. For example, for a security parameter t = 80, the ciphertext sizes for

the considered cryptosystems would be: Paillier 2048 bits, DGK [DJ01] 1024

bits and EC-ElGamal 322 bits. The inputs for the parties are, respectively,

an λ-bits integer d for the client and another λ-bit integer r for the server.

After the original protocol has been run, the server (as well as the client)

will learn the decision bit ρ related with the predicate d < r (i.e. λ = 0 ⇔
d < r) while d and r will remain hidden to Bob and Alice respectively. In our

BitMIn we use a slightly different version of this protocol where Alice sends

JρK (encrypted with his Paillier public-key) instead of ρ: in this way the value

of the decision bit remains hidden to the server.

The protocol consists of three rounds during which 2λ ciphertexts are

exchanged. More in detail, Bob computes the values [wi] = [di ⊕ ri] and

[ci] = [di − ri + 1 +
∑λ−1

j=i+1wj ]. The values ci carry the information whether

or not d < r, in particular we have that one of the ci’s will be 0 if and

only if d < r. To see the correctness of this, consider all possible cases. If

d = r, then we clearly have ci = 1 for all i = 0, . . . , λ − 1. If d 6= r, assume

that the m-th bit (starting from the most significant) is the first one where

they differ. Then cλ−1, . . . , cm+1 are equal to 1 while cm = dm − rm + 1 (as
∑λ−1

j=m+1wj = 0). Moreover since wm = 1, we have
∑λ−1

j=i+1wj ≥ 1 and ci ≥ 1

∀i ∈ {0, . . . ,m − 1}. Thus cm depends only on dm and rm and it will be 0

only if dm < rm.

Finally, since ci’s might contain information about d and r, they are ran-

domized (creating ei) so that when Alice decrypts ei she will obtain either 0

(if ci = 0) or a random value8. Therefore Alice will set ρ = 0 if one of the

decrypted ei’s is equal to 0.

We now briefly give some details about the complexities involved in this

sub-protocol. The DGK construction require 3 rounds in which 2λ cipher-

8It is sufficient to check if the plaintext is equal to 0: the DGK cryptosystem, as well as

the one that we adopt, has a decryption procedure that is based on an exhaustive search in

the plaintext space.
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texts9 and 1 plaintext that correspond to 1 bit are exchanged. From the

point of view of computational complexity (Chapter 2), the protocol re-

quires to compute λ enc + λ dec, 2λ mult + λ exp to compute all [wi],(
2λ+ λ(λ+1)

2

)
mult to compute [ci] and λ exp to compute [ei]. Thus we have

a total of:
(
4.5λ+ 0.5λ2

)
mult + 4λ exp. Keeping in mind that the most

expensive bit operation is the exponentiation we see that the computational

complexity is equal to 4λ exp. The above results are shown in Table 4.2.

Table 4.2: Computational Complexities – DGK sub-protocol.

#exp Bandwidth Rounds

4λ 2λs
3 + 1 3

4.6 The FingerCode Matching Protocol

During a preliminary phase the acquired fingerprint image is converted

into a FingerCode vector. We assume that this phase is done in clear

(i.e. not in the encrypted domain) by Alice. Notice that this is not an

issue in our honest but curious setting where the client (i.e. the biometric

device) already has the fingerprint data. Moreover, given our current state

of knowledge, such an assumption seems to be necessary for our protocol to

be practical. Indeed, for many biometric systems (e.g. fingerprint, iris,...)

the analysis of the biometric measures, and their corresponding quantization

process, are too complex to be carried out efficiently in the encrypted domain.

As stated above, we assume that Alice has already processed the finger-

print image to get a characteristic feature vector (FingerCode) x̄. On the

other side, Bob manages a database of n pairs (idi, ȳi), where idi is a unique

numeric identifier associated to the specific enrolled identity and ȳi is the

9Note the a size of EC-ElGamal is s
3

bit.
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related precomputed FingerCode. Our solution requires the use of specific

values for these identifiers: idi = 2i (powers of 2). In this phase we deliber-

ately ignore some technical details that are FingerCode–specific. In particular

we do not consider here the presence of m different FingerCodes for each iden-

tity and the use of identity-specific thresholds τ i. In this way we get a more

general protocol that could be used for other biometric systems as well. Later

we discuss those specific aspects.

Alice sends element-by-element encryption of the integer vector x̄ to Bob:

more specifically, k Paillier encryptions Jx0K , . . . , Jxk−1K jointly with a further

encryption
r∑k−1

j=0 x
2
j

z
, this value will be used to complete the computation

of the distances in the ciphertexts domain as described later.

The FingerCode system, as well as other biometric systems, uses the Eu-

clidean distance as underlying metric. In particular we consider squared dis-

tance to reduce the complexity of the protocol10. Denoting with Di the square

of the Euclidean distance between x̄ and the stored vector ȳi, the server can

non-interactively compute
q
Di

y
by exploiting the homomorphic properties of

the Paillier cryptosystem, its knowledge11 of ȳi and the ciphertexts received

by Alice as follows:

q
Di

y
=

u
v
k−1∑

j=0

(xj − yij)2
}
~ =

=

u
v
k−1∑

j=0

x2
j

}
~ ·

u
v−2

k−1∑

j=0

xjy
i
j

}
~ ·

u
v
k−1∑

j=0

(yij)
2

}
~ =

=

u
v
k−1∑

j=0

x2
j

}
~ ·

k−1∏

j=0

JxjK−2yi
j ·

u
v
k−1∑

j=0

(yij)
2

}
~ ∀i ∈ {1, . . . , n} (4.7)

10We are of course using the fact that the square function is monotonically increasing

function on positive inputs. We implicitly assume that the threshold values τ, τ i are properly

adapted to accommodate this.
11Bob knows the plain version of the enrolled biometric templates.
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To realize the identity selection we use the sub-protocol BitMin intro-

duced in Section 4.5.1. We briefly recall that this sub-protocol allows to

obliviously compute an encryption of the binary predicate X < Y : i.e.

JbK = BitMin(JXK , JY K) where:

b =

{
0 if X < Y

1 if X ≥ Y.
(4.8)

Once all the distances have been computed, Bob gets the distances vector:q
D1

y
, . . . , JDnK. Let’s consider the following set of n pairs identity - distance:

(id1,
q
D1

y
), . . . , (idn, JDnK). He randomly permutes12 these pairs and obtains:

(idj1 ,
q
Dj1

y
), . . . , (idjn ,

q
Djn

y
) and then he computes, using parallel execu-

tions of BitMin, the values
q
bji

y
= bit-MIN(JτK ,

q
Dji

y
) for i ∈ {1, . . . , n}.

Finally, Bob computes and returns to Alice the following encrypted value:

JRK =

t
n∑

i=1

bi · idi
|

=
n∏

i=1

q
bi

yidi

. (4.9)

Due to the fact that: bi = 1 ⇔ Di < τ for i ∈ {1, . . . , n}, it is easy to

check that the final value R will consist of the sum of the numeric identifiers

associated to the enrolled identities that match the target biometric. In other

words: the bit at position i in R is set to 1 if and only if the i-th identity

matches. Now, Alice can easily extract R and reconstruct the list of matching

identities. The complete protocol flow is shown in Figure 4.11.

