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Prof. Dr. Reginald Lagendijk

Siena, November 14, 2012





Contents

Acknowledgements xv

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I Cryptographic tools 13

2 Preliminary Notions 17

2.1 Adversaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Security services . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Authenticity . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 Access Control . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.3 Data Confidentiality . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Data Integrity . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 Non-repudiation . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Security Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Random-Oracle Model . . . . . . . . . . . . . . . . . . . 21

2.4 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . 22

i



Contents

2.4.1 Symmetric Key Cryptography . . . . . . . . . . . . . . . 22

2.4.2 Public Key Encryption . . . . . . . . . . . . . . . . . . . 23

2.4.3 Cryptographic Hashes . . . . . . . . . . . . . . . . . . . 27

2.4.4 Secure Multi-Party Computation . . . . . . . . . . . . . 28

2.5 Additive and multiplicative blinding . . . . . . . . . . . . . . . 29

2.6 Signal representation . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.1 Approximating real numbers on finite rings . . . . . . . 32

3 Homomorphic Encryption 39

3.1 Basis of homomorphic encryption . . . . . . . . . . . . . . . . . 39

3.2 El-Gamal cryptosystem . . . . . . . . . . . . . . . . . . . . . . 41

3.3 Paillier cryptosystem . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Basic homomorphic protocols for STPC . . . . . . . . . . . . . 44

3.4.1 Product with a plain value . . . . . . . . . . . . . . . . 44

3.4.2 Scalar and Matrix product . . . . . . . . . . . . . . . . 45

3.4.3 Linear Filtering . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.4 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.5 Non linear function evaluation . . . . . . . . . . . . . . 49

3.4.6 Product between two encrypted numbers . . . . . . . . 50

3.4.7 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.8 Scalar and Matrix products between encrypted matrices 52

3.4.9 Square of an encrypted number . . . . . . . . . . . . . . 55

3.4.10 Energy of an encrypted signal . . . . . . . . . . . . . . . 56

3.4.11 Binary representation of an encrypted value . . . . . . . 57

3.4.12 Comparison of encrypted numbers . . . . . . . . . . . . 59

3.4.13 Minimum selection . . . . . . . . . . . . . . . . . . . . . 65

3.4.14 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Applications of homomorphic-based STPC . . . . . . . . . . . . 68

3.5.1 Discret Fourier Transform . . . . . . . . . . . . . . . . . 69

3.5.2 Composite signal representation . . . . . . . . . . . . . 71

3.6 Fully homomorphic encryption . . . . . . . . . . . . . . . . . . 74

4 Oblivious Transfer 77

4.1 1-out-of-2 Oblivious Transfer . . . . . . . . . . . . . . . . . . . 77

4.1.1 Protocol relying on Random Oracles . . . . . . . . . . . 77

ii



Contents

4.1.2 Protocol not relying on Random Oracles . . . . . . . . . 81

4.2 1-out-of-n Oblivious Transfer . . . . . . . . . . . . . . . . . . . 83

4.2.1 Protocol relying on Random Oracles . . . . . . . . . . . 83

4.2.2 Protocol not relying on Random Oracles . . . . . . . . . 84

4.3 Bandwidth/Computation tradeoff for parallel 1-out-of-2 Obliv-

ious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4 Extending OT efficiently . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Precomputing OT . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Garbled Circuits 93

5.1 Garbled Circuits description . . . . . . . . . . . . . . . . . . . . 93

5.1.1 Contructor . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1.2 Data exchange . . . . . . . . . . . . . . . . . . . . . . . 96

5.1.3 Evaluator . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Building blocks for GC: general overview . . . . . . . . . . . . . 98

5.3.1 Addition (ADD) . . . . . . . . . . . . . . . . . . . . . . 99

5.3.2 Sum of k values . . . . . . . . . . . . . . . . . . . . . . . 99

5.3.3 Subtraction (SUB) . . . . . . . . . . . . . . . . . . . . . 101

5.3.4 Controlled Addition or Subtraction(ADDSUB) . . . . . 102

5.3.5 Changing representation . . . . . . . . . . . . . . . . . . 102

5.3.6 Counter (COUNT) . . . . . . . . . . . . . . . . . . . . . 103

5.3.7 Product (MUL) . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.8 Scalar Product and Matrix Product . . . . . . . . . . . 105

5.3.9 Linear Filtering . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.10 Multiplexer (MUX) . . . . . . . . . . . . . . . . . . . . . 107

5.3.11 Square value (SQR) . . . . . . . . . . . . . . . . . . . . 107

5.3.12 Energy computation . . . . . . . . . . . . . . . . . . . . 109

5.3.13 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.14 Minimum Value . . . . . . . . . . . . . . . . . . . . . . 111

5.3.15 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.3.16 Logarithm (LOG) . . . . . . . . . . . . . . . . . . . . . . 115

iii



Contents

6 Hybrid Protocols 117

6.1 Comparison between HE and GC solutions . . . . . . . . . . . 117

6.1.1 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.2 Product . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1.3 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.1.4 Comparison and minimum value . . . . . . . . . . . . . 121

6.1.5 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Hybrid HE and GC protocols . . . . . . . . . . . . . . . . . . . 124

6.2.1 Interface from HE to GC subprotocols . . . . . . . . . . 124

6.2.2 Interface from GC to HE subprotocols . . . . . . . . . . 126

II Electrocardiogram Classification 129

7 Plain Protocol 133

7.1 Introduction to Electrocardiogram and heart diseases . . . . . . 133

7.2 ECG Classification . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.2.1 Overall architecture of the classifier . . . . . . . . . . . 139

7.2.2 Classification results . . . . . . . . . . . . . . . . . . . . 145

8 Privacy preserving Classification by using LBP 147

8.1 Linear Branching Programs (LBP) . . . . . . . . . . . . . . . . 147

8.1.1 Full-GC implementation . . . . . . . . . . . . . . . . . . 149

8.1.2 Hybrid implementation . . . . . . . . . . . . . . . . . . 151

8.2 Application of LBP to ECG classification . . . . . . . . . . . . 154

8.2.1 Quantization error analysis . . . . . . . . . . . . . . . . 156

8.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9 Privacy preserving Classification by using Neural Network 167

9.1 Neural Network design . . . . . . . . . . . . . . . . . . . . . . . 167

9.2 Quantized Neural Network classifier . . . . . . . . . . . . . . . 174

9.2.1 Representation vs. Classification Accuracy . . . . . . . 177

9.3 Privacy-Preserving NN classifier . . . . . . . . . . . . . . . . . . 179

9.3.1 Comparison with the LBP solution . . . . . . . . . . . . 182

iv



Contents

III Quality Evaluation 185

10 SNR computation 189

10.1 Noise affecting ECG recording . . . . . . . . . . . . . . . . . . . 191

10.2 SNR Evaluation in the Encrypted Domain . . . . . . . . . . . . 193

10.3 Protocol Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 199

10.3.1 Bitsize analysis . . . . . . . . . . . . . . . . . . . . . . . 199

10.3.2 Communication complexity . . . . . . . . . . . . . . . . 201

10.4 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

11 Privacy Preserving Quality Evaluation 207

11.1 Protocol description . . . . . . . . . . . . . . . . . . . . . . . . 209

11.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.2.1 Data Dimension . . . . . . . . . . . . . . . . . . . . . . 215

11.2.2 Communication Complexity . . . . . . . . . . . . . . . . 217

11.2.3 Classification Performance . . . . . . . . . . . . . . . . . 219

12 Conclusions 221

12.1 Tracks for future works . . . . . . . . . . . . . . . . . . . . . . 223

12.2 Final considerations . . . . . . . . . . . . . . . . . . . . . . . . 225

Bibliography 227

v





List of Figures

2.1 Entities involved in a simple communication. . . . . . . . . . . 18

2.2 Typical scenario for symmetric key cryptography. . . . . . . . . 23

3.1 Packing more values. . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 eMin protocol extended to more values. . . . . . . . . . . . . . 66

3.3 Graphical representation of M -PCR. . . . . . . . . . . . . . . . 72

5.1 General scheme for Garbled Circuits. . . . . . . . . . . . . . . . 94

5.2 Addition Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Reverse tree structure for the computation of n additions. . . . 100

5.4 Subtraction Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Controlled addition or subtraction circuit . . . . . . . . . . . . 103

5.6 Counter Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.7 Product circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.8 Multiplexer circuit . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.9 Square circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.10 Equality test circuit (
?
=). . . . . . . . . . . . . . . . . . . . . . . 110

5.11 Comparison Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.12 Minimum Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.13 Euclidean Distance circuit. . . . . . . . . . . . . . . . . . . . . 114

5.14 Hamming Distance circuit. . . . . . . . . . . . . . . . . . . . . . 115

5.15 Logarithm circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 116

vii



List of Figures

6.1 Communication Complexity of the sum. . . . . . . . . . . . . . 119

6.2 Communication complexity of product between input operands. 119

6.3 Communication complexity of product between secrets. . . . . 120

6.4 Communication Complexity of the multiplexer. . . . . . . . . . 121

6.5 Communication Complexity of the comparison. . . . . . . . . . 122

6.6 Communication Complexity of the Euclidean distance. . . . . . 123

6.7 Communication Complexity of the Hamming distance. . . . . . 124

7.1 Positions where to place electrodes. . . . . . . . . . . . . . . . . 135

7.2 Waves on ECG trace. . . . . . . . . . . . . . . . . . . . . . . . 136

7.3 Examples of Arrhythmias . . . . . . . . . . . . . . . . . . . . . 137

7.4 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.5 Distorted frequency response as derived from a truncated im-

pulse response. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.6 Pan - Tompkins Algorithm. . . . . . . . . . . . . . . . . . . . . 141

7.7 Decision graph leading to ECG segment classification . . . . . . 145

8.1 Full-GC solution for LBP. . . . . . . . . . . . . . . . . . . . . . 150

8.2 Privacy-preserving ECG diagnosis. . . . . . . . . . . . . . . . . 155

8.3 Ring bit length. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.4 Classification accuracy of dataset using 21 and 15 features . . . 161

9.1 A perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.2 Transfer functions . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.3 Classification accuracy with the tansig or hardlims transfer

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

9.4 Classification accuracy with the tansig or satlins transfer func-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.5 Classification accuracy with only SATLIN activation function . 173

9.6 NN topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.7 Chain blocks to compute the output of a NN. . . . . . . . . . . 174

9.8 Quantized NN. In our case we have n = 4, nh = 6 and no = 6. . 177

9.9 Classification accuracy as a function of `i, `h, `o. . . . . . . . . 178

9.10 Classification accuracy in function of `o, with `i = `h = 13. . . 178

10.1 Scheme to compute the SNR. . . . . . . . . . . . . . . . . . . . 191

viii



List of Figures

10.2 Filter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

10.3 Error incurred by using the integer logarithm . . . . . . . . . . 205

11.1 Sequence of steps performed to evaluate the quality of an ECG

signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

ix





List of Tables

3.1 Some homomorphic encryption systems. . . . . . . . . . . . . . 42

3.2 Product by plain value: complexities . . . . . . . . . . . . . . . 45

3.3 Scalar product with plain vector: complexities . . . . . . . . . . 45

3.4 FIR filtering: complexities . . . . . . . . . . . . . . . . . . . . . 47

3.5 Packing: complexities . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 eMul: complexities . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Multiplexer: average complexities . . . . . . . . . . . . . . . . . 52

3.8 eScalarProd: Complexities . . . . . . . . . . . . . . . . . . . . . 54

3.9 Matrix product between encrypted matrixes: complexities . . . 55

3.10 eSquare: complexities . . . . . . . . . . . . . . . . . . . . . . . . 55

3.11 eEnergy: complexities . . . . . . . . . . . . . . . . . . . . . . . . 57

3.12 toEncBit: average complexities . . . . . . . . . . . . . . . . . . 59

3.13 Equality comparison: average complexities . . . . . . . . . . . . 62

3.14 Minor comparison: average complexities . . . . . . . . . . . . . 65

3.15 eMin: average complexities . . . . . . . . . . . . . . . . . . . . . 65

3.16 eEuclideanDistance - complexities . . . . . . . . . . . . . . . . . 67

3.17 eEuclideanDistance with x provided by C - complexities . . . . . 67

3.18 Hamming Distance - average complexities . . . . . . . . . . . . 68

4.1 1-out-2 OT relying on Random Oracle - Complexities . . . . . 79

4.2 1-out-2 OT not relying on Random Oracle - Complexities . . . 83

4.3 1-out-n OT relying on Random Oracle - Complexities . . . . . 84

4.4 1-out-n OT not relying on Random Oracle: complexities . . . . 86

xi



List of Tables

4.5 Complexity of a single 1-out-2 OT performed in a parallel OT . 88

4.6 Communication complexity of OTnt , implemented by an OT kk . 91

4.7 Communication complexity of a precomputed OTnt . . . . . . . . 92

5.1 General average GC complexities . . . . . . . . . . . . . . . . . 99

5.2 Number of non-XOR gates for COUNT`. . . . . . . . . . . . . . 104

6.1 Complexity of the HE to GC interface. . . . . . . . . . . . . . . 126

6.2 Complexity of the HE to GC interface. . . . . . . . . . . . . . . 128

7.1 Classification pattern . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2 QDF-based classification results . . . . . . . . . . . . . . . . . . 146

7.3 Our QDF-based classification results . . . . . . . . . . . . . . . 146

8.1 Protocols for Secure Evaluation of Private BP/LBP . . . . . . 154

8.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.3 Estimated Communication Complexity . . . . . . . . . . . . . . 163

8.4 Performance of protocols for secure ECG classification . . . . . 163

8.5 Communication complexity of LBP-based ECG classification

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

9.1 NN Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.2 Complexity of NN-based ECG classification protocol. . . . . . . 181

10.1 Number of bits necessary to represent the values obtained by

a worst case analysis. . . . . . . . . . . . . . . . . . . . . . . . . 201

10.2 Communication complexity of SNR protocol. . . . . . . . . . . 203

11.1 Maximum value and number of bits necessary for the magni-

tude representation of the variables involved in the computa-

tion by worst case analysis. Another bit is needed for the sign,

except for energies and SNR variance. . . . . . . . . . . . . . . 218

11.2 Online and offline bandwidth (bits) required by the protocol . . 219

11.3 Performance of the protocol using the linear classifier or a single

feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

xii



List of Protocols

1 Function φ(x) evaluation by using obfuscation with homomorphic

encryption scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Interactive protocol that computes the product between two en-

crypted values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Interactive protocol that select a value depending on a boolean. . . . 52

4 Interactive protocol that computes the scalar product between two

encrypted arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Interactive protocol that computes the square of an encrypted value. 56

6 Interactive protocol that computes the energy of a signal. . . . . . . 57

7 Interactive protocol that returns the encrypted bynary representa-

tion of a value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8 Interactive protocol that evaluates if two encrypted values are equal. 60

9 Interactive protocol that evaluates [x
?
<y]. . . . . . . . . . . . . . . . 63

10 Interactive DGK protocol. . . . . . . . . . . . . . . . . . . . . . . . . 64

11 Interactive protocol that computes the minimum among two values. 65

12 Interactive protocol that computes the euclidean distance between

two vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

13 The Oblivious Transfer protocol using a Random Oracle proposed

by Bellare and Micali . . . . . . . . . . . . . . . . . . . . . . . . . . 78

14 The Oblivious Transfer protocol based on Elliptic curves . . . . . . . 80

15 The 1-out-2 Oblivious Transfer protocol not relying on a Random

Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

16 1-out-of-n Oblivious Transfers with the same gr . . . . . . . . . . . . 84

xiii



LIST OF PROTOCOLS

17 The 1-out-n Oblivious Transfer protocol not relying on a Random

Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

18 Parallel 1-out-2 OT Protocol . . . . . . . . . . . . . . . . . . . . . . 87

19 Protocol that reduces OTnt to OTnk . . . . . . . . . . . . . . . . . . . 89

20 Protocol that reduces OTn` to OT kn (Given the matrix T , we here

indicate the j-th column by tj and the i-th row by ti, the same for

matrix Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

21 Precomputed OT protocol with setup phase . . . . . . . . . . . . . . 92

22 Interactive interface that returns to C the secrets relative to x, given

the cyphertext JxK available to S. . . . . . . . . . . . . . . . . . . . . 125

23 Interactive interface that returns the cyphertext JxK to S, given the

secrets w̃
x`−1

`−1 , . . . , w̃
x0
0 relative to x available to C. . . . . . . . . . . . 127

24 Hybrid LBP protocol. For simplicity we assume that all the yi values

can be packed in a single cyphertext. . . . . . . . . . . . . . . . . . 152

25 Hybrid SNR computation protocol (packing and bitlengths are omit-

ted for simplicity). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

26 Hybrid protocol for ECG quality evaluation (packing and bitlengths

are omitted for simplicity). . . . . . . . . . . . . . . . . . . . . . . . 214

xiv



Acknowledgements

I’d like to express my gratitude to all those who made it possible to complete

this thesis. In particular I am deeply indebted to my supervisor Prof.

Mauro Barni whose help, stimulating suggestions and encouragement helped

me in all the time of research for and writing of this thesis. I am also grateful

to Senior Scientist Jorge Guajardo who invited me to spend six month in

Philips (Eindhoven) and for all the help and friendship he offered me.

I am grateful to thesis reviewers Prof. Dario Catalano, Prof. Fer-
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Chapter 1

Introduction

1.1 Motivations

Recent technological developments promise to make available in the near fu-

ture a large variety of new applications ranging from multimedia content

production and distribution, to advanced healthcare systems for continuous

health monitoring. These advances are raising several important issues con-

cerning the security of the contents themselves, including intellectual property

rights management, authenticity, privacy, and conditional access to digital

data, that risk slowing the diffusion of new services. It is evident that the

development of tools allowing secure manipulation of signals is a pressing

need.

Common available technological solutions for “secure manipulation of sig-

nals” do not appear to be a valid solution to the above problems, since they

simply apply some cryptographic primitives in order to build a secure layer

on top of the signal processing modules, to protect them from leakage of crit-

ical information. These solutions typically assume that the involved parties

or devices trust each other, and thus the cryptographic layer is used only to

protect the data against third parties that are not authorized to access the

data or for authentication purposes. Sometime, this is not the case, since the

owner of the data may not trust the processing devices, or those actors that

are in charge of data manipulation.

In the last years an increasing attention has been given to the development

of tools for processing encrypted signals [EPK+07], where two or more non-

trusted parties wish to collectively process one or more signals to reach a

common goal. In the simplest case, the above scenario consists of only two

parties. One party, hereafter referred to as the Client (C) owns a signal that

has to be processed in some way by the other party, hereafter referred to
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as the Server (S). Since C and S do not trust each other, S is required to

process the signal owned by C without obtaining any information about it, not

even the result of the processing. At the same time, S wants to protect the

information it uses to process the signal provided by C. While the above may

seem a formidable, if not impossible, task, a bunch of cryptographic primitives

exist, that coupled with a suitable design of the underlying signal processing

algorithms, allow to process signals that have been secured in some way, e.g.

(but not only) by encrypting them. In the recent scientific literature such

techniques are usually referred to as s.p.e.d. (standing for Signal Processing

in the Encrypted Domain), or SSP (for Secure Signal Processing) techniques.

In the last thirty years1 the cryptographic community has worked hard to

build a set of tools that allow to compute with encrypted data. Available so-

lutions include the use of Homomorphic Encryption, whereby some algebraic

operations are mapped into simple operations to be applied in the encrypted

domain, and Secure Multi Party Computation - SMPC where two or more

non-trusted parties engage in an interactive protocol to carry out a compu-

tation without revealing their own inputs. The special case where only two

parties are involved, such as a Client and a Server, is of particular interest

and is usually referred to as Secure Two Party Computation (STPC).

Though the possibility of processing encrypted data has been advanced

more than thirty years ago, processing encrypted signals poses some new

problems due to the peculiarities of this kind of data with respect to the

type of data commonly encountered in the cryptographic literature, e.g. al-

phanumeric strings or bit sequences. The most straightforward difference is

that signals are often represented by means of real numbers (and processed

by means of floating point arithmetic), while all the available cryptosystems

work on integer rings. Moreover the representation of signals in the encrypted

domain causes a huge increase in the data size. Despite the above difficulties,

some recent studies have shown that the application of non-trivial processing

tools to encrypted signals is practically feasible.

The number of possible applications of s.p.e.d. techniques is virtually end-

less. This thesis focuses on biomedical signal analysis [BPSW07, BFL+11,

LGB12]. Another important application is biometric matching [BC08], re-

1The first mention is in [RAD78b] 1978 by Rivest et al.
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cently applied to face recognition [EFG+09, SSW09], fingerprint recognition

[BBC+10b, BBC+10a] and iris matching [LSP+12]. Many other application

fields can benefit from privacy preserving techniques. In [KLC+08] an efficient

buyer-seller protocol embedding an encrypted watermark in a content is pro-

posed, protecting the watermark secrets from the buyer and preventing false

infringement accusations by the seller. In [Fai10], a novel technique has been

proposed to compute the well-known A∗ algorithm2, on the encrypted weights

of a graph. Other applications include data mining on private databases

[AS00, LP08]; recommender systems [ABF+08, EBVL11, EVL11, EVTL12],

encrypted strings comparison by using Levenshtein distance [RS10], etc.

The use of s.p.e.d. for the processing of medical signals is surely one of the

most promising applications among those listed above. As a matter of fact,

healthcare industry is rapidly moving toward technologies offering personal-

ized online self-service, medical error reduction, customer data collection and

more. Such technologies have the potentiality of revolutionizing the way med-

ical data is stored, processed, delivered and made available in an ubiquitous

and seamless way to millions of users throughout the world. In this frame-

work, respecting the privacy of customers is a central problem, since privacy

concerns may impede, or at least slow down, the diffusion of new e-health

services. This is the case, for example, of on-line repositories of medical data

(including signals) managed by a third party [McB08, Bla08]. Would anybody

be willing to store his/her medical data in such repositories if his/her privacy

rights are not adequately protected? This is the main reason behind the low

success of Google Health and the decision to stop the service [GB11, Com11].

In this thesis, we propose some protocols that demonstrate the feasibil-

ity of biomedical signal analysis, when non-trusted parties are involved in

the computation. Even if the protocols are still far from the efficiency one

would need in practical implementation, they are a good starting point for

privacy preserving healthcare applications, demonstrating that the privacy

of the parties involved can be preserved by using protocols with reasonable

communication and computation complexity. The protocols are based on

homomorphic encryption and, most of all, on garbled circuits, the latter con-

2A∗ is a best first graph search algorithm that uses an heuristic function helping to choose

the best candidates during the traversing of common graphs.
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stituting a novelty in s.p.e.d. field, wherein the use of GC theory has often

been overlooked.

We first consider a scenario where a remote diagnosis system provided by

a non-trusted party offers a service whereby biomedical signals are processed

to provide a preliminary diagnosis. Such a system may either be seen as a

stand alone service or as part of a more complex e-health system where the

service provider, in addition to hosting a repository of personal medical data,

also allows to process such data. In order to preserve the privacy of the users,

S should carry out its task without getting any knowledge about the private

data provided by the users. At the same time, S may not be willing to disclose

the algorithms it is using to process the signals, since they represent the basis

for the service it is providing.

In particular, we considered the privacy-preserving classification of Elec-

troCardioGram (ECG) signals. Classification of ECG signals has long been

studied by the signal processing community and several accurate and efficient

algorithms exist for this purpose [ASSK07]. Classification and diagnostic

programs are very useful tools for automatic data analysis with respect to

specific properties. They are deployed for various applications, from spam

filters [DCDZ05], remote software fault diagnostics [HRD+07] to medical di-

agnostic expert systems [RGI05]. However their efficient implementation in

a s.p.e.d. framework is not an easy task. Given an ECG signal, we have de-

veloped a system that classifies ECG portions corresponding to single heart

beats into six possible classes: five possible diseases and one healthy state. To

do so, C encrypts some features extracted from the ECG and starts a classifi-

cation protocol, interacting with S, who inputs the classification parameters.

On one side C does not want to reveal the ECG features since they are sen-

sitive information that must be kept secret, while on the other side, S does

not want to reveal the classification parameters.

To provide a correct remote service, it is important to guarantee that

the recorded signals comply with certain quality measures. Namely, when

data remotely measured by patients is used by tele-health services, health-

care providers must trust the information provided by patients. In fact, as a

result of the widespread use of remote e-health systems a multitude of vital

body signals can be recorded at a remote location (e.g., at home) and trans-
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mitted to a (remote) service provider for processing and assessment. The

fact that measurements are going to be performed by consumers raises the

need for privacy preserving solutions that allow to assess the quality of the

recorded signals, thus ensuring that the signals are good enough to guarantee

correct decisions and handling. In particular, in order to make sound medical

decisions based on remotely measured biomedical signals, it has to be ensured

that a measurement contains as little noise as possible, the amount of noise

being an indication of the quality of the signal. This is very important be-

cause if this is not guaranteed there can be critical healthcare decisions based

on wrong (or poor quality) data, which in turn, can lead to wrong decisions

or treatments. Even if quality evaluation can be embedded in the recording

device available to the user, a privacy preserving quality evaluation protocol

can be useful in many cases. For example when the service provider is inter-

ested in changing the protocol parameters without upgrading the software (or

hardware) of the devices. Otherwise if the service provider and the company

producing the device are two distinct elements and the former is interested

to protect his property also by the company. Alternatively it can be useful

when the signal comes from previous elaboration and is available only in its

encrypted form. Also device calibration can be considered a major issue, but

if performed in presence of trusted stuff, as we here suppose, we can relax the

privacy and security constrains related to.

We focus on the problem of measuring the quality of an Electrocardiogram

(ECG) signal in the encrypted domain. The server S computes the quality of

an ECG signal having only access to its encrypted version and allowing inter-

action. At the same time, the client C is not allowed to know the intermediate

results of the computation and the parameters of the algorithms used by S,

so that the server is able to protect the details of the quality evaluation algo-

rithm since this may be a proprietary algorithm. In order to propose a simple

protocol that can be easily implemented with MPC techniques, we focus on

a scheme where the quality of a signal is given by a classifier that, subdi-

vided the signal in segments, uses the Signal to Noise Ratio (SNR). Being

a reference clean signal not available, SNR is evaluated between the original

segments and a filtered version. It is important to note that measuring signal

quality is a difficult problem that has captured the attention of researchers
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in many fields, as diverse as audio, image, video and medical signal analysis,

and our protocol can be adapted to be also applied to these signals.

1.2 Contributions

The main contributions of this thesis are new more efficient modular protocols

for the secure evaluation of a class of diagnostics/classification problems. In

fact, despite the emerging success of multi-party computation tools before our

research, efficients tools were not yet proposed. This thesis demonstrates that

s.p.e.d. applications are feasible, also in a promising, but ticklish scenario such

as the biomedical one.

The activity has been mainly developed during the European SPEED

project3, where the group of the university of Siena, lead by Prof. Mauro

Barni with the participation of Pierluigi Failla and me, acted as coordinator.

The goal of SPEED was to foster the advancement of the marriage between

Signal Processing and Cryptographic techniques, through the initiation and

development of a totally new and unexplored interdisciplinary framework and

technologies for signal processing in the encrypted domain. SPEED research

activity was carried out both at a theoretical and a practical level, the theoret-

ical part being dedicated to the development of a general framework investi-

gating the fundamental limits and trade-offs of s.p.e.d., and the practical part

being devoted to the development of some of the basic s.p.e.d. building blocks

and to their application in some selected scenarios: secure biomedical signal

analysis, secure biometric matching and secure watermarking. Our research

in secure biomedical signal processing continued after the end of the project,

also during the period that I spent at Philips Lab, Eindhoven, Netherland

(other member of the SPEED project) as an intern, under the guide of the

Senior Scientist Jorge Guajardo.

Many new building blocks have been introduced in this thesis. First of all

our applications rely on innovative hybrid protocols, i.e. in the composition

of many s.p.e.d. subprotocols based on different tools, proposed by Thomas

Schneider, Ahmad-Reza Sadeghi (of the Ruhr-Universität of Bochum (RUB)

group, one of the partners in the SPEED project) and Vladimir Kolesnikov

3www.speedproject.eu

www.speedproject.eu
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in [KSS09a] (later extended in [KSS10]) and applied for the first time in our

paper [BFK+09a]. It combines the advantages offered by Homomorphic En-

cryption (HE) [Pai99] and Garbled Circuits (GC) [Yao86]. We also introduced

the general concept of Linear Branching Program [BFK+09a], a natural gen-

eralization of binary classification trees. LBPs represent an efficient system

for privacy-preserving classification of signals. Moreover we proposed an ef-

ficient implementation of Neural Networks by using GC in [BFL+11]. This

efficient implementation is based on the use of the satlin activation function,

instead of the classic tansig activation function. Another important building

block is the proposal of a GC protocol that evaluates the integer logarithm in

[BGL10], whose main element is an optimized counter circuit. This solution

was developed during the period that I spent in Philips. In the same paper

the logarithm protocol has been used in a hybrid protocol to compute the

SNR of a signal.

The above building blocks has been used to develop the biomedical s.p.e.d. pro-

tocols we propose in the thesis. The first application is a diagnostic protocol

for the classification of ECG signals, built upon the classification algorithm

described in [ASSK07, GSK02]. In particular, the s.p.e.d. classifier relies on a

subset of the features proposed in [ASSK07, GSK02] used in a LBP classifier,

replacing the Quadratic Discriminant Function (QDF) of the original paper.

The protocol has been proposed together with the RUB partner during the

SPEED project and was implemented during my week-long stay in Bochum.

Relevant is the study carried out to observe how communication, computa-

tion complexity and accuracy change by decreasing the number of bits used

to represent the data involved in the computation and the number of fea-

tures used. This is a crucial step where signal processing domain knowledge

must be used to ease the s.p.e.d. implementation of the classifier in terms of

efficiency and reduced complexity. The protocol is described in the papers

[BFK+09a, BFK+09b, BFL+09].

The same protocol has also been implemented by using our secure imple-

mentation of a Neural Network (NN) [BFL+11]. In the paper we investigate

the relationship between the representation accuracy of the to-be-processed

signals (i.e., the number of bits representing the ECG features), the com-

plexity of the proposed protocol and the classification accuracy. Finally we
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compare the NN protocol with the LBP protocol from a complexity point

of view, getting interesting insights about the suitability of LBP-based and

NN-based classification for efficient implementation in a SSP framework.

During my internship in Philips, the problem of evaluating the quality

of signals (in particular ECG signals) in a privacy-preserving scenario has

been addressed. To the best of our knowledge, the problem of measuring the

quality of a signal in a s.p.e.d. framework has never been addressed before and

also have a small number of solutions in the plain domain. Differently from

the diagnostic protocol, where we implemented an existing plain protocol in

the encrypted domain, the quality evaluation protocol was studied in order

to propose a new and efficient solution tailored for a s.p.e.d. implementation.

The new technique analyzes the amount of noise in a biomedical signal and

is based on the analysis of the Signal-to-Noise ratio in small windows of the

encrypted signal rather than the whole measurement. The analysis is based

on the statistics of the raw signal window and a corresponding filtered signal.

Similarly to the classification protocol, we provide a careful analysis of the

accuracy of the proposed protocol. Finally, the communication complexity of

the proposed protocol is analyzed thus proving its efficiency. The results are

published in [BGL10, LGB12].

During the PhD, I also worked on the Italian Priv-Ware project sup-

ported by the MIUR (Ministero dellUniversità e della Ricerca) under Grant

2007JXH7ET. During the project we worked on privacy protection of the bio-

metric data. Specifically we proposed a novel complete demonstrator based

on a distributed biometric system that is capable to protect the privacy of

the individuals. The implemented system computes the matching task in the

encrypted domain by exploiting homomorphic encryption and using Finger-

code templates [BBC+10a, BBC+10b]. The protocol has been implemented

and tested in real applicative conditions. Experimental results show that this

method is feasible in the cases where the privacy of the data is more impor-

tant than the accuracy of the system and the obtained computational time is

satisfactory. Moreover, in the biometric scenario, a full-GC protocol for iris

matching has been proposed in [LSP+12] and we wrote two chapters regard-

ing biometry matching for two books, the first one related to security and

privacy in biometrics [Cam13], the second one for Digital Right Management
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[HKL13].

Recently we proposed new building blocks, such as a protocol to evaluate

the division between secret values [LB11], a protocol to order secret values

[LF12] and a protocol that permits to evaluate a general function on secret

input via piecewise linear approximation [PLB12].

These applications are not detailed in this thesis for sake of brevity and

because out of the main scope of this thesis.

1.3 Publication List

To appear:

[HKL13] M. Barni and R. Lazzeretti, and C. Orlandi. Processing Encrypted

Signals for DRM Applications. Chapter in Hartung F., Kalker T., and

Lian S. Digital Rights Management: Technology, Standards and Appli-

cations. CRC Press.

[Cam13] R. Lazzeretti and P. Failla and M. Barni. Privacy–Aware Processing

of Biometric Templates by Means of Secure Two-Party Computation.

Chapter in P. Campisi. Security and Privacy in Biometrics, Springer.

[PLB12] T. Pignata and R. Lazzeretti and M. Barni. General Function Eval-

uation in a STPC Setting via Piecewise Linear Approximation. In

WIFS’12. International Workshop on Information Forensics and Se-

curity, Tenerife, Spain, December 2–5, 2012.

2012:

[LGB12] R. Lazzeretti, J. Guajardo, and M. Barni. Privacy Preserving ECG

Quality Evaluation. In MM&SEC’12, Proceedings of ACM Workshop

on Multimedia and security, Coventry, UK, September 6–7, 2012.

[LSP+12] Y. Luo, S.C. Samson, T. Pignata, R. Lazzeretti, and M. Barni. An

Efficient Protocol for Private Iris-Code Matching by Means of Garbled

Circuits. In ICIP’12, Special Session on Emerging Topics in Cryptogra-

phy and Image Processing, International Conference on Image Process-

ing, Orlando, Florida, U.S.A., September 30 – October 3, 2012.
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1.4 Outline

This thesis is subdivided in three parts.

The first part introduces the s.p.e.d. setting and the main available tools.

A reader that already knows the topic and is interested to its application to

the remote biomedical analysis can skip over this part and start reading from

the second part. In Chapter 2 we present some general notions related to

s.p.e.d. , such as the typology of the attackers and the security models, some

cryptographic primitives, blinding and the way data needs to be represented to

be correctly used in privacy preserving protocols. Homomorphic Encryption,

together with many basic homomorphic protocols, is presented in Chapter 3.

Moreover the innovative Fully Homomorphic Encryption recently proposed in

[Gen09] is introduced at the end of the chapter. Oblivious transfer protocols

are presented in Chapter 4. OTs are fundamental protocols that permit a
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party to select among two secrets owned by another party. In this thesis

oblivious transfer is only used into Garbled Circuits to exchange input secrets.

Chapter 5 introduces Garbled Circuits and the main basic circuits that are

needed for the implementation of privacy preserving protocols. The circuit for

integer approximation of logarithm is particularly relevant, since it represents

one of the innovative contributions of this thesis and is further used in the

protocol for the evaluation of signal quality. The first part ends with the

analysis of pros and cons of the HE and GC approaches to s.p.e.d. and with

the introduction of Hybrid Protocols in Chapter 6.

The second part focuses on privacy preserving biomedical analysis. We

propose two different implementations of the ECG classification algorithm

proposed by Ge et al. [GSK02], presented in Chapter 7 together with an

introduction to Electrocardiogram. The first solution, shown in Chapter 8,

faithfully replicates Ge’s algorithm in the encrypted domain. The classifica-

tion algorithm can be related to Linear Branching Programs. The second

solution, addressed in Chapter 9, replaces the classification algorithm used in

Ge’s paper with a Neural Network. A comparison of the two solutions, pro-

vided at the end of Chapter 9, demonstrates that our efficient implementation

of privacy preserving NN provides the same accuracy of the LBP solution with

lower complexity.

In the third part of the thesis we describe a protocol to evaluate the qual-

ity of an ECG signal in a privacy preserving scenario. After a description of

the noise affecting an ECG signal, Chapter 10 proposes the protocol to eval-

uate the SNR of a no-referenced signal by using s.p.e.d. techniques, together

with an analysis of the protocol complexity and the error due to the integer

implementation of the logarithm. The SNR protocol is then used to develop

another protocol, described in Chapter 11, that uses it to compute the SNR

of the segments the signals is subdivided in. The obtained SNRs are then

used to extract some features to be used as input to a linear classifier able to

assert if the signal quality is sufficient for further computation.

The thesis ends with some conclusions in Chapter 12, where we also pro-

vide some hints for future works.
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Cryptographic tools
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In a classical distributed processing scenario, two or more entities, such as

a service provider and a user, communicate to obtain a common goal. Nor-

mally the entities involved trust each other and have no problems to reveal

their data, but are interested to prevent that a third party, such as an eaves-

dropper or an attacker, can observe the communication or interfere with it,

changing the transmitted data or denying the service. To protect the commu-

nication the involved entities have to negotiate the communication so that a

secure channel, where the services are guaranteed, is created. Guaranteeing

the security of the data is not a easy job. First of all we have to face differ-

ent types of adversaries. Luckily a big effort has been applied to develop with

symmetric and asymmetric cryptographic primitives in the past.

On the other side, the security provided by classical protection schemes are

no more sufficient when even the adversaries are involved in the computation

and, for example, the user needs to protect his data also from the service

provider. In recent years some Multi-Party Computation (MPC) tools, such

us Homomorphic Encryption, Oblivious Transfer, Garbled Circuits, have been

proposed to allow the cooperation between parties that do not trust each other.