The construction in Figure 4.11 strictly requires the use of powers of 2 as

identifiers: in real application scenarios with a large number of enrolled people

this fact could limit its scalability. Indeed, the maximum number of different

identifiers is equal to the bit-length of the Paillier plaintext (T ). For a security

level of t = 128, we can handle at most s = 3072 different identifiers. This

can be handled clustering the identifiers for which n > s and using multiple
12The randomization is only used to hide to Alice the relation among the positions of the

identities in the DB and the order of querying. It is strictly required a fresh permutation

at each new session.



82 4. Privacy Preserving FingerCode

Alice BobP
P
L

D (.)

BitMin ∀i

Jx0K , ..., Jxk−1K ,
r∑k−1

j=0 x2
j

z
q
Di

y
=

q∑
x2

j

y

·
q∑

(yi
j)

2
y∏ JxjK−2yi

j ∀i

Scramble

q
Dj1

y
, ...,

q
Djn

y

JRK =
∏n

i=1

q
bi

yIdi

q
bj1

y
, ...,

q
bjn

y

JRK

Decode

R

Identities

Figure 4.11: Privacy Preserving FingerCode Matching.

outcomes Rj ; more specifically, for j = 0, . . . ,
⌈
n
s

⌉
− 1 the server computes

JRjK =
∏nj

i=1

q
bjs+i

y2i

, where n0 = s, n1 = s, . . . , ndn
s e−1 = n mod s are

the cluster cardinalities. In this way the i-th bit in Rj is associated to the

identity idjs+i. The ciphertexts JRjK are sent to Alice in the last round of the

protocol. These changes on the protocol do not imply any further leakage of

information.
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4.6.1 Variant for Simple Authentication.

As stated at the beginning of Section 4.3 in the scenario we are interested in

the client needs a simple boolean outcome, like authenticated/rejected.

In order to do so, it is sufficient to change the way the value JRK is com-

puted as follows:

JRK = r ·
t

n∑

i=1

bi

|
=

(
n∏

i=1

q
bi

y
)r

(4.10)

where r is a fresh random integer. Alice will obtain as output rejected if R = 0,

authenticated otherwise.

4.6.2 Variant for Authentication with Identity Confirmation.

Let’s think about the following high-security authentication scenario where

we want to confirm the identity without revealing the biometric sample: the

person who is going to be authenticated is double checked through some

kind of hardware token (or a simple card with a bar-code) and some specific

biometric (e.g., FingerCode). In this case Alice (the biometric reader) is able

to send to Bob an alleged identity îd read from the hardware token. The final

boolean outcome will be positive (authenticated) if and only if the submitted

biometric matches one of the enrolled identities as well as the alleged identity

îd.

This variant of the protocol is shown in Figure 4.12.

After the computation of the encrypted distances
q
Di

y
, the server will

compute the auxiliary values:

q
mi

y
=

r
ri · (îd− idi)

z
=
(r
îd

z
·
q
idi

y−1
)ri

(4.11)

where ri are fresh random integers. All the values mi will be different from

zero except for the alleged identity îd.

The values
q
mi

y
will be sent to Alice during the executions of the sub-

protocol BitMin: Bob will return the exact outcome
q
bi

y
of BitMin only if the
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îd

zri q
idi

y−ri

∀i

Scramble

JRK =
∏n

i=1

q
bi

y

q
bj1

y
, ...,

q
bjn

y

JRK

ifR = 0 Ok

R

∀i BitMin,
if

q
mji

y
= 0

return J0K
else

q
bji

y q
Dj1

y
, ...,

q
Djn

y
q
mj1

y
, ...,

q
mjn

y

Figure 4.12: Privacy Preserving FingerCode - Identity Confirmation.

corresponding mi is not null, otherwise a dummy outcome J0K is sent. In this

way only a single bit bi can be non-null and only if it matches the identity îd.

4.7 Security

We now sketch a security argument for our protocol. In particular we

want to argue that, in the honest but curious setting, no party should

be able to get any information about the other party’s input. In other words,
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this means that the client Alice should not be able to get anything about the

database held by Bob (beyond what revealed by the functionality implemented

by the protocol) whereas Bob should not get anything about the FingerCode

and outcome of the authentication process.

We discuss each phase of the protocol separately. The vector extraction

phase is done entirely by Alice so no information is leaked to Bob. Security

of the distance computation phase can be proved easily following the same

approach used in [EFG+09] (recall that our distance computation protocol

is the same). It remains to discuss the selection of the matching identities

phase.

Intuitively it is clear that the protocol is private for the server as all the

messages it receives are encrypted with respect to Alice’s public key (using a

semantically secure cryptosystem). Things are a bit trickier for Alice as she

knows the private key corresponding to the public key with respect to which

the ciphertexts are created. Still, we argue that this does not allow Alice to

get more information than what prescribed by the protocol. This is because,

whenever Alice receives a ciphertext, the encrypted message is altered by Bob

via an information theoretic secure mask. For instance, in the BitMin protocol

Alice receives an encryption of d which is statistically indistinguishable from

a uniformly distributed 101 + ` random integer. As a final note we point

out that even though Alice gets b13 in the clear, at the end of the protocol

BitMin this is not an hazard (in an honest but curious setting) because of the

fact that all the couples are randomly permuted by Bob before executing the

BitMin protocol.

13More specifically, Alice does not directly get b but instead a related information: the

bit λ.
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4.8 Complexities

We consider a scenario where Alice has an already-computed vector x̄

with k components of λ-bit integers and Bob manages a DB with n

identities. Moreover we refer to the protocol shown in Figure 4.11.

We start considering the number of rounds required to compute the pri-

vacy preserving FingerCode. Initially Alice sends k + 1 encryptions to Bob,

than there are n calls to BitMin and then Bob sends the result to Alice (only 1

encryption). Thus we have 2 rounds plus 4n due to BitMin. Similarly for the

bandwidth we have k + 1 encryptions sent by Alice, n encryptions in input

to BitMin, n times the bandwidth required by BitMin and 1 encryption for

the final result; with a total bandwidth of; (k + n+ 2)`+ n`
(
1 + λ

3

)
+ n. As

last step we consider the number of operations, in particular the number of

exponentiations. The protocol requires (k + 1) enc and 1 dec, additionally to

compute all
q
Di

y
nk exp are required and n exp to compute JRK. Finally we

need to add up the BitMin number of exponentiations that are 6 + 4λ times

n calls. Summarizing we have: (k + 2 + nk + n+ n(6 + 4λ)) exp. Table 4.3

summarizes the computational complexities involved.

Table 4.3: Computational Complexities – Privacy Preserving FingerCode.

#exp Bandwidth Rounds

n(k + 4λ+ 7) + k + 2 k`+ 2`+ n`
(
2 + λ

3

)
+ n 4n+ 2

4.9 Real World Implementation

We tested the privacy preserving FingerCode by using a well known pub-

lic fingerprint dataset composed by 408 grayscale fingerprint images

acquired by a CrossMatch Verifier 300 sensor [cro] [pDa]. The dataset con-

tains 8 images for each subject with a resolution equal to 500 dpi and the
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dimension of 512 × 480 pixels. Figure 4.13 shows two examples of images of

the test database.

(a) (b)

Figure 4.13: Examples of test images.

The application of the individual threshold method cited in Section 4.4

on the testing dataset resulted in a relevant enhancement of the accuracy.

Figure 4.14 plots the individual thresholds and the results obtained by using

the human selection14 method and Poincare method for the estimation of

the reference point with a set of 640 fingerprints. Results show that the

accuracy is effectively improved. For example, the Equal Error Rate (EER)

of Poincare method has been reduced by 4% with respect to the initial value.

This method can typically produce relevant enhancement in overall accuracy

when the samples belonging to dataset do not have the same quality level.

This is the case of the proposed test dataset.

As a second step, in order to test the effect of the number of features on the

FingerCode template, we generated a total of eight different configurations,

corresponding to eight sets of FingerCode vectors with length ranging from

640 features (the original configuration) to 8 features. This is one of the
14This is human based procedure in which an expert is asked to identify manually the

core point in a fingerprint.
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(a) (b)

(c) (d)

Figure 4.14: Results obtained: (a) and (c) the individual thresholds processed for

both methods human selection and Poincare respectively; (c) and (d) the final False

Match Rate (FMR) and False Non-Match Rate (FNMR) obtained.

most important approaches to reduce the complexity of the protocol. With

this study it was possible identify the most convenient configuration from the

point of view of accuracy and complexity (specifically the bandwidth) of the

system. The parameters of the reduced tesselations for each configuration are

detailed in Table 4.4.

For investigating the effects of data quantization, each configuration has
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Table 4.4: Computational Complexities – Privacy Preserving FingerCode.

Configuration Features Vector Length

A 640

B 384

C 192

D 96

E 48

F 32

G 16

H 8

been normalized and quantized using a different number of bits, ranging from

eight bits to a single bit, producing a total of 5× 8 = 40 quantized configura-

tions. The behavior of the Equal Error Rate15 for the testing dataset is shown

in Figure 4.15. It is evident that the performance of the system are practically

unaffected by the feature size reduction when the number of features is above

96 and the number of bits is above 2. This suggested to consider for further

testing only the configurations C and D, both quantized with 4 and 2 bits.

To evaluate the performance in terms of bandwidth and computational

complexity we implemented a client-server prototype version of our protocol

written in C++, using the GMP Library [Gra] and the PBC Library [Lyn].

The experimental results were obtained on a PC with 2.4 GHz Intel processor

and 4 GB of RAM.

The results show that the proposed method based on FingerCode tem-

plates and homomorphic encryption is recommendable in the cases when the

15A biometric security system predetermines the threshold values for its false acceptance

rate and its false rejection rate, and when the rates are equal, the common value is referred

to as the equal error rate.
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Figure 4.15: Equal error rate of the different configurations.

privacy of the data is crucial and high accuracy of the system is required, in

fact the obtained performances on accuracy measured as Equal Error Rate

are comparable to the original method. Table 4.5 shows the obtained accu-

racy and the bandwidth required by the configurations C and D described in

Table 4.4, each quantized with 2 and 4 bits.

We estimated the time required for the identification in the encrypted

domain by using a dataset composed by 100 enrolled individuals using 80 bits

security key. Table 4.6 reports the obtained results measured in seconds. As

expected the time complexity of the underling protocol is linear in the number

of enrolled identities.

As shown in Table 4.5 and Table 4.6 different performance can be obtained

by varying the number of features of the template and the number of bits

used for representing each value. On the other hand, the best computational

performance are obtained with a small number of features and bits.

Figure 4.16 plots the ROC curves of the configurations that we consider

to be a good trade off. The performance of the different configurations are

very close each other, the effects of both feature reduction and quantization
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Table 4.5: Performance of the proposed method with a database of 408 entries (3672

feature vectors).

Parameters

Configuration Quantization Security EER #bit

80 6568792

C 2 112 0.07577 10824021

128 14374232

80 7802584

C 4 112 0.07321 12527832

128 16313048

80 6902008

D 2 112 0.071465 11299320

128 14932856

80 8135800

D 4 112 0.067324 13003128

128 16871672

Table 4.6: Required time for the identification in the encrypted domain using a

dataset composed by 100 enrolled entries using 80 bits security key.

Configuration Quantization Time (s)

C 2 44.43

4 53.66

D 2 37.43

4 45.58

being very limited on the accuracy of the system. It is worth noting that the

original configuration, i.e., 640 features with floating point implementation,

reported an EER of 0.065333 on the testing dataset, which is comparable
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with the performance of the tested configurations. All the reported results

are obtained using the human selection method for the estimation of the

reference point in the fingerprint images and using a unique threshold for all

the users τ . The final EER of the system is only slightly worse than the EER

of the original FingerCode technique applied on the same dataset, proving

that the privacy protection implementation we proposed is feasible.

Figure 4.16: ROC curves of the configurations of the proposed method that we

consider as the best suitable in real applicative conditions.

4.10 Summary

In this Chapter we introduced the privacy preserving version of the Finger-

Code algorithm. We considered a scenario where Alice is equipped with

a fingerprint reader and is interested in learning if the acquired fingerprint

belongs to the database of authorized entities managed by a server. For secu-

rity, it is required that Alice does not learn anything on the database and Bob
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does not get any information about the requested biometric. The proposed

protocol follows a multi party computation approach and makes extensive use

of homomorphic encryption as underlying cryptographic primitive.
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Chapter 5

Privacy Preserving Sketch

God exists since mathematics is consistent,

and the Devil exists since we cannot prove it.

(Andre Weil)

This chapter is devoted to design and define the encrypted version of the

Fuzzy Commitment Scheme. Respect to the FingerCode described in

Chapter 4 this protocol achieves the goal of protecting also the database, in

fact this is a case of encrypted query on encrypted database. Additionally

this construction allows the revocability of the enrolled biometric sample.

5.1 Introduction

As already said, a biometric system may serve one of two basic purposes:

authentication/verification or identification. Authentication (or verifica-

tion) is the process of positively verifying the identity of a client. Identifica-

tion, on the other hand, is the process of distinguishing an individual from
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a larger set of individual records by comparing the presented biometric data

with all the entries in the database [O’G03].

Biometric features of individuals are tightly bound with their identities.

Moreover, they cannot be easily forgotten or lost. Therefore they provide sig-

nificant potentials in applications where both security and client convenience

are needed. However, achieving the desirable level of security and usability is

not trivial. The key challenges, from a security point of view, are the difficulty

to protect the biometric templates, ensuring revocability and allowing easy

matching.

In recent years, there has been intensive study on how to secure the

biometric templates and a comprehensive coverage of many proposed so-

lutions can be found in [JNN08]. These techniques can be roughly cate-

gorized into two types: (1) approached base on non – invertible transfor-

mations – where similarity of biometric samples is preserved through the

transformation, yet it is difficult to find the original template from a trans-

formed one (e.g., [ASNM05, RCCB07, FBJR07]) and (2) methods based on

helper-data, where a recently proposed cryptographic primitive, the secure

sketch, (or a variant of it) is employed, such that given a noisy biometric

sample, the original biometric data can be recovered with the help of some

additional information (i.e., a sketch), which makes it possible to use bio-

metric data in the same way passwords are used. These techniques include

[JW99, JS06, SLM07b, DRS04, LSM06].