Moreover Hybrid protocols permit to compose subprotocols developed by using

different tools so that efficient solutions to real problems can be developed.

Given the possibility to elaborate private data without disclosing it, it is

interesting the application of the idea to the processing of private signals. In

this part of the thesis, we present the basic notions necessary for the devel-

opment of protocols relative to Signal Processing in the Encrypted Domain.

“Seest thou not, Rutilio, that he which discloseth a secret unto another,

praying him to say nothing because it imports his life, is a fool?”

(Miguel de Cervantes: The Travels of Persiles and Sigismunda)





Chapter 2

Preliminary Notions

In this chapter we introduce the notions necessary to fully understand the

topic of the thesis. We start in Section 2.1 introducing the typology of attack-

ers. Then, in Section 2.2, the services that a general cryptographic protocol

must provide for a secure communication are presented, while in Section 2.3

we show the security models that can be used to demonstrate the security of

any privacy preserving application and cryptosystem.

Given the focus of this thesis on privacy protection in signal processing

applications, we analyze signal representation in Section 2.6 with the goal of

finding a representation usable with the available cryptographic primitives.

To conclude, in Section 2.5, we describe blinding techniques, useful to hide

signals, or variables, each time that there is the necessity to decrypt them,

without revealing their values.

2.1 Adversaries

As shown in Figure 2.1, a simple communication involves many entities: a

sender, a receiver and possibly an attacker. A more realistic scenario involves

many parties that in turns act as sender and/or receiver and more than one

attacker can be present.

The attacker can be considered either passive or active. A passive attacker

is an eavesdropper monitoring the transmission to extract information, that

can be the content of the transmission, or some statistical analysis derived

from it, such as the identities of sender and receiver, the quantity of data

transmitted, the type of data, etc. A passive attack is difficult to detect,

because it does not involve any alteration of the data, but can be prevented

by encrypting the transmission. An active attacker is an entity interested

in interfering with the communication. The principal active attacks are the
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Sender Receiver

Attacker

Figure 2.1: Entities involved in a simple communication.

following:

• Masquerade attack: the attacker is interested to impersonate one of

the players without that the other notes the substitution. When during

a communication from Alice to Bob the attacker takes the place of both

of them(it acts as Bob for Alice and as Alice for Bob), it is said “Men

in the middle”.

• Replay attack: the attacker captures a message and subsequently re-

transmits it to produce an unauthorised effect.

• Modification of messages: part of messages, or whole messages, are

changed to produce unintended effects.

• Denial of service: the attacker prevents the normal use of communi-

cation facilities stopping a communication or saturating the channel or

the capacity of a server.

Detecting the presence of an active attacker is easy, but a complete prevention

of active attacks is quite difficult.

In a privacy preserving scenario, even the parties normally involved, say

Alice and Bob (or client and server), can be considered attackers interested

to obtain information about the other player. Hence they can be classified

according to the following classes:

• Honest: an honest party is simply interested to performing the correct

computation and obtain the final result, if it is the recipient, or helping

the other party to obtain it.

• Honest but curious: this kind of party follows the protocol without

deviating from it, but in the meanwhile it is interested to obtain any

information it can observe about the other party.
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• Malicious: a malicious party can deviate from the protocol or use

particular sequences of inputs to extract information about the secret

inputs or outputs of the other party.

• Covert: a covert party is willing to act as a malicious party only if it

is sure that its malicious actions are not discovered, otherwise it acts as

an honest but curious party.

2.2 Security services

In a classical distributed scenario, two or more entities, such as a service

provider and a user, communicate to obtain a common goal. Normally the

entities involved trust each other and have no problems to reveal their data,

instead they are usually interested to prevent that a third party, such as an

eavesdropper or an attacker (described in Section 2.1), observes the commu-

nication or interfere with it, changing the transmitted data or denying the

service. To protect the communication the involved entities have to negotiate

the communication so that a secure channel is created, where the services are

guaranteed. For completeness, in this section the services that each security

system must provide are reviewed, as defined in ITU-T1 Recommendation

X.800. Considering that in this thesis we focus on a scenario involving en-

tities that do not trust each others, in the next chapters we suppose that a

secure channel has already been established, without describing the protocols

to do that.

2.2.1 Authenticity

Authentication is concerned with the assurance that communication is be-

tween entities that are who they claim to be and is generally achieved by

using digital signatures. There are two types of authentication requirements

that must be satisfied.

• Single party authentication: this is a property of systems where the

sender and receiver are well distinct and the receiver has the necessity

1International Telecommunication Union (ITU) - Telecommunication standardization

sector
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to verify that the sender is the one it claims to be. This property is also

of importance for systems concerning with multimedia and signal data.

• Mutual authentication: this kind of authentication is used for pro-

tocols where all participants must prove their identity to avoid trans-

missions from/to unauthorized users.

2.2.2 Access Control

This is the ability to limit and control the access to host systems, applications

and data for each individual user or group. To achieve this, each entity trying

to gain access must be first identified, or authenticated.

2.2.3 Data Confidentiality

This service prevents the access of data from unauthorised disclosure, intro-

ducing the protection from passive attacks, so that information is available

only to authorised users.

2.2.4 Data Integrity

This service protects data against active attacks assuring that the data is not

changed by an unauthorised entity and, depending on the application, can be

grouped into the following two categories:

• Connection-less: this service controls the integrity of each data block

detecting any modification.

• Connection oriented: this is a stronger service concerned with stream

of messages and assures that message blocks are received as sent, with

no duplication, insertion, modification, deletion or reordering.

Since signals are inherently ordered sequences of values, connection-oriented

integrity must be guaranteed, preserving the correct time order of the signal

samples and checking that the data received from a server is not forged (com-

ing from a different source, or previously recorded).
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2.2.5 Non-repudiation

This service prevents either sender or receiver from denying to have sent

a transmitted message. Non-repudiation proofs may regards with both the

sender, which can not deny to have sent a certain message, and the receiver,

who can not deny that the message has been correctly received.

2.3 Security Models

A security model is a formal description of a security policy and is normally

used to prove the security of a protocol. The main security models are the

standard model and the random oracle model.

2.3.1 Standard Model

The standard model is a model of computation in which the adversary is only

limited by the amount of time and computational power available. Crypto-

graphic schemes are usually based on complexity assumptions, which state

that some problems, e.g. factorization, cannot be solved in polynomial time.

Schemes which can be proven secure using only complexity assumptions are

said to be secure in the standard model. Security proofs are notoriously diffi-

cult to achieve in the standard model, so in many proofs, cryptographic prim-

itives are replaced by idealized versions, such as the random oracle model, de-

scribed later. Other models invoke trusted third parties to perform some tasks

without cheating: for example, the public key infrastructure (PKI) model re-

quires a certification authority, which if it were dishonest, could produce fake

certificates and use them to forge signatures, or mount a man in the middle

attack to read encrypted messages.

2.3.2 Random-Oracle Model

A Random-Oracle is a mathematical function (a theoretical black box) map-

ping every input to a (truly) random output chosen uniformly from its output

domain. A random oracle is a theoretical model of a perfect cryptographic

hash function, used in cryptographic proofs; it is typically used when no

known implementable function provides the mathematical properties required
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by the proof. A system that is proven secure using this kind of proofs is said to

be secure in the random oracle model, as opposed to security in the standard

model. In practice, random oracles are typically used to model cryptographic

hash functions in schemes where strong randomness assumptions are needed

of the hash function’s output. Such proofs generally show that a system or

a protocol is secure by showing that an attacker must require impossible be-

havior from the oracle, or solve some mathematical problem believed to be

hard, in order to break the protocol. Impagliazzo and Rudich [IR89] showed

the limitation of random oracles - namely that their existence alone is not

sufficient for secret-key exchange. Bellare and Rogaway [BR93] advocated

their use in cryptographic constructions, where the random oracle produces

a bit-string of infinite length which can be truncated to the length desired.

When a random oracle is used within a security proof, it is made available to

all players, including the adversaries. No real function can implement a true

random oracle. In fact, certain artificial signature and encryption schemes are

known which are proven secure in the random oracle model, but which are

trivially insecure when any real function is substituted for the random oracle

[CGH04]. Nonetheless, for many protocols a proof of security in the random

oracle model gives very strong evidence that an attack which does not break

the other assumptions of the proof, if any (such as the hardness of integer

factorisation), must discover some unknown and undesirable property of the

hash function used in the protocol to succeed.

2.4 Cryptographic Primitives

To achieve the functionalities described in the previous section, several cryp-

tography blocks can be used. Although these blocks do exist and are used very

often in different protocols, their application in a signal processing framework

is challenging and they must sometimes be slightly modified.

2.4.1 Symmetric Key Cryptography

Symmetric key cryptography is one of the oldest primitives and provides the

confidentiality service. The most important properties of these algorithms

are ease of operation and high speed. In these Systems both the sender
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and the receiver have a common secret key which is used for encryption and

decryption of messages. It is assumed that decrypting a message is easy when

the key is known and otherwise difficult. Indeed the secret key creates a secure

communication channel between sender and receiver as shown in Figure 2.2.

Key K

Alice Bob

Eve

Figure 2.2: The typical scenario for symmetric key cryptography. Alice and

Bob are legitimate users of the system, whereas Eve is malicious and wants

to eavesdrop the channel. The key K is the common secret key between Alice

and Bob and creates a secure channel for communication of legitimate users.

Some important attacks on symmetric key systems are: known plaintext

attacks, which use pairs of plaintext and ciphertext to unveil some secret

information, and chosen plaintext attacks, in which the user can generate the

encryptions of arbitrary plaintexts to break the system.

There are several kinds of symmetric key systems proposed in the literature

and used in practice like triple DES and AES (see [DR99] and [Bar04]).

2.4.2 Public Key Encryption

Symmetric key systems are useful and efficient, but their application requires

generally special infrastructures to be setup. Some examples are setting up the

initial keys or managing keys among several users. A solution is a public key

system in which encryption and decryption are performed using two different

keys. The first one is published, whereas the second one must be kept secret.

The first efficient public key encryption scheme was the RSA system

[RSA78], based on the difficulty of factoring large composite numbers.

An important class of public key cryptosystems are systems based on prob-

abilistic encryption proposed for the first time in [GM84]. In these systems
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a given plaintext is encrypted to a different message at each new encryption.

This is useful when, e.g., encrypting and transmitting single bits: if the used

encryption was deterministic, the adversary could easily understand the mean-

ing of encrypted messages by using the public key to encrypt the bits zero

and one and comparing the obtained cyphertexts with the one transmitted.

The method proposed in [GM84], also known as Goldwasser-Micali en-

cryption system, is the first probabilistic encryption system which is provably

secure under cryptographic assumptions. The security of this system is based

on the intractability of the quadratic residuosity problem modulo a composite

number N = pq, when the factorization of N is unknown. The public key of

the system is (x,N), where x is a pseudo-square modulo N , i.e., x(p−1)/2 ≡ −1

mod p and x(q−1)/2 ≡ −1 mod q, and the secret key is the pair (p, q), the

factorization of N . To encrypt a bit m0, Alice computes c = y2xm0 mod N ,

for a random y and sends it to Bob. Bob computes the values c(p−1)/2 mod p

and c(q−1)/2 mod q and decrypts m = 1 if the values are −1 and m = 0 if the

values are 1. This system is not efficient by itself, since every bit is expanded

to several bits, but it has a homomorphic property: if c0 and c1 are some

encryptions for m0 and m1, respectively, then c0c1 mod N is an encryption

of m0 ⊕ m1. We will talk more about homomorphic encryption systems in

the next section. The Goldwasser-Micali cryptosystem is sometimes used in

larger protocols like in [BCI+07].

One approach to achieve a probabilistic encryption from a deterministic

one is the OAEP (Optimal Asymmetric Encryption Padding) introduced by

[BR94] using paddings and one-way permutation functions to build a proba-

bilistic version of RSA. The proposed method was claimed to be secure under

one-wayness of the underlying permutation, but this claim has been contra-

dicted. The authors of [FOP+01] showed the security of the mechanism in

the random oracle model.

The most popular public key cryptosystems are the ElGamal cryptosystem

(see Section 3.2), proposed in [ElG85] that is based on the intractability of

discrete logarithm in finite fields with large prime number of elements, and

the Paillier cryptosystem (see Section 3.3), introduced for the first time in

[Pai99] and based on the difficulty of deciding if a number is an n-th power

in ZN , for a large enough N .
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Formally a Public Key Encryption Primitive (PKEP) is a triple (G, E ,D)

of algorithms: G and E are probabilistic while D is deterministic. Let p1 and

p2 be polynomials specified by the PKEP.

• for every n and every r ∈R {0, 1}n, generator G(r) outputs a pair of

keys (sk, pk);

• for every m ∈ {0, 1}p1(n), each string r′ ∈ {0, 1}p2(n) of coin flips of

encryption E , and pair (sk, pk) output by G, it holds that decryption

D(sk, E(pk,m, r′)) = m;

where p1(n) and p2(n) indicate two values related to n, while r′ is a random

number introduced in each encryption so that different encryptions of the

same message result in different cyphertexts.

There are several security notions regarding a PKEP like: Indistinguisha-

bility under chosen-plaintext attack (IND-CPA), Indistinguishability under

chosen ciphertext attack/adaptive chosen ciphertext attack (IND-CCA1, IND-

CCA2), which we briefly describe below:

• IND-CPA: This is generally used for probabilistic encryption schemes

and means that an adversary, being allowed to do encryptions of his

own, sends two (random) messages M0 and M1 to a challenger. The

challenger encrypts one of the messages and sends it back to the adver-

sary. The encryption scheme is indistinguishable under chosen plaintext

attack, if the adversary cannot distinguish, better than random, which

of the messages has been encrypted by the challenger. The definition

can be relaxed to a deterministic scheme if the adversary is not allowed

to encrypt M0 and M1.

• IND-CCA1: This is the property of indistinguishability under adap-

tive chosen ciphertext attack. This is very similar to IND-CPA with

the difference that the adversary has also access to a decryption oracle.

Here the adversary is allowed to call the encryption and decryption ora-

cles only until he sends the messages M0 and M1 to the challenger, that

returns the encryption of one of the messages. The adversary should

not be able to decide which message has been encrypted. This means

that decryption previously performed can not help the adversary.
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• IND-CCA2: This is the adaptive version of IND-CCA1 where the

adversary is allowed to continue encrypting and decrypting even after

receiving the message, with the constraint that he is not allowed to de-

crypt the received message, even if he can decrypt any other message.

Security means that decryptions of other messages provide no informa-

tion useful to understand what message has been encrypted.

Many public key encryption schemes have homomorphic properties and

can be used as a tool in s.p.e.d. applications. An homomorphic property per-

mits to perform an operation φ2(·) between encrypted numbers that returns,

after decryption, the same result of the operation φ1(·) performed on the same

values in the plain domain:

φ1(a, b) = D(φ2(E(a), E(b))). (2.1)

The most popular homomorphic cryptosystems permit to evaluate the sum

among cyphertexts [Pai99], while El-Gamal cryptosystem [ElG85] permits to

evaluate the product. Recently, some fully homomorphic cryptosystems (that

permit to compute sums and products under encryption) have been proposed

([Gen09] is the first one), but they have not efficiently implementation. Ho-

momorphic schemes are analyzed in detail in Chapter 3.

Digital Signatures

Digital signatures are an asymmetric cryptographic primitive to provide mes-

sage authentication, and can be seen as the digital equivalent of handwritten

signatures. Unlike handwritten signatures however, a digital signature is dif-

ferent for each message that is being signed, because otherwise signatures

could easily be copy-pasted from one electronic document to the next.

The signer generates a key pair consisting of a private and a public key.

The public key is made available and associated with the signer’s identity,

e.g. through a public-key infrastructure (PKI). The signer uses his private

key to compute the signature on a message; the verifier can later use the

corresponding public key to check that the candidate signature is indeed valid

for the given message.

The most generally security definition for digital signatures is that of ex-

istential unforgeability under chosen-message attack [GMR88]. This means
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that no adversary who’s given a public key as input and can see as many

signatures as he likes on messages of his choice, can output a valid forged

signature on a message for which he has not yet seen a signature.

Various types of signature schemes exist. The two most common schemes

in practice are RSA [RSA78], based on the hardness of factoring large in-

tegers, and DSA [DSA00], based on the hardness of discrete logarithms.

A number of schemes exist that are provably secure in the random oracle

model, including RSA-PSS [BR96] based on the one-wayness of RSA, Schnorr

signatures [Sch90, PS00] based on the hardness of discrete logarithms, and

BLS signatures [BLS01] based on the computational Diffie-Hellman problem

[DH76, Bon98, NP01] in groups with bilinear maps. The latter has the advan-

tage of producing very short signatures. Schemes that are provably secure in

the standard model [GHR99, CS99, BB04] exist as well, but are less efficient

than their random-oracle counterparts.

2.4.3 Cryptographic Hashes

Hash functions are important cryptography blocks and have several applica-

tions. They are generally used to generate short messages from long ones in

such a way that the receiver can detect any modifications in the message and

thus control its integrity. They can be grouped into two categories: MACs

(message authentication codes) and public or unkeyed hashes.

MACs are hash functions which are based on symmetric encryption sys-

tems. A user who sends the information produces a secure hash by using

a secret key shared with the receiver. The receiver produces the same hash

using the same key. If the new hash matches the ones transmitted by the

sender, he can control both the authenticity and the integrity of the message.

Unkeyed hash functions, on the other hand, are used to produce short

strings from large ones and play an important role in most cryptographic sys-

tems. One typical application for such hash functions is in digital signatures

where the hash function produces a short representation of the message, and

then this short representation is signed. The most important property of a

hash function is to be collision-free, meaning that it is computationally infea-

sible to find two messages with the same hash functions. In the example of

digital signatures we see that if a collision occours, then the same signature
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can be used for both the messages. Some popular examples for hash functions

are the (actually insecure) MD5 (Message Digest Version 5) [Riv92] and the

SHA family [Rob95], that is periodically improved to guarantee the security.

The underlying property of hash functions is that even modifications of

one bit, can result in a completely different hash. It is difficult to find a

collision or two different messages having the same hash value. This ensures

that a malicious user who modifies the message cannot find a valid hash value.

2.4.4 Secure Multi-Party Computation

Secure multi-party computation (SMPC) [Yao82, GMW91] allows a set of

mutually mistrusting parties to compute a function together while keeping

their inputs private. Mistrust among parties is usually modelled by assuming

the existence of an adversary that is allowed to corrupt some sub set of the

parties. By corruption, one usually assumes that the adversary can read (and

possibly modify) the internal memory of the corrupted players. The weak

reliability of communication is modelled by allowing the adversary to control

the communications involving corrupted players. The SMPC paradigm allows

many settings and concerns to be modelled and is a strong tool to show that

solutions exist to very general cryptographic problems. The power of the

framework is that under partial corruption assumption (and various settings

and constraints) it is possible to compile any polynomial size function into

a protocol that ensures input privacy. Input privacy is assured facing an

adversary that is assumed to control the entire state (memory) of corrupted

parties (passive adversary) and one that in addition may corrupt the memory

arbitrarily (malicious adversary).

The notion of SMPC is very general and allows numerous variants. A ba-

sic distinction is between the computational setting [GMW91] where all com-

munication is available to the adversary, and the information-theoretic set-

ting [BOGW88, CCD88, RBO89], where point-to-point communication links

are completely protected, but the adversary is not restricted to probabilistic

polynomial time.

Indeed general multiparty computation protocols allow to securely com-

pute any function but the efficiency of the computation is linear in the size of

the circuit implementing the function to be computed. This often results in
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protocols that are simply too inefficient to be used in practice. For this reason,

efficient ad-hoc solutions have to be designed to solve specific cryptographic

problems, by choosing the best protocol for each functionality involved and

by tailoring the bitsize of the data.

A specific case of SMPC that is particularly interesting for this thesis is

secure two-party computation (STPC) where only two entities are involved.

This entities are normally identified as the server S and the client C, a user

that needs to access to a functionality provided by the server.

2.5 Additive and multiplicative blinding

During a STPC, as we will show in the next chapter, whenever S can not

compute some function in the encrypted domain or the protocol requires to

change the data representation, it is necessary to resort to some form of

interaction between the server S and the client C. The simplest way to use

interaction between the client and the server to apply a non-linear function

to private data is through obfuscation (sometimes referred to as blinding).

Let us consider a scenario in which S, at some point in the protocol,

wants to perform a non-linear operation on the encrypted data. A very simple

protocol could be devised in the following three steps: 1) S obfuscates the

intermediate result and sends it back to C ; 2) C decrypts it, performs the

operation, re-encrypts the result, and sends it to S. 3) finally S removes the

obfuscation. The above protocol requires the following requirements to be

met in order to work (at least in the semi-honest scenario).

1. The obfuscation should be possible on encrypted values: only linear op-

erations, sums and products with random numbers, can be used to blind

a value.

2. The obfuscation should preserve the meaning of the non-linear operation:

in the case we are interested to evaluate a non-linear operation φ(x), we

say that an obfuscation y = rax + rb preserves the meaning of φ(x) if

there exists a corresponding (possibly non-linear) operation ψ(y) such

that

φ(x) = α(ra, rb)ψ(y) + β(ra, rb)x+ γ(ra, rb) (2.2)
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where α, β, γ can be arbitrary functions of the random variables ra, rb.

The rationale of the above definition is that S, who knows ra, rb and

receives the encryption of both x and ψ(y), should be able to compute

the encryption of φ(x) by relying on homomorphic properties.

3. The obfuscation should be secure, i.e., C should be able to infer from

the obfuscated value neither the true value of the input nor the true

result of the non-linear operation: a possible approach is to consider the

security in an information theoretic sense. Let us consider the mutual

information between the true value x and the obfuscated value y, given

by [CT06]

I(X;Y ) =
∑

x,y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
(2.3)

where pX(x) and pY (y) are the marginal probability distribution func-

tions of X and Y respectively, while pX,Y (x, y) is the joint probability

distribution function of X and Y .

Perfect or unconditional security is obtained if there exists a choice of

ra, rb such that I(X;Y ) = 0 [Sha49]. Perfect security ensures that C can

not discover anything about x by observing either y and ψ(y). Moreover,

it also ensures that nothing can be inferred about φ(x). This can be

verified by noting that φ(x) → x → y → ψ(y) forms a Markov chain

and by applying the data processing inequality for mutual information

[CT06].

In the setting described above, summarized in Protocol 1, perfect security

can not in general be achieved.

However, it would be interesting to quantify the information leakage on

both x and φ(x), so as to define appropriate security measures on the ob-

fuscation of x. In [BAS+09] a theoretical framework to measure the secure

leakage of a particular blinding strategy is proposed and applied to evaluate

the security of additive and multiplicative blinding.

In [BAS+09] two parties are identified: Alice, that holds some secret signal

value x ∈ R, and obfuscates it by applying an obfuscation function which

yields the obfuscated value y ∈ R, and Bob (the attacker) that, given the
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Function evaluation by using obfuscation.

inputs of C: Nothing
inputs of S: JxK
output for C: Nothing
output for S: Jφ(x)K

client C server S

JyK = Jrax+ rbK = JxKraJrbK;
JyK�

decrypts JyK;
computes ψ(y);

encrypts ψ(y);

Jψ(y)K -
Jφ(x)K =

= Jα(ra, rb)ψ(y) + β(ra, rb)x+ γ(ra, rb)K =

= Jψ(y)Kα(ra,rb)JxKβ(ra,rb)Jγ(ra, rb)K

Protocol 1: Function φ(x) evaluation by using obfuscation with homomor-

phic encryption scheme.

obfuscated value, tries to discover the true value x by applying an estimation

function producing an estimate x̃.

In [BAS+09] the objective is to evaluate how close can Bob’s estimate be

with respect to the true value x, by using a measure derived by the mutual

information. The signal x is assumed to have mean µ and variance σ2.

The simplest blinding technique is the addition of a random variable to

the signal values. The security depends on both the distribution of the signal

values and the distribution of the blinding factor. The obfuscation model

under a single observation is

y = b+ x (2.4)

where b is a real blinding value statistically independent from x.

Another useful blinding technique consists in multiplying the signal values

by a random factor. In the scalar case the model is

y = bx (2.5)

where b and x are mutually independent.
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The analysis performed in [BAS+09] permits to evaluate the security

achievable by the two different blinding techniques. The first thing noticed is

that multiplicative blinding requires in general a much higher number of bits

in order to achieve the same security level. Moreover for additive blinding the

security grows exponentially with the number of bits used for the obfuscation

values, while for multiplicative obfuscation the security grows only linearly.

This means that to increase the security of additive blinding it is sufficient to

add a few bits, while to obtain the same result with multiplicative blinding

the bitlength of the random value has to be multiplied by a constant factor.

2.6 Signal representation

Before describing the available s.p.e.d. tools in the next chapters, we address

the problem of the definition of a proper signal representation model. This in-

cludes finding a way to represent signals by using the finite size ring arithmetic

made available by all practical cryptosystems.

In this section, some possible ways to represent signals are discussed and

the trade-offs that need to be considered when choosing a proper represen-

tation introduced. The considered trade-offs include: storage requirements,

representation accuracy (linked to the quantization error made when passing

from real to integer numbers), computational complexity.

2.6.1 Approximating real numbers on finite rings

Signals are customarily represented by real-valued sequences. Real numbers

have dynamic structures such that the length of their representation strings

generally increases during the computations. On the other hand, traditional

encryption schemes work with strings of limited length, where these lengths

are governed by security parameters. This means that if the traditional en-

cryption schemes, which are based on ring of integers or polynomials, are

used to perform homomorphic operations on encryption of real numbers, the

security parameter should be infinitely large.

The problem of representing real numbers by strings of limited length is

not specific to cryptography. Traditional computing systems use truncations

of real numbers for storing and representation purposes. In the following we
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describe several approaches to represent real values in computing systems and

analyze their adaption to s.p.e.d. applications.

Floating Point Representation

A wide range of real numbers can be represented by few bytes, when the

floating point representation is used. In the natural basis β ∈ N, the floating

point representation of the number x is the pair (sx, ex), where sx and ex are

called significand and exponent, respectively, meaning

x ≈ sxβex (2.6)

The significand and exponent are selected in such a way that the approxima-

tion error in (2.6) is as small as possible. Floating point representations use

bit-strings of lengths `s and `e to store the significands and exponents, respec-

tively. We denote such a floating point representation by FLP(`s, `e). These

values are then interpreted as the signed integer representation of ex, whereas

that of sx is a decimal value such that, per agreement, the decimal point is at

the leftmost position. It can be shown that when the value x is represented

by (sx, ex) in FLP(`s, `e), then the absolute value of the approximation error

in (2.6) is bounded by

βex−(`s−1) (2.7)

and hence to decrease the error, it is desirable to make ex as small as possible.

This results in the normalized representation of floating point numbers for

which the leftmost digit of the significand is always non zero.

Multiplication of floating point numbers is straightforward: multiply the

significands, add the exponents, and normalize the result. Addition is, on

the other hand, more complicated. To add two numbers we have to find the

maximum of the two exponents, adjust the significands in such a way that

both of them have the common exponent, add the significands together and

finally normalize the result.

To perform these operations using homomorphic encryption, we can use

a multiplicative homomorphic encryption for the significands and an additive

one for the exponents. In this way the multiplication would be easy to com-

pute, but still requiring truncation of significands during the normalization
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and checking if the leftmost digit is zero. Addition of two values would need

the comparison of two encrypted values and, generally, truncating the results

to bring them into the larger exponent and finally normalization.

Given the difficulties of implementing the above operations in the en-

crypted domain without resorting to interactive protocols, we can conclude

that the floating point representation is a not suitable model for s.p.e.d. com-

putation.

Fixed Point Representation

A less space-efficient (but simpler) approach to represent numbers is to use

fixed point representation. This method in its original form, is characterised

by the scaling factor (quantizer) q. The fixed point representation X of a real

number x is obtained by computing

X = bqxe ≈ qx, (2.8)

i.e. by multiplying the value x by a coefficient q and rounding it to the closest

integer number. Given the fixed point representation, if q has been chosen big

enough such that qx carries sufficient information about x, an approximation

x̃ = X/q of the original real number x can be obtained.

For simplicity q is usually chosen such that q = βp where β ∈ N (usually

β = 2 or β = 10) and p is the precision desired.

Let us denote the fixed point representation of x by FIPq(x). Given

an upper-bound for x, its value is represented by a limited number of digits.

Assuming that |x| < q, the absolute value of integer representation of numbers

in FIPq(x) are smaller than q2, whose representation bitlength we denote by

`.

Computation using fixed point representation is easier than in floating

point. Addition of values is carried out by adding the corresponding integers

and the representation bitlength is ` + 1. Multiplication is still a multipli-

cation between integers followed by truncation. The truncation stage can

be explained as below. Let X and Y be the representations of x and y in

FIPq(x), i.e., X ≈ qx and Y ≈ qy, hence

XY ≈ q2xy (2.9)
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where the valid representation of xy is an integer Z such that Z = qxy.

It is not difficult to see that a suitable candidate for Z can be computed

by dividing XY by q and taking the quotient. Although even this simple

task is not easy to implement in the encrypted domain, it seems that fixed

point representation is more suitable than floating point representation for

computation in the encrypted domain.

Indeed, one of the strongest arguments against fixed point representation

is the large number of bits needed to achieve the same accuracy of float-

ing point representation. We argue here that this argument cannot be used

in s.p.e.d. applications, since here, we already need long representations to

achieve a high security level. As one of the most famous examples for ad-

ditive homomorphic encryptions, we mention the Paillier encryption scheme

[Pai99]. One of the most important parameters in this system is the integer

N , where encrypted messages belong to the ring ZN2 and the plaintext X is

assumed to be smaller than N . N is generally called the modulo number in

Paillier encryption. On the other hand, according to (2.9), we see that even

for permitting a single multiplication, the length of N must be larger than

twice the representation length, i.e., the length of q2, hence FIPq(x) can be

used together with Paillier encryption with modulo number N as long as

q4 < N (2.10)

To correctly represent the result of a product. Assuming q4 = N and the fact

that the maximum error of FIPq(x) is q−1 we see that using a fixed point

representation and the Paillier scheme with modulo number N , the error can

be reduced to N−1/4.

Fixed point representation without truncation

The fixed point representation provides a reasonable method to approximate

arithmetic operations on real numbers, but after each multiplication a division

by the quantizer must be performed. We are not aware of any method to

efficiently perform this operation on encrypted numbers. One possibility is to

select a modulo number large enough to perform all operations without any

truncation. The final result is then truncated after being decrypted. This

could require enormous values of N which are not practical.
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To solve this problem we observe that the accuracy of a floating point rep-

resentation varies over the range of represented numbers, as can be observed

from (2.7), whereas accuracy of fixed point representation is fixed over the

whole range of definition.

This means that the values of N can be made smaller for the same arith-

metic accuracy. This smaller values of N are appropriate for special problems

and must be selected according to the exact protocol which is used to solve

the problem.

Other representations

Other approaches to represent the signals have been proposed.

A method to represent real numbers is to approximate them by means of

rational numbers, whose numerator and denominator, in turn, are represented

by integers. Such an approach is described in [FSW02] where the homomor-

phic properties of the Paillier cryptosystem are exploited. This method has

a better accuracy than fixed point representation, the only problem is that

in this method even the addition of two values can cause the denominators

to grow quickly and hence before any further computation truncation is re-

quired, involving a highly non-linear operation that can not be performed

without interaction.

An alternative representation for signals in the encrypted domain could

be obtained by approximating a real or complex value over a ring of algebraic

integers [GAM85]. Algebraic integers offer some advantages with respect to

both integer and rational representations: for example, they are dense over

C, meaning that the quantization does not require any scaling factor, and

the dynamic range of the quantized values is dramatically reduced for a given

error tolerance. Let ω = e2πj/R, R = 2µ, µ ≥ 2 be a primitive Rth root of

unity. The subring of the field of complex numbers C generated by ω over the

integers Z is defined as

Z[ω] =





R/2−1∑

i=0

αiω
i

∣∣∣∣∣∣
αi ∈ Z



 . (2.11)

The set Z[ω] is usually referred to as the ring of algebraic integers. Both

addition and multiplication can be defined over Z[ω] as combinations of the
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integer coefficients αi. If µ = 2, then Z[ω] ≡ Z[j] is the ring of Gaussian

integers, i.e., it contains numbers in the form a+ jb, a, b ∈ Z. Hence, approx-

imating over Z[j] is equivalent to rounding both the real and imaginary part

to the nearest integer. If µ ≥ 3, then Z[ω] is dense in C, meaning that any

complex number can be arbitrarily approximated by a number in Z[ω] with-

out requiring the multiplication by a scaling factor. In practical applications,

we are interested only in those elements of Z[ω] which can be represented by

bounded integer coefficients αi ≤ K. As a drawback, such a representation

requires to encrypt R/2 values for each complex sample. Since the number of

bits of the encrypted representation is fixed due to security requirements, this

means that the algebraic integer representation would require R/4 times the

bits of an integer representation when translated into the encrypted domain.

Recently another representation for real values have been proposed. The

main idea [FDH+10] is to represent each real number x with a triple (ρx, σx, τx),

where ρx ∈ {0, 1} is a flag indicating that x is not equal to 0, σx = sign(x) ∈
{−1,+1} is the sign of the value and

τx =
⌈
− S logB

|x|
C

⌋
.

Hence x ≈ ρx · σx · C · B−τx/S . This representation permits to have the

same relative mean error for big and small values. The product between

two encrypted numbers is relatively easy to compute, but addition requires a

complex protocol involving a huge look up table.

Remarks

Given the above discussion, it is evident that fixed point representation with-

out truncation and rescaling is the most suitable representation model if ho-

momorphic encryption has to be used. For this reason in the following we

will always assume that signals are represented as sequences whose values are

represented by fixed point integers. Once the signal representation model has

been fixed, it is necessary to choose its working parameters, namely the num-

ber of bits used to represent a signal sample and the quantization step used

to pass from a real to an integer representation.

The actual value of a sample should always be recoverable from its finite

field representation. For example, if we are working on ZN , the set of integers
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modulo N , for each sample x we should have |x| ≤ (N − 1)/2; otherwise, its

magnitude will be lost due to the modulo N operations. Hence, the size of N

imposes a trade-off between the accuracy of encrypted domain computations

and the number of operations that can be performed without resorting to

interactive protocols.



Chapter 3

Homomorphic Encryption

In this chapter we are going to introduce homomorphic encryption (HE).

Asymmetric encryption schemes owning to this category permit to perform

operations on encrypted data, without knowing the private (decryption) key.

The operations that can be performed depend on the specific property of each

encryption scheme. The most famous and used homomorphic cryptosystems

allow to compute the sum between encrypted numbers by performing another

operation. In the last years a new homomorphic protocol [Gen09], allowing

the computation of both additions and products, has been proposed, arousing

the interest of the scientific community, but its low performance impede its

practical employment.

We start this chapter with an overview of some cryptographic schemes in

Section 3.1 and then we analyse the El-Gamal and the Paillier cryptosystems

respectively in Section 3.2 and Section 3.3. A list of basic (non-interactive

and interactive) protocols, useful to construct more complex applications, is

presented and accurately analysed in Section 3.4. We continue illustrating

in Section 3.5 the implementation of the Discret Fourier Transform in the

encrypted domain and a composite data representation that permits to reduce

the size of an encrypted signal still allowing to process it. Finally in Section 3.6

fully (not yet efficient) homomorphic cryptosystems are discussed.

3.1 Basis of homomorphic encryption

Formally an encryption E : G1 → G2 and its decryption D : G2 → G1

are homomorphic if there are two homomorphisms φ1 : G1 × G1 → G1 and

φ2 : G2 ×G2 → G2 such that for any a, b ∈ G1 we have:

φ1(a, b) = D(φ2(E(a), E(b))). (3.1)
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The homomorphic properties of some cryptosystems depend on a the fol-

lowing property: the malleability. More in detail:

Definition 1 (Malleability). A cryptosystem is malleable if given an encryp-

tion of a plain message m, it is possible to generate another cyphertext which

decrypts to f(m), for a known function f(·), without necessarily having infor-

mation about m.

Even if malleability can be considered a security weakness, since it allows

to modify cyphertexts by non authorized parties, in the s.p.e.d. context it

is a very useful property. In fact homomorphic cryptosystems have several

applications like secure voting systems [Ben88], private information retrieval

[OS07], and searchable encryption [BDCOP04].

The first homomorphic encryptions have been proposed (named as homo-

morphic privacies) in [RAD78a]. These methods were based on the difficulty

of factoring large integers and have been broken later (by [BY88]). One pri-

vacy homomorphism which can be used for both addition and multiplication

has been proposed in [DF96] and is used for private data-analysis with ratio-

nal numbers. The same author has also proposed a provably secure (in their

proposal) multiplicative and additive homomorphic encryption in [DF02]. In

the proposed methods the length of ciphertexts grows exponentially with op-

erations on encrypted values. These systems have been broken by [Wag03]

and [CKN06b].

Homomorphic encryption systems have also been analyzed in generic set-

tings. It has been shown in [ALN87] that any non probabilistic encryption

scheme which performs addition in the encrypted domain is insecure. In 1996

Boneh and Lipton [BL96] showed that any deterministic homomorphic en-

cryption scheme can be broken in sub-exponential time and hence any such

cryptosystem which works on a small set must be probabilistic.

Most popular homomorphic encryption systems are either multiplicative

or additive (φ2 is ∗ or + respectively in Equation 3.1) and are based on two

assumptions: the difficulty of solving discrete logarithm problem and different

residue systems. The most famous example of multiplicative homomorphic

encryption is the El-Gamal cryptosystem [ElG85], described in Section 3.2.