The secure sketch framework does not only allow a more rigorous secu-

rity analysis (in an information theoretic sense) compared to many other

approaches, but also helps generalizing much of the prior works based on

helper-data. Most importantly, a sketch allows the exact recovery of the bio-

metric template. Therefore, a strong extractor (such as pair-wise independent

hash functions) can be further applied on the template to obtain a key that

is robust, in the sense that it can be consistently reproduced given a noisy

measurement that is similar to the template. However, although it has been
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shown that there are a few difficulties in extending these techniques to bio-

metric templates in practice, the most important problem is the fact that

the information leakage on the biometric sample is unavoidable when using

these schemes [IW07] [IW10]. In the next Sections we address two separate

problems with the classical fuzzy sketch approach: the first one gives to the

Fuzzy Commitment Scheme a privacy preserving layer of security and the

second one, that is a variant of the first, achieves also the goal of avoiding the

leakage of information.

5.2 The Fuzzy Commitment Scheme

The Fuzzy Commitment Scheme has been introduced to solve the prob-

lem of identity theft and it can be used with several biometrics: ear

[TVI+04], face [VDVKS+06] or signature [MC09]. Roughly speaking a bio-

metric system works making a comparison between a new biometric sample

and a set of samples stored in a database, during this process all the sensible

information are available to Bob (the server). It is possible that a third party

Eve (the attacker) tries to steal information from the database acting like an

enrolled user, but providing fake data just to extract some biometric sample.

In literature this kind of problem is called template theft and it is a central

point in the handling of biometric data because the template (biometric) is

something that is intrinsic to the user, so a template or biometric sample theft

is equivalent to an identity theft.

The Fuzzy Commitment Scheme as proposed in [JW99] is a technique

that combines well-known approaches in the areas of Error Correcting Codes

(ECC) and cryptography to reach the goal of an efficient commitment scheme.

Formally speaking, an ECC is a set of codewords C ⊆ {0, 1}n for some integer

n selected for mapping the information. Therefore, for a message space of size

2k we need at least n = k, but to achieve redundancy, in general, we require

that n > k. Given the message space M = {0, 1}k, we define g : M→ C as
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the translation function (sometimes called coding function), thus g is a map

from M to C. Conversely g−1 is the inverse map from C to M. The function

f is the decoding function f : {0, 1}n → C that maps arbitrary n-bit strings

to the nearest codeword in C. We say that f has a correction capability of t

if it can correct up to t bit errors.

In the Fuzzy Commitment Scheme, biometric data is treated as a cor-

rupted codeword. Therefore, we use only the decoding function to reconstruct

the right associated codeword and we do not need to care about g and g−1.

A Fuzzy Commitment Scheme F works on codewords c and binary vectors x

where both are strings of length n. In particular for any given x and code-

word c, we can express x uniquely by means of the codeword c and an offset

δ (x = c ⊕ δ) where ⊕ is the binary XOR. It is simple to show that the in-

formation of x contained in δ depends on the cardinality of C 1 in fact, for a

given δ there is a number equal to the cardinality of C of possible x.

c

x

δ

Figure 5.1: Enrollment – The Server chooses c and stores the pair (δ,Hash(c)).

The original Fuzzy Commitment Scheme in [JW99] works as follows. Dur-

ing the enrollment phase (see Figure 5.1 Enrollment), the client presents a bio-

metric data x and the server chooses a codeword c. At this point the server

1Note that binarization techniques are often used to manipulate biometric data.
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stores, for that client, the pair (δ,Hash(c)) where: δ = x⊕ c and Hash(c) is

the hash of the codeword c.

ĉ

x̂

δ

x

c

Figure 5.2: Match – The Server checks if Hash(c) = Hash(f(ĉ)).

During the matching phase (see Figure 5.2 Matching) a new noisy bio-

metric data x̂ is presented by a client who claimed his identity, the server

computes ĉ = x̂ ⊕ δ and also Hash(f(ĉ)) where f is the decoding function.

If Hash(c) = Hash(f(ĉ)) then the client is authenticated. In case of identifi-

cation, the basic scheme outlined above is repeated for all registered clients,

resulting in a 1 to M matching request (M is the total number of enrolled

clients).

The Fuzzy Commitment Scheme is not privacy preserving because it does

not preserve the identity of the user, in the sense that it is possible to asso-

ciate the sketch to the client, moreover it produces a leakage of information.

As shown in [IW07] and [IW10] the simple sketch approach described above

suffers from a leakage of information that cannot be avoided with standard

algorithms, in fact as stated in Theorem 2 (pag. 122 of [IW07]): in the se-

cure Fuzzy Commitment Scheme, information leakage on x is unavoidable.

Therefore, in case of non-trusted parties, the protocol should be secured, in

the sense that, after running the protocol, neither the server nor the client

should obtain any information beside the output of the protocol. The en-
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crypted sketch (eSketch) scheme described in the following sections prevents

the information leakage and provides an efficient solution to the user privacy

along with template security.

5.3 A Possible Scenario

As an example we may consider the following scenario: an online service

(think of a remote medical service) that is accessible by using the fin-

gerprint reader of a standard notebook. As a registered client, Alice wants

to access the service, but does not want to reveal her identity, because, for

example, she is requesting some particular medical diagnosis and she does

not want that anybody knows that she needs a specific diagnosis. The server

should be able to verify whether Alice’s fingerprint corresponds to a regis-

tered client, without knowing which particular client is asking to access the

service. This request can be summarized in a motto sounding like: everybody

is allowed to know that you are registered to a particular service, but no one

is able to know when you use it and for which purpose, moreover none is able

to distinguish you among the other clients. Note that in the above scenario

privacy protection is not needed during the enrollment phase. In fact we may

assume that when Alice is enrolled she gives a plain version of her biometric.

In this phase we can assume that the server is trusted since, for instance, the

client is physically present during the enrollment phase.

We propose a scheme based on fuzzy commitment [JW99] which makes

possible to perform all the operations in the encrypted domain. In addition

to ensuring the security of the biometric data that is always managed in

encrypted format, and the revocability of the biometric template ensured by

the fuzzy sketch approach, the proposed scheme is capable of protecting the

privacy of the client that is going to be authenticated. The proposed scheme

addresses the above scenario wherein a client entitled to access a given service

is asked to provide her biometric data for accessing the service. The proposed
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protocol permits to verify whether a client is included in a list of registered

clients without that the server is able to track which client accessed the system

and when.

The application of privacy preserving techniques to the biometric verifi-

cation problem2 has been proposed in [BC08] where the biometric data stay

encrypted during all the computations thanks to the integration of secure

sketches into homomorphic cryptosystems. Moreover, confidentiality of re-

quests made to the database is also obtained thanks to a Private Information

Retrieval (PIR) protocol. In particular [BC08] uses the Fuzzy Commitment

Scheme described in [JW99], and solves the correcting code problem by using

a linear correcting code implementable using Goldwasser-Micali cryptosystem

[GM84]. The solution described in [BC08] is more performing than ours in

large databases, but for small sets the Lipmaa protocol for PIR (Private In-

formation Retrieval [Lip05]) could be inadequate. Moreover our construction

allows parallel computation due to the possibility of exploiting the compos-

ite representation introduced in [BPB10] to pack together several encrypted

values.