The other group of cryptosystems consists of encryption schemes whose

security is based on the difficulty of finding quadratic and other residue classes
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in ZN , where N is a large composite number whose factorization is unknown.

The first example of this group is the Goldwasser and Micali encryption

scheme [GM84] which assumes the difficulty of deciding if a number a is a

quadratic residue modulo a composite integer N (i.e. determine if b exists

such that a = b2 mod N). This is a probabilistic encryption for which plain-

text messages are single bits each of which is mapped in to an element of ZN .

The encryption of XOR combination of bits is the product of encryptions.

This scheme is known as the first probabilistic encryption scheme. The next

method in this group is the Benaloh encryption scheme presented in [Ben88].

This system is very similar to the previous system, in which the power of 2,

for the quadratic residuosity, is replaced by another number r and in this way

the cardinality of plaintext set is increased. This method works only for small

values of r since decryption must be done by exhaustive search or by Baby-

step giant-step in O(
√
r) operations, as shown in [Ben88]. Another scheme

is the Naccache-Stern cryptosystem [NS97] which is again very similar to the

Benaloh-cryptosystem. Its security is based on the difficulty of distinguish-

ing xp in ZN , where p is a prime factor of φ(N), like the previous system,

while the decryption is improved with respect to it. The Okamoto-Uchiyama

cryptosystem ([OU98]) with a modulo number of the form N = p2q is the

first one which has a large bandwidth and makes the decryption simpler than

former solutions. This system has been later improved by Paillier [Pai99], as

described in Section 3.3.

Some of the above homomorphic encryption systems, their homomor-

phisms φ1 and φ2, and corresponding literature references are given in Ta-

ble 3.1.

3.2 El-Gamal cryptosystem

We now examine the El-Gamal encryption, the most popular multiplicative

homomorphic cryptosystem. ElGamal encryption system is an asymmetric

key encryption algorithm for public-key cryptography which is based on the

DiffieHellman key exchange [DH76, Hel78]. ElGamal encryption is used in

the free GNU Privacy Guard software, a recent versions of PGP, and other

cryptosystems. Its security depends upon the difficulty to computing discrete
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Encryption φ1 φ2 Probabilistic Reference

RSA without padding multiplication multiplication No [RSA78]

El-Gamal multiplication multiplication Yes [ElG85]

Goldwasser-Micali XOR multiplication Yes [GM84]

Benaloh addition multiplication Yes [Ben88]

Naccache-Stern addition multiplication Yes [NS97]

Okamoto-Uchiyama addition multiplication Yes [OU98]

Paillier addition multiplication Yes [Pai99]

Damg̊ard-Jurik addition multiplication Yes [DJ01]

Table 3.1: Some homomorphic encryption systems, their homomorphisms φ1

and φ2, and corresponding literature references

logarithms in a cyclic group G. If the decisional DiffieHellman assumption

(DDH) [DH76, Bon98, NP01] holds in G, then ElGamal achieves semantic

security, providing indistinguishability under Chosen Plaintext Attack (IND-

CPA), even if not under Chosen Ciphertext Attack (IND-CCA).

In El-Gamal cryptosystem a cyclic group G of order q and a generator g

of G are given. The encryption and decryption are described below:

• Key generation: the key owner (receiver) chooses a secret element x ∈
Zq. The public key is composed by g and h = gx, while the private

(decryption) key is x.

• Encryption: the encryption of the message m ∈ Zq is c1, c2 with:

c1 = gy

c2 = mhy

where y ∈R Zq is randomly chosen by the sender (∈R indicates that the

value is randomly chosen among all the values of the set).

• Decryption: given the encrypted message c1, c2 the message m can be

obtained as:

m = c2(cx1)−1.

When the encryptions c1,m1 = gy1 , c2,m1 = m1h
y1 , c1,m2 = gy2 , and

c2,m2 = m2h
y2 are given, c1,m1c1,m2 = gy1+y2 and c2,m1c2,m2 = m1m2h

y1+y2 is

a valid encryption of the message m1m2.
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3.3 Paillier cryptosystem

With easy implementable encryption and decryption, Paillier cryptosystem

is the most used additive homomorphic cryptosystem, it is also used in this

thesis for the description of every homomorphic protocol.

In the Paillier cryptosystem the message space is ZN , while the ciphertext

belongs to ZN2 and requires 2T bits, where T = log2(N). The flexibility

of this system has been later improved in [DJ01] in which the plaintext and

ciphertext sets belong to to ZNs , and ZNs+1 , respectively, where s > 1. The

encryption and decryption algorithms for the Paillier system are shown below:

• Key generation: the key owner computes N = pq and λ = lcm(p−1, q−
1) and selects a random integer g ∈ Z∗N2 such that N |ord(g) (N divides

the order of g). The public (encryption) key is (N, g) and the private

(decryption) key is λ.

• Encryption: the encryption of the message m ∈ ZN is c with

c = gmrN mod N2,

where r ∈R ZN .

• Decryption: given the encryption c ∈ ZN2 , the original message m can

be obtained as:

m = L(cλ mod N2)µ mod N,

where µ = (L(gλ mod N2))−1 mod N , and L is an integer function defined

by L(u) = b(u− 1)/Nc.
In [Pai99] it has been shown that the security of this system is based on

the difficulty of distinguishing elements which are Nth powers from those

which are not, in ZN , when N is a composite number. This assumption is

called decisional composite residuosity assumption, or DCRA for short. Re-

garding the homomorphic property of this encryption scheme, we can see that

E(m1 + m2) = gm1+m2rN mod N2, whereas E(m1)E(m2) = gm1+m2(r1r2)N

mod N2. Since r, r1, r2 are arbitrary values, D(E(m1)E(m2)) = m1 +m2.



44 3. Homomorphic Encryption

The efficiency of the Paillier system, together with its homomorphic prop-

erties, determined its use in several applications, such as private data retrieval

on streaming data [OS07].

In the following, we will refer to a message encrypted by using an additive

cryptosystem (generally Paillier) with the notation J·K. Moreover when we

assert that JxK = JyK we will mean that D(E(x)) = D(E(y)), where we avoid

to use the decryption D(·) and encryption E(·) operators for simplicity.

3.4 Basic homomorphic protocols for STPC

In this section we present a list of protocols based on homomorphic encryp-

tion useful for several STPC applications. In these protocols two parties are

involved: a client C, owning the private key, and a server S interested to pro-

cess data encrypted with C’s public key, without knowing the private key. We

start with some trivial protocols that can be easily computed by S and then

we describe a list of protocols that require interaction with C. If not explicitly

specified, protocols are well-known and simple applications of homomorphic

encryption, here optimized according to the authors experience.

The complexity of each protocol is analysed. The communication complex-

ity is related to the number of rounds, i.e. the number of times the protocol

requires the transmission of data and the total number of bits transmitted by

the protocol. Considering that each protocol can be part of a more complex

application, the starting input transmission from C to S and the final result

transmission from S to C are omitted from the analysis. The computational

complexity is expressed as the number of operations required. Considering

that encryption ( enc ) and decryption ( dec ) operations have complexity

comparable to an exponentiation ( exp ) and that multiplication ( mult ) has

negligible complexity with respect to an exp, the computational complexity

will be given as a function of the number of exp operations.

3.4.1 Product with a plain value

We suppose that S needs to compute the product between a value x owned

by C and a value a owned by S: y = a ·x. Obviously S has only the encrypted

version JxK available and the result will be in encrypted form. If a = 2, S can
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compute JyK = J2xK = Jx + xK = JxKJxK = JxK2. In general S can compute

JyK = JaxK as JyK = JxKa for any integer a.

The product does not require interaction, hence has null communication

complexity. The computation complexity is 1 exp. Table 3.2 summarizes the

complexities involved in the product.

Rounds Bandwidth # exp

0 0 1

Table 3.2: Product by plain value: complexities

3.4.2 Scalar and Matrix product

Let us consider the case where S has to compute the scalar product y = a ·x>
between a vector x = [x1, . . . , xn] owned by C and a vector a = [a1, . . . , an]

owned by S [EPK+07]. For the computation we need that C encrypts each

element of the vector separately. Given the encryption JxK = [Jx1K, . . . , JxnK]
of the vector, S can compute JyK = Ja · xT K = J∑n

i=1 aixiK =
∏n
i=1JaixiK =∏n

i=1JxiKai . The scalar product has null communication complexity, while

n exp and n− 1 mult are required. Table 3.3 summarizes the complexities

involved in the scalar product.

Rounds Bandwidth # exp

0 0 n

Table 3.3: Scalar product with plain vector: complexities

Given the implementation of the scalar product, the protocol that com-

putes a matrix product is trivial. Given the (l,m) matrix

JxK =




Jx1,1K · · · Jx1,mK
...

. . .
...

Jxl,1K · · · Jxl,mK
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and the (m,n) matrix

a =



a1,1 · · · a1,n

...
. . .

...

am,1 · · · am,n


 ,

S can compute the (l, n) matrix JyK = JxaK where the generic i, j element is

Jyi,jK =
∏m
k=1Jxi,kKak,j . The complexity of the matrix product is equal to the

complexity of l × n scalar products between arrays having m elements.

3.4.3 Linear Filtering

Implementing a FIR (Finite Impulse Response) filter in the encrypted domain

is easy [EPK+07]. We suppose that S has to filter the sampled signal JxK =

{Jx0K, . . . , JxnK} by applying a filter having integer coefficients c0, . . . , ck (k �
n). If the coefficients are real they have to be quantized. An encrypted filtered

sample can be computed as

JyiK = J
k∑

j=0

xi−jcjK =
k∏

j=0

Jxi−jKcj . (3.2)

Obviously, as in plain domain filtering, we have to pay attention to the indices,

by limiting the computation to JykK, . . . , JynK or by choosing a value for Jxi−jK
(Jxi−jK = Jx0K or xi−j = 0) when i − j < 0. Considering that a filter having

even real magnitude response, has symmetric coefficients, i.e. ci = ck−i, and

that it is possible that there are more integer coefficients having the same

value, it is convenient to group the xi values that have to be multiplied by

the same coefficient and add them together. If we consider the set of different

coefficients ca of the filter and the sets of indices {ji,a} (the indices of all the

samples that have to be multiplied by ca to compute yi) we can rewrite (3.2)

as:

JyiK = J
∑

{a}
ca
∑

{ji,a}
xji,aK =

∏

{a}

( ∏

{ji,a}
Jxji,aK

)ca . (3.3)

By considering that the protocol does not require interaction and we have

to compute as many exponentiations as the number of different coefficients,

we can summarize the complexity as in table 3.4.
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Rounds Bandwidth # exp

0 0 #[ca]

Table 3.4: FIR filtering: complexities (#[ca] denotes the number of different

coefficients in the filter)

IIR (Infinite Impulse Response) filters do not have an efficient implemen-

tation in the encrypted domain. Their principal characteristic is the reduced

number of coefficients required, but any filtered sample is computed as a

function of the original samples and the previously filtered samples:

yi =

k1∑

j=0

xi−jaj +

k2∑

j=1

yi−jbj . (3.4)

Observing (3.4) we can see that the implementation in the encrypted domain

is easy, but we have problems with the output representation. The quantisa-

tion introduced in a FIR filter produces a filtered signal where all the samples

are amplified by the same factor. In the IIR filters the amplification grows

for each sample because they are computed by multiplying the previous fil-

tered sample with a quantised coefficient, hence interaction with the private

key owner is cyclically required to remove the amplification factor from the

filtered samples (i.e. by truncating the output of the filter) and go on with

the computation.

3.4.4 Packing

Whenever during the computation (or at the end of the protocol) S has to

send back the intermediate values (or the final result) to C and the values

can be represented by an array of elements, as first proposed in [TPKCL07],

instead of transmitting the encryption of each element S can pack more values

together to optimize the bandwidth required for the transmission. To pack

more values in a single cyphertext it is necessary that the following conditions

are satisfied:

• each value JyiK is bounded, i.e. yi ∈ [yi,min, yi,max);

• the values yi,min, yi,max, ∀i are known to both C and S.
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For simplicity we suppose that each yi ∈ [0, 2`). Extension to different `i
is trivial. We can pack up to k values together (where k = bN/2`c and N is

the length of the ring) as in Figure 3.1 by computing

JŷhK = J
k−1∑

i=0

yhk+i · 2i`K =

k−1∏

i=0

Jyhk+iK2i` , (3.5)

where h ≥ 0 is the index of the pack, when more than one pack are required.

· · ·

ŷh

yhkyhk+1yhk+2yhk+k−1

Figure 3.1: Packing more values.

If the interval is different from [0, 2`) we can translate each value yi ∈
[yi,min, yi,max) in a value yi = yi − yi,min ∈ [0, yi,max − yi,min) ⊆ [0, 2`i).

Considering the values in the interval [0, 2`i) instead of [0, yi,max − yi,min) is

sometime less efficient from a bandwidth point of view, but permits faster

unpacking on C’s side, after decryption. More generally, when numbers can

assume negative values, i.e. −2`−1 < y < 2`−1, it is preferable to change their

representation by mapping them into the interval (0, 2`):

JŷhK = J
k−1∑

i=0

(yhk+i + 2`−1) · 2i`K =

k−1∏

i=0

(Jyhk+iKJ2`−1K)2i` . (3.6)

If the original values have to be provided to C, he unpacks the values in ŷh and

removes the translation, if present. Otherwise if the values contained in a pack

need to be unpacked and used in further computation, an interactive protocol

is necessary. Considering a single pack, a simple protocol is based on obfus-

cation: S chooses k random values ri of size ` − 1, computes r =
∑k−1

i=0 ri2
i

and blinds the pack with r: Jŷh,blK = Jŷh + rK = JŷhKJrK. Considering that for



3.4. Basic homomorphic protocols for STPC 49

security we need that ri � yi a new constraint on ` and yi must be satisfied,

namely −2`−τ−1 < yi < 2`−τ−1, where τ is a security blinding parameter and

the 1 subtracted in the outers’ exponents is introduced to avoid that the sum

carry is added to yi+1. At this point S sends the encrypted pack to C that

decrypts it, unpacks the values, encrypts them again and sends them to S,

that will finally remove the obfuscation by using the additive homomorphic

property of the encryption scheme.

Packing has null communication complexity. To evaluate the computa-

tional complexity we have to consider a case in which we must pack n values

in more packs. Each packing requires k − 1 exp (the last value of each pack

do not need the exponentiation). The number of packs is equal to p = bn/kc.
The total computation complexity is n− p exp. Table 3.5 summarizes the

complexities involved in the packing.

Rounds Bandwidth # exp

0 0 n− p

Table 3.5: Packing: complexities

3.4.5 Non linear function evaluation

Whenever S needs to evaluate a non linear function φ(·) on variables x1, . . . , xn
available to S only in encrypted form Jx1K, . . . , JxnK, it has to perform an in-

teractive protocol together with C. As already said in Section 2.5 and demon-

strated in [BAS+09], additive obfuscation is more secure then multiplicative

obfuscation, hence here we consider only additive obfuscation. To evaluate a

non linear function, S has to obfuscate the encrypted values JxiK, where xi
can be represented by using ` bits, by using random values that have to be

chosen in {0, 1}`+κ (κ is a security obfuscation parameter, generally κ = 80).

At this point S transmits the blinded values to C (to optimize the band-

width during the transmission, packing can be used) that decrypts the values

and performs some computation. Finally C sends the encrypted results to S
that must recover φ(x1, . . . , xn) by using the encrypted result, the encryption

of the xi values and the random values he used for the obfuscation. This gen-

eral scheme will be specifically analysed in the following interactive schemes.
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3.4.6 Product between two encrypted numbers

Computing a product between two encrypted numbers is not possible without

interaction. Let assume that S owns JxK and JyK, encrypted with the public

key of C, and is interested in computing JzK = JxyK without revealing x, y

and z to C. S can use eMul protocol, shown in Protocol 2 that returns

eMul(JxK, JyK) = JxyK. In Protocol 2 and in the following protocols, packing

is overlooked for simplicity.

eMul function

inputs of C: Nothing
inputs of S: JxK, JyK
output for C: Nothing
output for S: JzK = eMul(JxK, JyK) = JxyK

client C server S

chooses rx, ry ∈R {0, 1}`+κ;

JxrK = Jx+ rxK = JxKJrxK;
JyrK = Jy + ryK = JyKJryK;

JxrK, JyrK�
decrypts JxrK, JyrK;
w = xryr = (x+ rx)(y + ry) =

= xy + xry + yrx + rxry ;

encrypts w;

JwK -
JzK = JwKJxK−ry JyK−rxJ−rxryK =

= Jw − xry − yrx − rxryK = JxyK.

Protocol 2: Interactive protocol that computes the product between two

encrypted values.

Computing eMul requires 2 rounds (one from S to send the obfuscated

ciphertexts and one from C to send back the result) and a bandwidth of 6T

bits (3 ciphertexts, each 2T bits long, are sent). If xr and yr can be packed

together, only 4T bits have to be transmitted. The computational complexity

is equal to: 2 enc to obtain the encryption of JrxK and JrxK necessary in the

obfuscation phase; 2 mult needed to obfuscate JxK and JyK; 1 exp and 1 mult

to pack the values; 1 dec to obtain xr and yr in plain; 1 enc to encrypt the

result of the plain product; 2 exp needed to compute JxK−ry and JyK−rx ; 1 enc
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to compute the value J−rxryK necessary to remove the obfuscation and finally

3 mult needed to compute the additions to JwK, obtaining a total number of

8 exp operations. Table 3.6 summarizes the complexities involved in the eMul

protocol.

Rounds Bandwidth # exp

2 4T 8

Table 3.6: eMul: complexities

3.4.7 Multiplexer

We now consider the Multiplexer function that implements the following con-

dition in the encrypted domain:

if b = 1 then

z = x

else

z = y

end

where b is a boolean input. The function can be expressed as z = b(x− y) + y

and can be implemented in the encrypted domain as described in Protocol 3.

Considering that b is a single bit, we can perfectly blind it by a xor operation

with a random bit rb by computing Jb ⊕ rbK = JbK when rb = 0 and by

computing Jb⊕ rbK = J1− bK = J1KJbK−1 when rb = 1, and modifying the eMul

function, so that once C returns the result, S can remove the obfuscation. To

evaluate the obfuscation introduced we can consider that J(b⊕ rb)(d+ r)K =

Jb(d+ r)K = Jbd+ brK when rb = 0 (where r ∈R {0, 1}`+κ is the value used to

obfuscate d) and J(b⊕ rb)(d+ r)K = J(1− b)(d+ r)K = Jd+ r− bd− brK when

rb = 1. Hence S has to compute

JwK =

{
J(b⊕ rb)(d+ r)KJbK−r if rb = 0

J(b⊕ rb)(d+ r)K−1JbK−rJd+ rK if rb = 1
. (3.7)

The protocol requires two rounds and by packing together Jb ⊕ rbK and

Jd+ rK in the first transmission, only two cyphertexts are transmitted. 1 exp
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Multiplexer protocol

inputs of C: Nothing
inputs of S: JbK, JxK, JyK
output for C: Nothing
output for S: JzK = Jb(x− y) + yK

client C server S

JdK = Jx− yK = JxKJyK−1;

JwK = eMul(JbK, JdK)
← JbK, JdK
→ JwK;

JzK = JwKJyK = Jw + yK.

Protocol 3: Interactive protocol that select a value depending on a boolean.

is needed to compute JdK. To obtain Jb ⊕ rbK we need 1/2 enc and 1/2 exp

on average, and 1 exp is necessary to pack the values. C performs 1 dec

and 1 enc. At the end of the eMul function 1 + 1/2 exp are required on the

average to remove the obfuscation. The protocol complexity is summarized

in Table 3.7.

Rounds Bandwidth # exp

2 4T 6 + 1/2

Table 3.7: Multiplexer: average complexities

3.4.8 Scalar and Matrix products between encrypted matrices

Let us consider the case where S has to compute the scalar product y = a ·b>
between the encrypted vectors JaK = [Ja1K, . . . , JanK] and JbK = [Jb1K, . . . , JbnK].
The scalar product needs interaction and can be obtained by extending the

eMul protocol, as shown in Protocol 4, where packing is not used for simplicity.

In eScalarProd, S obfuscates each element of the vector and sends them to

C, that computes the scalar product between the obfuscated arrays and sends

back the encrypted result. Finally S removes the total obfuscation obtot that
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eScalarProd function

inputs of C: Nothing
inputs of S: JaK, Jb>K
output for C: Nothing
output for S: JyK = eScalarProd(JaK, Jb>K) = Ja · b>K

client C server S

∀i = 1 . . . n :

chooses ra,i, rb,i ∈R {0, 1}`+κ;

Jari K = Jai + ra,iK = JaiKJraiK;
Jbri K = Jbi + rb,iK = JbiKJrbiK;

Jari K, Jb
r
i K ∀i�

∀i decrypts Jari K, Jb
r
i K;

w = ar · br =
∑n
i=1(ari b

r
i );

encrypts w;

J−obtotK =

= J−∑n
i=1(airb,i)−

∑n
i=1(bira,i)−

∑n
i=1(ra,irb,i)K =

=
∏n
i=1JaiK−rb,i ·

∏n
i=1JbiK−ra,i · J−

∑n
i=1(ra,irb,i)K;

JwK -
JyK = JwKJ−obtotK.

Protocol 4: Interactive protocol that computes the scalar product between

two encrypted arrays.

can be obtained by considering that

ar · br> =
n∑

i=1

(ari b
r
i )

=
n∑

i=1

[(ai + ra,i)(bi + rb,i)

=
n∑

i=1

(aibi + airb,i + bira,i + ra,irb,i)

=
n∑

i=1

(aibi) +
n∑

i=1

(airb,i) +
n∑

i=1

(bira,i) +
n∑

i=1

(ra,irb,i)

= a · b> + obtot. (3.8)

Analysing the protocol complexity we observe that 2 rounds are required.

If we suppose that each array element can be represented by using ` bits we
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can pack the elements into p = d2n/ke packs that have to be transmitted in

the first round (where k = bT/(`+κ)c is the maximum number of elements in

each pack). The protocol needs 2n enc for the encryption of the obfuscation

parameters and 2n mult for blinding on S side; 2n− p exp and 2n− p mult for

packing; p dec and 1 enc on C side; 2n exp, 2n mult and 1 enc to compute

J−obtotK and finally 1 mult to remove it. Note that if packing is not used

the computation complexity is similar because the 2n− p exp for packing

and p dec are replaced by 2n dec. The complexities involved in the scalar

product are summarized in Table 3.8.

Rounds Bandwidth # exp

2 (p+ 1)2T 6n+ 2

Table 3.8: eScalarProd: Complexities

Given the eScalarProd implementation, the protocol that computes a prod-

uct between encrypted matrixes is trivial. Given the (l,m) matrix

JaK =




Ja1,1K · · · Ja1,mK
...

. . .
...

Jal,1K · · · Jal,mK




and the (m,n) matrix

JbK =




Jb1,1K · · · Jb1,nK
...

. . .
...

Jbm,1K · · · Jbm,nK


 ,

S can compute the (l, n) matrix JyK where the generic i, j element is Jyi,jK =

eScalarProd(JaiK, JbjK), where JaiK is the row vector [Jai,1K, . . . , Jai,mK] and JbjK
is the column vector [Jb1,jK, . . . , Jbm,jK].

The complexity of the matrix product can be related to the complexity of

l× n scalar products between arrays having m elements. It is possible to run

the eScalarProd algorithms in parallel, hence the number of rounds is the same.

The protocol starts with S that obfuscates lm + mn values (lm+mn exp)

and packs them into p = b(lm + mn)/kc packs (lm+mn− p exp). During

the first round p packs are transmitted. While C decrypts p values (p exp),
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computes ln scalar products in the plain domain and encrypts the results

(ln exp), S computes the total obfuscation matrix JobtotK having l rows and

n columns ((2m+ 1)ln exp). During the second round the JwK matrix is

transmitted (ln values). Finally S removes the obfuscation JobtotK from JwK
to obtain JyK (0 exp). The complexity are summarized in Table 3.9.

Rounds Bandwidth # exp

2 (p+ ln)2T 2lmn+ 2lm+ 2mn+ 2ln

Table 3.9: Matrix product between encrypted matrixes: complexities

3.4.9 Square of an encrypted number

The protocol to compute the square value of an encrypted number is similar

to the eMul protocol. Let we assume that S owns JxK, encrypted with the

public key of C, and is interested in computing JzK = Jx2K without revealing

x and z to C. This task can be accomplishied by using the eSquare function,

shown in Protocol 5 that returns eSquare(JxK) = Jx2K.
Computing eSquare requires 2 rounds (one in which S sends the obfuscated

ciphertext and one in which C sends back the result) and a bandwidth of 4T

bits (2 ciphertexts are sent). The computational complexity is equal to: 1 enc

to obtain the encryption of JrxK necessary in the obfuscation phase; 1 mult

needed to obfuscate JxK; 1 dec to obtain xr in plain; 1 enc to encrypt the result

of the plain product; 1 exp needed to compute JxK−2rx ; 1 enc to compute the

value J−r2
xK necessary to remove the obfuscation and finally 2 mult needed to

compute the additions to JwK, obtaining a total number of 5 exp operations.

Table 3.10 summaries the complexities involved in the eSquare protocol.

Rounds Bandwidth # exp

2 4T 5

Table 3.10: eSquare: complexities
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eSquare function

inputs of C: Nothing
inputs of S: JxK
output for C: Nothing
output for S: JzK = eSquare(JxK) = Jx2K

client C server S

chooses rx ∈R {0, 1}`+κ;

JxrK = Jx+ rxK = JxKJrxK;
JxrK�

decrypts JxrK;
w = x2r = (x+ rx)2 =

= x2 + 2xrx + r2x;

encrypts w;

JwK -
JzK = JwKJxK−2rxJ−r2xK =

= Jw − 2xrx − r2xK = Jx2K.

Protocol 5: Interactive protocol that computes the square of an encrypted

value.

3.4.10 Energy of an encrypted signal

Given the encrypted samples JsiK of a signal, with i = 1, . . . , n, S can obtain

the encryption of the energy JEsK by observing that Es = ss> and hence using

the eScalProd algorithm, which can be optimized, resulting in the eEnergy

protocol described in Protocol 6.

Similarly to the eScalarProd protocol, C computes the energy of the obfus-

cated signal, while S computes the obfuscation that it has to remove from the

value sent by C. The protocol requires two rounds. During the first round,

if packing is used, p = dn/ke packs are transmitted, where k = bN/(` + κ)c
is the maximum number of elements in each pack. During the second round

only a value is transmitted. Analysing the computational complexity, we can

observe that S has to perform n obfuscations (n mult) and n− p exp plus

n− p mult to pack the obfuscated values. Computing the total obfuscation

requires 1 enc, n exp and n mult. Finally to remove the obfuscation, S has

to compute 1 mult. During the protocol C has to compute p dec and 1 enc.
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eEnergy protocol

inputs of C: Nothing
inputs of S: JsK = [Js1K, . . . , JsnK]
output for C: Nothing
output for S: JEsK = eEnergy(JsK) = eEnergy([Js1K, . . . , JsnK])

client C server S

∀i = 1 . . . n :

chooses ri ∈R {0, 1}`+κ,
Jsi,rK = Jsi + riK = JsiKJriK;

Jsi,rK ∀i�
∀i decrypts Jsi,rK;
w =

∑n
i=1 s

2
i,r =

∑n
i=1(si + ri)

2 =

=
∑n
i=1 s

2
i +

∑n
i=1 r

2
i +

∑n
i=1 2siri;

encrypts w;

J−obtotK =

= J−∑n
i=1 r

2
i −

∑n
i=1 2siriK =

= J−∑n
i=1 r

2
i K
∏n
i=1JsiK−2ri ;

JwK -
JEsK = JwKJ−obtotK.

Protocol 6: Interactive protocol that computes the energy of a signal.

The complexities of the eEnergy protocol are shown in Table 3.11.

Rounds Bandwidth # exp

2 (p+ 1)2T 2n+ 2

Table 3.11: eEnergy: complexities

3.4.11 Binary representation of an encrypted value

The protocol toEncBit [ST06a], illustrated in Protocol 7, allows to obtain the

encryption Jx`−1K, . . ., Jx0K of the bits of a number x given its encryption JxK,
where ` is the number of bits necessary for its representation (0 ≤ x < 2`).

Suppose that S owns JxK encrypted with the public key of C, he obfuscates

the encrypted value by adding a random number and sends the obfuscated

value to C that replies sending back the encryption of the bits. An addition

protocol, operating on the bits and having as input the encrypted binary rep-

resentation of the obfuscated value and the bits of the value used for blinding,
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toEncBit protocol

inputs of C: Nothing
inputs of S: JxK
output for C: Nothing
output for S: Jx`−1K, . . . , Jx0K

client C server S

chooses r ∈R {0, 1}`+κ;

JzK = JxKJ−rK = Jx− rK;
JzK�

decrypts JzK;
encrypts JziK ∀i = 0, . . . , `− 1;

JziK ∀i -
Jc0K = Jz0Kr0 = Jz0r0K;

Jx0K = Jz0KJr0KJc0K−2 = Jz0 + r0 − 2c0K;
for i = 1, . . . , `− 1

zi →
JaiK = eMul(zi, Jci−1K)

← Jci−1K
→ JaiK;

JciK = JziKriJci−1Kria1−2ri
i =

= Jrizi + rici−1 + zici−1(1− 2ri)K;
JxiK = JziKJriKJci−1KJciK−2 =

= Jzi + ri + ci − 2ci−1K;
endfor.

Protocol 7: Interactive protocol that returns the encrypted bynary repre-

sentation of a value.

is used to remove the obfuscation. For each i the encryption of xi and the

carry ci necessary in the successive iteration are computed from JziK (the i-th

bit of the obfuscated value), ri (the i-th bit ob the obfuscation value) and ci
(the i-th carry bit).

Computing toEncBit requires 2` rounds. The first 2 rounds are necessary

to obtain the encrypted binary representation of z and (` + 1)2T bits are

transmitted. The other rounds are necessary to compute the eMul protocols.

Note that zi are already available on C’s side, hence it is not necessary to

transmit them again and the total communication bandwidth is 2(` − 1)2T

bits. The total number of transmitted bits is (`+ 1 + 2(`− 1))T = (3`− 1)2T

bits. The protocol requires (` + 1) enc on S’s side to obtain the encryp-
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tions JrK, Jr0K, . . . , Jr`−1K, 1 dec and ` enc on C’s side to obtain the binary

representation of z. During the bitwise addition protocol that removes the

obfuscation, for each eMul function C has to perform 1 dec and 1 enc, while

S has to compute 1 enc for the encryption of an obfuscation value rci−1 and

1 exp to remove the obfuscation rci−1zi from the result. Moreover S has to

compute several exponentiations having ri as exponent. Considering that S
knows ri, we have

JaKri = Ja riK =

{
J0K if ri = 0

JaK if ri = 1
(3.9)

and

JaK1−2ri = Ja (1− 2ri)K =

{
JaK if ri = 0

JaK−1 if ri = 1.
(3.10)

On average only `/2 exp are actually needed, when 1 − 2ri = −1 and J0K
can be precomputed. Table 3.12 summarizes the complexities of the toEncBit

protocol.

Rounds Bandwidth # exp

2` (3`− 1)2T 6`+ `/2− 2

Table 3.12: toEncBit: average complexities

3.4.12 Comparison of encrypted numbers

In this section we describe how two encrypted numbers can be compared.

We limit the analysis to the computation of J[x ?
= y]K and J[x ?

<y]K. All the

other comparisons can be derived from these two building blocks. Letting

z = x− y, we can observe that J[x ?
= y]K = J[x− y ?

= 0]K = J[z ?
= 0]K. Similarly

J[x ?
<y]K = J[z ?

< 0]K.

Equality check

We consider the case in which S needs to obtain an encrypted bit JbK repre-

senting if two values x and y (` bits long) are equal and one of them, or both,

is encrypted. The protocol is described in Protocol 8.
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Equality comparison protocol

inputs of C: Nothing
inputs of S: JxK, y
output for C: Nothing

output for S: JbK = J[x ?
= y]K

client C server S

JzK = JxKJyK−1;

toEncBit(JzK)
← JzK
→ Jz0K, . . . , Jz`K;

EncryptedBitProduct

(J1− z0K, . . . , J1− z`K)
← J1KJz0K−1, . . . , J1KJz`K−1

→ JbK;

JbK = J1KJbK−1.

Protocol 8: Interactive protocol that evaluates if two encrypted values are

equal.

By observing that z (` + 1 bits long) is equal to 0 only if all its bits are

null, [z
?
= 0] = 1 − ∧`i=0zi, where zi denotes negation. The equality can be

evaluated as

[z
?
= 0] = 1−

∏̀

i=0

(1− zi).

∏`
i=0(1 − zi), named EncryptedBitProduct in the Protocol, can be computed

in several ways. The most intuitive one is the following:

Jb1K = eMul(J1− z0K, J1− z1K);
for i = 2, . . . , `

JbiK = eMul(Jbi−1K, J1− ziK);
end

JbK = Jb`K.

This solution is not optimal and requires O(`) rounds. Another implemen-

tation can be developed by considering that
∏`
i=0(1 − zi) =

∏`/2
i=0(1 − zi) ·∏`

i=`/2+1(1 − zi) and each product can be recursively splitted into products
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between two elements. In this way we obtain O(log2 `) rounds where several

eMul functions are run in parallel. Note that being each 1 − zi a bit, it is

not necessary to obfuscate it by adding long random values, since they can

be perfectly obfuscated by computing the XOR with a random bit. Given

two bits zi, zj , they are obfuscated by computing zi⊕ ri = zi + ri− 2ziri and

zj ⊕ rj = zj + rj − 2zjrj , resulting in

w = (zi + ri − 2ziri)(zj + rj − 2zjrj)

= zizj(1− 2ri − 2rj + 4rirj) + zi(rj − 2rirj) + zj(ri − 2rirj) + rirj .

(3.11)

Having computed JwK, S can remove the obfuscation to obtain zizj :

zizj = (JwKJziK2rirj−riJzjK2rirj−rj J−rirjK)1/(1−2ri−2rj+4rirj), (3.12)

where

JziK2rirj−ri =





JziK if ri = 1 ∧ rj = 0

JziK−1 if ri = 1 ∧ rj = 1

1 else,

(3.13)

JzjK2rirj−rj =





JzjK if ri = 0 ∧ rj = 1

JzjK−1 if ri = 1 ∧ rj = 1

1 else,

(3.14)

1/(1− 2ri − 2rj + 4rirj) =

{
1 if ri = rj
−1 if ri 6= rj .

(3.15)

In this way in each round all the obfuscated bits can be packed together

during the transmission from S to C. From a computational point of view,

each eMul requires 1 exp, 1 enc and 1 dec on the average. The total number

of rounds is equal to 2` + 2 + 2dlog2 `e, where the first 2` + 2 are for the

toEncBit protocol and the others for the rest of the computation. In addition

to the data transmitted during the toEncBit protocol, dlog2 `e cyphertexts are

transmitted from S to C (1 cyphertext during each round by using packing),

and ` cyphertexts from C to S. The total number of cyphertexts transmitted

during the whole protocol is dlog2 `e + 4`. The protocol requires 1 exp to

compute z, 6`+ `/2 + 4 exp for the toEncBit protocol, `+ 1 exp to compute
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zi, around ` exp to pack the values, dlog2 `e dec and ` enc on the C side,

` exp on average to remove the obfuscations and 1 exp to obtain b. The total

complexity is shown in Table 3.13.

Rounds Bandwidth # exp

2`+ 2dlog2 `e+ 2 (4`+ dlog2 `e)2T 10`+ `/2 + dlog2 `e+ 7

Table 3.13: Equality comparison: average complexities

Inequality check

Similarly to the equality check, S needs to compare two values x and y (`

bits long) and one of them, or both, is encrypted. It is possible to obtain

JbK = J[x ?
<y]K by computing JzK = J2`+x−yK = J2`KJxKJyK−1, where 2` is used

to map the difference in a positive range, and extracting its most significant

bit, that is equal to 0 if and only if x < y, hence JbK = J1−z`K = J1KJz`K−1. To

extract the most significant bit we could use the toEncBit protocol, but this

method is not efficient for this particular application where we are interested

only in the most significant bit. A most efficient implementation [EFG+09] is

described in Protocol 9.

The idea is that if S had an encryption of z mod 2`, z` could be computed

as z` = 2−`(z− (z mod 2`)). S obfuscates z with a random value r and sends

the result d to C. At this point they start an interactive protocol to obtain z

mod 2` = ((d mod 2`)−r mod 2`) mod 2` = (d̂− r̂) mod 2` = z̃ transforming

the problem back to a comparison between two values represented with the

same number of bits. Note that if d̂ ≥ r̂, z̃ is the correct result. On the

other hand, if r̂ is larger an underflow occurs and we need to add 2` to obtain

the correct result. Given JρK, where ρ is a binary value indicating whether

r̂ > d̂ and is obtained by the DGK protocol (Protocol 10), S can compute

Jz mod 2`K = Jz̃KJρK2` = Jz̃ + 2`ρK.
For efficiency reasons, in [EFG+09], the authors use a different homo-

morphic encryption scheme, namely the one proposed by Damg̊ard et al.

[DGK07, DGK09]. For simplicity we continue to use the Paillier scheme.

Initially, C sends the encryptions of the bits Jd̂0K, . . . , Jd̂`−1K to S that, then,

randomly chooses s ∈R {1,−1} and computes JciK. Let us consider the case
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Comparison protocol

inputs of C: Nothing
inputs of S: JxK, JyK
output for C: Nothing

output for S: JbK = J[x ?
<y]K

client C server S

JzK = J2`KJxKJyK−1;

chooses r ∈R {0, 1}`+t;
JdK = JzKJrK;

JdK�
decrypts d;

d̂ = d mod 2` →
DGK

← r̂ = r mod 2`

→ JρK;

JbK = J1K(JzKJdK−1Jr̂KJρK−2` )−2` .

Protocol 9: Interactive protocol that evaluates [x
?
<y].

s = 1: if d̂ is larger than r̂, then all ci’s will be non-zero, otherwise, if r̂ is

larger than d̂, exactly one ci will be equal to zero, the one at the most signif-

icant differing bit-position. For s = −1 we have exactly the same situation,

except that the zero occurs if d̂ is larger. The factor of 3 that amplifies the

sum ensures that the values are non-zero at least once even if a single wj is set

to 1. S now multiplicatively blinds the JciK with a random Ri and permutes

the encryptions JeiK. For a secure multiplicative obfuscation we need to use

random numbers as long as the ring length, hence it is not possible to pack

the ei values. At this point S sends them to C, that now decrypts all ei’s and

checks whether one of them is zero. It then encrypts a bit ρ stating if this is

the case.

Analysing the protocol it is easy to observe that it requires 4 rounds. At

the beginning S needs to compute 1 enc and 1 exp to compute JzK and 1 enc

to obfuscate it. At this point 1 cyphertext is transmitted to C that performs

1 dec. During the DGK protocol we have ` enc on C’s side, followed by the

transmission of ` cyphertexts. At this point on S’s side we have `+ 1 enc for
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DGK protocol

inputs of C: d̂0, . . . , d̂`−1
inputs of S: r̂0, . . . , r̂`−1
output for C: Nothing

output for S: JρK = J[d̂ ?
> r̂]K

client C server S

encrypts d̂i ∀i;
Jd̂0K, . . . , Jd̂`−1K-

chooses s ∈R {1,−1};
for i = `− 1 downto 0

JwiK = Jd̂i ⊕ r̂iK = Jr̂iKJd̂iK1−2r̂i ;

JciK = Jd̂iKJr̂iK−1JsK(
∏`−1
j=i+1JwjK)3

= Jd̂i − r̂i + s+ 3
∑`−1
j=i+1 wjK;

chooses Ri ∈R ZN ;

JeiK = JciKRi ;
endfor;

permute (Je0K, . . . , Je`−1K);
permuted (Je0K, . . . , Je`−1K)�

decrypts ei ∀i;
if 0 ∈ {e0, . . . , e`−1}then

JρK = J1K;
else

JρK = J0K;
end

JρK -

Protocol 10: Interactive DGK protocol.

the r̂i and s values. Considering that Jd̂K1−2r̂i requires exponentiation only

if ri = 1, in each of the ` occurrences of the for cycle we have 3 + 1/2 exp.

At this point we have the transmission of ` cyphertexts to C that performs

` dec and 1 enc. DGK protocol ends with the transmission of 1 cyphertext.

Observing the final formula that computes JbK we can observe that 2 enc (J1K
and Jr̂K) and 3 exp are required. The total complexity is shown in Table 3.14.
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Rounds Bandwidth # exp

4 (2`+ 2)2T 6`+ `/2 + 11

Table 3.14: Minor comparison: average complexities

3.4.13 Minimum selection

Starting from the comparison protocol, we can evaluate z = min{x, y} [EFG+09]

as described in Protocol 11.

eMin protocol

inputs of C: Nothing
inputs of S: JxK, JyK
output for C: Nothing
output for S: JzK = eMin(JxK, JyK)

client C server S

JbK = J[x
?
<y]K

← JxK, JyK
→ JbK;

JzK = Multiplexer(JbK, JxK, JyK)
← JbK, JxK, JyK
→ JzK.

Protocol 11: Interactive protocol that computes the minimum among two

values.

Since the protocol is obtained by composing the J[x ?
<y]K and the Multiplexer

protocols, its complexity, shown in Table 3.15, is easily obtained by summing

the complexities of J[x ?
<y]K and Multiplexer.

Rounds Bandwidth # exp

6 (2`+ 4)T 6`+ `/2 + 17 + 1/2

Table 3.15: eMin: average complexities

The minimum selection can be easily extended to more values by using

the scheme in Figure 3.2. Moreover if the index of the minimum value is

required it is sufficient to compute JiminK = Multiplexer(JbK, JiK, JjK) together

with JxminK = Multiplexer(JbK, JxiK, JxjK) in each eMin.
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eMin eMin eMin

Jx4K Jx2K Jx3K Jx4K Jxn−1K JxnK

eMin

eMin eMin

eMin

eMin(Jx1K, . . . , JxnK)

Figure 3.2: eMin protocol extended to more values.

3.4.14 Distances

In this section we show how the distance between two arrays can be com-

puted, starting with the Euclidean distance and later analysing the Hamming

distance.

Euclidean distance

Let suppose that S needs to compute the euclidean distance δ = dE(x,y) =√∑n
i=1(xi − yi)2 between a vector JxK = [Jx1K, . . . , JxnK] encrypted with the

public key of C and a vector y = [yi, . . . , yn] available in plain [EFG+09]. Due

to the difficulty to compute the square root, we assume that S needs only to

compute δ2. eEuclideanDistance is shown in Protocol 12.

The distance computation can be performed by using the eEnergy proto-

col on a vector d whose elements are defined as the difference between the

elements of x and the elements of y. The complexity of the protocol can be

obtained by the complexity of eEnergy, adding the effort to compute the JdiK
values (n enc and n mult). The total complexity is shown in Table 3.16.

Note that the protocol does not change if y is available to S only in
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eEuclideanDistance protocol

inputs of C: Nothing
inputs of S: JxK,y
output for C: Nothing
output for S: Jδ2K = eEuclideanDistance(JxK,y)

client C server S

∀i = 1 . . . n :

JdiK = JxiKJ−yiK = Jxi − yiK;

Jδ2K = eEnergy(JdK)
← JdK = [Jd1K, . . . , JdnK]
→ Jδ2K.

Protocol 12: Interactive protocol that computes the euclidean distance be-

tween two vectors.

Rounds Bandwidth # exp

2 (p+ 1)2T 3n+ 2

Table 3.16: eEuclideanDistance - complexities

encrypted form. In this case the complexity of the protocol is equal to the

complexity of the eEnergy protocol.

If the vectors x and y are the inputs to the protocol respectively from C
and S, it is possible to evaluate the distance without interaction. C sends

J∑n
i=1 x

2
i K together with the encryption of the vector elements. S com-

putes the distance as Jδ2K = J∑n
i=1(xi − yi)2K = J∑n

i=1 x
2
i +

∑n
i=1(−2xiyy) +∑n

i=1 y
2
i K = J∑n

i=1 x
2
i K
∏n
i=1JxiK−2yiJ∑n

i=1 y
2
i K.

By using this solution no additional rounds are necessary and the protocol

needs only the transmission of an additional cyphertext. To compute the

distance n exp and 1 enc are performed. The total complexity is shown in

Table 3.17.

Rounds Bandwidth # exp

0 2T n+ 1

Table 3.17: eEuclideanDistance with x provided by C - complexities



68 3. Homomorphic Encryption

Hamming distance

As in the Euclidean distance case, S is interested to compute the distance

between JxK and y. If the elements of the vectors are binary, xi ∈ {0, 1}
and yi ∈ {0, 1} ∀i = 1, . . . , n, S can compute the Hamming distance without

interaction with C. Considering that the Hamming distance is defined as

dH(x,y) =
∑n

i=1(xi ⊕ yi) =
∑n

i=1(xi + yi − 2xiyi) =
∑n

i=1(yi + (1− 2yi)xi),

S can compute it in the encrypted domain as

JdH(JxK,y)K = J
n∑

i=1

(xi ⊕ yi)K = J
n∑

i=1

yiK
n∏

i=1

JxiK1−2yi .

The protocol has zero communication complexity. Considering that 1 −
2yi ∈ {−1, 1} is known to S, S can compute the exponentiation only when

1 − 2yi = −1, hence the protocol requires 1 enc to encrypt the sum of yi
values, n/2 exp and n mult. The complexities are summarized in Table 3.18.

Rounds Bandwidth # exp

0 0 n/2 + 1

Table 3.18: Hamming Distance - average complexities

If both x and y are available as encrypted numbers we need to paral-

lely compute JxiyiK = eMul(xi, yi) ∀i, where eMul can be optimised as in

Section 3.4.12 by considering that both xi and yi are bits.

3.5 Applications of homomorphic-based STPC

In addition to the basic protocols illustrated in the previous section, several

complex applications of homomorphic-based STPC have been proposed. The

use of the basic tools described to build protocols implementing more com-

plex operations is a difficult task, requiring that different ad-hoc solutions be

developed for each different operation. For this reason, instead of attempting

to develop a general s.p.e.d. theory working at the protocol level, the most

common signal processing tools and ad hoc protocols implementing them in

the encrypted domain have been developed. Since they are not closely related

to this thesis, we briefly review only two of them.
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3.5.1 Discret Fourier Transform

The discrete Fourier Transform (DFT) is a discrete transform, used in Fourier

analysis, defined as

Sk =

n∑

i=1

siW
ik, k = 0, 1, . . . , n− 1 (3.16)

where W = e−j2π/n and si is a finite sequence of length n. Among the

appealing properties of the above transform is that it can be implemented via

fast algorithms, noted as Fast Fourier Transforms (FFTs).

In [BPB08b, BPB08c, BPB08a] a scenario is considered in which the trans-

form is computed on a sample-wise encrypted version of the input vector, that

is JsK = [Js1K, . . . , JsnK]. Since the DFT transform coefficients are public, the

expression in (3.16) can be computed by relying on the homomorphic property

of Paillier cryptosystem. Let us consider a signal xi ∈ C, with xi = xRi + jxIi ,

xR, xI ∈ R. In the following, we will assume that the signal is bounded in

amplitude |xR,Ii | ≤ M . In order to process xi in the encrypted domain, we

need to approximate it by suitable integers on a finite field. The same holds

for the output of the DFT. This is accomplished by the following quantisation

process

si = dQ1xic = dQ1x
R
i c+ jdQ1x

I
i c = sRi + jsIi , (3.17)

where Q1 is an integer suitable scaling factor. Being xi bounded, the quan-

tised signal will satisfy −Q1M ≤ sR,Ii ≤ Q1M . Considering that the cryp-

tosystem encrypts integers modulo N , we need a biunivoc mapping between

sR,Ii mod N and sR,Ii , so that we can always recover the correct value of sR,Ii

from sR,Ii mod N . This can be achieved by imposing 2Q1M + 1 ≤ N .

The coefficients W ik in (3.16) can be quantised by using the same strategy

as above. In particular, we define

Cr = dQ2W
rc = dQ2 cos(2πr/n)c − jdQ2 sin(2πr/n)c = CRr + jCIr (3.18)

where Q2 is the DFT coefficient scaling factor. Thanks to the properties of

W , we have −Q2 ≤ CR,Ir ≤ Q2.
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Based on the definitions above, the integer approximation of the DFT is:

Sk =
n∑

i=1

siCik =

=
n∑

i=1

(sRi C
R
ik − sIiCIik) + j(sRi C

I
ik + sIiC

R
ik) = (3.19)

=
n∑

i=1

(sRi + sIi )C
R
ik − sIi (CRik + CIik)

+j
n∑

i=1

(sRi + sIi )C
R
ik − sRi (CRik − CIik) (3.20)

with k = 0, 1, . . . , n − 1. Note that the representation in (3.19) requires 4

products and two sums, while the representation in (3.20) requires 3 products

and 3 sums, hence it is more performing for a computation in the encrypted

domain. Since all computations are between integers, the expression above can

be evaluated in the encrypted domain by relying on homomorphic properties

and the DFT in the encrypted domain can be evaluated as

JSkK , JSRk K + jJSIkK;

JSRk K =

n∏

i=1

JZikKJsRi K−(CRik+CIik);

JSIkK =

n∏

i=1

JZikKJsIi K−(CRik−CIik);

JZikK = (JsRi KJsIi K)C
R
ik .

The computation of the DFT results in a frequency domain representation

amplified by a factor K with respect to the frequency domain representation

XK of the signal xi. In general, S(k) can be expressed as

S(k) = KX(k) + εS(k). (3.21)

where the value of both K = Q1Q2 and εS,max is an approximation error

depending on the scaling factors Q1 and Q2 and on the particular implemen-

tation of the DFT. Moreover, in order to implement the DFT by using a
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cryptosystem which encrypts integers modulo N , one must ensure that the

biunivoc mapping still holds for S(k) mod N . Hence, we need to find an up-

per bound on S(k) such that |SR,I(k)| ≤ QS , and verify that 2QS+1 ≤ N . In

[BPB08c] the authors derived that QS = MbQ1Q2 +Q1/
√

2 +Q2/
√

2 + 1/2c.
In the case of the DFT of a real signal xn both the real and the imaginary

part of the integer DFT values will satisfy |SR,I(k)| ≤ QS = MQ1Q2.

In [BPB08a], the encrypted implementation of the Fast Fourier Trans-

form (FFT) has been analysed as well, resulting in a less efficient solution

that requires a lower number of modular operation, but introduces an ampli-

fication in the output that grows with the sample index, requiring periodically

interaction to rescale the output.

3.5.2 Composite signal representation

A problem with the use of homomorphic encryption is that signals need to

be encrypted sample-wise, as clearly comes out from Section 3.4.3 and Sec-

tion 3.5.1. Samplewise encryption of signals poses some severe complexity

problems since it introduces a huge expansion factor between the original

signal samples and the encrypted ones.

By considering that plain signal samples are usually represented by few

bits (e.g. 8 bits for images), we conclude that due to encryption, signals

are expanded by a large factor: for instance, the size of a grey level 1000 ×
1000 image will pass from 1Mbyte in the clear to 250 Mbytes in the encrypted

domain. This huge expansion factor is clearly not affordable in many practical

applications.

In order to solve these problems, an alternative representation of signals

was proposed in [BPB10] that permits to greatly reduce the expansion factor

introduced by encryption, while still allowing the exploitation of the homo-

morphic properties of the underlying cryptosystem to process signals in the

encrypted domain. In addition to limiting the storage requirement, the pro-

posed representation allows the parallel processing of different samples, thus

providing a considerable reduction of computational complexity in terms of

operations between encrypted messages.

The authors derived a new way to pack the sample starting from the

protocol described in Section 3.4.4. The idea is to bundle R l-bit samples of
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the signal si (i = 0, . . . , n− 1) within M = dn/Re composite messages sC(k)

as follows:

sC(k) =
R−1∑

j=0

sj(k)Bj , k = 0, 1, . . . ,M − 1 (3.22)

where

• B is a base sufficiently large such that samples will remain distinct in

the composite representation;

• R is chosen such that there is no ambiguity in the composite message;

• the k-th element of the composite signal sC(k) is obtained by partition-

ing the signal in the following way: sj(k) = s(jM+k). This representa-

tion is referred to as M -polyphase composite representation (M -PCR)

and its graphical interpretation is provided in Figure 3.3.

M ×R

M

s0(k) s1(k)

s0 s1 sM−1 sM sM+1 s2M

sC(0) sC(1) sC(M − 1)

R

s2M−1

Figure 3.3: Graphical representation of M -polyphase composite representa-

tion of order R. The values inside the small boxes indicate the indices of the

samples of si. Identically shaded boxes indicate values belonging to the same

composite word.

B and R can be derived by considering that if |si| < Q ∀i, then

B > 2Q (3.23)

BR ≤ N. (3.24)
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If B is sufficiently large, we can correctly perform some operations on the

samples; for example adding two composite messages will result in the addition

of the single messages composing them (if B > 4Q), and multiplying the

composite message by a constant factor C, will be equivalent to multiplying

each single message by the same factor (if B > 2QC). If more operations are

performed, B has to be chosen accurately. Considering that the samples can

assume negative values, it is convenient to map them into positive numbers.

This can be done by adding the value Q samplewise, that result in

s′C(k) =
R−1∑

j=0

(sj(k) +Q)Bj

=

R−1∑

j=0

sj(k)Bj +Q

R−1∑

j=0

Bj

= sC(k) +Q
BR − 1

B − 1
= sC(k) + ωQ. (3.25)

Then, the following holds:

0 ≤ aC(k) + ωQ < N. (3.26)

Moreover, the original samples can be obtained from the composite represen-

tation as

si(k) =
{[

(sC(k) + ωQ)÷Bi
]

mod B
}
−Q. (3.27)

Implementing the M -PCR of (3.22) in the encrypted domain is trivial,

by considering that the parameters B, R, M are public. However, passing

from the composite to the samplewise representation is not possible in the

encrypted domain by means of homomorphic computations only, since such a

conversion requires rounding and division. Then unpacking has to be carried

out by the data owner P1, or performed by means of a properly designed

interactive protocol involving P1 and P2.

As shown in [BPB10], the M -PCR can be useful for linear transforms,

convolution and linear filtering.
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3.6 Fully homomorphic encryption

All the algorithms described above rely on additive homomorphic protocols

such as Paillier cryptosystem. While additive (or multiplicative) encryption

may be useful in several s.p.e.d. applications, the availability of a fully ho-

momorphic cryptosystem, for which both additions and multiplications can

be carried out in the encrypted domain without interaction between the par-

ties, would be an invaluable resource, since it would dramatically increase the

number of operations that could be performed on encrypted data without any

interaction between the involved parties.

Devising a fully homomorphic cryptosystem has been one of the most

challenging and long standing open problems of modern cryptography (see

also Rivest et al. [RAD78a]) and only few proposals have been made in

the literature, most of which suffer from various shortcomings, as we briefly

summarize below.

Fellows and Koblitz [FK] proposed an asymmetric scheme named “Polly

Cracker” which is based on the difficulty of solving systems of non-linear equa-

tions. According to the current state of knowledge, all its instantiations (and

variations like PollyTwo [VL06]) are either insecure, inefficient, or loose their

homomorphic property (e.g., see [FG07, dVMPT08]). Domingo-Ferrer pro-

posed symmetric schemes based on polynomial interpolation [Fer96, DF02]

but these have been broken afterwards [Wag03, Bao03, CKN06a]. Rappe

[Rap04] showed constructions from (single-)homomorphic schemes over cer-

tain semigroups but for the latter no efficient solutions are known. Sander et

al. [SYY99] described a fully homomorphic scheme over a semigroup, how-

ever, the homomorphism comes with the cost of a constant factor expansion

per semigroup operation. Boneh et al. [BGN05] proposed a provably secure

homomorphic encryption scheme that allows for arbitrary many additions but

only one multiplication. A further problem is that the plaintext space needs

to be small.

This challenging problem has recently found a positive answer thanks to a

seminal paper by Gentry [Gen09]. Gentry’s cryptosystem is the most flexible

full-homomorphic encryption (FHE) scheme proposed so far: it is public-key

and allows arbitrary many additions and multiplications. However Gentry’s

scheme its too inefficient to be used in practice.
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We now provide an informal description of Gentry’s scheme, as well as

many other subsequent works on FHE. The encryption scheme is composed

of two ingredients:

A Somewhat-Homomorphic Encryption Scheme: The starting point

for FHE is a somewhat-homomorphic encryption scheme (SHE). An

SHE scheme allows to compute polynomials of degree d on the encrypted

boolean inputs without interaction (where d needs to be big enough for

the bootstrapping). Usually SHE are based on the addition of random

noise that can be easily removed during decryption., but the evaluation

of polynomials of degree > d produces a cyphertext containing a noise

that impedes a correct decryption.

A Bootstrapping Procedure: Given an SHE with the additional where

the decryption can be described by a polynomial of degree < d, one

can obtain a FHE scheme by the following bootstrapping procedure:

the public key of the FHE contains the public key of the SHE and, in

addition, an encryption of the secret key of the SHE Csk = Epk(sk)

under its own public key. In practice the operation of noise reduction

is performed without decryption, by using the encryption of the se-

cret key of the SHE scheme. Now, given two encryptions of two bits

Cx = Epk(x), Cy = Epk(y) and the encryption of the secret key Csk,

one can compute, using the homomorphic property of the SHE, a new

fresh encryption of Epk(x NAND y)! Being NAND a universal gate, any

functionality can be evaluated by using an FHE scheme.

We included this brief description of Gentry’s FHE scheme to stress that

most of the inefficiency of FHE schemes is due to the bootstrapping process,

while current SHE schemes offer reasonable performances. Therefore, while we

cannot currently implement any computation using FHE (as the memory and

computational requirements transcend the capability of current computers),

some of the SHE schemes could soon be used in applications where one wants

to compute functions of bounded but still interesting degree.

However, the practicability of Gentry’s scheme is still subject of current

research and discussions [Sch09, Coo09]. Furthermore, the security is based

on new problems and thus requires further investigation. For this reason we
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see Gentry’s result as a starting point for a new direction of research that

aims for secure and efficient full-homomorphic encryption schemes.

Another recent construction proposed by Aguilar Melchor et al. [MGH08]

is a public-key scheme as well but it is only leveled fully homomorphic, i.e., it

supports only polynomials up to a fixed (but arbitrary) degree. The authors

present two instantiations but the asymptotic complexity is not discussed.

According to the authors, the more efficient scheme has a ciphertext length

that depends exponentially on the number of multiplications and is based

on a non-standard problem on lattices. Thus, the security and practicability

of this solution needs to be further explored as well. In [DGHV10], the au-

thors propose a FHE over the integers. Even if the scheme is really simple,

implementation problems are related to the huge dimension of the public key.

In summary, although Gentry’s result certainly represents a milestone in

(theoretical) cryptography, it does not completely fulfill the requirements for

s.p.e.d. applications. First, it does not work over (finite) fields which would

be the natural algebraic structure for s.p.e.d. . Second, its practical efficiency

is still not fully clear. Hence, the applicability for s.p.e.d. scenarios seems to

be rather limited.



Chapter 4

Oblivious Transfer

Oblivious Transfer (OT ) protocols allow one party, the sender S, to transmit

part of its inputs to another party, the chooser C, in a manner that protects

both of them: S is assured that C does not receive more information than

it is entitled, while C is assured that S does not learn which part of the

inputs is received by C. OT is used in many privacy preserving applications,

for example to sell digital goods avoiding that the seller discovers what the

clients are paying for [AIR01]. Moreover, it is a key component in many

applications of cryptography, as Garbled Circuits (see Chapter 5). In this

chapter several protocols to implement OT are described (for their security

analysis we refer to the original papers). Section 4.1 shows two basic OT

protocols that let C obtain a message among two messages owned by S (1-

out-2 OT ), then in Section 4.2 the choice is extended among N messages

(1-out-n OT ). Section 4.3 illustrates how the 1-out-n OT protocols can be

used to instantiate multiple parallel 1-out-2 OT s. In Section 4.4 we show how

OT can be extended efficiently. Finally Section 4.5 shows how the OT can

be performed in a setup phase to improve the online computation. For each

protocol the communication and computation complexity are provided. The

part that can be precomputed is analysed separately from the online part.

When precomputation is not allowed the complexity is given by the sum of

the complexities.

4.1 1-out-of-2 Oblivious Transfer

4.1.1 Protocol relying on Random Oracles

We start by presenting an efficient OT protocol that allows C to select among

two messages owned by S. The primitive of 1-out-of-2 Oblivious Transfer
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(1-out-2 OT ) was suggested by Even, Goldreich and Lempel [EGL85], as a

generalization of Rabin’s “oblivious transfer” [Rab81]. There have been

Bellare and Micali Protocol

inputs of C: b ∈ {0, 1}
inputs of S: m0,m1 ∈ {0, 1}t
output for C: mb

output for S: Nothing

Preliminary phase:

S chooses a random element R ∈R ZN and publishes it together with N and a generator

g.

Precomputation phase:

client C server S

chooses k ∈R ZN ;

PKb = gk;

PK1−b = R/PKb;

chooses r0, r1 ∈R ZN ;

precomputes gr0 , gr1 ;

Online phase:

client C server S

PK0 -
computes PK1 = R/PK0;

E0 = H(PKr0
0 )⊕m0;

E1 = H(PKr1
1 )⊕m1;

gr0 , gr1 , E0, E1�
PK

rb
b = (grb )k = (gk)rb ;

mb = (Eb ⊕H(PK
rb
b )).

Protocol 13: The Oblivious Transfer protocol using a Random Oracle pro-

posed by Bellare and Micali

many suggestions for implementing OT s; the one that is considered here as

starting point is proposed by Bellare and Micali [BM90], (Protocol 13), that

relies on random oracle assumption. The protocol operates over a group

ZN (the same of the Paillier scheme) of prime order and the operations are

performed in modulus N . Let g be a generator of the group, for which the

computational Diffie-Hellman assumption [DH76, Sho97, NP01] holds, and

T = blog2Nc + 1 the number of bits necessary to represent one element of

ZN . The protocol uses a function H(·) which is assumed to be a random
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oracle (H(·) : {0, 1}T → {0, 1}t), in practice implemented by selecting the t

least significant bits of a Hash function.

In the 1-out-2 OT , the sender (S) has two strings (m0,m1) t bits long,

while the input of the receiver (C) is a bit b. C should learn mb and nothing

regarding m1−b, while S should gain no information about b. Given a random

element R ∈R ZN known by both parties, C chooses a random k ∈R ZN and

computes the key PKb = gk associated to its input bit b and derives the

key associated to b = 1 − b multiplying R by the multiplicative inverse of

PKb in the ring ZN (PK1 = R/PK0). Regardless of the value of the bit b,

C sends PK0 to S that derives PK1, computes PKr0
0 and PKr1

1 , where r0

and r1 are two random numbers, and uses them in a Hash function to obtain

two bitstrings used to encrypt the messages m0 and m1 respectively. The

encryptions, together with gr0 and gr1 are transmitted back to C that uses

grb to compute PKrb
b and to decrypt the corresponding message, while he can

not use gr1−b to decrypt m1−b, being (gr1−b)k 6= PK
r1−b
1−b .

In this protocol S computes 4 exp (two of them can be precomputed

before the protocol begins), while C computes 2 exp (one of which can be

pre-computed). The communication from C to S is composed of one message

of size T , and the communication from S to C is composed of two messages of

size T and two elements of the same size of the inputs (t). Hence the protocol

requires two rounds and the transmission of 3T + 2t bits.

In [NP01], the authors show that the complexity of the protocol can be

reduced, without any security loss, by using the same random value on the

S’s side, namely r = r0 = r1. Since it holds that PK0 ∗ PK1 = R, it

also holds that PKr
0 ∗ PKr

1 = Rr. Therefore, the online overhead of S is

reduced to 1 exp, while the precomputation overhead is 2 exp, as before,

without security loss. If S uses the same r for both encryptions, S has to

transmit only a group element to C and the total communication is 2T + 2t

bits. Table 4.1 summarises the complexities of the protocol.

Rounds Bandwidth # exp(Precomputation) # exp(Online)

2 2T + 2t 3 2

Table 4.1: 1-out-2 OT relying on Random Oracle - Complexities
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Elliptic curve based protocol The protocol proposed by Bellare-Micali,

with the improvement of [NP01], can be implemented on elliptic curves.

Elliptic curve OT based Protocol

inputs of C: b ∈ {0, 1}
inputs of S: m0,m1 ∈ {0, 1}t
output for C: mb

output for S: Nothing

Preliminary phase:

S chooses a random point C ∈R E(a, b) and publishes it together with p and a generator

g.

Online phase:

client C server S

chooses k ∈R Zp;

PKb = k ∗ g;
PK1−b = PKb + C;

PK0 -
PK1 = PK0 + C;

chooses r ∈R Zp;

c0 = H(r ∗ PK0)⊕m0;

c1 = H(r ∗ PK1)⊕m1;

r ∗ g, c0, c1�
considering that k ∗ (r ∗ g) = r ∗ (k ∗ g) = r ∗ PKb,
mb = cb ⊕H(r ∗ PKb) = (H(r ∗ PKb)⊕mb)⊕H(r ∗ PKb).

Protocol 14: The Oblivious Transfer protocol based on Elliptic curves

An elliptic curve [Rab05] in a field Zp used for cryptographic purposes pro-

vides the same level of security of an RSA cryptosystem with shorter messages

(usually 160 bits instead of 1024 bits) and is defined as follows:

y2 mod p = x3 + ax+ b mod p, (4.1)

where a and b are integer constants in Zp. The elliptic curve E(a, b) consists

of the set of integer couples (x, y) that solves Equation 4.1, together with a

single elementO called the point at infinity. It is possible to define the addition

operator + between two points of the elliptic curve and the product operator

∗ between a point and a number (more details in [Rab05]). Given a generator

point g ∈ E(a, b) and a point C ∈ E(a, b), known to both parties, the OT
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protocol on elliptic curves can be described as in Protocol 14. Similarly to the

Bellare-Micali protocol, C computes PKb, derives PK1−b and sends PK0 to

S that uses it to derive PK1 and with them encrypts m0 and m1 in c0 and c1

respectively. At this point S transmits c0, c1 and the additional value r ∗ g to

C that uses the latter to decrypt cb, while he is not able to decrypt c1−b. The

use of elliptic curves permits to perform operations on and transmit shorter

cyphertexts, in fact instead to transmit group elements of size T each, points

of the elliptic curve having size 2t are transferred, obtaining a bandwidth for

the 1-out-2 OT that is ∼ 6t.

4.1.2 Protocol not relying on Random Oracles

No real function can implement a true random oracle and even if Hash func-

tions are usually considered secure, in high level security application a stronger

assumption can be required. In [NP01] the authors propose a 1-out-2 OT

having higher complexity, but not relying on random oracles. The security

of the protocol is based on the Decisional Diffie-Hellman (DDH) assumption

[DH76, Bon98, NP01], i.e. on the difficulty to differentiate between (ga, gb, gab)

and (ga, gb, gc) for randomly chosen a, b and c. Another similar protocol is

proposed in [AIR01].

Even if protocols based on random oracles are sufficient for this thesis, we

provide the description of the protocol proposed in [NP01] for completeness.

The idea, shown in Protocol 15, is that C creates the bases of two encryption

keys so that zb, the one associated to b, is legitimate, while the other one,

z1−b, is badly formed and the corresponding ciphertext contains a random

value. In such a way there is no need for C to have a public key. The two

bases, together with additional data, are transmitted from C to S, then S uses

the bases to compute the encryption keys key0 and key1 and uses them to

encrypt the messages m0 and m1. For the encryption it is possible to use an

El Gamal like method that is semantically secure. At this point S transmits

the cyphertexts obtained together with the additional data w0, w1 to C that

is able to compute the decryption key keyb from wb to decrypt mb, while he

is not able to compute key1−b.

C is required to compute 3 exp when preparing gax , gay and gcb = gaxay

(as well as for selecting gc1−b at random) and 1 exp and 1 dec online. Note
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1-out-2 OT not relying on a Random Oracle

inputs of C: b ∈ {0, 1}
inputs of S: m0,m1 ∈ {0, 1}t
output for C: mb

output for S: Nothing

Precomputing phase:

client C server S

chooses ax, ay , z1−b = gc1−b ∈R ZN ;

x = gax ; y = gay ;

cb = axay ;

zb = gcb ;

choose (r0, s0), (r1, s1) ∈R ZN ;

precomputes gr0 , gr1 ;

Online phase:

client C server S

x, y, z0, z1 -
w0 = xs0gr0 ;

w1 = xs1gr1 ;

key0 = zs00 yr0 ;

key1 = zs11 yr1 ;

encrypts m0 with key0;

encrypts m1 with key1;

w0, E[m0], w1, E[m1]�
keyb = w

ay
b ;

decrypts mb.

Note that z
sb
b y

rb = (gaxay )sb (gay )rb = (gaxsbgrb )ay = (xsbgrb )ay = w
ay
b

Protocol 15: The 1-out-2 Oblivious Transfer protocol not relying on a Ran-

dom Oracle

that one of {gax , gay} can remain fixed and there is no need to change it from

transfer to transfer. Therefore C can compute offline 2 exp per transfer, and

compute 1 exp online when it receives the message from S. S has to compute

2 exp in the precomputation phase, and 6 exp and 2 enc online. The protocol

requires 2 rounds. The transmission from C to S is composed by elements of

ZN represented with T bits each. Considering that one of {gax , gay} remains

fixed, only three elements are transmitted. During the transmission from S to

C two elements of size T and two encrypted values of size 2T are transmitted.

The total amount of data transmitted is 9T bits. The complexity of the
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protocol is shown in Table 4.2.

Rounds Bandwidth # exp(Precomputation) # exp(Online)

2 9T 4 8

Table 4.2: 1-out-2 OT not relying on Random Oracle - Complexities

4.2 1-out-of-n Oblivious Transfer

Sometimes C can need to select among n messages hold by S. Similarly to 1-

out-2 OT , 1-out-n OT can be developed by using protocols based on random

oracles or protocols not relying on random oracles.

4.2.1 Protocol relying on Random Oracles

The idea [NP01], put forward illustrated in Protocol 16, is to use the same

value gr for all the transfers between S and C, and pass from 1-out-2 OT to

1-out-n OT by using n public-keys, so that C knows the correct secret-key of

at most one message. In the precomputing phase n−1 public values are sent.

Similarly to the 1-out-of-2 OT relying on Random Oracles, C transmits only

PK0; S uses it to obtain the other PKi that are used in the Hash functions

to encrypt the messages, while C computes PKσ necessary to decrypt the

desired message.

The computational overhead of S is consequently reduced to 1 exp per

transfer regardless of the number of inputs. The precomputation phase, that

can be used for all subsequent transfers, consists of n exp on S side and 1 exp

on the C side. In each online phase, S performs only 1 exp per transfer,

plus n− 1 mult and n calls to H(·). During the online phase C computes

1 exp, 1 mult and an hash function. During the precomputation phase, S
transmits n values of size T . Remember that this operation is performed

only once for multiple OTs. The online phase requires two rounds and the

communication overhead from C to S corresponds to one element of size T

while the communication from S to C corresponds to n strings of size t and

one element of size T . Table 4.3 shows the complexity of the protocol.
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1-out-n OT Protocol

inputs of C: σ ∈ {0, . . . , n− 1}
inputs of S: m0, . . .mn−1 ∈ {0, 1}t
output for C: mσ

output for S: Nothing

Precomputation phase:

client C server S

chooses k ∈R ZN ;

PKσ = gk;

chooses r,Ri ∈R ZN , i = 1, . . . , n− 1;

(it will hold that PK0 · PKi = Ri);

precomputes Rri ∀i = 1, . . . , n− 1;

R1, . . . , Rn−1, gr�
computes decryption key

PKr
σ = (gr)k;

Online phase:

client C server S

if (σ 6= 0) then PK0 = Rσ/PKσ ;

PK0 -
computes PKr

0 ;

chooses R ∈R ZN ;

for i = 1, . . . , n− 1

PKr
i = Rri /PK

r
0

without exponentiations;

Ei = H(PKr
i , R, i)⊕mi;

endfor

E0, . . . , En−1, R�
mσ = Eσ ⊕H(PKr

σ , R, σ).

Protocol 16: 1-out-of-n Oblivious Transfers with the same gr

Rounds Bandwidth # exp(Precomputation) # exp(Online)

2 nt+ 2T n+ 1 2

Table 4.3: 1-out-n OT relying on Random Oracle - Complexities

4.2.2 Protocol not relying on Random Oracles

A protocol that does not rely on the random oracle (Protocol 17) can be

obtained by generalizing the 1-out-2 OT implemented in Protocol 15, without
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increasing the complexity on the C’s side. Suppose that C is interested in

1-out-n OT not relying on a Random Oracle

inputs of C: σ ∈ {0, . . . , n− 1}
inputs of S: m0, . . . ,mn−1 ∈ {0, 1}t
output for C: mσ

output for S: Nothing

Precomputation phase:

client C server S

chooses ax, ay ∈ ZN ;

x = gax ; y = gay ;

cσ = axay ;

zσ = gcσ ;

for j = 0, . . . , n− 1

chooses rj , sj ∈R ZN ;

precomputes gj , grj ;

endfor

Note that z0 = zσg−σ ;

Online phase:

client C server S

x, y, z0 -
for j = 0, . . . , n− 1

zj = z0gj ;

wj = xsj grj ;

keyj = z
sj
j y

rj ;

encrypts mj with keyj ;

endfor

wj , E[mj ]

∀j = 0, . . . , n− 1;�
keyσ = w

ay
σ ;

decrypts mσ .

Protocol 17: The 1-out-n Oblivious Transfer protocol not relying on a Ran-

dom Oracle

mσ. Then it chooses cσ = axay and sets zσ = gcσ . The other zj ’s can be

defined as zj = zσg
j−σ and in particular z0 = gcσg−σ. Therefore C sends

x = ga, y = gb and z0. On the other side S computes each wj and zj = z0g
j

(note that gj are values that can be computed only once and used for all

the OT s) used to build the keys used for the message encryption. Then S
transmits the encryptions and the wj vales to C that uses wσ to obtain keyσ
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ad finally decrypt mσ.

C needs to precompute 3 exp when preparing gax , gay and gaxay (and as

before one of {gax , gay} can remain fixed), while 1 dec plus 1 exp are computed

online to obtain mσ. We can observe that C performs roughly as much work as

in the random oracle OT construction of Protocol 16. S precomputes 2n exp,

while in the online phase computes 3n exp and n dec. The protocol requires

two rounds. C sends three elements of size T and receives from the sender n

elements of size T and n encrypted values of size 2T . The total complexity of

the protocol is illustrated in Table 4.4.