As another proposal, Upmanyu et al. in [UNSJ09] has developed an ef-

ficient protocol for biometric verification based on asymmetric cryptosystem

(RSA). More specifically, in order to achieve a secure and efficient verification,

a linear classifier is used. However, it is highly probable that the same solu-

tion using the Paillier cryptosystem would be much more efficient. Moreover,

RSA is not semantically secure and due to the structure of the scheme, the

client identity is disclosed.

With respect to the above solutions our construction is not a composition

of general purpose techniques like PIR or PIS, but it is an ad hoc solution.

Moreover delegating the decoding function to the client it is possible to use

more complex decoding functions. Finally we used a semantic secure (IND-

CPA) cryptosystem like Paillier that provides a more suitable security for the

2Some authors refer this as claimed identity authentication, that is a 1:1 matching.
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privacy preserving applications.

5.3.1 Security Analysis

In this Section we show the main differences between the standard scenario

and the privacy preserving one. As already done for the FingerCode (Sec-

tion 4.3.1), for the sake of simplicity we recall the scenario described in the

previous Section as a sequence of the most relevant actions performed by Alice

and Bob.

In the standard scenario Bob, that is the service provider, is also the

trusted authority. During the enrollment phase Alice provides a plain version

of her biometric trait and Bob stores, in his database, the sketch for that given

biometric sample. During this phase Alice must trust Bob. Bob is in charge

to protect the database containing the enrolled sketches. In the matching

phase Alice provide a new biometric sample to Bob, due to this, Bob is able

to associate a given sketch with the correspondent identity. Moreover, during

the entire process Bob has to assure the protection of the data by third parties

attacks. Bob manages the database and the sketches. The database contains

the sketches in plain. The fresh biometric sample (used in the matching phase)

is not encrypted.

In the privacy preserving scenario the enrollment phase is identical to the

standard case, even if the database contains encrypted sketches and Alice en-

rolls a biometric samples that is encrypted using her PuK. Due to this Bob

is not required to protect the database which contains encrypted sketches.

During the matching phase Alice generates an encrypted version of her bio-

metric trait and together with the help of Bob applies a privacy preserving

protocol to decide if she can be allowed to the system. In this case Bob is

not able to associate any entries in his database to any other identity, so the

service provider is not able to identify which user is using the service. Bob

manages the database containing the encrypted sketches of all users. Each

user manages his cryptosystem keys, his biometric trait and the encrypted
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sketch.

5.4 Basic Building Blocks

We recall briefly the notation we will use through the next Sections:

• x ∈ {0, 1}n is the biometric data consisting of a binary string of length

n. We indicate with xi the i-th bit of the string;

• with a we refer to the bit-wise representation of a;

• c is a codeword in the set C;

• with JaK we indicate the Paillier [Pai99] encryption of a;with JaK the

bitwise encryption of a. Sometimes we indicate with JaKi the encryption

of a with the key of the client i;

• PuK and PrK are respectively the public key and the private key of

the cryptosystem adopted in the protocol;

• s is the cryptosystem security parameter and ` is the bit size of a cryp-

togram (` = 2s for Paillier cryptosystem).

5.4.1 The sub-protocol XOR

By assuming that x and y are binary values (bit), computing the XOR func-

tion is equivalent to the following:

x⊕ y = x+ y − 2xy (5.1)

which can be used to compute the XOR function in the encrypted domain.

In the following we consider two main cases:

1. x is encrypted and y is not;

2. both x and y are encrypted.
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Computing Jx⊕ yK from JxK and y Due to the additive homomorphic

properties of Pailler’s cryptosystem, it is possible to rewrite Equation (5.1) as

follows:

Jx⊕ yK = Jx+ y − 2xyK = JxK JyK JxK−2y . (5.2)

The computational complexity is mainly the cost to compute the modular

inversion (i.e. x−1 mod n) that requires the same complexity of an exponen-

tiation, so it is 2 mult + 1 exp ' 1 exp.

In this case the bandwidth requirement is 0 since there is no interaction

between the parties. Thus, the round complexity is also 0.

Table 5.1: Computational Complexities – XOR with JxK and y.

#exp Bandwidth Rounds

1 0 0

Computing Jx⊕ yK from JxK and JyK We now suppose that both bit

values are available in encrypted format, i.e. Bob knows JxK and JyK, where

encryption is carried out by using Alice’s PuK. The server does not want

to reveal neither x nor y to the client, so it chooses two additional random

bits rx and ry and uses equation (5.2) to compute Jx⊕ rxK and Jy ⊕ ryK then

sends these values to the client. Note that x and y are perfectly obfuscated

by the xor-ing with rx and ry, so the client can decrypt them, compute the

encryption of J(x⊕ rx)⊕ (y ⊕ ry)K and send the result back to the server. At

this point the server using again equation (5.2) can remove rx and ry from

the result and obtain Jx⊕ yK. The entire protocol is shown in Figure 5.3.

Since the server needs to compute the XOR function by using equation

(5.2) four times, the client computes two decryptions and one encryption, the

complexity is 4 exp + 2 dec + 1 enc ' 7 exp.
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Alice Bob
JxK rx

D (.)

P
P
L

JyK ry

Jx⊕ rxK

Jy ⊕ ryK
x⊕ rx y ⊕ ry

J(x⊕ rx)⊕ (y ⊕ ry)K

⊕

⊕

⊕

⊕

rx ry

Jx⊕ yK

Figure 5.3: Sub protocol XOR with JxK and JyK.

This sub-protocol requires a bandwidth of 3` because the server sends two

cryptograms to the client that responds with one cryptogram. The round

complexity is 2.

Table 5.2: Computational Complexities – XOR with JxK and JyK.

#exp Bandwidth Rounds

7 3` 2
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5.4.2 The sub protocol eSearch

A key step in the Fuzzy Commitment Scheme is the search for the codeword

in C that is closest to ĉ, i.e. the computation of f(ĉ). In this subsection we

present a protocol to compute such a function when ĉ is available in encrypted

form to the client. We will refer to such a protocol as eSearch functionality.

The approach that we will follow is to delegate the computation of f to the

client in a such way that the client is not able to understand which are the

input and the output of the computation. The details of the ECC code are

supposed to be public.

To describe the eSearch protocol we start by assuming that the space

C of all the codewords is a linear subspace that is closed under bitwise XOR

operation3. If the above holds also the following property holds.

Property 5.1. We have f(ĉ⊕ d)⊕ d = f(ĉ), ∀d = cj ∈ C.

Proof. Let ci = f(ĉ). We surely have ĉ = ci ⊕ ε for some ε. We have:

f(ci ⊕ ε⊕ d)⊕ d =

= f(ci ⊕ ε⊕ cj)⊕ cj =

= ci ⊕ cj ⊕ cj =

= ci (5.3)

where we have exploited the fact that the decoding function is able to correct

the error ε whatever codeword ci is added to, and where due to the linearity

assumption the addition of two codewords always results in a valid codeword.

Thank to the above result, a very simple eSearch protocol can be ob-

tained: Bob blinds ĉ by adding to it a random codeword d, then it asks Alice

to decode with f the blinded message. The client evaluates f in the plain

3This is always the case with the most common ECC.
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domain, re-encrypts the result and sends it back to Bob, that can obtain the

encrypted version of the decoded codeword by XOR-ing back the result with

d. A more detailed description of the eSearch protocol outlined so far is

given in Figure 5.4. Note that all codewords are encrypted sample–wise so to

allow the application of the first of the two secure XOR protocols described

in the previous section.