Rounds Bandwidth # exp(Precomputation) # exp(Online)

2 (3n+ 3)T 2n+ 2 4n+ 2

Table 4.4: 1-out-n OT not relying on Random Oracle: complexities

4.3 Bandwidth/Computation tradeoff for parallel

1-out-of-2 Oblivious Transfer

When many 1-out-2 OT are needed, the computation overhead of the single

1-out-2 OT can be reduced by performing m 1-out-2 OT s with the same

transfer using a 1-out-n OT protocol. The idea [NP01] is to translate m

calls to 1-out-2 OT into a 1-out-n OT for n = 2m. While this reduces the

computation complexity it increases the communication bandwidth, obtaining

a computation/communication trade-off. If the number of 1-out-2 OT s is

large, it could be convenient to partition them in blocks of size n.

Given m pairs {mi,0,mi,1}mi=1, S defines n = 2m strings (M0, . . . ,Mn−1),

corresponding to all combinations of m strings, one for each pair. Instead of

engaging in m 1-out-2 OT s, the parties can engage in a single 1-out-n OT of

one of these strings, as in Protocol 18.

The initialisation phase requires n exp by S, but these are exploited for all

the blocks ever sent by S. During the transfer phase, S has to perform 1 exp

and n = 2m mult, while C performs 1 exp when it sends the request and 1 exp

when it receives the message (note that both of them can be done offline).

Hence the on-line computational overhead per each 1-out-2 OT is 1/m exp,
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Parallel 1-out-2 OT Protocol

inputs of C: bi ∈ {0, 1}, i = 1, . . . ,m
inputs of S: (mi,0,mi,1), i = 1, . . . ,m
output for C: mi,bi , i = 1, . . . ,m
output for S: Nothing

Precomputing phase:

client C server S

chooses ki,b ∈R Z2t ∀i ∈ {1, . . . ,m}, b ∈ {0, 1};
∀j =< j1, . . . , jm >∈ {1, . . . , n} :

computes Mj =< k1,j1 , k2,j2 , . . . , km,jm >;

chooses Kj ∈R Z2t ;

computes M ′j = Mj ⊕H(Kj , j);

M ′j ∀j ∈ {1, . . . , n};�

Online phase:

client C server S

computes s =< b1, . . . , bm >;
∀i ∈ {1, . . . ,m}, b ∈ {0, 1} :

computes ci,b = Encki,b (mi,b);

s→
1-out-n OT

← K1, . . . ,Kn
Ks ←

ci,b ∀i ∈ {1, . . . ,m}, b ∈ {0, 1};�
Ms =< k1,b1 , . . . , km,bm >= M ′s ⊕H(Ks, s);

mi,bi = Decki,bi
(ci,bi ) ∀i = 1, . . . ,m.

Protocol 18: Parallel 1-out-2 OT Protocol

for both S and C, moreover S performs 2m/m mult. It may seem as if the

communication is m× n times the size of an input element, since there are n

messages Mi of length mt bits each. However it is first possible to distinguish

between group elements (which might be long) and private-keys (which can

be short), furthermore another distinction can be done between online and

offline communication, where the latter refers to messages that can be sent

independently of the inputs. Only a single group element is sent from C to

S. The online communication from S to C can be reduced from O(m × n)

to O(n) by encrypting each couple (mi,0,mi,1) with a different couple of keys

(ki,0, ki,1) t-bit long, and running the OT with the keys as inputs instead of

the messages. The total length of the offline communication to transmit the
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encrypted M ′j from S to C is nmt bits. In the online phase C transmits PK0

(2T bits long) to S, while S sends a message of length nt+ 2mt bits to C (the

keys Kj can be as long as ki,b).

To sum up, the offline communication overhead is 2m keys per transfer,

while the online communication overhead is 2m/m keys per transfer. The

complexities of the protocol for each single 1-out-2 OT are shown in Table 4.5.

Rounds Offline Bandwidth Online Bandwidth # exp(Online)

2 2mt ∼ 2mt/m 1/m

Table 4.5: Complexity of a single 1-out-2 OT performed in a parallel OT .

4.4 Extending OT efficiently

In this section we show how an high number of OT, maybe having long input

messages, can be implemented from a fixed number of OT with relatively

short input messages.

In the sequel we use the notation OTnt to indicate a parallel OT that

performs n 1-out-2 OT with messages of length t bits. In this section we

describe the protocol proposed by Ishai et al. [IKNP03] that reduces the

bandwidth necessary for an OTnt . The security of this protocol can be proven

as long as the receiver C is semi-honest, in [IKNP03] there is also an extension

of the protocol to handle malicious receivers.

The authors provide two protocols. The first one, given a security pa-

rameter k (i.e. the bitlength of exchanged secrets) known by both parties,

permits to implement an OTnt by an OTnk and an additional message. The

second protocol permits to implement an OTnt from an OT kn . By combining

them it is possible to reduce an OTnt to an OT kk .

The first protocol, shown in Protocol 19, efficiently reduces the oblivious

transfer of long messages into the oblivious transfer of short messages. It is

based on an OTnk where C inputs his selection bits bi, while S inputs random

short messages (xi,0, xi,1). The original messages (mi,0,mi,1) are encrypted by

using a Pseudo-Random Generator PRG()1, where xi,0 and xi,1 are used as

1Note that PRG() can be implemented by a hash function.



4.4. Extending OT efficiently 89

Reducing OTnt to OTnk

inputs of C: b = (b0, . . . , bn−1), with bi ∈ {0, 1}, i = 0, . . . , n− 1
inputs of S: n pairs (mi,0,mi,1), mi,b ∈ {0, 1}t, i = 0, . . . , n− 1
output for C: mi,bi , i = 0, . . . , n− 1
output for S: Nothing

Offline phase:

client C server S

choose xi,0, xi,1 ∈R {0, 1}k;

Online phase:

client C server S

yi,j = mi,j ⊕ PRG(xi,j) ∀i = 0, . . . , n− 1, j ∈ {0, 1};

bi → OTnk
← xi,0, xi,1

xi,bi ← i = 0, . . . , n− 1;

(yi,0, yi,1),∀i = 0, . . . , n− 1;�
mi,bi = yi,bi ⊕ PRG(xi,bi ) ∀i = 0, . . . , n− 1.

Protocol 19: Protocol that reduces OTnt to OTnk

seed, and appended to the last transmission of the OT protocol. Received all

the encrypted messages and the seeds xi,bi , C is able to decrypt the messages

mi,bi . Considering the OTnk implemented by n OT 1
k of Protocol 14, the com-

munication complexity is reduced to 6nk bits transmitted during the OT and

an additional transmission of 2nt bits, resulting in 6nk + 2nt bits exchanged

in 2 rounds.

The second protocol, shown in Protocol 20, permits to evaluate an OTn`
from an OT kn , i.e., instead of evaluating n OT of long messages, it is possible

to evaluate a fixed number of OT with messages n bits long. C generates a

random matrix T and S generates a random selector vector s and they use

them in an OT kn protocol where C acts as sender and S as receiver. At the end

of the OT protocol S obtains a matrix Q, whose column qj is tj or tj ⊕ b>,

according to the selector bit bj , i.e. qj = (sjb
>)⊕ tj . Note that qi = (bis)⊕ ti.

In an additional round S sends yi,0 and yi,1 to C, where yi,0 = mi,0 ⊕H(i, qi)

and yi,1 = mi,1 ⊕H(i, qi ⊕ s). Finally C computes mi,bi as yi,bi ⊕H(i, ti), in
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Reducing OTnt to OT kn

inputs of C: b = (b0, . . . , bn−1), with bi ∈ {0, 1}, i = 0, . . . , n− 1
inputs of S: n pairs (mi,0,mi,1), mi,b ∈ {0, 1}t, i = 0, . . . , n− 1
output for C: mi,bi , i = 0, . . . , n− 1
output for S: Nothing

Offline phase:

client C server S

choose a random bit matrix T ∈R {0, 1}n×k; choose a selector vector s ∈R {0, 1}k;

Online phase:

client C server S

tj , tj ⊕ b> →
OTkn

← sj
→ qj , j = 0, . . . , k − 1;

for i = 0, . . . , n− 1

yi,0 = mi,0 ⊕H(i, qi);

yi,1 = mi,1 ⊕H(i, qi ⊕ s);
endfor

(yi,0, yi,1),∀i = 0, . . . , n− 1;�
for i = 0, . . . , n− 1

mi,bi = yi,bi ⊕H(i, ti);

endfor.

Protocol 20: Protocol that reduces OTn` to OT kn (Given the matrix T , we

here indicate the j-th column by tj and the i-th row by ti, the same for matrix

Q).

fact

mi,bi =





yi,0 ⊕H(i, ti) = mi,0 ⊕H(i, qi)⊕H(i, ti) =

= mi,0 ⊕H(i, (0 · s)⊕ ti)⊕H(i, ti) bi = 0

yi,1 ⊕H(i, ti) = mi,1 ⊕H(i, qi ⊕ s)⊕H(i, ti) =

= mi,1 ⊕H(i, (1 · s)⊕ ti ⊕ s)⊕H(i, ti) bi = 1.

(4.2)

The communication complexity of the protocol results in the complexity of

the OT kn (6kn bits) and an additional message (2nt bits) transmitted after

the OT in another round.
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Reducing the bandwidth necessary for a large number of OT (maybe with

long messages) is possible by combining the two protocols: first of all the

OTnt is reduced to an OT kn and then the latter is reduced an OT kk . The

communication complexity of the protocol is given by the complexity of the

OT kk and the two additional messages exchanged to pass from the OT kk to

the OT kn and finally to the OTnt . From the total communication complexity

shown in Table 4.6, we can easily observe that the protocol is advantageous

when 6k2 + 2n(k + t) < 6n`.

Rounds Online Bandwidth

3 6k2 + 2kn+ 2nt = 6k2 + 2n(k + t)

Table 4.6: Communication complexity of a parallel OTnt implemented by

extending an OT kk .

4.5 Precomputing OT

To conclude the chapter we show how the OT can be moved to the offline

phase, then performing simple operation in the online phase. This is useful

when the parties involved know that they have to perform a secure protocol in

the future. Finally we show that combining precomputation with the protocol

of Section 4.4, the offline OT can be adapted to any OTnt .

In Protocol 21 the 1-out-2 OT protocol of [Bea95] with setup phase is

proposed. All computationally expensive operations for OT are shifted into

a setup phase by pre-computing OT. In the setup phase the parallel OT

protocol is run on randomly chosen values: S submits the messages s0 and

s1 (t bits long) and C chooses according to the bit r. Then, in the online

phase, C uses its randomly chosen value r to mask his private inputs b and

obtaining the bit b̂, then S sends b̂ to S that obfuscates his private inputs mi

(i ∈ {0, 1}) by using his random values si from the setup phase, according to

b̂, i.e. xi = si⊕mi if b̂ = 0, otherwise xi = si⊕m1−i. Finally, S sends x0 and

x1 to C that uses the masks si he received from the OT protocol in the setup

phase to remove the obfuscation and obtain the correct output value mb. In

addition to the cost of the OT in the setup phase, the online phase consists

of two messages of size 1 bits and 2t bits and negligible computation (XOR
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Precomputed OT Protocol

inputs of C: b ∈ {0, 1}
inputs of S: m0,m1 ∈ {0, 1}t
output for C: mb

output for S: Nothing

offline Phase:

client C server S

chooses r ∈ {0, 1}; chooses s0, s1 ∈ {0, 1}t;

r →
OT 1

t

← s0, s1
sr ←

Online phase:

client C server S

b̂ = b⊕ r;
b̂ -

if b̂ = 0 then

< x0, x1 >=< s0 ⊕m0, s1 ⊕m1 >

else

< x0, x1 >=< s0 ⊕m1, s1 ⊕m0 >;

< x0, x1 >�
mb = xr ⊕ sr.

Protocol 21: Precomputed OT protocol with setup phase

of bitstrings).

The protocol can be easily extended to the parallel OTnt obtaining the

complexity shown in Table 4.7. Moreover the offline complexity can be re-

duced as shown in Section 4.3 and Section 4.4.

Online Rounds Offline Bandwidth Online Bandwidth

2 6nt n(2t+ 1) ≈ 2nt

Table 4.7: Communication complexity of a precomputed OTnt .



Chapter 5

Garbled Circuits

Yao’s Garbled circuits are a powerful tool that permits the evaluation in the

encrypted domain of any functionality represented by an acyclic boolean cir-

cuit. We present the tool in Section 5.1 followed by significant implementation

tricks in Section 5.2. Finally in Section 5.3 we present the implementation

of useful subprotocols such as sum, product, comparison and, most of all,

counter and logarithm, introduced for the first time in this thesis.

5.1 Garbled Circuits description

As shown in the seminal work by Yao [Yao82], any polynomial size function-

ality can be evaluated securely in a constant number of rounds and poly-

nomial communication and computation overhead. The adopted technique

is based on so called “garbled circuits”.While Yao’s protocol has long been

thought to be of theoretical interest only, recent works have shown its ef-

ficiency [LPS08, KS08a, PSSW09] and usability by compilers for automatic

generation of GC-based STPC protocols [MNPS04, PSS09].

Yao’s Garbled Circuit approach [Yao86] is the most efficient method for

the secure evaluation of a boolean circuit C. To describe garbled circuits in

a few words, we can assert that Yao’s idea is to encrypt (or garble) the nodes

and the transitions of a boolean circuit such that the one who evaluates it

may follow only a single evaluation path, defined by the circuit and the input

attribute vector. Given a public function y = f(xC ,xS), where xC is the array

of C’s private inputs and xS is the array of S’s private inputs, it is possible

to represent it by a boolean circuit C. C and S are interested to evaluate the

circuit, without disclosing their inputs each other. At the end of the protocol

the output will be available to C and optionally to S.

The circuit, together with xC and xS , is an input of a generic GC scheme,
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where one party (S) constructs the circuit, then discloses the secrets necessary

for the evaluation to the other party (C) by using an Oblivious Transfer (OT)

protocol and C uses them to evaluate the circuit. The general scheme, shown

in Figure 5.1, can be associated to any function implementation and its three

sections are described in detail in Section 5.1.1, Section 5.1.2 and Section 5.1.3.

Constructor

Evaluator

Client C Server S
xS C

Parallel OT

Input Secret Exchange

xC

ŵxC w̃
xS,j

j

w̃
xC,j
j

C̃

y

Garbled Circuit

Figure 5.1: General scheme for Garbled Circuits.

A detailed proof of the security of Yao’s garbled circuit protocol for semi-

honest parties is provided in [LP09].

5.1.1 Contructor

The circuit constructor (server S), creates a garbled circuit C̃:

• for each input, intermediate and output wire Wi of the circuit, the

constructor randomly chooses a complementary garbled value ŵi =〈
w̃0
i , w̃

1
i

〉
consisting of two secrets, w̃0

i and w̃1
i , where w̃ji is the garbled
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value of Wi’s value j, i.e. w̃ji is a randomly chosen secret associated to

j that does not reveal j;

• for each gate Gi, S creates and sends to the evaluator (client C) a

garbled table T̃i with the following property: given a set of garbled values

of Gi’s inputs, T̃i allows to recover the garbled value of the corresponding

Gi’s output, and nothing else.

Each secret is randomly chosen and is uniformly distributed in (0, 2t)

(normally t = 80). Once the secrets are generated, for each gate, given

the secrets ŵi and ŵj associated to the gate inputs wires and the secret ŵo
associated to the gate output wire, the corresponding T̃ is generated in the

following way: 


Encw̃0
i ,w̃

0
j
(w̃

g(0,0)
o )

Encw̃0
i ,w̃

1
j
(w̃

g(0,1)
o )

Encw̃1
i ,w̃

0
j
(w̃

g(1,0)
o )

Encw̃1
i ,w̃

1
j
(w̃

g(1,1)
o )




(5.1)

where g(bi, bj) is the output of the gate. As to encryption Enc, it is possible

to use any symmetric encryption scheme having the following properties:

1. Elusive range: an encryption under one key is in the range of an en-

cryption with a different key with negligible probability;

2. Efficiently verifiable range: given a key, a user can efficiently verify that

a ciphertext is in the range of that key (this is feasible, for example, by

appending 0n at the end of the output secret).

For example, when preparing the T̃ of an AND gate, we obtain:



Encw̃0
i ,w̃

0
j
(w̃0

o)

Encw̃0
i ,w̃

1
j
(w̃0

o)

Encw̃1
i ,w̃

0
j
(w̃0

o)

Encw̃1
i ,w̃

1
j
(w̃1

o)




(5.2)

The row of the tables are randomly scrambled to avoid that the evaluator

understands the input values by the position of the message decrypted suc-

cessfully.
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5.1.2 Data exchange

Garbled values corresponding to C’s inputs xj are (obliviously) transferred

to C with a parallel oblivious transfer protocol: S inputs complementary

garbled values w̃j into the protocol; C inputs xC,j and obtains w̃
xC,j
j . Oblivious

Transfer can be instantiated efficiently with the protocols in [NP01, AIR01]

which can be implemented using elliptic curve cryptography, As shown in

[Bea95], the OTs can be pre-computed in a setup phase, such that they are

not the performance bottleneck in Yao’s protocol. Additionally, the number

of computationally expensive public-key operations in the setup phase can be

reduced to a constant number with the extensions proposed in [IKNP03].

Sequentially to the OT, S transmits the secrets w̃
xS,j
j relative to its input

xS,j and the tables T̃i of the circuit.

5.1.3 Evaluator

C can evaluate the garbled circuit C̃ to obtain the garbled output simply by

evaluating the garbled circuit gate by gate, using the garbled tables T̃i. In

each table the evaluator decrypts each row by using the input secrets previ-

ously obtained until it successfully performs a decryption. In the first gates

only input secrets are used, while successively input secrets and/or secrets

obtained as output from other gates are used. Finally, C determines the plain

values corresponding to the obtained garbled output values using an output

translation table received by S. If the output is needed by S, C transmits the

garbled output.

5.2 Implementation details

Point and Permute To avoid that C performs 4 decryptions, the point

and permute technique proposed in [MNPS04] can be used. Together with

the secrets relative to each wire i, a permutation bit πi is randomly chosen

and associated to the value 0 so that π0
i = πi and π1

i = 1 − πi.Note that

the permutation bit reveals nothing about the wire value. During the con-

struction of a table relative to a gate, in each row the constructor computes

Enc
w̃
vi
i ,w̃

vj
j

(w̃
g(vi,vj)
o ||πg(vi,vj)o ), encrypting the permutation bit associated to
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the output together with the output secret, and finally permutes the table

rows according to the permutation bits. The evaluator receives the permuta-

tion bits together with the input secrets and can use them to directly decrypt

the correct row, obtaining new wire secrets and permutation bits that are

used in the next tables. In this way the evaluator performs 1 decryption in-

stead of 4 and the bits for the efficiently verifiable range property are no more

necessary.

High-Speed Evaluation of GC In [MNPS04], the authors describe a pro-

tocol, named “Fairplay”, that for performance reasons uses a cryptographic

hash function H(·) (chosen from SHA-2 family) instead of the symmetric en-

cryption Enc used in Yao’s protocol, so that the encryption is carried out by re-

placing the symmetric encryption function with Enc
w̃
vi
i ,w̃

vj
j

(w̃
g(vi,vj)
o ||πg(vi,vj)o ) =

(w̃
g(vi,vj)
o ||πg(vi,vj)o )⊕H(w̃vii ||w̃

vj
j ||s), where s is a unique identifier used once.

Hence, creation of the garbled table of a non-XOR d-input gate requires 2d

invocations of H and its evaluation needs one invocation.

Improved Garbled Circuit with free XOR Another improvement to GCs

is proposed in [KS08a], which allows “free” evaluation of XOR gates. More

specifically, a garbled XOR gate has no garbled table and its evaluation con-

sists of XOR-ing its garbled input values. This result in (no communication)

and (negligible computation). The other gates, called non-XOR gates, are

evaluated as described above.

The main idea of [KS08a] is, that the constructor S chooses a global key

difference ∆ ∈R {0, 1}t which is not revealed to the evaluator C and relates

the garbled values associated to the wires as w̃0
i = w̃1

i ⊕ ∆. The usage of

such garbled values allows for free evaluation of XOR gates with input wires

W1,W2 and output wire W3 by computing w̃3 = w̃1 ⊕ w̃2 (no communication

and negligible computation). However, using related garbled values requires

that the hash function H(·) used to create the garbled tables of non-XOR

gates has to be modelled to be correlation robust (as defined in [IKNP03]).

In practise, H can be chosen from the SHA-2 family.
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5.3 Building blocks for GC: general overview

In the following we present the circuits describing several frequently used

primitives, whose equivalent homomorphic solution, if available, has already

been presented in Section 3.4. Differently from the circuits available in VLSI

toolboxes and hardware compilers, the circuits here presented are designed in

order to minimize the number of non-XOR gates.

Given a desired function and a circuit describing it, having n non-XOR

gates, C inputs represented by `C bits and S inputs represented by `S bits,

and considering that each secret-permutation bit pair is represented by t bits

(usually t=80), its complexity can be computed by considering that:

• any protocol needs only the 2 rounds necessary for the Oblivious Trans-

fer protocol, the garbled tables and the garbled secrets are appended to

the last OT messages;

• the total amount of data transferred depends on the number of tables

transmitted that represent the circuit (4t ·n bits), the S’s secrets trans-

mission (`S · t bits), and the OT performed for transmitting the secrets

relative to C’s inputs. If precomputation is allowed, an offline OT is

performed on random inputs (if `C < 3t the bandwidth is ≈ 6`Ct, oth-

erwise, adopting all extensions provided in Chapter 4, it can be reduced

to an OT tt having bandwidth ≈ 6t2 + 4`Ct) and then, during the on-

line phase, the online phase of the OT is performed (2`C · t bits as in

Protocol 21). Sometimes even circuit garbling and transmission can be

performed offline;

• the computational complexity on S’s side relies on the generation of the

secrets (negligible) and the tables creation (4n hash functions). Some-

times this operation can be performed offline;

• the computational complexity on C’s side relies on the online computa-

tion of a hash function for each non-XOR gate (n hash functions) and

XOR functions (negligible).

Provided the description of a generic circuit, its total complexity is sum-

marised in Table 5.1.
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Offline Circuit Online

Bandwidth # Hash (S) Bandwidth Rounds Bandwidth # Hash (C)
≈ min{6t2 + 4`Ct 6`Ct} 4n 4nt 2 `S t+ 2`Ct n

Table 5.1: General average GC complexities (Circuit complexity owns to

offline or online phase according to the specific scenario)

In these sections we present improved circuit constructions that, differently

from the circuits available in VSLI toolboxes and hardware compilers, are

designed to minimize the number of non-XOR gates. Several frequently used

primitives, such as integer addition, subtraction, multiplication, comparison,

etc., are presented. For each circuit its complexity can be derived according

to Table 5.1, hence in the further we only underline the number of non-XOR

gates composing the circuit.

5.3.1 Addition (ADD)

Addition circuits (ADD) [KSS09b] that add two unsigned integer values x(`), y(`),

represented with ` bits, can be efficiently obtained as a chain of 1-bit adders (+),

often called full-adders, as shown in Figure 5.2 (b). (The first 1-bit adder

has constant input c0 = 0 and can be replaced by a smaller half-adder).

Each 1-bit adder has as inputs the carry-in bit ci from the previous 1-bit

adder and the two input bits xi, yi. The outputs are the carry-out bit ci+1 =

(xi ∧ yi)∨ (xi ∧ ci)∨ (yi ∧ ci) and the sum bit si = xi ⊕ yi ⊕ ci (the latter can

be computed “for free” [KS08a]).

The construction of a 1-bit adder shown in Figure 5.2(a) computes the

carry-out bit as ci+1 = ci⊕ ((xi⊕ ci)∧ (yi⊕ ci)). The construction for a 1-bit

adder consists of four free XOR gates and a single 2-input AND gate. The

overall size of the addition circuit is |ADD`| = ` · |+| = ` non-XOR gates and

the output is represented by `+ 1 bits.

5.3.2 Sum of k values

Let us suppose that we want to add k values xi, each represented with ` bits.

The ADD circuits have inputs whose size increases during the computation:

if a reverse tree structure with depth p = dlog2 ke is used, the inputs length
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si

ci+1

xi yi

ci

(a) 1-bit Adder (+)

. . . c0 = 0

y0y1y`−1x`−1 x1 x0

s` s`−1 s1 s0

ADD

(b) Addition Circuit (ADD)

Figure 5.2: Addition Circuit: 1-bit Adder (a) and ADD (b).

of each adder is ` + i − 1 bits, where i ∈ [1 . . . p] indicates the level position

in the tree. For simplicity we consider that k = 2p.

ADD ADD ADD ADD

ADDADD

ADD

` ` ` ` ` ` ` `

`+ 1 `+ 1 `+ 1 `+ 1

`+ p

x0 x1 x2 x3 xk−4 xk−3 xk−2 xk−1

∑k−1
i=0 xi

level

1

2

p

Figure 5.3: Reverse tree structure for the computation of n additions.

For each level i of the tree, there are exactly k/2i ADD circuits. The total

number of non-XOR gates is

p∑

i=1

k/2i (`+ i− 1)

=

[
k(`− 1)

p∑

i=1

(
1

2

)i]
+

[
k

p∑

i=1

i

(
1

2

)i]
. (5.3)

We need to solve two series:
∑p

i=1(1/2)i and
∑p

i=1 i(1/2)i. Recalling that
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2p = k,

p∑

i=1

(
1

2

)i
=

p∑

i=0

(
1

2

)i
− 1 =

1− (1/2)p+1

1− 1/2
− 1

= 2(1− 1

2 · 2p )− 1 = 1− 1

k
=
k − 1

k
. (5.4)

The second series is a bit more difficult. We consider that
∑p

i=0 x
i

= 1−xp+1

1−x ∀x ∈ (0, 1), hence

∂

∂x

p∑

i=0

xi =
∂

∂x

1− xp+1

1− x ;

p∑

i=0

ixi−1 =
−(p+ 1)xp(1− x) + 1− xp+1

(1− x)2
;

1

x

p∑

i=1

ixi =
−(p+ 1)(1− x)xp + 1− x · xp

(1− x)2
;

p∑

i=1

ixi = x
1− xp[(p+ 1)(1− x) + x]

(1− x)2
.

Considering x = 1/2 and recalling again that 2p = k we obtain

p∑

i=1

i

(
1

2

)i
=

1

2

1− 1/2p[(p+ 1)(1/2) + 1/2]

(1/2)2

= 2

(
1− 1

k

(p
2

+ 1
))

= 2
2k − p− 2

2k
=

2k − p− 2

k
. (5.5)

Substituting (5.4) and (5.5) in (5.3) and removing the constraint 2p = k, we

obtain that the total number of non-XOR gates needed for the addition of k `-

bit values is |k ADD`| = k(`−1)(k−1)/k+k(2k−p−2)/k = `(k−1)+k−p−1.

The output is represented with `+ log2 k bits.

5.3.3 Subtraction (SUB)

Subtraction in two’s complement representation [KSS09b] is defined as x(`) −
y(`) = x(`) + ȳ(`) + 1. Hence, a subtraction circuit (SUB) can be constructed

analogously to the addition circuit from 1-bit subtractors (−) as shown in



102 5. Garbled Circuits

Figure 5.4 (b). Each 1-bit subtractor computes the carry-out bit ci+1 =

(xi∧ȳi)∨(xi∧ci)∨(ȳi∧ci) and the difference bit di = xi⊕ȳi⊕ci. We instantiate

the 1-bit subtractor efficiently as shown in Figure 5.4(a) to compute ci+1 =

xi⊕((xi⊕ci)∧(yi⊕ci)), hence the overall size of the circuit is |SUB`| = `·|−| = `

non-XOR gates. The output of the circuit is represented by ` + 1 bits where

the most significant bit is the sign bit.

di

ci+1

xi yi

ci

(a) 1-bit Subtractor (−)

. . . c0 = 1

y0y1y`−1x`−1 x1 x0

d` d`−1 d1 d0

SUB

(b) Subtraction Circuit (SUB)

Figure 5.4: Subtraction Circuit: 1-bit Subtractor (a) and SUB(b).

5.3.4 Controlled Addition or Subtraction(ADDSUB)

A block ADDSUB [BFL+11] which can add/subtract the unsigned `-bit value

y(`) to/from the signed `-bit value x(`) in two’s complement depending on

a control bit ctrl can be naturally constructed from ADD: If ctrl = 1, y(`)

must be subtracted from x(`). This can be done by converting y(`) into two’s

complement and adding it to x(`). The resulting circuit is shown in Figure 5.5.

As each of the bit-addition blocks (+) can be implemented with one non-XOR

gate, this circuit has size |ADDSUB`| = ` non-XOR gates. Its output is `+ 1

bits long.

5.3.5 Changing representation

Subtraction result is usually given in two’s complement form, but sometimes

a sign/modulus representation may be needed for further computation or

vice-versa. To convert an (` + 1)-bit signed integer value x(`+1) from 2’s

complement to sign/magnitude representation [KSS09b], the least significant
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. . .

ctrl

y0y1y`−1x`−1 x1 x0

s` s`−1 s1 s0

ADDSUB

Figure 5.5: Controlled addition or subtraction circuit (ADDSUB).

` bits of x(`+1) are added to or subtracted from 0 depending on the sign of

x(`+1), i.e., the most significant bit of x(`+1), using an ADDSUB block of size

` non-XOR gates.

5.3.6 Counter (COUNT)

We now present a circuit that returns the number of non-null bits in a bitstring

x(`). The simplest way to do this is by using a cascade of half bit adders,

requiring ` − 1 levels. In the first level, two bits are added and in the next

levels an additional bit is added. Recalling that XOR gates are evaluated

for free by the GCs, we see that this implementation is not very efficient. In

fact each level needs about log2(level) non-XOR gates. In [BGL10] a recursive

construction is proposed to design a Boolean circuit that implements a counter

and that can be implemented with less than ` non-XOR gates by using the

1-bit adder and the SUM proposed in Section 5.3.1. A schematic view of the

construction is shown in Figure 5.6.

In Figure 5.6(a), the block COUNT3 is obtained by using a 1-bit adder

where the carry input is used for the third input, instead of setting it equal

to 0. The COUNT7 in Figure 5.6(b) is developed by using a COUNT3 for the

inputs x1 . . . x3, another COUNT3 for the inputs x4 . . . x6 and an ADD2 having

as input the results of the two COUNT3 and x0 as input of the carry input.

Recursively the COUNT` in Figure 5.6(c), where ` = 2n−1, can be developed

by using a COUNT2n−1−1 for the inputs x1 . . . x2n−1−1, another COUNT2n−1−1

for the inputs x2n−1 . . . x`−1 and a ADDn−1 having the results of the two

COUNT2n−1−1 as input and x0 in the carry input. This immediately implies



104 5. Garbled Circuits

c0c1

x2 x1

x0

COUNT3

(a) COUNT3

COUNT3 COUNT3

ADD2

COUNT7

x6 x5 x4 x3 x2 x1 x0

c0c1c2

(b) COUNT7

COUNT2n−1−1 COUNT2n−1−1

COUNT`=2n−1

x`−1 x2n−1+1 x2n−1x2n−1−1 x2 x1 x0

c0cn−1

ADDn−1

(c) COUNT` (` = 2n − 1)

Figure 5.6: Counter Circuit: recursive construction.

a recursive construction for any input bitsize ` = 2n − 1. A generic COUNT`
′

where `′ 6= `−1 can be obtained by using a greater COUNT`−1 having `−1−`′
null inputs and cutting the unused gates.

Table 5.2 shows the complexity of the COUNT as a function of the number

of non-XOR gates present in the circuit. Given a generic input bitlength `,

the size of the COUNT circuit is |COUNT`| / `− log2(`+ 1) and the output is

represented with log2 ` bits. Note that the protocol allows to parallelize the

computation by evaluating the sub-COUNT blocks in parallel.

Circuit non-XOR gates

COUNT3 1

COUNT7 2 + 2 = 4

COUNT15 2 ∗ 4 + 3 = 11

COUNT`=2n−1 `− n = `− log2(`+ 1)

Table 5.2: Number of non-XOR gates for COUNT`.
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5.3.7 Product (MUL)

Multiplication circuits (MUL) that multiply two integers x(`x), y(`y), repre-

sented with `x and `y bits respectively, can be constructed according to the

“school method” for multiplication, i.e., adding up the bitwise multiplica-

tions of yi and x(`x) shifted corresponding to the position: x(`x) · y(`) =∑`y−1
i=0 2i(yi ·x(`x)). This circuit is composed by `x`y 1-bit multipliers (2-input

AND gates) (Figure 5.7(a)) and (`y− 1) adders of `x-bit each (Figure 5.7(b)).

x0x1x`x−1

y`y−1x0y`y−1x1y`y−1x`x−1

y`y−1

⇒ y`y−1 · x(`x)

y1x0y1x1y1x`x−1

y1

⇒ y1 · x(`x)

y0x0y0x1y0x`x−1

y0

⇒ y0 · x(`x)

(a) Bitwise ANDs

y`y−1 · x(`x)

y0x0y1 · x(`x) y0 · {x`x−1 . . . x1}

ADD`x

y2 · x(`x)

ADD`x

r1`x−1...1 r10

r2`x−1...1 r20

ADD`x

r
`y−1
`x−1...0

x · y

(b) Shifts and Additions

Figure 5.7: Product circuit.

The size of the multiplication circuit is |MUL(`x,`y)| = `x`y + (`y − 1)`x =

2`x`y − `x non-XOR gates (note that it is convenient to set the longer input

as x). The output is `x + `y bits long. If `x = `y = ` then the circuit size is

2`2 − ` non-XOR gates and the output is represented with 2` bits.

5.3.8 Scalar Product and Matrix Product

Given the addition and multiplication circuits it is possible to define the scalar

and matrix product.

We first consider the scalar product between two vectors x = [x
(`x)
1 . . . x

(`x)
k ]
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and y = [y
(`y)
1 . . . y

(`y)
k ]. The circuit computing xy> =

∑k
i=1 x

(`x)
i y

(`y)
i is com-

posed by k MUL and k − 1 ADD.

Each MUL has inputs represented with `x and `y bits and is composed by

2`x`y− `x non-XOR gates. Totally k(2`x`y− `x) non-XOR gates are necessary

for the products. The outputs of the products are added together as shown

in Section 5.3.2.

Considering that the inputs to the n ADD circuits ares represented with

`x + `y bits, the total number of non-XOR gates needed for a scalar product

is ≈ k(2`x`y − `x) + (`x + `y)(k− 1) + k− log2 k− 1. We can observe that the

output of the scalar product is a value represented by `x + `y + log2 k bits.

The circuit that computes a matrix product between the (l,m) matrix

x =




x1,1
(`x) · · · x

(`x)
1,m

...
. . .

...

xl,1
(`x) · · · x

(`x)
l,m




and the (m,n) matrix

y =



y1,1

(`y) · · · y1,n
(`y)

...
. . .

...

ym,1
(`y) · · · ym,n

(`y)


 ,

is obtained by using l · n circuits computing the scalar product.

5.3.9 Linear Filtering

Implementing a FIR (Finite Impulse Response) filter by using GC is not as

easy as with homomorphic encryption. We suppose to have to filter a sampled

signal x = {x(`x)
1 , . . . , x

(`x)
n } by applying a filter having integer coefficients

c
(`c)
0 , . . . , c

(`c)
k (k � n). An encrypted filtered sample is computed as

yi =

k∑

j=0

xi−jcj . (5.6)

As in Section 3.4.3, we pay attention to the indexes, by limiting the computa-

tion to yk, . . . , yn or by choosing a value for xi−j (xi−j = x0 or xi−j = 0) when
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i− j < 0. Considering that a filter having even real magnitude response, has

symmetric coefficients, i.e. cj = ck−j we can optimize the filter computation

as

yi =

k/2∑

j=0

(xi−j + xi−k+j)cj . (5.7)

The circuit that filters each sample is composed by k/2 SUB, k/2 MUL and

k/2 − 1 ADD. Each SUB has inputs with bitlength `x and output bitlength

`x + 1. The output of each MUL is `x + `c + 1 bit long. The sum of the

product results can be computed by using a reverse tree structure of ADD

circuits, as shown in Section 5.3.2, and the filtered samples are represented

by `x + `c + dlog2 ke bits.

The total number of non-XOR gates is ≈ n[k/2(`x) + k/2(2(`x + 1)`c −
`x − 1) + (`x + `c + 1)(k/2 − 1) + k/2 − log2 k − 2] = n[k`x`c + (1/2)k`x +

(3/2)k`c − `x − `c + k/2− log2 k − 3].

5.3.10 Multiplexer (MUX)

An `-bit multiplexer circuits MUX selects its output z(`) to be one of the `-bit

inputs x(`) and y(`), depending on the selection bit c. MUX can be developed

by using the circuit proposed in [KS08a], summarized in the following.

An `-bit multiplexer circuit MUX selects its output z(`) to be its left `-bit

input x(`) if the input selection bit c is 0, respectively its right `-bit input

y(`) otherwise. As shown in Figure 5.8(b), the block can be obtained from `

parallel Y blocks that are 1-bit multiplexers. The Y gates have three inputs

xi, yi, c and one output zi. Y blocks can be instantiated efficiently as shown

in Figure 5.8(a): this instantiation needs only a 2-input AND gate and two

free XOR gates. Overall, the `-bit multiplexer is composed by |MUX`| = `

non-XOR gates.

5.3.11 Square value (SQR)

The circuit computing the square of an ` bit integer number x(`) can be derived

by the MUL circuit. The matrix of AND gates is symmetric, being xixj = xjxi
and the elements on the diagonal are xixi = xi, hence only the computation

of (`− 1) + (`− 2) + . . .+ 1 = `(`−1)
2 AND gates is necessary. The final result
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zi

xi yi

c

(a) Y Block

c

y0y1y`−1x`−1 x1 x0

z`−1 z1 z0

MUX

(b) Multiplexer Circuit

Figure 5.8: Y block (a) and Multiplexer circuit (b).

is obtained by ` − 1 ADDs each of ` bit values. The overall circuit is hence

composed by `(`−1)
2 + (` − 1)` = 3/2(`2 − `) non-XOR gates. The output is

represented by 2` bits.

A more efficient implementation can be obtained by observing that

(x(`))2 = (

`−1∑

i=0

xi2
i)2 =

`−1∑

i=0

(xi2
i)2 + 2

`−2∑

i=0

`−1∑

j=i+1

xixj2
i+j .

Considering that (xi2
i)2 = xi2

2i, we obtain
∑`−1

i=0(xi2
i)2 = [x`−10 . . . x20x10x0].∑`−2

i=0

∑`−1
j=i+1 xixj2

i+j can be written as

`−2∑

i=0

2ixi

`−1−i∑

k=1

xi+k2
i+k =

`−2∑

i=0

22i+1xi · [x`−1 . . . xi+1].

The circuit (Figure 5.9) is composed by `(`−1)
2 AND gates necessary for the

computation of each xixj , `−2 ADDs whose input bitlength changes from `−2

to 1 bits and the final adder, composed by 2`−2 non-XOR gates, that sums the

result obtained from the previous adder to the bitstring [x`−10 . . . x20x10x0].

To construct the circuit it is necessary to pay particular attention to the shifts

introduced by the 22i+1 elements.

The total number of non-XOR gates necessary for this optimized solution

is |SQR`| = `(`−1)
2 + (`−1)(`−2)

2 + 2`− 2 = `2 − 1, saving `2/2− `+ 1 non-XOR

gates respect to the previous implementation.
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x0x1x0x2x0x3x0x`−2x0x`−1

x1x2
x0x4

x1x3x1x`−3x1x`−2x1x`−2

0 x0x5
x1x4

x2x3x2x`−4x2x`−3x2x`−2x2x`−1

x`−3x`−2x`−3x`−1

x`−2x`−1

ADD

ADD

ADD

ADD

ADD

x0x10x20x`−20x`−10

x2

x0

x1

x`−2

x0 · x`−1 x0 · x2

x1 · x2

. . .

. . .

x0 · x`−2

x1 · x`−2

...

x2

x0 · x1

x1 · x`−1

x`−2 · x`−1

x`−1

Figure 5.9: Square circuit.

5.3.12 Energy computation

Given the `-bit samples si
(`) of a signal, with i = 1, . . . , k, the energy Es =∑k

i=1 s
2
i is computed by adding together the output of k SQR circuits. As

shown in Section 5.3.2, the additions are performed by using a reverse tree
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structure, where the inputs of the first level are represented with 2` bits. The

total number of non-XOR gates of the circuit is ≈ k · (`2 − 1) + 2`(k − 1) +

k − log2 k − 1 = k`2 + 2k`− 2`− log2 k − 1.

5.3.13 Comparison

We distinguish between two comparisons: equality ([x(`) ?
= y(`)]) and CMP

(greater than: [x(`)
?
>y(`)]). Other comparisons can be implemented by using

the greater than circuit.

Equality

We start by observing that computing the bitwise XOR of two identical bit-

strings, say x(`) and y(`) produces an all zero string.

Computing z = ∨`−1
i=0xi ⊕ yi, where ∨ denotes the OR gate, we obtain

a bit z that assumes the value 0 if ([x(`) ?
= y(`)]), 1 otherwise. The circuit

implementing the equality test (Figure 5.10) is composed by ` − 1 non-XOR

gates and the output is represented by 1 bit.

x`−1 y`−1x`−2 y`−2 x1 y1 x0 y0

z

Figure 5.10: Equality test circuit (
?
=).
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Greater Than

We now present a circuit construction for the comparison of two `-bit integers

x(`) and y(`), i.e.,

z =
[
x(`) > y(`)

]
:=

{
1 if x(`) > y(`),

0 otherwise.

As shown in Figure 5.11(b), a comparison circuit (CMP) can be obtained

starting from ` sequential 1-bit comparators (>). (The first 1-bit compara-

tor has constant input c1 = 0 and can be replaced by a smaller gate). A

generic 1-bit comparator, shown in Figure 5.11(a), uses one 2-input AND

gate and three free XOR gates. Note that this bit comparator is exactly

the bit subtractor shown in Figure 5.4(a) restricted to the carry output:

[x(`)
?
>y(`)] ⇔ [x(`) − y(`) − 1

?
≥ 0] which coincides with an underflow in the

corresponding subtraction denoted by subtractor’s most significant output bit

d`+1. The size of the comparison circuit is |CMP`| = ` non-XOR gates and

the output is represented by 1 bit.

ci+1

xi yi

ci

>

(a) > block

. . . c0

y0y1y`−1x`−1 x1 x0

z

CMP

(b) Comparison ciruit

Figure 5.11: Comparison Circuit: > block (a) and CMP (b). If c0 = 0 the

circuit evaluates x > y, otherwise it evaluates x ≥ y.

Comparison circuits for [x(`)
?
<y(`)], [x(`)

?
≥ y(`)], or [x(`)

?
≤ y(`)] can be ob-

tained from the improved circuit for [x(`)
?
>y(`)] by interchanging x(`) with

y(`) and/or setting the initial carry to c1 = 1.

5.3.14 Minimum Value

The comparison and multiplexer blocks presented above can be combined to

obtain a minimum circuit (MIN) which selects the minimum value of a list of
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values.

We suppose to have a list of n `x-bit values x
(`x)
i , i = 1 . . . n each having

an `d-bit identifier id
(`id)
i associated. Without loss of generality we assume

that n is a power of two. Our goal is to obtain both the minimum value

m(`x) = x
(`x)
min = mini{x(`x)

i } and the identifier id
(`id)
min associated to it.

Performance of MIN mainly comes from the building blocks used for integer

comparison. More specifically, the minimum value and minimum identifier are

selected pairwise in a tournament-like way using a reverse tree of minimum

blocks (MINs) as shown in Figure 5.12(b). As shown in Figure 5.12(a), each

minimum block gets as inputs the minimum `-bit values m
(`x)
L and m

(`x)
R of its

left and right subtrees TL, TR together to their identifiers id
(`id)
L and id

(`id)
R , and

outputs the minimum `x-bit value m(`x) and `id-bit minimum identifier id(`id)

of the tree. First, the two minimum values are compared with a comparison

CMP>

MUX MUX

m
(`x)
L m

(`x)
R id

(`id)
L id

(`id)
R

id(`id)m(`x)

MIN

(a) Minimum block

x0x1 id1 id0

MIN

x2x3 id3 id2

MIN

MIN

xn−4xn−3 idn−3idn−4

MIN

xn−2xn−1 idn−1idn−2

MIN

MIN

MIN

xmin idmin

(b) Minimum tree

Figure 5.12: Minimum Block (a) and Minimum Circuit (b).

circuit (Section 5.3.13). If the minimum value of TL is larger than that of TR
(in this case, the comparison circuit outputs the value 1), m(`x) is chosen to be

the value of TR with an `x-bit multiplexer block (Section 5.3.10). Similarly,

the minimum identifier id(`id) is chosen to be id
(`id)
R with an `id-bit multiplexer

block. Alternatively, if the comparison yields 0, the minimum value of TL and

its id
(`id)
L are selected by the two multiplexers. The size of the overall circuit

is |MIN`x,`id,n| = (n− 1) · (|CMP`x |+ |MUX`x |+ |MUX`id|) = (n− 1)(2`x + `id)
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non-XOR gates.

Some variants of the MIN construction are described in the following.

Only the minimum value is provided as output: in this case in each

minimum block the MUX that selects among the identifiers is deleted. To

obtain the total number of non-XOR gates, it is sufficient to set `id = 0

obtaining a circuit having size 2(n− 1)`x.

Only the identifier associated to the minimum value is provided as

output: in the last level of the reverse tree the MUX selecting between m
(`x)
L

and m
(`x)
R is deleted obtaining a circuit composed by 2(n− 1)`x + (n− 2)`id)

non-XOR gates1.

The index is used instead of the identifier: if the index imin is given as

output we can replace each identifier idi in the protocol with the value i repre-

sented with p = log2 n bits. Anyway a more efficient circuit can be developed.

Given the depth p of the reverse tree, at level d of the resulting tree we prop-

agate only the d least significant bits i
(d)
d of the minimum index. More specif-

ically, each minimum block at depth d, gets as inputs the d least significant

bits of their minimum indices i
(d)
d,L and i

(d)
d,R (together with m

(`x)
d,L and m

(`x)
d,R ),

and outputs the minimum `-bit value m
(`x)
d+1 and (d + 1)-bit minimum index

i
(d+1)
d+1 of the tree. If the minimum value of TL is larger than that of TR (that

is the comparison circuit outputs value 1), the minimum index i
(d+1)
d+1 is set to

1 concatenated with the minimum index of TR selected by using a d-bit mul-

tiplexer. Alternatively, if the comparison yields 0, the value 0 concatenated

with the minimum index of TL is output. Overall, the size of the efficient min-

imum circuit is |MIN`x,n| = (n−1) · (|CMP`x |+ |MUX`x |)+
∑p

d=1
n
2d
|MUXj−1|.

Recalling that 2p = n, similarly to Section 5.3.2, we obtain
∑p

d=1
n
2d
|MUXj−1| =

n
∑p

d=1(1
2)j(j − 1) = n(

∑p
d=1 j(

1
2)j)) − ∑p

d=1 j = n(n−1
n + 2n−log2 n−2

n ) =

3n− log2 n− 3. Hence the circuit is composed by 2(n− 1)`x + 3n− log2 n− 3

non-XOR gates.

1Note that this cut is not only needed for efficiency reasons, but even for granting security,

whenever the minimum value has to be kept secret.
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5.3.15 Distances

In this section we show how the distance between two arrays can be computed

by using GC, starting with the Euclidean distance and later analysing the

Hamming distance.

Euclidean

To evaluate the Euclidean distance between two vectors p = [p
(`)
0 , . . . , p

(`)
n ]

and q = [q
(`)
0 , . . . , q

(`)
n ], where each element is represented with ` bits, we have

to design a circuit computing δ =
∑n

i=1(pi − qi)2. First of all the differences

are computed by using SUB` circuits and the results are represented with `+1

bits. Then we need to convert the results in their sign/modulus representation

by using ADDSUB` circuits before computing the square differences by using

SQR` circuits whose outputs are represented by 2` bits. Finally δ is obtained

by adding all the square differences with a reverse tree structure and the final

output is represented by 2`+ dlog2 ne bits.

The circuit, shown in Fig. 5.13, is composed by n|SUB`|+n|ADDSUB`|+
n|SQR`|+ | {n− ADD}2` | ≈ n`+n`+n(`2− 1) + 2(n− 2)`+n− 1− log2(n−
1)− 1 = n`2 + 4n`− 4`− log2(n− 1)− 2 non-XOR gates.

p1 q1 p2 q2

0

SUB`

ADDSUB`

SQR`

0

SUB`

ADDSUB`

SQR`

pn qn

0

SUB`

ADDSUB`

SQR`

{n− ADD}2`

δ

Figure 5.13: Euclidean Distance circuit.
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Hamming

The Hamming distance is used when the elements of two vectors p = [p
(1)
0 , . . . , p

(1)
n ]

and q = [q
(1)
0 , . . . , q

(1)
n ] are represented by 1 bit and is evaluated as δ =∑n−1

i=0 pi ⊕ qi. The XOR among the two vectors is again represented with n

bits, while the distance can be represented with dlog2(m)e bits. The circuit

computing the Hamming distance, shown in Figure 5.14, is composed by n

(free) XOR whose binary results are summed together by using a COUNTn,

obtaining the result δ(dlog2 ne) represented with dlog2 ne bits. The number of

p1 q1 p2 q2 pn qn

COUNTn

δ

Figure 5.14: Hamming Distance circuit.

non-XOR gates composing the circuit is |COUNTn| = n− log2(n+ 1).

5.3.16 Logarithm (LOG)

Let a(`) be a positive integer number represented with ` bits and a`−1 . . . a0

its binary representation. The goal is to compute the logarithm of a(`) by

using the circuit LOG proposed in [BGL10]. Instead of computing b(dlog2 `e) =

blog2 a
(`)c (in the next we use the notation b(log2 `) for simplicity) we evaluate

a protocol that returns

b′(log2 `) =

{
blog2 a

(`)c+ 1 if a(`) > 0

0 if a(`) = 0.
(5.8)

The correct result is obtained by subtracting 1 to b′(log2 `). Note that the carry

bit blog2 ` is equal to 1 only if a(`) = 0 and it can be used to identify a protocol

error.

The idea of the protocol is as follows. Let p be the position of the most

significant non-zero bit of a(`). From a(`) we build a number c(`) that has 0

bits in positions a`−1 to ap+1 and 1 bits between ap and a0. Counting the

number of one bits of c(`), we obtain the result. To obtain the value c(`)
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we can proceed as follows: we set c`−1 = a`−1, then we compute recursively

ci = ci+1 ∨ ai, ∀i = `− 2 down to 0.

For example, if a(8) = 00001011 we obtain c(8) = 00001111 and counting

the number of non-zero bits we obtain the result log2 a
(8) = 4. Observe that

to compute c(`) we can see that we require `− 1 OR(∨) gates. At this point

we use a COUNT` circuit to count the number of bits equal to 1. Finally the

value is corrected by using a SUBlog2 ` circuit.

The overall circuit (Figure 5.15) is composed by |LOG`| = (` − 1)|OR| +
|COUNT`|+ |SUBlog2 `| ≈ (`−1)+(`− log2 `)+log2 ` = 2`−1 non-XOR gates.

a`−1 a`−2 a1 a0

c`−1 c`−2 c1 c0

COUNT`

b

Figure 5.15: Logarithm circuit.



Chapter 6

Hybrid Protocols

As shown in the previous chapters, HE and GC have different characteristics,

each with its pros and cons. In this chapter we first comapre HE and GC

solutions for different functionalities to understand which of them is preferable

and then show how GC and HE can be combined together to develop more

efficient hybrid protocols.

In Section 6.1 we compare the implementation of the most important

functionalities by using GC and HE to underline the importance of hybrid

protocols that let the designer use the most efficient solution for each subpro-

tocol. Section 6.2 shows how HE and GC subprotocols can be concatenated

to develop hybrid protocols.

6.1 Comparison between HE and GC solutions

HE and GC solutions can be compared from both a computational and com-

munication point of view. A bandwidth comparison is easy to perform, while

it is really difficult to compare protocols from a computational aspect. Which

is more expensive? n exp or m Hash functions? Being a computational com-

parison difficult, we focus only on communication complexity analysis and we

evaluate computational complexity of real applications in the next chapters by

analyzing real implementations of the protocols and measuring the execution

times.

Before starting the comparison it is important to underline what can be

precomputed in GC subprotocols. OT can always be precomputed: an OT kk
is performed offline and then extended online to OTnt for any desired n. Dif-

ferently the garbled circuit transmission can be precomputed only if S and

C know that sometimes they have to evaluate a given functionality on data

with fixed bitlength. Specifically, garbled circuit transmission can not be
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precomputed whenever

• S and C cooperate to evaluate many functionalities that can change each

time;

• the data bitlength can change;

• the application is performed so frequently that there are not inactivity

periods.

In the following we compare HE and GC solutions for some subprotocols

presented previously. We consider short term security [GQ09], hence the

security parameter for HE is T = 1024, while the security parameter for GC

is t = 80.

6.1.1 Addition

Let us consider the sum (or subtraction) of two `-bit numbers, the first one

owned by C and the other by S. By using HE, the sum between the 2 numbers

is performed on the S’s side without interaction. Only the transmission of the

input cyphertext having size 2T (we always consider ` < T ) is required. By

using GC and considering the online circuit transmission, the transmission of

4`t+ 2`t+ `t = 7`t bits is needed. The bandwidth is reduced to 3`t bits if the

circuit is transmitted offline. Note that the HE solution returns a cyphertext

available on the S’s side, while GC outputs the result, or its relative secrets,

on C’s side.

A comparison of the bandwidth of the different solutions is shown in Fig-

ure 6.1. We can observe that GC is preferable to HE for small bitlengths.

Generally the sum is a cheap operation with both the tools and the choice is

made according to the previous or following operations.

6.1.2 Product

The complexity of the product computed by using HE changes a lot according

to who owns what. To compare HE and GC products, we use two different

representative examples. Other scenarios have complexity similar to the pro-

posed two.
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Figure 6.1: Communication Complexity of the sum (GC? indicates GC with

offline circuit transmission).

In the first case an `x-bit operand is input from C and the other `y-bit

operand is input from S. The homomorphic solution has a bandwidth com-

plexity of 2T bits and the result is available to S for further computation.

The GC solution has complexity (2`x+`y)t if the circuit is transmitted offline

and (2`x`y − `x)4t + (2`x + `y)t = (8`x`y − 2`x + `y)t bits if the circuit is

transmitted online. The comparison among GC and HE solutions is shown in

Figure 6.2 where `x = `y = ` for simplicity. In the second scenario we suppose
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Figure 6.2: Communication complexity of product between operands input

by C and S (GC? : GC with offline circuit transmission).

that both x and y are coming from previous computation and can not be re-

vealed to anybody. Supposing that the operands come from HE computation,
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the HE solution requires the transmission of 4T bits and the output is still a

cyphertexts available on S’s side. The GC solution, supposing that C already

obtained secrets relative to the operands from previous computation, requires

a bandwidth of (2`x`y − `x)4t bits for the circuit transmission only if it is not

transmitted offline. Complexities for this scenario are shown in Figure 6.3,

where `x = `y = ` for simplicity.
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Figure 6.3: Communication complexity of product between secret values com-

ing from previous computation.

From the complexity analysis we observe that multiplication by GC is

more convenient than from HE only for small bitlengths of the operands or,

sometimes, when the circuit can be transmitted offline. Similar results can be

obtained for the square values and hence a HE solution is preferable even for

scalar (and matrix) products, linear filtering and energy computation. Note

that linear filtering applied to real signals with a fast sampling rate does not

permit offline transmission of the circuit.

6.1.3 Multiplexer

We assume that a multiplexer is used to choose between two `-bit values x

(C’s input) and y (S’s input) according to a selection bit b coming from a

previous computation. Different scenarios have similar complexity. The HE

solution first requires the transmission of the cyphertext JxK and then other 2

cyphertexts are transmitted during the protocol, resulting in the transmission

of 6T bits. GC protocol needs the transmission of secrets relative to y (`t
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bits), the exchange through OT of the secrets relative to x (2`t bits) and the

circuit transmission if not performed offline (4`t bits). A comparison of the

complexities of the proposed solutions is provided in Figure 6.4. Similarly to
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Figure 6.4: Communication Complexity of the multiplexer (GC? : GC with

offline circuit transmission).

the sum, GC solution is more efficient than the homomorphic one for small

bitlengths.

6.1.4 Comparison and minimum value

Let suppose that two ` bit values are compared. The first one is owned by C
while the second one is owned by S.

The HE solution requires the transmission of a cyphertext and (4` +

dlog2 `e)2T bits for the evaluation of the “equality” comparison or (2`+ 2)2T

bits for the “lower than” comparison.

The GC solutions requires 3`t bits for the secret transmission and ≈ 4`t

bits for the comparison circuit transmission1, if not performed offline. As

we can see in Figure 6.5, GC solutions are indeed more efficient than HE

solutions.

This result, together with the one obtained by the multiplexer comparison,

makes GC more efficient for minimum selection too.

1We approximate the equality check protocol complexity, 4(`− 1)t bits, with the “lower

than” complexity.
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Figure 6.5: Communication Complexity of the comparison (GC? : GC with

offline circuit transmission).

6.1.5 Distances

Euclidean distance

We consider the computation of the Euclidean distance between two arrays

composed by n elements, each one represented by ` bits. We distinguish two

cases.

In the first one the two arrays are respective inputs of C and S. The

homomorphic solution first needs the transmission of n+1 cyphertexts relative

to the inputs and no more bandwidth is needed for the protocol. The GC

solution requires 2n`t+ n`t bits for the input secret transmission and (n`2 +

4n`+3n−4`− log2(n−1)−6)4t bits for the circuit, if not transmitted offline.

The complexity is shown in Figure 6.6(a) where n = 5, similar results hold

for different n.

In the second scenario the two arrays come from previous computationS.

During THE HE protocol (p + 1)2T bits are exchanged by using packing,

where p = dn(` + κ)/Ne, κ = 80 is the obfuscation security parameter. The

GC protocols requires only the transmission of the circuit if not performed

offline, i.e. (n`2 + 4n` + 3n − 4` − log2(n − 1) − 6)4t bits. The comparison

among the two solutions (with n = 5) is provided in Figure 6.6(b). tHE HE

solution is indeed better than GC.
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Figure 6.6: Communication Complexity of the Euclidean distance with arrays

input from C and S (a) and with arrays coming from previous computation

(b).

Hamming distance

We compare the HE and GC protocols that evaluate the Hamming distance

between two binary arrays composed by n elements.

Given two n-bit arrays, owned by C and S respectively, the HE solution

requires only the initial transmission of n cyphertexts (n2T bits) while the

GC solution needs the transmission of 2nt+ nt bits for the input secrets and

(n−blog2(n+1)c)4t bits for the circuit, if not transmitted offline. Comparison

results are shown in Figure 6.7. As opposed to the Euclidean distance, the

Hamming distance based on GC is preferable. Intuitively this depends on the
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Figure 6.7: Communication Complexity of the Hamming distance (GC? : GC

with offline circuit transmission).

binary nature of the elements of the arrays.

Note that if the Hamming distance is computed between arrays coming

from previous computation, the HE complexity is replaced by the complexity

of n more expensive eMul protocols, while the GC complexity decreases, re-

moving the necessity of the secret input transmission. This makes GC even

more performing.

6.2 Hybrid HE and GC protocols

For more complex protocols, one may desire to take the best of the GC and

HE worlds for different parts of the protocol, thus resulting in hybrid protocols

[KSS09a]. Doing so, however, requires that the subprotocols are connected in

such a way that the security of the whole system is preserved. At the same

time it is necessary that the representation used to for the input and output

values are adapted to the subprotocol requirements.

6.2.1 Interface from HE to GC subprotocols

We now show how we can use a GC subprotocol after an HE subprotocol. We

suppose that S holds a value JxK, coming from previous HE computations.

We also assume that the overall MPC protocol requires that x is used in a

subprotocol based on GC, eventually together with other variables yC , yS ,
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owned by C and S respectively, with the aim of evaluating a given functionality

f(x,yC ,yS), without that the exact value of x is revealed either to C or S,

because this would cause a leakage of information. We only assume that an

upper bound of x is known, i.e. we know that x can be represented by ` bits

(x < 2`).

S and C evaluates the interface shown in Protocol 22 to let C obtain the

secrets relative to x. In the same time they carry out all the transmissions

relative to the functionality f(·): the OT that permits to C to obtain the

secrets relative to yC and the transmission of the secrets relative to yS from

S. Finally, once the obfuscation has been removed, C evaluates the circuit

that computes f(·).

HE to GC interface

inputs of C: nothing
inputs of S: JxK
output for C: w̃x`−1

`−1 , . . . , w̃
x0
0

output for S: nothing

client C server S

chooses r ∈R {0, 1}`+κ;

JzK = JxKJrK = Jx+ rK;
JzK

�
decrypts JzK;

↓ z`−1, . . . , z0 ↓ r`−1, . . . , r0

GC(SUB`)

↓ w̃x`−1

`−1 , . . . , w̃x00

Protocol 22: Interactive interface that returns to C the secrets relative to x,

given the cyphertext JxK available to S.

In the interface protocol, S picks a random number r in Z2`+κ , where κ

is a security obfuscation parameter2, and additively blinds x by using the

homomorphic property of the Paillier cryptosystem, obtaining JzK = JxKJrK =

Jx + rK. Then S transmits JzK to C. C decrypts the cyphertext and uses the

2Similarly to the security parameter for symmetric encryption schemes, usually κ = 80.
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` least significant bits of z3 in an OT protocol returning the secrets {w̃zii }`−1
i=0

to be used in the subtraction GC. Moreover S sends to C the keys {w̃rjj }`−1
j=0

relative to the ` least significant bits of r. Finally C uses all the keys to

evaluate a garbled circuit that, after a subtraction, returns the keys {w̃xii }`−1
i=0

relative to x and then uses them to evaluate the desired functionality.

Let us analyze the various steps of the interfacing protocol above. S per-

forms 1 enc to blind JxK. During the transmission round, S sends a cyphertext

(2T bits) to C. C performs 1 dec and then C and S run the online phase, con-

sisting of ` OT s, thus transmitting - in 2 rounds - ≈ 2`t bits. During the

second round S appends the ≈ `t bits of the keys relative to r. Moreover if

the circuit transmission is not performed offline, S computes 4` Hash oper-

ations before transmitting the 4`t bits relative to the garbled tables in the

second round. Finally C evaluates the gates of the subtraction circuit, per-

forming ` Hash operations to evaluate the non-Xor gates. Note that circuit

garbling and the secret and circuit transmission can be performed together

to the circuit that has x as inputs, hence the only additional communication

round of the protocol is the one needed for the cyphertext transmission. The

interface complexity is shown in Table 6.1.

Circuit Computation Communication

# Hash Bandwidth # exp # Hash Rounds Bandwidth

4` 4`t 2 ` 1 ≈ 2T + 3`t

Table 6.1: Complexity of the HE to GC interface.

6.2.2 Interface from GC to HE subprotocols

We now show how we can use a HE subprotocol after a GC subprotocol. The

solution is similar to the one provided for the conversion from HE to GC. We

suppose that C knows the secrets w̃
x`−1

`−1 , . . . , w̃
x0
0 relative to a value x, coming

from previous GC computations, while the overall MPC protocol requires to

use JxK in a subprotocol based on HE, possibly together with other variables,

without revealing the exact value of x to either C or S, because this would

3A subtraction circuit starts the computation from the least significant bit and after the

processing of the first ` input bits the original value is already obtained, hence processing

of the other most significant bits is not necessary.
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cause a leakage of information. S and C evaluate together the interface shown

in Protocol 23 to let S obtain JxK.

GC to HE interface

inputs of C: w̃x`−1

`−1 , . . . , w̃
x0
0

inputs of S: nothing
output for C: nothing
output for S: JxK

client C server S

chooses r ∈R {0, 1}`+κ;

↓ x`−1, . . . , x0 ↓ r`+κ−1, . . . , r0

GC(ADD`+κ)

↓ z(`+κ+1) = x(`+κ) + r(`+κ);

encrypts z;

JzK
-

JxK = JzKJ−rK = Jz − rK.

Protocol 23: Interactive interface that returns the cyphertext JxK to S, given

the secrets w̃
x`−1

`−1 , . . . , w̃
x0
0 relative to x available to C.

In this interface protocol, S picks a random number r in Z2`+κ , where κ is

a security obfuscation parameter, and uses it in a garbled addition circuit to

blind x obtaining z(`+κ+1) = x(`+κ) + r(`+κ). The addition circuit is prepared

and transmitted (maybe offline) together to the circuit implementing the func-

tionality that produces the value x(`). The same holds for the transmission

of the secrets relative to r(`+κ). Hence no additional rounds are required for

the addition. Then C obtains z, encrypts it and transmits it to S. Finally S
removes the obfuscation by using the additive homomorphic property.

Let us analyze the complexity of the interfacing protocol described above.

S transmits the ` + κ secrets relative to r to C that obtains the secrets of x

by evaluating another circuit. If not performed offline, an additional ADD`+κ

circuit is transmitted. After having obtained the plain z as output of the

circuit, C performs 1 enc and transmits a cyphertext to S. Finally, to remove

the obfuscation, S performs 1 enc of −r. The interface complexity is shown
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in Table 6.2.

Circuit Computation Communication

# Hash Bandwidth # exp # Hash Rounds Bandwidth

4(`+ κ) 4(`+ κ)t 2 `+ κ 1 2T + (`+ κ)t

Table 6.2: Complexity of the HE to GC interface.
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Secure Two-Party Computation has many interesting application fields,

such as biometric analysis, research on encrypted databases, data aggrega-

tion, etc. In this thesis we focus on Biomedical applications, specifically on

ElectroCardioGram analysis. Privacy preserving protocols may be used in re-

mote healthcare scenarios, whenever the patient is interested to protect his

biomedical data, even from unauthorized access from hospital staff, while the

remote health care provider is interested to protect its intellectual property,

i.e. the data input to the protocol.

To demonstrate that privacy preserving biomedical analysis is feasible, we

propose an implementation of the ElectroCardioGram (ECG) classification al-

gorithm proposed by Ge et al. [GSK02], that classifies each single heart beat

according to 6 classes representing different diseases. Two different imple-

mentations are proposed. Both of them are based on the new proposed Linear

Branching Programs tool, that perfectly fits the algorithm proposed by Ge et

al. The first one is implemented by using a full-GC protocol and the second

one by using an Hybrid protocol. Moreover ECG beats have been also classified

by using a secure implementation of a Neural Networks, having the features

of LBP as input.

A study of the complexity as well as a prototype implementation shows

that, thanks to specific optimization, we can develop protocols with perfor-

mance close to real time, opening the way to real application of s.p.e.d. tech-

niques for remote biomedical analysis.

“I take risks, sometimes patients die.

But not taking risks causes more patients to die,

so I guess my biggest problem is I’ve been cursed with the ability to do the math.”

Gregory House (House M.D., Season 1, Episode 11: “Detox”)





Chapter 7

Plain Protocol

Before describing the application of privacy preserving protocols to Elec-

troCardioGram (ECG) classification, we present the plain domain protocol

([GSK02] and [ASSK07, ch.8]) for ECG classification that inspired us.

In this chapter, we provide a simple introduction to heart and electro-

cardiogram in Section 7.1 and then describe the overall architecture of the

plain domain version of the ECG classification system in Section 7.2, where

we provide a detailed description of the various modules the system consists

of, and finally we give some performance result of the plain protocol. For sake

of brevity, we focus on the modules that, according to the privacy-preserving

implementation described in the next chapter, must be implemented securely,

and we give only a brief description of the modules that are carried out in the

plain domain by one of the two parties.

7.1 Introduction to Electrocardiogram and heart

diseases [ASSK07]

The heart is an efficient muscular organ that pumps blood throughout the

body. Blood brings nutrients and oxygen to tissues, and carries away metabolic

waste and carbon dioxide for excretion through the kidneys and the lungs, re-

spectively.

Pumping is efficient only when the heart contracts in a coordinated man-

ner. Blood must first fill the atria, and then be pumped into the ventricles

before being forcefully ejected. This coordination is achieved by an elaborate

electrical conduction system that controls the precise timing for depolarizing

the substantial mass of electrically excitable myocardium. This delicate con-

trol starts with an intrinsic self-excitable cardiac pacemaker (the Sinus-Atrial

node) which sets the rate at which the heart beats. The pacemaker sponta-
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neously generates regular electrical impulses, which then spread through the

conduction system of the heart and initiate contraction of the myocardium.

The electrocardiogram. ECG is a graphical recording of the electrical

signals generated by the heart. The signals are generated when cardiac mus-

cles depolarize in response to electrical impulses generated by pacemaker cells.

Upon depolarization, the muscles contract and pump blood throughout the

body. The ECG reveals many things about the heart, including its rhythm,

whether its electrical conduction paths are intact, whether certain chambers

are enlarged, and even the approximate ischemic location in the event of a

heart attack (myocardial infarction).

Surface (skin) electrodes are used to detect the depolarization of excitable

myocardium. The placement of the electrodes determines the directional

viewpoint of the heart. Each viewpoint is called a lead. The standard ECG

as recorded by clinicians is the 12-lead ECG, which uses 10 electrodes. A

single-lead ECG recorder would typically have three electrodes: the positive

electrode, the negative electrode and an indifferent electrode (ground or right-

leg drive electrode). Electrodes detect ionic current flow within the body by

detecting the potential difference between them as current flows through re-

sistive tissue. The leads are classified as:

The Limb Leads (Bipolar) - Leads I, II, III: The limb leads are cal-

led as such because the electrodes are attached to the limbs as in Fig-

ure 7.1: left arm, right arm and a leg (usually the left leg). Three views

are immediately obtained. Leads I, II and III are commonly referred

to bipolar leads as they use only two electrodes to derive a view. One

electrode acts as the positive electrode while the other as the negative

electrode (hence bipolar).

Augmented Limb Leads (Unipolar) - Leads aVL, aVR, aVL: The

signals from the limb electrodes can be combined to give further views

called the augmented leads. One of the limb electrodes serves as the

positive electrode. The negative electrode is virtual, being the average

of the signals from the remaining two limb electrodes. In contrast to

Leads I, II and III, the augmented leads are known as unipolar leads.
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Precordial Leads (Unipolar) - Leads V1,. . . ,V6: Six views of the

heart signals across the front (ventral aspect) of the chest are given

from these six chest electrodes (Figure 7.1). The views fall along the

transverse plane (i.e. looking into the chest). The positive electrode

is the chest electrode. The negative electrode is a virtual electrode

commonly called the Wilson Central Terminal (WCT), realized by elec-

trically averaging the signals from the three electrodes LA, RA and LL.

The WCT is thus the electrical center of the heart.

Figure 7.1: Positions where to place electrodes.

A typical ECG recording from a normal person (Figure 7.2) is shown

below. The ECG is principally described by waves that are labeled using the

letters P, QRS and T. The meaning of the waves may be broadly described

as follows:

• P-wave corresponds to the depolarization of the atrial myocardium (mus-

cles of upper chambers of the heart), and indicates the start of atrial

contraction that pumps blood to the ventricles.

• The Q, R, and S waves are usually treated as a single composite wave

known as the QRS-complex. The QRS-complex reflects the depolariza-

tion of ventricular myocardium, and indicates the start of ventricular

contraction that pumps blood to the lungs and the rest of the body.
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Figure 7.2: Waves on ECG trace.

• The T-wave corresponds to the depolarization of the ventricular my-

ocardium, which is a necessary recovery process for the myocardium to

depolarize and contract again. The end of the T-wave coincides with

the end of ventricular contraction. Atrial depolarization (Ta-wave) is

usually not visible as it normally coincides with the QRS-complex (and

is buried in the larger waveform).

Diseases. The manner in which the heart contracts over time determines

the rhythm of the heart. Normal sinus rhythm (NSR) is the normal rhythm

of the heart when there is no disease or disorder affecting it.

Rhythms that deviate from NSR are called arrhythmias since they are

abnormal and dysfunctional. Arrhythmias can be life-threatening. If the

heart rate is too slow as in bradycardia, perfusion may be insufficient and this

can adversely affect vital organs. Similarly, if the heart rate is too fast, the

ventricles are not completely filled before contraction and pumping efficiency

drops, adversely affecting perfusion.

Many types of arrhythmias exist. We here present only those we consider

for the classification (Figure 7.3).

Atrial Premature Contractions(APC): it results in an earlier than

expected occurrence of a (non-sinus) P’-wave followed by a QRS-complex

and a T-wave. This happens because of an ectopic pacemaker firing

before the Sinus-Atrial (S-A) node does. The ectopic pacemaker may

reside in any part of the atria outside the S-A node.
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APC PVC

VT VF

SVT

Figure 7.3: Examples of Arrhythmias considered for the classification.

Premature Ventricular Contractions (PVC): it is an extra (ab-

normal) ventricular contraction originating from a pacemaker located

in the ventricles. More than one pacemaker may be involved, each

generating its own bizarre-shaped QRS-complex. PVCs usually do not

depolarize the atria or the S-A node and hence the P-waves maintain

their underlying rhythm and occur at the expected time. PVCs are not

preceded by (ectopic) P-waves and may occur anywhere in the heart

beat cycle. More PVC can degenerate in Ventricular Tachycardia.

Ventricular Tachycardia (VT): the heart rate is 110 to 250 beats

per minute. The QRS complex is abnormally wide, bizarre in shape, and

of a different direction from the normal QRS complex. VT is considered

life-threatening as the rapid rate may prevent effective ventricular filling

and result in a drop in cardiac output. It can also degenerate into

ventricular fibrillation, which is lethal.

Ventricular Fibrillation (VF): it occurs when numerous ectopic pa-

cemakers in the ventricles cause different parts of the myocardium to

contract at different times in a non-synchronised fashion. Ventricular

contraction is uncoordinated, resulting in insignificant or no cardiac

output. Perfusion to vital organs is compromised and death ensues in



138 7. Plain Protocol

minutes. Defibrillation (DC shock) is used to abort ventricular fibrilla-

tion.

SupraVentricular Tachycardia (SVT): the heart rate ranges from

160 to 240 beats per minute. SVT may occur as a result of a re-entry

circuit involving an accessory pathway between the atria and ventricles

(Atrioventricular re-entry tachycardia). The onset and termination of

SVT is abrupt, and may occur in repeated episodes that last for seconds,

hours or days. P-waves are usually buried in the QRS complex and hence

not visible.