Alice Bob

D (.)

P
P
L

⊕

JĉK

cj

Jĉ⊕ cjK = Jci ⊕ ε⊕ cjK

f(·)
ci ⊕ ε⊕ cj

Jci ⊕ cjK ⊕
cj

JciK

Figure 5.4: eSearch.

Security discussion. In the following we argue that, under the assump-

tion that the client is allowed to know ε, eSearch is secure in the honest but

curious model (Section 2.2.2). This is a reasonable assumption since ε reveals

only the error between the enrolled biometric data and the new one, and the
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error between two biometric measurements can be assumed to be uncorrelated

to the biometric value itself. Furthermore this information is revealed only to

the client that owns the biometric data4. So, while ε can be seen as a leakage

of information, this leakage is seen by the client only. This can not be consid-

ered to be a problem since the sensible information that needs to be protected

is the codeword that the server does not want to reveal. More specifically,

the eSearch protocol achieves both client and server privacy, in fact during

the whole protocol the server sees only encrypted data, from which it can not

get any information due to IND-CPA security of the underlying cryptosys-

tem. Considering the server privacy note that an eavesdropper can not get

any information from the encrypted values due to the IND-CPA security of

Pailler’s cryptosystem. As to the client, he is only able to know ε and the

blinded codeword message ĉ + cj . We already discussed why disclosing ε is

not a problem. As to the blinded message it corresponds to ci + ε+ cj . Since

the client knows ε this is equivalent to knowing ci + cj . If the server chooses

cj randomly and uniformly over all possible codewords in C, then it is easy to

show that the mutual information I(ci; ci⊕ cj) is equal to zero, hence proving

the server privacy of the protocol.

To achieve the security it is necessary to require also that the clients

refresh their cryptographic keys periodically. This requirement came from

the fact that looking at the modulus used by each client, the server could

be able to associate to the modulus the correspondent user. For the sake of

simplicity consider the case with only two users with their modulus n1 and n2

(n1 < n2), it clear that in the interval (n1, n2] only the second client is able

to produce ciphertexts. Due to this the server could be able to understand

with probability 1 the second client if he can see a ciphertext in the interval

(n1, n2]. The above situation can be remains true also in the case of M clients,

for this reason it is necessary refresh the cryptographic key periodically.

4This is really important point because when ε is revealed is just to the owner of the

biometric itself, so practically nothing is unveiled.
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Complexity. The most expensive operation in the protocol is computing

XOR: initially to obfuscate
r
ĉ
z

and later to remove the obfuscation. The

computational complexity is then dominated by: 2n exp needed to compute

the obfuscations, n decryptions and n encryptions (we recall that the code-

words are encrypted bitwise), so: 2n exp + n enc + n dec ' 4n exp. The

bandwidth is exactly 2n` because 2 blocks of n cryptograms are transmitted.

Finally, 2 rounds are needed to run eSearch.

Table 5.3: Computational Complexities – eSearch.

#exp Bandwidth Rounds

4n 2n` 2

5.5 The Protocol

We are now ready to describe the overall eSketch protocol for privacy

preserving authentication. In the rest of this section we suppose that

there are M registered clients, moreover we consider that all the values in-

volved in the protocol are bitwise encrypted so for the sake of simplicity we

omit the notation JxK and we will use just JxK.
Enrollment. Let us start by considering the enrollment phase for a

generic client j. The j-th Client sends the plain version of his biometric

data xj to be enrolled in the system, moreover he sends also an encrypted

obfuscated version Jxj ⊕RjKj , where Rj is a random blinding factor chosen

by the Client. The Server chooses a codeword c, computes δj = xj ⊕ c and

stores the pair δj and Jxj ⊕RjKj . Figure 5.5 shows these steps. As we already

said, in this phase we assume that the client trusts the server.

Upon presentation of a new noisy biometric data x̂j from the client, Bob

must check whether this biometric data corresponds to one of the M enrolled
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j-th Client BobP
P
L

⊕xj

Jxj ⊕RjKj

c

δj

Stores:
δj , Jxj ⊕RjKj

Figure 5.5: eSketch – Enrollment.

users. In this phase, the client wants that nothing is disclosed about the noisy

biometric x̂j . At the same time Bob wants that nothing is revealed about the

biometric data of the other users and must avoid that a non–registered user

results in a positive match. At the end of the protocol, Bob will know only

if the user trying to access the system is a registered user, but will not know

which user is accessing the system. The above goals are obtained by means

of the following protocol.

Matching. In our description we refer to Figure 5.6. Let us assume that

the j-th client wants to access the system. He sends Jx̂jKj and his PuKj to

Bob. Note that in our framework revealing PuKj does not reveal the identity

of the client. The reason for this is that in our set up PuKj and PrKj are

generated directly by the client during the enrollment with no intervention of

a certification authority, so there is nobody that would be able to associate a

given PuKj to the particular j-th user and the PuK is never given to Bob

in this phase. Actually the server could be able to trace the behavior of the

clients by keeping trace of the usage of the M PuK’s of the clients. This

could be a problem for small values of M since it could be possible to trace

back to the identity of the client from his behavior. However, for large values
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of M as those typically encountered in on-line services, this is unlikely to

be a problem. On the contrary, the possibility of tracking users’s behavior

collectively without that a particular behavior is associated to a given user

could be seen as an advantage of the eSketch protocol. In any case, to

prevent this kind of attack, all the clients may be asked to re-enroll with a

new PuK regularly, depending on the application.

Since the user did not claim his identity, Bob cannot index the database

for a given client. For this reason, for each entry in the database, the server

computes JĉiKj = Jx̂j ⊕ δiKj (he can do that by exploiting the homomorphic

property of the cryptosystem as in Equation (5.2) obtaining M noisy code-

words each one encrypted with the j-th client’s PuK). At this point the

server and the client run the eSearch protocol M times to obtain M de-

noised codewords (Jc′iKj), then Bob XOR’s each of them with δi. In this way

he obtains a set of M enrolled encrypted candidate-biometrics: Jx′iKj . For

each entry in the database, the server has also stored Jxi ⊕RiKi so he can

compute JWiKj = Jxi ⊕Ri ⊕ x′i ⊕RKj , where R is an additional random num-

ber chosen by Bob and used to avoid the possibility that the client is cheating.

Note that only if i = j the homomorphic property makes sense (this is due to

the standard properties of IND-CPA cryptosystems5), in all the other cases

the result of this operation is simply a random string of bits. In addition only

if there is one xi = x′i the j-th Client can be authenticated. To do so the

server sends all the JWiKj values (i = 1,M) to the client. Alice decrypts them

and subtracts to each the value Rj she used in the enrollment phase. Then

Alice scrambles over i (to obfuscate the matching position to Bob) and sends

the results back to the Server. Bob removes the blinding factor R homomor-

phically and checks if in the list he obtained there is a 0’s vector. If this is

the case, access is granted.

5Note in fact that decrypting a ciphertext with the wrong key does not produce a plain-

text correlated with the original one.
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Figure 5.6: eSketch – Matching.

5.6 Security

To discuss the security of the eSketch protocol we observe that with

respect to the XOR and eSearch protocols (that we already proved to

be secure) the only additional steps in which we may have some leakage of
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information are in the last two rounds. To see that no leakage of information

occurs during this phase let us consider the two cases: i = j and i 6= j.

In the first case Alice sees: xj ⊕ Rj ⊕ x′j ⊕ R ⊕ Rj if the biometric is not

too noisy6 we have that xj = x′j and so the above computation returns only

R that is a random value chosen by Bob, and so no leakage of information

occurs here. When i 6= j Alice receives: JWiKj = Jxi ⊕Ri ⊕ x′i ⊕RKj , when

she applies the decryption function Dj using her PrK, she obtains something

that is completely random, since part of the cryptograms is encrypted with a

different PuK and so the decryption is completely meaningless.

After that, Alice subtracts Rj and sends back to server xi⊕Ri⊕x′i⊕R⊕Rj .
Bob removes R and obtains xi ⊕ Ri ⊕ x′i ⊕ Rj that is a completely random

number. The server, then, sees a string composed by random numbers and,

possibly, a zero in a random position, hence no leakage of information occurs

on his side well. Finally we observe that if someone tries to access the system

without knowing the correct keys, he only sees random string values due to

the security of the underlying cryptosystem. Moreover a result in [Gol04]

states that the composition of sub-protocols secure in the honest but curious

model inherits this security property.

Due to the fact that every client uses his own personal PuK we face with

the problem that the server could infer some information by looking at the

modulus used by each client. In fact, if we consider the ordered list of the

modulus it is clear that there are intervals in which only one client is able

to produce ciphers7 and the server could be able to understand which is the

modulus of a user just comparing the ciphertext with modulus. A possibility

to avoid this issue is to ask the users to produce ciphertexts in a smaller

interval, this is possible due to self-randomization. Alternatively we could

6This is an assumption that must hold if we want that the whole fuzzy sketch approach

works.
7Consider for instance, the two biggest modulus Mb < Ma, only the owner of Ma could

produce a ciphertext in the interval (Mb,Ma].
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require to refresh the keys periodically.

5.7 Complexities

We now briefly discuss the complexity of the eSketch protocol. In doing

so, as always, we focus on the most expensive operations. During the

enrollment phase the computational complexity is:

n enc + 1 add ' n exp

with just 1 round.

The matching phase is much more complex and requires:

n enc + 3n (1) exp︸ ︷︷ ︸
xor

+M(4n) exp︸ ︷︷ ︸
M eSearch

+(Mn) dec + (7n) exp︸ ︷︷ ︸
XOR

(5.4)

that is dominated by (5Mn+ 11n) exp. Moreover in the matching phase 3

rounds are needed plus those needed to compute M eSearch and 1 XOR, for

a total of 4 + 2M rounds.

Bandwidth. The enrollment phase requires a transfer of 1 plain (we

recall that the plaintext size is, at the very most, `
2 bits), n encrypted values

and the PuK so: `
2 + n` + 2` = (n + 2.5)` bits while the matching phase

requires:

2`︸︷︷︸
PuK

+n`+ 2nM`︸ ︷︷ ︸
M eSearch

+nM`+ nM0.5`+ 6n`︸︷︷︸
XOR

= (3.5M + 4)n`+ 2` (5.5)

bits.

Table 5.4 shows a summary of the complexities involved in the protocol.

5.8 Avoiding the Leakage of Information

In this section we propose a variant of the above protocol that avoids the

leakage of information inherent in letting the server know δ. In the rest
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Table 5.4: Protocol eSketch Complexities

#exp Bandwidth Round

Enrollment n (n+ 2.5)` 1

Matching 5Mn+ 11n (3.5Mn+ 4n+ 2)` 4 + 2M

of this section we consider that the codebook C is public available and the

security model is the honest but curious model.

First of all, note that allowing the codebook to be public, we can sim-

plify the eSearch algorithm as report in Figure 5.7 removing the obfuscation

values.

Alice Bob

D (.)

P
P
L

JĉK = Jci ⊕ εK

JciKf(·)

ci ⊕ ε

Figure 5.7: eSearch Variant.

Note that we cannot allow Alice to send back the codeword in plain be-

cause Bob could be able to identify Alice if M is small or if the protocol is

run several times. We point out that this variant of the protocol holds only

in the honest but curious model because in the malicious model Alice could

inject false values in place of ci to try to get authenticated.

Enrollment. During the enrollment phase (see Figure 5.8) the j–th client

is able to produce a random c due to the fact that we consider C to be known.

The client computes δj = c⊕xj using a fresh sample of his biometric then he



116 5. Privacy Preserving Sketch

encrypts it (JδjKj) and sends this encryption with an obfuscated and encrypted

version of his new noisy biometric: Jxj ⊕RjKj where Rj is a random blinding.

j-th Client BobP
P
L

δj = c⊕ xj

JδjKj , Jxj ⊕RjKj

Choose c ∈ C

Stores:
JδjKj , Jxj⊕RjKj

Figure 5.8: eSketch Variant – Enrollment.

Matching. The matching phase is shown in Figure 5.9 and is identical

to the original one, so we omit the details; we just note that this solution is a

little more complex due to the fact that it requires 3 times the computation

of the XOR protocol instead of only one in the original version.

The leakage is avoided due to the fact that now the entire algorithm runs

on encrypted data. In the previous version δ was stored by the server in

plain form, while now all the information related with the biometric data is

encrypted.

5.8.1 Complexities

We now study the complexity of the new version of eSearch. It is simple

to show that only 2n ciphertexts are exchanged in 2 rounds between Bob

and Alice thus we have a bandwidth complexity of 2n`. The computational

complexity is only n exp due to the decryption computed by Alice. During

the enrollment phase Alice computes mostly 2n encryption (2n exp) and

sends to Bob 2n ciphertexts in 1 round. The matching phase is the most

complex. We start focusing on the number of rounds that are 3 plus M calls
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j-th Client BobP
P
L

Jx̂jKj

i ∈ [1, M]

eSearch ∀i
Ĵc1Kj , ..., ĴcM Kj

Jc′1 ], ..., Jc′
M

K

⊕

⊕

JδiKi
Jc′iK

Jx′
iKj

⊕ Jxi ⊕RiKi

Jx′
i ⊕ xi ⊕RiKj

⊕ R

JWiKj = Jxi ⊕ Ri ⊕ x′
i
⊕ RKj ∀i

D(·)

⊕Rj

xi ⊕ Ri ⊕ x′
i
⊕ R

xi ⊕ Ri ⊕ x′
i
⊕ R ⊕ Rj

Scramble
R

Resi ∀i

∃i : Resi =? 0

⊕ JδiKi ∀i

JĉiKj

Figure 5.9: eSketch Variant – Matching.

to eSearch and 3 to XOR, for a total of: 9+2M rounds. During the 3 rounds

related with the main part of the protocol, are sent (3M + 1)n ciphertexts

and Mn plaintexts for a total bandwidth of 3
2Mn`+n` to which we must add

the bandwidth of M calls to eSearch and 3 calls to XOR. Finally we obtain

a bandwidth of

3
2
Mn`+ n`+ 2`︸︷︷︸

PuK

+M 2n`︸︷︷︸
eSearch

+3 3n`︸︷︷︸
XOR

=
7
2
Mn`+ 10n`+ 2` (5.6)
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bits. We now consider the computational complexity and we obtain:

n enc + 3n (7) exp︸ ︷︷ ︸
XOR

+n (1) exp︸ ︷︷ ︸
xor

+M (4n) exp︸ ︷︷ ︸
eSearch

+(Mn) dec (5.7)

for a total of 5Mn + 23n exponentiations. Table 5.5 summarizes the results

obtained.