7.2 ECG Classification

In this thesis we are interested in classifying each QRS complex (correspond-

ing to a single heart beat) according to 6 classes introduced in the previous

section, namely: Normal Sinus rhythm (NSR), Atrial Premature Contrac-

tions (APC), Premature Ventricular Contractions (PVC), Ventricular Fibril-

lation (VF), Ventricular Tachycardia (VT) and SupraVentricular Tachycardia

(SVT). The classification algorithm we used is inspired to the works by Ge et

al. ([GSK02] and [ASSK07, ch.8]). Specifically, it relies on a rather general

technique based on AR models for ECG description and a subsequent QDF

classifier. Specifically, each ECG interval corresponding to one heart beat is

modeled by means of a 4-th order AR model. The AR model parameters and

two features related to the modeling error are fed to a QDF classifier that

takes the final decision about the presence of a particular disease.

The choice of the algorithm is justified first of all by the good classification

accuracy it ensures, secondly because it fits well the requirements set by the

SSP framework, finally because of its generality. As a matter of fact, both AR

models and QDF are often used in automatic medical diagnosis, for instance

in [BCA+93] the authors compare various autoregressive models applied to

time series of ECG. In [GHX07] and in [ZJGX04] scalar autoregressive models

and multivariate autoregressive are studied to extract ECG features, and then

these features are combined with quadratic discriminant function to classify

various heart disease. Logistic regression and discriminant analysis are used

in [TWBT95] to identify particular coronary heart diseases. QDF is used by
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[FLK08] to realize an investigation on fibromyalgia. In [KTB+03] linear and

quadratic discriminant function analysis and neural computational system are

used to detect prostate carcinoma.

For this reason the privacy-preserving solutions we have developed can

represent the basis for a large number of different implementations addressing

a variety of diverse topics in biomedical signal processing.

7.2.1 Overall architecture of the classifier

The overall architecture of the classifier, as proposed by Ge et al., is summa-

rized by the block diagram in Fig. 7.4. The input of the system is an ECG

Notch
Filter

R-Peak
Detection

Sample
Selection

AR
ModelingECG

Result
Feture

Extraction
Quantization QDF Classification

Figure 7.4: Block Diagram.

signal sampled at 250 sample per second. The ECG is first filtered (notch fil-

ter) to remove noise artifacts 1. The R peaks, each corresponding to an heart

beat, are detected, and 300 samples surrounding each peak are extracted. The

extracted samples are modeled by a 4-th order AR model whose parameters,

together with two additional parameters accounting for the modeling error,

are used by the QDF block to produce the feature vector that will be used

for the subsequent classification. Each block of Fig. 7.4 is described in the

following.

Notch filter. Noise removal is the first step of the chain, such a step is

needed to remove noise due to power line interference, electrode contact’s

noise, motion artifact and base line wander. Frequencies lower than a cutoff

frequency fl = 0.7Hz and closest to fp = 50Hz have to be filtered. The filter

1We will discuss noise affecting ECG further in Section 10.1, before facing the problem

of measuring signal quality in the encrypted domain.
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proposed in [VAS85] is used, whereby the filtered signal is computed from the

original signal through the following equation:

yn =




(M−3)/2∑

i=0

hik ·
(
xn−ki + xn−k(M−1)+ki

)

+ hM−1

2
k · xn−k(M−1

2 )

where k = 5, M = 51, yn is the output signal sample, xn is the input signal

sample and hik are the filter impulse response coefficients, that are computed

to obtain a periodic frequency spectrum of the filter Ht(f) according to Fig-

ure 7.5 and are defined as:

hik =
sin
(

2π(ik − M−1
2 ) flfp

)

π(ik − M−1
2 )

hM−1
2

k = 1− 2fl
fp
. (7.1)

Figure 7.5: The distorted frequency response as derived from a truncated

impulse response (Note: scales are linear).

R peaks detection. The Pan-Tompkins algorithm [PT85] is applied to

determine the R-peaks positions. Figure 7.6 shows a block scheme that sum-

marizes the algorithm.

The algorithm starts by filtering the ECG to distinguish the R peak from

other peak that may be mistakenly identified as an R peak. The cutoff fre-

quency of the low pass filter is about 11 Hz with gain 36. The filter is defined

by the following equation:

yn = 2yn−1 − yn−2 + xn − 2xn−6 + xn−12. (7.2)
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Figure 7.6: Pan - Tompkins Algorithm.

The cutoff frequency of the high pass filter is 5 Hz with gain 32. The filter is

defined by the following differences equation:

yn = yn−1 −
xn
32

+ xn−16 − xn−17 +
xn−32

32
. (7.3)

The output of the high pass filter is named yI . Then, a derivative step is per-

formed to obtain the QRS-complex slope information. The difference equation

to realize this is:

yn =
1

8
(2xn + xn−1 − xn−3 − 2xn−4) . (7.4)

At this point samples are squared to amplify the high slope of the R peak.

Finally a moving average filter with window size N = 30 samples is applied

to the squared signal:

yn =
1

N

N∑

i=0

xn−N+i. (7.5)

The output of the moving average filter is named yF .

R peaks are detected using upward and downward thresholding on the sig-

nal produced by the High Pass Filter yI and the signal after Moving Average

Filter yF . Thresholds are computed dynamically. Two sets of threshold are

used, each of which has two threshold levels.

The R-peaks are detected by using the adaptive thresholds algorithm de-

scribed in [PT85]. We avoid a detailed description of the algorithm, being it

out of the purpose of this thesis, but we provide the general idea behind it.

The algorithm examines both the signals yI and yF to identify the R

peaks. The first step is to determinate the peaks by the sign change in the

signal derivatives y′. In each signal the peaks are then compared with the

threshold. If it is greater than the threshold, the peak is classified as a signal
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peak, otherwise as a noise peak. In both the cases the value of the peak is used

to update the relative threshold. If a peak is identified from thresholding as a

signal peak in both the signals yI and yF , than it is classified to be an R peak.

Whenever the algorithm does not find an R peak in the interval starting after

the last identified R peak and long 1.66 times the mean RR interval, there

is a rollback so the algorithm restarts from the last R peak found and halves

the thresholds.

ECG Chunk Selection. Once an R peak is identified, 100 samples before

the peak and 200 samples following the peak are selected corresponding to 1.2

seconds of the ECG signal. At the end of this step ECG samples containing

the to-be-classified peak are obtained.

AR Modeling. An autoregressive model is a linear predictor that attempts

to estimate the value of an output yn from the previous p inputs (xn−1, xn−2,

. . . , xn−p), through an equation having the following form:

yn =

p∑

i=1

aixn−i + εn (7.6)

where {ai}i=1..p are the AR coefficients, {εi}i=1..N is the prediction error se-

quence and p is the model degree. The AR model may be used to predict the

successive values of the input. The goal is to derive the best values for the

AR coefficients in the sense of minimizing the mean square error between the

original sequence and the one predicted by the model. As shown in [GSK02],

for an accurate description of ECG signals an AR model of order p = 4 is

sufficient. The vector a with the AR coefficients can be calculated solving

the linear system Ra = r, where R is the autocorrelation matrix of the input

samples:

R =




1 r1 r2 r3

r1 1 r1 r2

r2 r1 1 r1

r3 r2 r1 1


 (7.7)
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with

rk =
ck
c0
, (7.8)

ck =
1

N − k
N−k∑

n=1

(xn − x̄)(xn+k − x̄), (7.9)

N is the number of samples and x̄ is the mean of the input sequence; and

where r = (r1, r2, r3, r4)>.

The AR coefficients can be computed solving the linear system R a = r:



1 r1 r2 r3

r1 1 r1 r2

r2 r1 1 r1

r3 r2 r1 1







a1

a2

a3

a4


 =




r1

r2

r3

r4


 (7.10)

Feature Extraction. From the AR model, six features are extracted. The

feature vector is the following:

f = (f1, f2, f3, f4, f5, f6)> = (a1, a2, a3, a4, n1, n2)> (7.11)

The first four features are the coefficients of the AR model; n1 is the number

of times that the amplitude of |εn| exceeds an empiric threshold:

th = 0.25 max
n

(|εn|) (7.12)

and n2 = 296− n1.

Quadratic Discriminant Function. With QDF classifications, the clas-

sifier does not operate directly on the feature vector f . Instead a composite

feature vector fc is computed containing the features in f , their square values

and their cross products, namely:

fc = (1, f1, . . . , f6, f
2
1 , . . . , f

2
6 , f1f2, . . . , f1f6, f2f3, . . . , f2f6, . . . , f5f6)>

= (f c1 , f
c
2 . . . f

c
28)> (7.13)

The vector fc is projected onto 6 directions βi, obtaining a 6-long vector y,

that represents the input for the final classification step:

y = Bfc (7.14)
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where B is a matrix whose rows are the vectors βi. The matrix B contains part

of the knowledge embedded within the classification system, and is computed

by relying on a set of training ECG’s. In particular, the matrix B is computed

by minimizing the mean square error between the actual vector y and the

target values of y. A vector used for the training set is said yt. The desired

output for each of the diseases we want to classify is given in Table 7.1.

y1 y2 y3 y4 y5 y6 Disease

1 1 x 1 1 x NSR

1 1 x 1 x 1 NSR

1 1 x 1 -1 x APC

1 1 x 1 x -1 PVC

-1 x -1 x x x VF

-1 x 1 x x x VT

1 -1 x x x x SVT

Table 7.1: Classification pattern (“x” means that the value of the variable

does not influence the classification.).

Let us now consider the estimation of a single row of B, that is βi. During

the training,for each ECG segment j, the composite feature vector fc
j is

computed. Assuming that D is the number of ECG segments used for the

training of a particular βi, the vector that minimizes the error between the

target output and the actual one is given by (see [ASSK07] for more details):

βi = (A>i Ai)
−1 A>i ỹit. (7.15)

where Ai = (fc
1, f

c
2 . . . f

c
D) is a D × 28 matrix containing the composite

feature vectors of the training set, and where yti = (yi1, . . . , yiD)> is the

column vector of the i-th component of the target vector responses (yij ∈
{−1,+1}).

Classification. To classify an ECG segment, the composite feature vector

fc is computed and used to compute the vector y by means of equation (7.14).

The signs of the values yi are used to actually classify the ECG, by means of

the tree given in Figure 7.7.

The structure of the tree depends on the fact that there is a multiple

dichotomy of six classes of samples. The Euclidean center distance between
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y6 > 0
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y2 > 0
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y3 > 0

y1 > 0
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TF

F

F
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F

F

Figure 7.7: The decision graph leading to ECG segment classification. Given

the array y1, . . . , y6, the tree is traversed according to the result of the com-

parison of the values with 0 in each node, following the true (T) or false (F)

edges.

these classes were computed for determining the groupings of classes at each

stage, obtaining that APC/NSR/PVC, VT/VF and SVT form one group re-

spectively due to small values of the Euclidean center distance within the

same group and large values between different groups [ASSK07, ch.8]. There-

fore, VT/VF was separated from APC/NSR/PVC and SVT in stage one (y1).

Similarly, in the second stage (y2), VT and VF were differentiated. In the

third stage (y3), SVT was distinguished from NSR, APC and PVC. In the

later stages (y4, y5, y6), NSR, APV and PVC were distinguished from each

other and classified.

7.2.2 Classification results

The classification results on test data provided by Ge et al. in [ASSK07,

ch.8] are given in Table 7.2. The authors selected 200 hearth beats for each

class and used 60 of them for training, the others for testing. The mean

classification accuracy was 96.1%.

We implemented the protocol proposed by Ge et al. and, since their data

set was not available, in our experiments we used a different dataset obtained

by signals still coming from PhysioBank [GAG+00]. The set is built by se-
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Testing
NSR APC PVC SVT VT VF

Accuracy

data set result

140 NSR 135 3 1 0 1 0 96.4%

140 APC 8 131 0 1 0 0 93.5%

140 PVC 4 0 133 2 1 0 95.0%

140 SVT 0 1 2 137 0 0 97.9%

140 VT 0 0 0 0 136 4 97.1%

140 VF 0 0 1 0 4 135 96.4%

Table 7.2: QDF-based classification results (results from [ASSK07, ch.8]).

lecting 200 samples of each class from 1 or at most 2 patterns. From these

samples, we selected 60 samples at random for each class selected for the train-

ing set and we used the remaining are used for the test set. This set provides

performance lower than that illustrated in [GSK02], anyway our goal is not to

reproduce similar results, but to demonstrate that a s.p.e.d. implementation

of the protocol can provide results comparable to a plain implementation.

The algorithm we developed was able to classify correctly 88.3% of the test

set. Table 7.3 shows the confusion matrix obtained. We will refer to this data

set in our privacy preserving implementations described in the next chapters.

Testing
NSR APC PVC SVT VT VF

Accuracy

data set result

140 NSR 132 8 0 0 0 0 94.3%

140 APC 22 118 0 0 0 0 84.3%

140 PVC 0 2 138 0 0 0 98.6%

140 SVT 0 0 0 140 0 0 100.0%

140 VT 0 0 0 0 100 40 71.4%

140 VF 0 0 0 0 26 114 81.4%

Table 7.3: QDF-based classification results obtained in our tests.



Chapter 8

Privacy preserving Classification by using
Linear Branching Programs

An important contribution of this thesis is given by the definition of Linear

Branching Programs (LBP), together with a cryptographic protocol for its

efficient secure evaluation [BFK+09a, BFL+09, BFL+11]. The notion of LBP

is a natural generalization of binary classification trees and Ordered Binary

Decision Diagrams (OBDDs). Compared to the above, LBPs have a more

general branching condition that depends on the comparison of a linear com-

bination of the inputs with a threshold.

Section 8.1 introduces Linear branching programs, together with two dif-

ferent implementations and their efficiency comparison. Then in Section 8.2

we apply LBP to ECG classification, showing the results obtained in terms of

efficiency and classification accuracy.

8.1 Linear Branching Programs (LBP)

Before describing our implementations of the secure ECG classifier, we for-

mally define the notion of linear branching programs. We do so by generaliz-

ing the BP definition used in [BPSW07]. We note that BPs – and hence also

LBPs – generalize binary classification or decision trees and Ordered Binary

Decision Diagrams (OBDDs) used in [KJGB06, Sch08].

Definition 2 (Linear Branching Program). Let x(`) = [x
(`)
1 , .., x

(`)
n ] be the

attribute vector of signed `-bit integer values. A binary Linear Branching

Program (LBP) L is a triple 〈{P1, .., Pz},Left ,Right〉. The first element is

a set of z nodes consisting of d “decision nodes” P1, .., Pd followed by z − d
“classification nodes” Pd+1, .., Pz.

Decision nodes Pi, 1 ≤ i ≤ d are the internal nodes of the LBP. Each Pi :=
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〈
a

(`)
i , t

(`′)
i

〉
is a pair, where a

(`)
i = [a

(`)
i,1 , .., a

(`)
i,n] is the linear combination vector

consisting of n signed `-bit integer values and t
(`′)
i is the signed `′-bit integer

“threshold” value with which a
(`)
i x(`)> =

∑n
j=1 a

(`)
i,j x

(`)
j is compared in the

node. Left(i) is the index of the next node if a
(`)
i x(`)> ≤ t

(`′)
i ; Right(i) is the

index of the next node if a
(`)
i x(`)> > t

(`′)
i . Functions Left() and Right() are

such that the resulting directed graph is acyclic.

Classification nodes Pj := 〈cj〉, d < j ≤ z are the leaf nodes of the LBP

consisting of a single classification label cj each.

To evaluate the LBP L on an attribute vector x(`), we start with the first

decision node P1. If a
(`)
1 x(`)> ≤ t

(`′)
1 , move to node Left(1), else to Right(1).

We then repeat this process recursively (with corresponding a
(`)
i and (t

(`′)
i )),

until we reach one of the classification nodes and obtain the classification

c = L(x(`)).

In the general case of LBPs, the bit-length `′ of the threshold values t
(`′)
i

has to be chosen according to the maximum value of the linear combinations:

abs(a
(`)
i x(`)>) = abs(

n∑

j=1

a
(`)
i,j x

(`)
j ) ≤

n∑

j=1

22(`−1) = n22(`−1)

⇒ `′ = 1 + dlog2(n22(`−1))e = 2`+ dlog2 ne − 1. (8.1)

As noted above, LBPs can be seen as a generalization of previous repre-

sentations:

• Branching Programs (BP) as used in [BPSW07] are a special case of

LBPs where in each node only an element of the attribute vector is

compared with the threshold. In detail in each decision node Pi of

the BP, only the αi-th input x
(`)
αi is compared with the threshold value

t
(`′)
i , where αi ∈ {0, .., n} is a private index. In this case, the linear

combination vector a
(`)
i of the LBP decision node degrades to a selection

vector ai = [ai,1, .., ai,n], with exactly one entry ai,αi = 1 and all other

entries ai,j 6=αi = 0. The bit-length of the threshold values t
(`′)
i is set to

`′ = `.

• Ordered Binary Decision Diagrams (OBDD) as used in [KJGB06, Sch08]



8.1. Linear Branching Programs (LBP) 149

are a special case of BPs with bit inputs (` = 1) and exactly two classi-

fication nodes (Pz−1 = 〈0〉 and Pz = 〈1〉).

We here address two possible implementations for a generic LBP in the

encrypted domain: a full-GC protocol and a hybrid protocol. Considering the

high number of bits needed for the representation of the scalar products and

that it is used in a comparison function, we discarded a full-HE implementa-

tion a priori.

8.1.1 Full-GC implementation

A straightforward instantiation can be obtained by evaluating a garbled circuit

whose size depends on the number of attributes n. The linear branching

program can be instantiated based on the secure evaluation of a garbled circuit

as shown in Figure 8.1(a). First, S creates a boolean circuit C with `-bit

inputs x
(`)
1 , . . . , x

(`)
n and output bits w1, . . . , wd that obliviously computes the

intended functionality as described below.

The circuit is evaluated securely with Yao’s garbled circuit protocol, i.e.,

S creates a garbled circuit C̃ which is sent to C along with the garbled in-

puts corresponding to C’s inputs x
(`)
1 , .., x

(`)
n in a OTn`t protocol, and finally

C evaluates C̃ on these garbled inputs to obtain the garbled output values

w̃1, . . . , w̃d.

The circuit C needs to compute wi = (a
(`)
i x(`)> > t

(`′)
i ) = (

∑n
j=1 a

(`)
i,j ·

x
(`)
j > t

(`′)
i ), 1 ≤ i ≤ d. As shown in Figure 8.1(b), an efficient circuit

construction can be obtained by first multiplying the magnitudes of x
(`)
j and

a
(`)
i,j with an unsigned integer multiplication circuit (MUL`−1). Afterwards, the

sign is determined by combining the sign bits of x
(`)
j and a

(`)
i,j with an XOR

gate (⊕). Depending on this sign, the multiplied value is added or subtracted

from the intermediate result c
(`′)
i,j−1 with an integer addition/subtraction circuit

(ADDSUB`
′
). Hence, the intermediate values c

(`′)
i,J carry the sum of the first

J summands, i.e., c
(`′)
i,J =

∑J
j=1 a

(`)
i,j · x

(`)
j . In the end, the final value c

(`′)
i,n =

∑n
j=1 a

(`)
i,j · x

(`)
j is compared with the threshold value t

(`′)
i using an integer

comparison circuit (CMP`
′
>). Finally a d-input gate is used to provide the final

output given the results of the d comparisons. The resulting garbled circuit
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Figure 8.1: Full-GC solution (a) and Linear Selection Circuit (part of C) of

a node (b).
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has size |C̃| = d(n(|MUL`−1|+ |⊕|+ |ADDSUB`′ |)+ |CMP`
′
>|) = d(n([2(`−1)2−

(`−1)]+[0]+[`′])+`′+1) = 2nd`2−5nd`+3nd+nd`′+d`′ ≈ 2nd`2+nd`′ non-

XOR 2-input gates and a d-input gate.

The circuit-based instantiation of LBP needs the same number of rounds

as the underlying OT protocol since the garbled circuit can be sent with the

last message of the OT protocol. The asymptotic communication complexity

of the full-GC protocol is that of the OTn`t protocol (OT) plus the size of

the garbled circuit given above (GC). Considering only the precomputation

of OT and transmitting the circuit during the online phase, we obtain the

complexity shown in Table 8.1.

BP. In case of BPs, a substantially smaller circuit C ′ can be constructed

to compute the functionality wi = (x
(`)
αi > t

(`)
i ). This circuit first oblivi-

ously selects the input x
(`)
αi from the inputs x

(`)
1 , .., x

(`)
n . This can be achieved

by using selection blocks Snd as follows: An Snd selection block is a circuit

which can obliviously select for each of its d outputs any of its n inputs.

By using ` such selection blocks in parallel (one for each bit of the ` bits),

the circuit can obliviously select x
(`)
α1 , . . . , x

(`)
αd from x

(`)
1 , . . . , x

(`)
n . Afterwards,

the selected values are compared with the respective threshold t
(`)
i using an

integer comparison circuit (CMP>). Using the efficient selection block con-

structions of [KS08b] together with the comparison blocks implemented in

[PSS09] this results in a garbled circuit of size |C̃ ′|bits = `|Snd | + d|CMP`>| =

(`[4(n+ 3d)dlog de+ 4n− 16d+ 12] + d[4`])t ≈ 4(n log d+ 3d log d)`t bits.

8.1.2 Hybrid implementation

In this instantiation of LBP (see Protocol 24 for an overview), an hybrid

protocol is used to implement the LBP. The scalar product is computed by

using an homomorphic protocol while comparison is computed by using GC.

C generates a key-pair for the additively homomorphic encryption scheme

and sends the public key pkC together with the homomorphically encrypted

attributes Jx(`)
1 K, . . . , Jx(`)

n K to S. Using the additively homomorphic property,

S can compute the linear combination of these ciphertexts with the private

coefficients a
(`)
i as Jy(`′)

i K = J∑n
j=1 a

(`)
i,j x

(`)
j K, 1 ≤ i ≤ d.

Afterwards, the encrypted values Jy(`′)
i K are obliviously compared with the
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Hybrid LBP protocol

inputs of C: x = [x
(`)
1 , . . . , x

(`)
n ]

inputs of S: ai = [a
(`)
i,1 , . . . , a

(`)
i,n], t

(`′)
i ; i = 1 . . . d

output for C: classification result
output for S: nothing

client C server S

encrypts x
(`)
j ∀j ∈ 1 . . . n;

Jx(`)j K ∀j ∈ 1 . . . n

-
(scalar products:)

Jy(`
′)

i K = J
∑n
j=1 a

(`)
i,jx

(`)
j K =

=
∏n
j=1Jx(`)j Ka

(`)
i,j , 1 ≤ i ≤ d;

(packing:)

JyK = J
∑d
i=1 2`

′(i−1)(y`
′
i + 2`

′−1)K =

=
∏d
i=1(J2`

′−1KJy`
′
i K)2

`′(i−1)
(blinding:)

chooses r ∈R ZN ;

JzK = JyKJrK = Jx+ rK;
JzK

�
decrypts JzK;

↓ zd`′−1, . . . , z0 ↓ rd`′−1, . . . , r0 ↓ t(`
′)

1 . . . t
(`′)
d

GC(SUBd`
′
, d CMP`

′
, d-input gate)

↓ Classification result

Protocol 24: Hybrid LBP protocol. For simplicity we assume that all the

yi values can be packed in a single cyphertext.

thresholds t
(`′)
i in a comparison protocol. This protocol allows C to obliviously

obtain the garbled values corresponding to the comparison of y
(`′)
i and t

(`′)
i ,

i.e., w̃0
i if y

(`′)
i ≤ t(`

′)
i and w̃1

i otherwise. The secure comparison has to ensure

that neither C nor S learns anything about the plaintexts y
(`′)
i from which they

could deduce information about the other party’s private function or inputs.

Hence a “HE to GC” interface is needed. S blinds the encrypted value Jy`′i K in

order to hide the encrypted plaintext from C obtaining JγiK. To achieve this,
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S adds a randomly chosen value R ∈R ZN 1 under encryption before sending

them to C who can decrypt but does not learn the plain value. Afterwards, a

garbled circuit C is evaluated which obliviously takes off the blinding value R

and compares the result (which corresponds to y
(`′)
i ) with the threshold value

t
(`′)
i . We improve the communication complexity of this basic protocol which

essentially corresponds to the protocol of [BPSW07] with the following two

technical tricks:

Packing. Usually, the plaintext space of the HE scheme ZN is substantially

larger than the encrypted values y
(`′)
i . Hence, multiple encryptions, say d′,

can be packed together into one ciphertext before blinding and sending it to C.
This reduces the communication complexity and the number of decryptions

that need to be performed by C by a factor of d′. For this, the encrypted values

−2`
′−1 < y`

′
i < 2`

′−1 are shifted into the positive range (0, 2`
′
) first by adding

2`
′−1 and afterwards are concatenated by computing JyK = J∑d′

i=1 2`
′(i−1)(y`

′
i +

2`
′−1)K =

∏d′
i=1(J2`′−1KJy`′i K)2`

′(i−1)
. The packed ciphertext JyK encrypts a

L′ = d′`′ bit value now.

Minimizing Circuit Size. As described before, the garbled circuit obliv-

iously takes off the blinding value R. Instead of computing in the plaintext

space of the homomorphic cryptosystem ZN , it is beneficial to compute over

integers since circuit sizes are substantially smaller (inspired by the BITREP

gate of [ST06b]). For this, we ensure that no overflow occurs when blinding

the L′-bit value y by adding R ∈R ZN . This can be achieved by choosing

L′ such that it is κ bits less than the bitlength of N , where κ is a statis-

tical correctness parameter (e.g., κ = 80): L′ ≤ T − κ. Now, an overflow

occurs only if the κ topmost bits of R are all ones which – as R was chosen

randomly – occurs with probability 2−κ which is negligible in κ. The circuit

subtracts the lowest L′ bits of R from those of γ to obliviously reconstruct

the value y before comparing it componentwise with the thresholds. Then,

each y`
′
i , 1 ≤ i ≤ d is compared with its corresponding threshold t`

′
i with an

integer comparison circuit (CMP>). Finally a d-input gate is used to provide

1We choose R from the full plaintext space in order to protect against malicious behavior

of C, instead than {0, 1}`
′+κ.
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Classification Private
Moves

Asymptotic Communication Complexity

Protocol Function GC OT HE

[BPSW07]
BP

4
12z`(t+ κ) OT z`t (n+ z)2T

LBP 12z`′(t+ κ) OT z`
′

t

Full-GC
BP

2
4(n log d+ 3d log d)`t

OTn`tLBP (2nd`2 + nd`′)4t

Hybrid
BP

4
8d`t OT d`t (n+ `

T−κd)2T

LBP 8d`′t OT d`
′

t (n+ `′
T−κd)2T

Table 8.1: Protocols for Secure Evaluation of Private BPs/LBPs with parame-

ters z: #nodes, d: #decision nodes, n: #attributes, `: bitlength of attributes,

`′: bitlength of thresholds (for LBPs), t: symmetric security parameter, T :

asymmetric security parameter, κ: statistical correctness parameter.

the output given the results of the d comparisons. The circuit can be gener-

ated automatically with the compiler of [PSS09] into a garbled circuit of size

|C̃| = |SUBL′ |+ d′|CMP`
′
>| = (L′ + d′(`′)) ≈ 2L′ non-XOR 2-input gates and 1

d-input gate.

Complexity. From L′ = d′`′ ≤ T−κ we can infer d′ = T−κ
`′ as the maximum

number of packed ciphertexts. The comparison protocol needs to be run for

d inputs which can be achieved by running the comparison protocol with d′

inputs d dd′ e times in parallel. The asymptotic communication complexity of

the hybrid LBP protocol as shown in Table 8.1 consists of n+ d
d′ = n+ `′

T−κd
Paillier ciphertexts of size 2T bits each (HE), garbled circuits of size d

d′ ·8L′t+
2dt = 8d`′t + 2dt ≈ 8d`′t bits (GC), and a d

d′ · L′ = d`′ parallel OT protocol

OT d`
′

t . The number of moves is two for sending the homomorphic encryptions

plus those of the underlying OT protocol (C̃ can be sent with the last message

of the OT protocol).

8.2 Application of LBP to ECG classification

Before describing the privacy-preserving ECG classification protocol, we de-

fine the players of the protocol and the data that needs to be protected. A first

requirement is that the server S, who is running the classification algorithm

on client’s ECG signal, learns neither information about the ECG signal nor
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the final result of the classification. At the same time, the client C should not

get any information about the algorithm used by S, except for the output

of the classification. The latter point deserves some explanation. We assume

that the general form of the classifier used by S is known, however the param-

eters of the classifier need to be kept secret. By referring to the description

given in Chapter 7, the algorithm parameters that S aims at keeping secret

are the matrix B and the classification tree of Figure 7.7. This is a reasonable

assumption since the domain specific knowledge needed to classify the ECGs

and the knowledge got from the training, a knowledge that S may want to

protect, reside in the classification tree and the matrix B.

In order to introduce the privacy-preserving ECG classifier, we observe

that the classification algorithm based on the QDF functions and the clas-

sification tree (described in Chapter 7) is nothing but an LBP with fc,(`) as

attribute vector, and 6 nodes Pi =
〈
β

(`)
i , 0

〉
, i = 1, .., 6, where fc,(`) and β

(`)
i

are `-bit representations of the features and projection vectors. In this way,

the general scheme for the privacy-preserving implementation of the classifier

assumes the form given in Figure 8.2. The generic x(`), ai
(`), t

(`′)
i are replaced

here by the specific fc(`), βi
(`), 0 respectively.
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Figure 8.2: Privacy-preserving ECG diagnosis.

All steps until the computation of the composite feature vector are per-

formed by C on the plain data. Such a choice does not jeopardize the security

of the system from the server’s point of view, since S is not interested in

keeping the structure of the classifier secret, but only in preventing users
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from knowing the matrix B and the classification tree. On the contrary,

all the steps from the projection onto the directions βi’s, through the final

classification are carried out securely. Note that with respect to the overall

architecture depicted in Figure 7.4, we added a quantization step before the

encryption of the composite feature vector. The need for such a step stems

from the observation that the parameters α1, α2, α3, α4 resulting from the AR

model estimation procedure are usually represented as floating point numbers,

a representation that is not suitable for s.p.e.d. protocols which can compute

on numbers represented as integers only. For this reason the elements of the

composite feature vector fc are quantized and represented in integer arith-

metic for subsequent processing2. Note that the choice of the quantization

step, and consequently the number of bits used to represent the data (` in the

LBP terminology), is crucial since on one side it determines the complexity

of the overall secure protocol and on the other side it has an impact on the

accuracy of the ECG classification.

Differently from the protocol described in Chapter 7, we omit the sixth

feature obtaining the feature vector f = [α1, α2, α3, α4, n1] and hence the

composite feature vector fc is composed by 21 values. This omission is due to

the fact that the feature removed can be expressed as n2 = 300 − n1, where

300 is the number of samples in each chunk, and in the QDFs each product

involving n2 (its square values and its products with other features) can be

expressed as a function of n1.

8.2.1 Quantization error analysis

In this section we estimate the impact that the quantization error introduced

passing from fc to fc,(`) and from βi to β
(`)
i has on the classification accu-

racy. Such an analysis will be used to determine the minimum number of

bits (`) needed to represent the attribute vector and the linear combination

vectors of the LBP. The value of ` influences the complexity of the secure

classification protocol for two main reasons. As already outlined in Chapter 3

and Chapter 5, the main ingredients of the protocols for secure evaluation

of private LBPs are garbled circuits and additively homomorphic encryption.

2In the same way the coefficients of matrix B, representing the combination vectors of

the LBP, are represented as integer numbers.
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In the case of garbled circuits, the input of the protocol are the single bits

used to represent fc,(`) and β
(`)
i . It is obvious, then, that the greater the

number of bits, the more complex the resulting protocol will be. With regard

to computing on homomorphically encrypted data, we observe that after each

multiplication carried out in the encrypted domain, the number of bits neces-

sary to represent the output of the multiplication increases3 (it approximately

doubles). Since it is not possible to carry out truncations in the encrypted

domain, it is necessary that the size of the ring used by the homomorphic

cryptosystem is large enough to contain the output of the computations with-

out an overflow which would cause an invalid result. Augmenting the number

of bits used to represent the inputs of the LBP may require to increase the

size of the needed cryptosystem ring which results in an increased protocol

complexity.

To start with, we observe that quantization is applied to the composite

feature vector fc, that is used to compute the vector y, through multiplication

with the matrix B. After such a step, only the signs of vector y are retained,

hence it is sufficient to analyze the effect of quantization until the computation

of the sign of y. As to the processing steps carried out by the client prior to

quantization, we assume that all the blocks until QDF are carried out by using

a standard double precision floating point arithmetic. In order to simplify the

notation, we consider only the computation of one coefficient of the vector y.

The function to be computed is a simple inner product: y = fc,β> =
∑

j βjf
c
j

where the index i has been omitted, and βj and f cj are real numbers. The

quantized version of the above relationship can be expressed as follows:

βq,j = ρ1βj + ε1,j = bρ1βje
f cq,j = ρ2f

c
j + ε2,j = bρ2f

c
j e (8.2)

where ρ1 and ρ2 are positive integers and ε1,j and ε2,j are the quantization

errors affecting βq,j and f cq,j respectively. By using the above relations it is

3The same observation holds for additions, however additions have a negligible effect

with respect to multiplications.
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possible to evaluate the final error due to quantization:

N−1∑

j=0

(
ρ1βj + ε1,j

)(
ρ2f

c
j + ε2,j

)
=

=
N−1∑

j=0

ρ1ρ2βjf
c
j + ρ1βjε2,j + ρ2f

c
j ε1,j + ε1,jε2,j =

= ρ1ρ2

(
y +

N−1∑

j=0

βjε2,j

ρ2
+

N−1∑

j=0

f cj ε1,j

ρ1
+

N−1∑

j=0

ε1,jε2,j

ρ1ρ2

︸ ︷︷ ︸
ε

)
(8.3)

where ε indicates the error on the scalar product once the scaling factor ρ1ρ2

is canceled out. By letting max(|βj |) = Mb, max(|f cj |) = Mf and by noting

that max(|ε1,j |) = max(|ε2,j |) = 1
2 , we have:

ε ≤ N

2ρ1ρ2

(
ρ1Mb + ρ2Mf +

1

2

)
≤ ε∗ (8.4)

where ε∗ is a target maximum error that we do not want to exceed. Given

ε∗, choosing the optimum values of ρ1 and ρ2 is equivalent to a constrained

minimization problem in which the function to be minimized is ρ1ρ2 (since

this is equivalent to minimize the number of bits necessary to represent the

output of the scalar product) and the constraint corresponds to equation (8.4),

that is:

ρ1 ≥
N(2ρ2Mf + 1)

4ρ2ε∗ − 2NMb
. (8.5)

To ensure that ρ1 is a positive integer, we require 2ρ2ε
∗ −NMb > 0, yielding

the following minimization problem:

min
ρ2>

NMb
2ε∗

ρ2
N(2ρ2Mf + 1)

4ρ2ε∗ − 2NMb
. (8.6)

By solving (8.6) we obtain the solutions:

ρ2 =
1

2Mfε∗

(
NMbMf +

√
NMbMf (ε∗ +NMbMf )

)
, (8.7)

ρ1 =
1

2Mbε∗

(
NMbMf +

√
NMbMf (ε∗ +NMbMf )

)
. (8.8)
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Special Case: Mb = Mf We now consider the case in which β and fc

are represented with the same number of bits, that is we let max(|βj |) =

max(|f cj |) = M yielding:

ρ1 = ρ2 = ρ =
1

2ε∗

(
NM +

√
N(ε∗ +NM2)

)
. (8.9)

At this point we are ready to define the size of the ring usedto represent

the composite feature vector and the matrix B, in fact the maximum y that

can be obtained from (8.3) is

max(|y|) = ρ2M2N + ρMN +
N

2
(8.10)

so it is necessary to use a ring Zn with n at least:

n ≥ 2

(
ρ2M2N + ρMN +

N

2

)
(8.11)

The ring size is a function of M,N and ε∗, that is:

n ≥ 2

(
ρ2M2N + ρMN +

N

2

)

= 2

[(
1

2ε∗

(
NM +

√
N(ε∗ +NM2)

))2

M2N

+

(
1

2ε∗

(
NM +

√
N(ε∗ +NM2)

))
MN +

N

2

]

=
N

2(ε∗)2

[
2ε∗ +M2N(2M2N + 3ε∗)

+(2M3N + 2Mε∗)
√
N(ε∗ +M2N)

]

≈ 2M4N3

(ε∗)2
(8.12)

In our case N = 21, however the value of M is not known. In principle,

in fact, the parameters of the AR model are not bounded4 and hence M

should be ∞. Of course this is not an acceptable solution, all the more that

4The solutions of the linear system Ra = r grows without any bound as the determinant

of the matrix R tends to zero.
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in practical applications the AR model coefficient for ECG signals are rather

small (lower than 10 in most cases). It is then reasonable to assume that the

maximum value of the composite feature vector is determined by the features

n1 whose maximum value is 300 (i.e., the number of samples of each an ECG

sequence corresponding to one heart beat), yielding Mf = 90000 (recall that

fc contains the squared valued of the features f). A similar argument holds for

the elements of the matrix B, a rigorous upper bound does not exist, however

in practice very large values are never encountered, hence we can safely set

Mb = Mf = M = 90000. By inserting the above values within equation

(8.12), we obtain the values of n as a function of ε∗ as plotted in Figure 8.3.

Some numerical results for typical values of ε∗ are given in Table 8.2.
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Figure 8.3: Ring bit length.