Table 5.5: Variant Protocol eSketch Complexities.

#exp Bandwidth Round

eSearch n 2n` 2

Enrollment 2n 2n` 1

Matching 5Mn+ 23n (3.5Mn+ 10n+ 2)` 9 + 2M

Finally, comparing the complexities of this construction with the previous

one, it is possible to note that they are really close and differ only for constants,

so we can affirm that the asymptotic complexities are the same.

5.9 Summary

In this Chapter we introduced a privacy preserving version of the Fuzzy

Commitment Scheme. The fuzzy commitment approach has gained pop-

ularity as a way to protect biometric data used for identity verification of

authentication. Moreover in force of its generality it can be used with differ-

ent biometrics. The eSketch has been proposed in this chapter as a possible

solution for the above problems by resorting to tools from multi party om-

putation relying on the additively homomorphic property of the underlying

cryptosystem. In particular, the complexity and the security of the proposed

protocol has been discussed. Finally in the last section we proposed a variant

of our construction that is able to avoid the leakage of information typical of

fuzzy commitment schemes.
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Chapter 6

Final Remarks

The Many–Worlds interpretation is the only

completely coherent approach to explaining both

the contents of quantum mechanics

and the appearance of the world.

(Hugh Everett)

6.1 Summary and Contributions

In this thesis we addressed the construction of privacy preserving algorithms

and protocols in the field of user identification based on biometric traits. To do

so, we used techniques derived from the homomorphic properties of the Paillier

cryptosystem and in particular we focused on the cryptographic primitives

useful to realize the FingerCode and the Fuzzy Commitment Scheme in the

encrypted domain.

The use of privacy preserving protocols is a very attractive solution for

improving security in biometric applications, because instead of requiring the
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support of a third party as warranter, these constructions are able to provide

security by construction and in force of the security models they use.

In this dissertation we examined privacy preserving solutions in biomet-

ric applications as special cases of encrypted query to a plain database (the

FingerCode) and encrypted query to an encrypted database (the Fuzzy Com-

mitment Scheme).

The FingerCode is an approach to protect the privacy of the biometric data

(in particular fingerprint) in distributed biometric systems. In our construc-

tion, the biometric data of the client is captured and afterwards, an encrypted

representation of the computed template is produced. Then our protocol al-

lows the computation of the FingerCode algorithm on the encrypted data.

We have shown that our protocol is secure in the honest but curious model

and we detailed all the complexities involved. Additionally we exploited that

by reducing the size of the template it is possible to obtain a smaller rep-

resentation of the data and consequently a reduced encrypted template thus

producing a more performing practical implementation.

The good results obtained suggest that it is possible to stress a little

more our construction in the perspective of optimizing the run time of the

application. Table 4.6 shows clearly that the privacy preserving FingerCode

is not ripe to real world applications however it is a proof that could be useful

as a starting point for further improvements.

The privacy preserving version of the Fuzzy Commitment Scheme suc-

cessfully addresses the problem of keeping secret the user identity and the

biometric data itself. This privacy preserving capability makes the proposed

scheme suitable for protecting the users privacy by allowing them to be au-

thenticated anonymously. We provided an outline of the security proof in the

honest but curious model by assuming that the error correction code satisfies

certain, rather common, properties. The computational complexity of the

protocol is linear in both the number of entries in the database (M) and the

length of template representation (n). Moreover, also the bandwidth required
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to compute the protocol depends linearly on the number of entries and the

template size. Finally the number of rounds depends just on the number of

enrolled clients.

The proposed technique is just a prototype however it clearly shows that a

generic (in the sense of biometric–independent) protocols can be developed. A

real world implementation could be a future work, it is reasonable, expecting

that an ad hoc modeling of the eSketch could lead to good performances,

but probably, still infeasible in a real world scenario.

Finally it is clear that our results and findings are applicable to a broad

variety of different settings not only using different biometric samples but

also in different applications. We should not forget that these constructions

are just possible solutions of the biggest problem: querying a database in a

privacy preserving fashion and so they are suitable in many different scenarios.

6.2 Track for Future Works

This section discusses some of the extensions that may be pursued to

improve the work of this thesis and in general this field of research.

Future works could be oriented to the application of the results we obtained

to the development of privacy preserving systems with high accuracy and with

high performance. This goal can be split into different parts.

• Efficient real world applications. We have shown a real world im-

plementation of the FingerCode algorithm giving a good estimation of

the performance in a case study close to reality. A future work could

certainly be the realization of a similar demonstrator for the privacy

preserving sketch.

• Improvements of the security model. The honest but curious

model is suitable in a number of applications, but sometimes stronger

security is required. Sometimes Alice (or Bob) could be malicious or
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act in a malicious way trying to steal sensible information to the other

party. Studies on privacy preserving protocols in the malicious model

would solve this limitation.

• Extension of the basic cryptographic tools. Biometric systems

mostly consist of operations such as computing distances, and threshold-

ing (querying a database). Advanced applications can be investigated to

identify more complex and specific building blocks. Thus, taking advan-

tage from the composability of the honest but curious model, construct

the new generation of privacy preserving algorithms and protocols.

• Algebraically homomorphic cryptosystems. Gentry in [Gen09]

proposed a cryptosystem that is algebraically homomorphic, but it is

still too complex to be used in practice. An efficient cryptosystem able

to preserve additions and multiplications could speed up the multi party

computation protocols with significant benefits for applications.

• Formalization of the signal processing in encrypted domain

discipline. Signal or data processing in the encrypted domain is a very

young discipline so there are still no general methodologies to approach

problems and develop solutions. For instance there are a lot of works in

this field that do not examine in detail the three aspects of complexity of

the protocols: number of rounds; number of bits transmitted; number of

basic operations. Moreover, industrial designers and developers should

be informed about the effectiveness of these techniques in the everyday

life.

Privacy is important and today we can improve the technologies to realize

the next generation of applications able to protect sensible data and indirectly

the owners of such informations.

Did you know that every 3 seconds someone’s identity is stolen? More than

10.5 million of identities per year ([Wil07]). In this thesis we have shown that



6.2. Track for Future Works 125

this new generation of systems based on privacy preserving techniques can be

developed and these algorithms and protocols could be the way for a safer

digital world.
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It is commonly known that there is a trade off between 
the security of the systems based on biometric solutions 
and the privacy of the biometric data itself. In 
particular, the technologies behind practical privacy 
preserving algorithms and protocols belong to several 
different disciplines including signal processing, 
cryptography, information theory, each of which with a 
long standing tradition of theoretical and practical 
studies. At the same time, only few is known about their 
joint use, both at a theoretical and a practical level, 
the separation-paradigm being by far the most popular 
approach. The main goal of this thesis is to provide 
privacy preserving solutions to handle biometric 
samples avoiding the leakage of information that is 
intrinsic in the existing approaches and guaranteeing 
the privacy of the users. 
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