ε∗ log2(n) ρ log2(maxi{|βi|}) log2(maxi{|f ci |})
10−5 114 1.9× 1011 54 54

10−10 147 1.9× 1016 71 71

10−20 213 1.9× 1026 104 104

10−30 280 1.9× 1036 137 137

Table 8.2: Numerical results

By considering the numerical results reported in Table 8.2 of [ASSK07]

and the precision of a typical ECG database (e.g. the MIT-BIH database

available on PhysioBank that has a precision of 10−4), we choose a target

final error of 10−5, resulting in a representation of the feature vector fc and
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the matrix B of 54 bits for each coefficient.

Speeding up the system

The analysis reported above is mainly based on worst case assumptions. In

practice, we may expect that the number of bits necessary for a good classifi-

cation accuracy is lower than 54. To investigate this aspect, we implemented

a simulator to exactly understand which is the minimum number of bits that

can be used. The results we obtained by running the simulator on the MIT

Database of ECG signals are shown in Figure 8.4. This figure shows the ac-

curacy of the system as a function of `. As we can see ` = 44 is sufficient to

guarantee the same performance of a non-quantized implementation.

In order to further speed up the system, we tested a version of the ECG

classifier with a reduced number of features. Specifically, we reduced f by

eliminating even the feature n1. In this way, we obtain a 15-coefficient fc.

Obviously the reduction of the feature space results also in a reduction of

the accuracy, but this reduction is quite negligible: our experiments, in fact,

indicate that the accuracy decreases only from 88.33% to 86.30%. On the

other hand, as it will be shown later, by removing one feature we gain a lot

from a complexity point of view. Such a gain is already visible in Figure 8.4,

where we can see that with the reduced set of features a value of ` as low as

24 is enough to obtain the same performance of a non-quantized version of

the classifier.
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Figure 8.4: Classification accuracy of dataset using 21 and 15 features
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8.2.2 Analysis

To evaluate the communication and computation complexity of the Hybrid

and the GC protocols, we estimated the communication complexity according

to previous analysis and implemented both protocols in C++. The security

parameters in the protocols of [BFK+09a] are denoted by T for the bitlength

of the RSA modulus for Paillier encryption [Pai99] in the Hybrid protocol,

and t for the symmetric security parameter which determines the performance

of the GC protocol using an elliptic-curve based OT protocol. For the tests,

we chose the following security parameters according to common recommen-

dations [GQ09]: T = 1248, t = 80 for short-term security (recommended use

up to 20105), T = 2432, t = 112 for medium-term security (up to 2030) and

T = 3248, t = 128) for long-term security.

To analyze the protocols efficiency, we considered the parameter sizes pro-

posed in Section 8.2.1:

• In scenario #1, we represent the features of fc,` with n = 21 and ` = 56

bits, as obtained from the theoretical estimations.

• In scenario #2, the features are represented with n = 21 and ` = 44

bits, the lower value obtained from the practical tests.

• In scenario #3, we measure how the optimizations of Section 8.2.1 in-

crease the efficiency of the protocols. Here n = 15 and ` = 24 bits.

We recall that d = 6 and `′ is obtained according to (8.1). The estimated

communication complexity of the protocol for secure classification of ECG

data is given in Table 10.2. We consider the elliptic curve implementation

of OT of Section 4.1 and we do not use offline precomputation of OT and

transmission of the circuit. Note that since in the worst case `′=92 and

d = 6, only one pack is transmitted from S to C.
To evaluate the real communication and computation complexity of the

Hybrid and the GC instantiation of the protocol, we implemented both pro-

tocols in C++ using the Miracl library6. The measured communication and

computation complexities for short-term security are shown in Table 8.4. The

5Tests were performed in 2009. Anyway these values are still widely used today.
6http://www.shamus.ie

http://www.shamus.ie
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Test
Features n `

Protocol Short-term Medium-term Long-term

# Type security security security

1 5 21 54
GC 28.1 MByte 39.3 MByte 45.0 MByte

Hybrid 105 kByte 151 kByte 175 kByte

2 5 21 44
GC 18.6 MByte 26 MByte 29.7 MByte

Hybrid 88 kByte 126 kByte 147 kByte

3 4 15 24
GC 3.9 MByte 5.4 MByte 6.2 MByte

Hybrid 50 kByte 72 kByte 84 kByte

Table 8.3: Estimated Communication Complexity

tests were performed on two PCs with 3 GHz Intel Core Duo processor and

4GB memory connected via Gigabit Ethernet. The third scenario has been

tested even for medium-term security. We underline that the performance of

the two software has not be stressed and not all the improvements described

for GC and OT have been implemented.

Test Protocol Computation

# Features N ` Type Client [s] Server [s]

cpu total cpu total

1 5 21 54
Hybrid 2.3 35.4 5.4 34.2

GC 7.2 64.5 17.3 64.7

2 5 21 44
Hybrid 2.0 29.0 4.8 27.6

GC 4.7 48.5 11.5 48.8

3 4 15 24
Hybrid 1.3 18.7 3.3 16.2

GC 1.3 17.5 3.1 19.2

3∗ 4 15 24
Hybrid 6.5 40.5 16.3 30.9

GC 3.0 20.4 4.6 20.8

* medium-term security

Table 8.4: Performance of protocols for secure ECG classification

Table 8.4 reports the computation complexity for the client and the server

(separated into CPU time and total time which additionally includes data

transfer and idle times). From these measurements we draw the following

conclusions:

Parameter Sizes: The performance of both protocols in test #2 is slightly

better than that of test #1 due to smaller size of `. Reducing the num-

ber of features in test #3 results in substantially improved protocols
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while the classification accuracy is only slightly decreased as discussed

in Section 8.2.1.

Communication Complexity: The data transmitted in the GC protocol

(MBytes) is an order of magnitude larger than in the Hybrid protocol

(kBytes). However, we can easily observe that the biggest part of data is

transmitted from S to C. This asymmetric communication complexity of

the GC protocol matches today’s asymmetric network connections (e.g.,

ADSL or mobile networks), where the upstream is limited, while tens of

MBytes can be downloaded easily. Future research should concentrate

on further reducing the communication complexity of GC’s.

Computation Complexity (short-term security): For the test cases

#1 and #2 the computation complexity of the Hybrid protocol is better

by a factor of three in CPU time and factor two in total time, whereas for

the optimized test case #3 both protocols have approximately the same

computation complexity. Hence, for short-term security, the Hybrid

protocol is better than the GC protocol with respect to computation

and communication complexity (see also ‘Communication Complexity’

above).

Computation Complexity (medium-term security): Increasing the

security parameters has a more dramatic effect on the computation com-

plexity of the Hybrid protocol than on that of the GC protocol (see test

#3 vs. #3∗). This effect results from the asymmetric security parame-

ter T being almost doubled, whereas the symmetric security parameter

t is only slightly increased. We stress that this loss in performance of ad-

ditively homomorphic encryption for realistic security parameter sizes is

often neglected in literature or hidden by choosing relatively small mod-

uli sizes of T = 1024 bit. For medium-term security, the GC protocol is

substantially better than the Hybrid protocol.

By representing the quantized features with a lower number of bits (the

minimum that permits a correct evaluation) and omitting the feature related

to the AR model error, the communication and computation is decreased

significantly. Working with 4 features and quantizing the features with 24 bits,
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we have a slightly loss of accuracy of the protocol, opposed to an important

complexity decrease. This is acceptable because an ECG may be processed in

a very short time, opening the way to real time processing of ECG signals in

the encrypted domain. As expected, we can see that the Hybrid version of the

protocol has a much lower communication complexity, while the computation

complexity of the two protocols is nearly the same (still with some advantage

for the hybrid protocol).

Toward a more efficient LBP

We conclude the chapter showing how a more efficient LBP implementation

can be obtained by introducing precomputation on the Hybrid-LBP. For the

comparison we consider the third scenario with short-term security.

Offline Phase In the offline phase, the garbled circuits are generated by

S (2·d`′+1 = 2·306+1 garbled tables, where `′ = 2∗24+dlog2 15−1e =

51)) and transferred to C [(2 ·306 ·4+(2d)) ·t ≈ 2512t bits]. Additionally,

306 parallel OTs need to be pre-computed. Being 306 > 3t the extended

OT protocol described in Section 4.4 is used, resulting in the evaluation

of an OT tt having complexity ≈ 6t2 bits and an extension to OT d`
′

t that

requires the transmission of other ≈ 4d`′t = 1224t bits. The offline

phase requires 4 rounds.

Online Phase The communication complexity in the online phase is ap-

proximately 15 cyphertexts from C to S and one from S to C. Moreover

an online OT of d`′ = 306 values is performed, while S inputs d`′ secrets

for the least significant bits of r and d`′ secrets for the thresholds. The

bandwidth necessary for the online phase is 16 ∗ 2T + 306 ∗ 2t + 306 ∗
t+ 306 ∗ t = 32T + 1224t bits. The online phase requires 4 rounds.

The resulting complexity of the LBP-based ECG classification protocol is

summarized in Table 8.5.

Optimization If S does not want to hide to C that indeed all thresholds t`
′
i

are zero, we can omit the comparison and directly use the most significant bit

instead. By doing this, we no longer need the comparison circuits and save
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Phase Rounds Data [bits]

Setup 4 3736t+ 6t2

Online 4 32T + 1224t

Table 8.5: Communication complexity of LBP-based ECG classification pro-

tocol.

306 non-XOR gates. This yields a more efficient protocol where in the setup

phase 4 · 306 = 1, 224 less invocations of H by S and 4 · 306t = 1224t less

communication are needed and in the online phase C needs 306 less invocations

of H.



Chapter 9

Privacy preserving Classification by using
Neural Network

In this chapter we address the classification of ECG signals through artifi-

cial Neural Networks (NN). In fact, neural networks are well-know machine

learning structures used in many different fields ranging from approximation

to classification. NNs are widely used as classifiers and, in general, they give

good results if the set used to train the network is representative of all the

considered classes and the generalization grade is good enough (see [KB95] or

[AB01]).

Finding the right topology for a NN is not a simple task due to the fact

that NNs have several degrees of freedom including: number of hidden layers,

neurons per hidden layer and form of activation functions. In most of the

cases a two layer NN is sufficient to obtain a good classification, so in the

rest of the paper we focus on NNs with two layers, that is NNs in which

the inputs are connected to a hidden layer, that, in turn, is connected to the

output layer.

In Section 9.1 the development of a Neural Network implementing the

ECG classification in the plain domain is described. Then we show how the

NN can be adapted to work with integer values (Section 9.2), as necessary for

a s.p.e.d. implementation and finally we describe and analyze its implementa-

tion in the encrypted domain (Section 9.3), also providing a comparison with

the LBP-based solution of Chapter 8.

9.1 Neural Network design

Before going on, in order to ease the description of the s.p.e.d. protocol based

on a NN classifier, we review the details of the operations carried out by a

NN. Generally speaking each neuron in a NN performs only two simple oper-
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ations: a scalar product and a function evaluation. As shown in Figure 9.1,

a single neuron, or perceptron, consists of a number of weighted connections

w = (w1, w2, ..., wn)T , a bias b and an activation function f(·). When a new

input vector x = (x1, x2, ..., xn)T is provided, the perceptron performs a scalar

product among the weights and the input vector and adds up the bias:

b+
n∑

i=1

wi xi = b+ wT x (9.1)

after this, the activation function is applied producing the neuron output:

y = f(b+ wT x).

x1

...

xn

b

w1

wn

b+
∑n

i=1 wixi
y = f(b+

∑n
i=1 wixi)

x2 w2

Figure 9.1: A perceptron.

The composition of multiple perceptrons in a cascade of layers realizes a

NN. In the rest of the chapter we will use the following notation referring to

a general two layer NN:

• n is the number of inputs of the NN, and x = (x1, x2, ..., xn)T is the

input vector,

• nh is the number of neurons in the hidden layer (the first NN layer),

• no is the number of neurons in the output layer,

• Wh is a matrix of size nh × n whose elements are the weights of the

connections between the inputs and the hidden layer, that is: Wh(i, j) =

wh;i,j is the coefficient used to weight the connection between the j-th

input and the i-th node of the hidden layer,
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• Wo is a matrix of size no × nh whose elements are the weights of

the connections between the hidden and the output layers, that is:

Wo(i, j) = wo;i,j is the coefficient used to weight the connection be-

tween the output of the j-th node of the hidden layer and the i-th node

of the output layer,

• yh is a vector of length nh with the outputs of the neurons of the hidden

layer,

• yo is a vector of length no with the outputs of the neurons of the output

layer,

• bh is a vector of length nh that contains the biases of the neurons of the

hidden layer,

• bo is a vector of length no that contains the biases of the neurons of the

output layer.

With the above notation, the output of the i-th neuron in the hidden layer

is:

yh;i = f(bh;i +

n∑

j=1

wh;i,j xj) (9.2)

while the output of the entire hidden layer can be written in matrix form in

the following way:

yh = f(bh + Wh x), (9.3)

where the activation function f(·) is applied component-wise to all the values

of the input vector. Similarly the output of the k-th neuron of the output

layer is

yo;k = bo;k +

nh∑

i=1

wo;k,iyh;i (9.4)

that in matrix form can be written as:

yo = bo + Wo yh, (9.5)

and yo is the output of the NN. Note that the neurons of the output layer do

not apply any activation function1. During the test phase we expect that only

1More formally the activation function of the neurons of the output layer is the identity

function.
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an output neuron returns a positive value. If more neurons have a positive

output, the one returning the highest value is chosen for classification.

In our scenario, the number of inputs is dictated by the number of features

the classifier relies on, while the number of output layers corresponds to the

number of diseases the NN should distinguish, so we have n = 4 and no = 6.

The degrees of freedom we have, then, are nh, the number of neurons in the

hidden layer, and the activation function.

To choose nh, we carried out some tests trying to reach the same accuracy

provided by the LBP-based classifier. There is not a rule to choose the correct

number of neurons for the hidden layer. Considering that the network has 4

inputs and 6 outputs, we can suppose that the hidden layer may have from

4 to 24 neurons. Hardly a higher number of neurons is necessary. Being the

complexity of the network related to the number of neurons, the research has

been restricted to a maximum of 15 neurons. A training set was built by

using as samples the pair: (f ,o) where, as said before, f is the feature vector

(f1, f2, f3, f4)> = (a1, a2, a3, a4)> and o is a six-component vector, having

value equal to 1 for the index of the class the ECG signal belongs to and −1

elsewhere2. In our experiments we used a dataset of 200 ECG signals (and

the corresponding 200 feature vectors) taken from PhysioBank [GAG+00].

Specifically, we split the dataset into a training set (containing 140 ECG

sequences) and a test set (with the remaining 60 signals)3. While the size of

the dataset may not be realistic for real life applications, we decided to use

it since this dataset is often used in relevant literature on ECG classification;

for instance it is the same used in [ASSK07]. As it will be clear from the

following discussion, the size of the dataset does not have a direct impact on

the structure of the proposed protocols (while it surely has a great impact

on the training phase), however it is possible that for larger datasets a larger

number of features is needed thus impacting on the complexity of the overall

protocols.

Together with the number of nodes in the hidden layer, the activation

function has to be chosen. The natural choice is to use the Hyperbolic Tangent

2This kind of Neural Network is often called NN with fired output.
3NN network training require a large dataset, hence we had the necessity to choose a

bigger training set than the one used for the LBP implementation, where we chose the

training and test dataset size according to [GSK02].
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Sigmoid transfer function (tansig(·)) widely used in NNs (Figure 9.2(a)):

tansig(x) =
2

1 + e−2x
− 1 (9.6)

As opposed to the test phase, during training we have the necessity to use an

activation function that returns values in the range [−1, 1], the values used

for the vector o, hence during training the tansig(·) function is used even in

the output layer. Unluckily, the tansig(·) function is difficult to implement in

a s.p.e.d. protocol, hence a simpler solution is necessary. Being simple linear

approximations of the tansig(·) function and considering their easy imple-

mentation in the encrypted domain, the preferable transfer functions are the

Hard-Limit (hardlim(·)) transfer function (Figure 9.2(b)) or the Symmetric

Hard-Limit (hardlims(·)) transfer function(Figure 9.2(c)), whose implemen-

tation relies on a CMP circuit, but unfortunately training a Neural network

with a continuous and non-derivable transfer function is difficult and training

with a non-continuous function is quite impossible.

tansig hardlim

hardlims satlins

Figure 9.2: Transfer functions
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We exploited two approaches to train the NN. First of all the neural net-

work was trained by using the tansig(·) function and then other functions, easy

to implement in the encrypted domain, were usedduring the tests, checking

how accuracy changes with the number of neurons in the hidden layer. Fig-

ure 9.3 shows the classification accuracy as a function of the number of neurons

of the hidden layer obtained by using the tansig function during tests and the

accuracy obtained substituting it with the hardlims(·) transfer function.
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Figure 9.3: Classification accuracy as a function of the node number with the

tansig or hardlims transfer functions in the same Neural networks.

Being the classification accuracy not sufficient, we tried to substitute the

training function with the Symmetric Saturating Linear (satlins(·)) transfer

function (Figure 9.2(d)), defined by:

f(x) = SATLIN(x) =





1 if x > 1

x if − 1 < x < 1

−1 if x < −1,

(9.7)

obtaining the results shown in Figure 9.4.

As second solution, we tried to directly train the NN with the satlins

function. Since satlins(·) does not have a continuous derivative, training a

NN with it is quite difficult, hence we used different training functions. We

obtained the best results with the Levenberg-Marquardt regularized learning

algorithm [HM94]. Using this setup and 100 epochs for training, we obtained

the classification accuracy shown in Figure 9.5. Considering the results of
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Figure 9.4: Classification accuracy as a function of the node number with the

tansig or satlins transfer functions in the same Neural networks.
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Figure 9.5: Classification accuracy as a function of the number of nodes in

the hidden layer and SATLIN as activation function.

Figure 9.5, we developed the NN described in Figure 9.6 (for the sake of

simplicity the figure shows only a part of the involved variables).

The NN is the smallest giving a classification accuracy larger than 86.30%.

It has nh = 6 neurons in the hidden layer, trained and evaluated with the

satlins(·) function. Note that in the final classification no activation function

is used in the output layer (that is equivalent to use f(x) = x as activation

function) and the final classification is obtained according to the position of

the maximum among the outputs of the NN.

A compact representation of the NN is given in Figure 9.7 where the
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Figure 9.7: Chain blocks to compute the output of a NN.

entire flow needed to evaluate the NN is shown. In particular we recall that

in formulas we have:

yo = bo + Wo SATLIN (bh + Wh f) , (9.8)

with the finally classification result computed as:

o = arg max yo. (9.9)
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9.2 Quantized Neural Network classifier

In this section we introduce the quantized version of the NN classifier de-

scribed so far, i.e. a version of the classifier that works only with integer

numbers.

In a Neural Network there are several parameters that need to be quan-

tized, thus we introduce qi, qh, qo that are the multipliers used to quantize

the inputs of the NN, and the parameters (weights and biases) of the hidden

and the output layers respectively. We also define `i, `h, `o respectively as the

number of bits needed to represent the quantized version of the inputs and

the quantized parameters of the hidden and output layers, including the sign

bits.

Working with quantized values, the quantized output vector yhq of the

hidden layer is:

yhq = QSATLIN (bqiqhbhe+ bqiqhWh fe) , (9.10)

where the biases bh have been multiplied by both qi and qh to make the bias

homogeneous with the term qiqhWh f . As to the SATLIN function of Eq. 9.7,

we have replaced it with its quantized version defined as follows:

QSATLIN(x) =





qiqh if x ≥ qiqh
x if −qiqh < x < qiqh
−qiqh if x ≤ −qiqh

(9.11)

where saturation occurs when the magnitude of the input is equal to qiqh
corresponding to a unitary magnitude of the non-quantized inputs. Due to

saturation, the output of the QSATLIN function requires less bits than its

input to be represented, namely `q = 1 + dlog2(qiqh)e at most (the first bit

represents the sign), so each component in yhq requires at most `q bits. This

should be contrasted with the number of bits needed to represent the input

of the QSATLIN function. Such an input, in fact, is the result of the prod-

uct between the inputs and the weights (it is a scalar product), that needs

1 + 3 + (`i − 1) + (`h − 1) = `i + `h + 2 bits, where the 3 additional bits

are needed because we are adding five values (four for the scalar product be-

tween inputs and weights and one for the bias) so, this operation requires at
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most dlog2(5)e = 3 additional bits. As already said, after the application of

QSATLIN, the number of bits needed to represent the output is reduced to `q.

A similar analysis can be applied to the output layer, where we have:

yoq = bqoqhqiboe+ bqoWo yhqe (9.12)

and where each component of yoq requires 1+3+(`q−1)+(`o−1) = `q+`o+2

bits (as before one bit is used for the sign). At this point, the output of the

maximum function that completes the classification is

o = arg max{yoq} (9.13)

and the number of bits necessary to represent it is the logarithm of the length

of yoq, since o is just the index of the biggest component. We are now ready

to give a rigorous description of the number of bits necessary at each step of

the NN. Specifically, the following definitions hold:

• f (`i), the inputs of the NN, are signed integers represented with `i bits;

• W
(`h)
h , the weights in the hidden layer, are signed integers represented

with `h bits;

• b
(`hβ)

h , the biases in the hidden layer, are signed integers represented with

`hβ = `i + `h − 1 bits;

• W
(`o)
o , the weights in the output layer, are signed integers represented

with `o bits;

• b
(`oβ)
o , the biases in the output layer, are signed integers represented with

`oβ = `q + `o − 1 bits;

We can summarize the operation of a quantized NN with the required
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Figure 9.8: Quantized NN. In our case we have n = 4, nh = 6 and no = 6.

bit-lengths at each step, with the following formula (see also Figure 9.8):

yoq = b
(`oβ)
o + qoW

(`o)
o QSATLIN




b
(`hβ)

h + W
(`h)
h f (`i)

︸ ︷︷ ︸
`i+`h+1︸ ︷︷ ︸

`i+`h+2




︸ ︷︷ ︸
`q︸ ︷︷ ︸

`q+`o+2

(9.14)

Finally the NN classification result is o = arg max{yo} that can be repre-

sented with dlog2 noe = 3 bits.

We conclude this section by highlighting the fact that, due to the pres-

ence of the saturation function, the magnitudes of the intermediate results

of the NN are bounded, as opposed to what happens in general with cas-

cade quantized algorithms where the bit size of the quantities involved in the

computation grows linearly with the number of subsequent multiplications to

be performed. This is a very important property of our implementation of a

quantized NN, that permits to reduce the complexity of the secure protocol

for the NN classifier.

9.2.1 Representation vs. Classification Accuracy

Having defined the quantized version of the NN classifier, we can determine

the minimum number of bits necessary to represent the values involved in the

computations so to obtain the same accuracy of a floating point implementa-

tion of the classifiers. This is a crucial step, since the size in bits of the input



178 9. Privacy preserving Classification by using Neural Network

features and that of the classifier parameters have an immediate impact on

the complexity of the s.p.e.d. implementation of the classifiers.

In order to determine the minimum number of bits necessary to reach

the same classification accuracy of the LBP classifier, we run a simulator

that evaluates the classification accuracy of the NN in the case `i = `h = `o,

obtaining the results shown in Figure 9.9. To guarantee the same classification
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Figure 9.9: Classification accuracy as a function of `i, `h, `o.

obtained by the LBP classifier, we must let `i = `h = `o = 13 bits. These

numbers of bits (namely `i and `h) are those necessary to correctly represent

the integer part of the input features and NN parameters multiplied by the

quantization factors qi and qh. Specifically, according to the experiments we

carried out with the PhysioBank database, they correspond to qi = 511.87

and qh = 255.94.

The results of the scalar products in the hidden layer are used as input

in the QSATLIN(·) function that gives an output with magnitude bounded by

qiqh, hence it can be represented with `q = dlog2 qiqhe + 1 bits. From the

values given above we obtain qiqh = 131008 yielding `q = 18 bits, including

the sign bit. As a further test we tried to reduce the number of bits used for

the output layer once the bitlength of the parameters of the hidden layer has

been fixed. As shown in Figure 9.10, letting `o = 8 is sufficient to guarantee

the same accuracy. A summary of the parameters we used for the NN classifier

are given in Table 9.1.
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Figure 9.10: Classification accuracy in function of `o, with `i = `h = 13.

Description Symbol Value

# neurons in input layer n 4

# neurons in hidden layer nh 6

# neurons in output layer no 6

# bits to represent inputs `i 13

# bits to represent hidden layer parameters `h 13

# bits to represent output layer parameters `o 8

# bits to represent output of QSATLIN `q 18

Maximum value of the output of QSATLIN qiqh 131008

Table 9.1: NN Parameters.

9.3 Privacy-Preserving NN classifier

With respect to previous works in NN computation in a SFE framework (e.g.

[OPB07] where the activation functions are implemented by introducing a

rather security-critical multiplicative blinding step), our solution is provably

secure and computationally efficient. Specifically, the general structure of our

protocol follows the approach of [SS08] where the quantized NN for classifi-

cation (in our case the NN shown in Figure 9.8) is represented as a boolean

circuit which is evaluated securely with a garbled circuit protocol. While

[SS08] gives only concrete circuit instantiations for threshold functions, our

NN uses the QSATLIN function for which we give an efficient circuit instanti-

ation.
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We now describe the garbled circuit implementing the NN according to

the parameters determined in the previous section:

Input: At the input of the circuit we have the vector f (`i) (n·`i = 4·13 = 52

wires) provided by C. The inputs provided by S are

• W
(`h)
h [nh · n · `h = 6 · 4 · 13 = 312 wires],

• b
(`hβ)

h [nh · (`i + `h − 1) = 6 · 25 = 150 wires],

• W
(`o)
o [no · nh · `o = 6 · 6 · 8 = 288 wires],

• b
(`oβ)
o [nh · (`q + `o − 1) = 6 · 25 = 150 wires].

In total C has 52 input wires and S has 312 + 150 + 288 + 150 = 900

input wires.

Circuit: The circuit is constructed by instantiating the blocks of Fig-

ure 9.8 with circuit building blocks as follows.

The inputs f (`i) and W
(`h)
h are given in sign-magnitude representa-

tion s.t. we can easily compute their component-wise product: the

magnitude is the product of the input magnitudes using n · nh MUL

blocks for 12-bit unsigned integers (4 · 6 · (2 · 122 − 12) = 6, 624 non-

XOR gates); the sign is computed “for free” by XORing the input

signs. Now, depending on the sign, the magnitudes of the products

are added to or subtracted from b
(`hβ)

h by using ADDSUB blocks (at

most nh · (n · (`i+`h+1)) = 6 ·4 ·27 = 648 non-XOR gates). The output

b
(`hβ)

h +W
(`h)
h f (`i) is a vector with nh = 6 components of `i+`h+2 = 28-

bit signed values in 2’s complement representation.

Afterwards, for each of the nh = 6 neurons the QSATLIN activation

function is evaluated: first, the 28-bit input (let us call it x) is con-

verted from 2’s complement into sign/magnitude representation with an

ADDSUB block (27 non-XOR gates). Afterwards, the QSATLIN func-

tion is computed according to Eq. (9.11) as QSATLIN(x) = sign(x) ·
min(abs(x), qiqh). The minimum is computed by comparing the magni-

tude of x with 1 using a CMP block (27 non-XOR gates). Depending on

the outcome of this comparison, the 17-bit magnitude of the outcome
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is either the magnitude of x or qiqh selected with a MUX block [17 non-

XOR gates]. Overall, the conversion and computation of the nh = 6

QSATLIN functions requires 6 · (2 · 27 + 17) = 426 non-XOR gates. The

output yhq is a vector of nh = 6 components of `q = 18-bit signed values

in sign/magnitude representation.

The value yoq = b
(`oβ)
o + W

(`o)
o yhq is computed similarly to the com-

putation of b
(`hβ)

h + W
(`h)
h f (`i) described before and requires a circuit

of at most nonh(2(`q − 1)(`o − 1) − (`q − 1)) + nonh(`q + `o + 2) =

6 · 6 · (2 · 17 · 7 − 17) + 6 · 6 · 28 = 7, 956 + 1, 008 non-XOR gates. The

output yoq is a vector with no = 6 components of `q + `o + 2 = 28-bit

signed values in 2’s complement representation.

Finally, the index of the maximum value is determined with an ARGMAX

block (28 · (2no− 3) + (no + 1) = 28 · (2 · 6− 3) + (6 + 1) = 259 non-XOR

gates).

Outputs: The output of the circuit for C is o (3 wires).

In total, the circuit has 52 input wires of C, 312 + 150 + 288 + 150 = 900

input wires of S, at most 6, 624 + 648 + 426 + 7, 956 + 1, 008 + 259 / 17, 000

non-XOR 2-input gates and 3 output wires for C.
As the NN classifier can be represented as a reasonably small boolean

circuit C, it can be evaluated securely with Yao’s garbled circuit (GC) protocol

as described in Chapter 5. The inputs to the protocol are the quantized inputs

of C: inC = (f (`i)) and S: inS = (W
(`h)
h ,b

(`hβ)

h ,W
(`o)
o ,b

(`oβ)
o ). These plain

inputs are converted into their corresponding garbled inputs ĩnC , ĩnS provided

to C who uses them to evaluate a garbled circuit C̃ created by S to obtain

the garbled output z̃ = C̃(ĩnC , ĩnS). Finally, the garbled output is converted

into the plain value o = z output to C.

The costs for this NN-based ECG classification protocol with symmetric

parameter t are summarized in Table 9.2:

Setup Phase the garbled circuit C̃ is generated by S and transferred to

C (17, 000 · 4(t + 1) ≈ 68, 000t bits). Additionally, |inC | = 52 parallel

OTs need to be pre-computed to convert C’s input inC into its garbled
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version ĩnC . Being the number of OT lower than t, the extended OT

protocol is not used. The setup phase requires 3 moves.

Online Phase: In the online phase, C obtains the garbled inputs ĩnS cor-

responding to S’s input inS (900 · (t+ 1) ≈ 900t bits) and executes the

online phase of 52 parallel OTs (≈ 104t bits) which requires 2 moves.

Phase Moves Data [bits]

Setup 3 68, 312t

Online 2 1, 004t

Table 9.2: Complexity of NN-based ECG classification protocol.

9.3.1 Comparison with the LBP solution

Finally, we compare the two approaches we have investigated for ECG classi-

fication, from an efficiency point of view.

For the length of the security parameters, we consider short-term secu-

rity (t = 80 and T = 1248 bits) and long-term security (t = 128 and

T = 3248 bits). In both cases, the NN protocol requires approximately

16 times more bandwidth than the LBP solution in the setup phase (e.g.,

667 kByte compared to 41 kByte for short-term security). For the short-term

security, the NN requires 33% less bandwidth than LBP (14.9 kByte for LBP

and 9.8 kByte for NN), and for long-term security the difference between the

complexity of the protocols grows to 45% less bandwidth for the NN solution

(15.7 kByte compared to 28.7 kByte).

The LBP-based protocol has a larger computation complexity than the

NN-based protocol as it requires more elliptic curve multiplications and op-

erations on Paillier ciphertexts which are substantially more expensive than

the evaluations of the cryptographic hash function H(·).
In summary we can state that the LBP classifier is preferable from a

communication complexity point of view when considering the total amount

of data sent in setup plus online phase. The reason is that, as shown in

Chapter 6, the 12 bit values to be multiplied are so small that the HE and

GC implementations are roughly equivalent. An hybrid implementation of the
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NN would need the use of homomorphic protocols for the scalar products in

both the layer, the first one followed by a circuit implementing the QSATLIN

function in the hidden layer and the second one followed by the ARGMIN

circuit. The small benefit eventually introduced by the use of HE is widely

canceled out by the 3 interfaces needed.

On the other side, the NN protocol relies only on fast symmetric encryp-

tion operations, hence resulting in a better performance from a computational

complexity perspective, an advantage that becomes more significant for long

term security, since the security parameters of asymmetric cryptosystems are

going to increase more rapidly than those of symmetric cryptosystems.

By considering the classifier structures underlying the two protocols, we

see that the NN ensures a twofold advantage since: i) it allows to work on a

smaller feature vector (4 features instead of the 15 components of the compos-

ite feature vector required by the LBP classifier), and ii) it requires a smaller

number of bits for the representation of the feature vector and the classifier

parameters. This is partially due to the presence of hard limiting activation

functions avoiding that the inner results of the computation grows in magni-

tude. It is thanks to the above properties that the GC implementation of the

NN protocol does not bring a too large penalty for the necessity of working

entirely with boolean instead of arithmetic circuits.

We conclude our discussion by observing that the complexity of both pro-

tocols depend on the number of features used to classify the ECG signals.

In the NN case the dependence of the size of the classifier on the number of

features is not easy to determine. On one side it results in an increase of the

size of the input layer of the NN, with a linear impact on the complexity of

the part of the protocol corresponding to the computation of the input of the

hidden layer. On the other side it is likely that the number of neurons in the

hidden layer will have to increase as well thus resulting in a superlinear depen-

dence of the complexity on the number of features. The overall complexity

increases, however, is likely to be less than quadratic, given that the size of

the output layer will remain constant. In the LBP case the dependence is

at least quadratic due to the inclusion within the composite feature vector of

quadratic terms4. For this reason, we expect that the NN structure is going

4Of course the size of the decision tree may change as well
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to become even more advantageous if the number of features considered by

the classifier increases.



Part III

Quality Evaluation
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In a remote healthcare scenario, a patient applying electrodes for the ECG

recording is not an expert and can connect the electrodes wrongly, while the

hospital or the company involved in the 2PC protocol is not able to see the

signal and evaluate its quality, with the risk to perform a wrong analysis. The

application of a technique for signal quality evaluation becomes then necessary.

We describe a methodology which allows the service provider to obtain a

quality measure so that the quality of the input to later computations is guaran-

teed and the corresponding output (the actual analysis performed on the data)

complies with certain confidence criteria. In particular, we propose a protocol

that allows evaluating the quality of ECG signals and communicates to the

user whether the input signal is good enough to continue with the analysis or

not [LGB12]. This protocol is based on the evaluation of the Signal-to-Noise-

Ratio (SNR) between the originally measured signal and a filtered version of

it.

The quality evaluation can be efficiently performed in a s.p.e.d. scenario

by using an hybrid protocol that needs the transmission of less than 4MBytes

for 30 seconds analysis and guarantees classification results close to 85%.

“If the ECG isn’t broken then we have problem”

c©Goldsmith





Chapter 10

SNR computation

In the previous part of the thesis we addressed the problem of biomedical

signal processing in a s.p.e.d. scenario, demonstrating that it is possible to

protect the privacy of the patients in a remote healthcare scenario. Con-

sidering that the patient has to apply electrodes for the ECG recording by

himself or with the help of another person that is not necessary an expert,

some electrodes could be connected wrongly. On the other side the hospital

or the company involved in the 2PC protocol is not able to see the signal and

evaluate its quality. A signal with poor quality can produce a wrong result, so

that a healthy signal can be classified as sick or, worst, some disease symptom

are not identified. Hence a technique for the signal quality evaluation becomes

necessary. Even if quality evaluation can be embedded in the recording de-

vice available to the user, a privacy preserving quality evaluation protocol

may be useful whenever the service provider is interested to change the pro-

tocol parameters without upgrading the software or hardware of the devices1.

Otherwise if the service provider and the company producing the device are

two distinct elements and the former is interested to protect his property also

by the company. Moreover we can imagine quality evaluation as part of an

analysis chain, and not necessarily the beginning of the chain, where the input

signal is available only in its encrypted form. Also device calibration can be

considered a major issue, but if performed in presence of trusted stuff, as we

here suppose, we can relax the privacy and security constrains related to.

Measuring signal quality is a difficult problem that has captured the at-

tention of researchers in many fields, as diverse as audio, image, video and

medical signal analysis. Generally speaking, quality evaluation techniques can

be split into two main categories: full reference or no-reference techniques.

The former class refers to a situation in which the quality of a signal has to

1Software upgrade can cause security loss, while hardware upgrade is expensive.



190 10. SNR computation

be judged by referring to an ideal signal. This is the case in lossy compression

applications wherein the quality of the compressed signal has to be judged by

considering its perceptual distance from the original signal. In contrast, no-

reference techniques have to measure the quality of a signal without making

any reference to an ideal signal that is supposed to represent the maximum

possible quality.

The medical scenario addressed in this thesis requires that no-reference

quality measures are adopted, because only the noisy version of the ECG

signal is available. This is a difficult problem for which only a few (plain

domain) solutions are available (see [LMC08, ADAI+09] for example). In

order to be as general as possible, we focus on a very simple scheme in which

the quality of a signal is given by the Signal-to-Noise-Ratio (SNR) between the

originally measured signal y and a filtered version of the signal, denoted by x,

as shown in [BGL10]. The rationale behind this choice is that the filtered (de-

noised) signal represents the ideal signal corresponding to x. Furthermore,

the removed noise, i.e. the distance of y from x, represents a measure of

the quality of the measurement y. A natural choice is to represent the SNR,

defined as the ratio between the energy of x and the energy of the noise y−x,

in dB, i.e. by using a logarithmic scale. The reason for such a choice is twofold:

first of all this is a consolidated practice in signal processing, moreover we will

show that by replacing the computation of a ratio with the computation of

the difference of two logarithms, we can considerably reduce the complexity

of a secure protocol for the evaluation of the SNR.

We are, thus, interested in developing a s.p.e.d. protocol that allows a

client C and a server S to compute the signal quality of y as shown in Fig-

ure 10.1, accessing only the encrypted version of y and allowing interaction.

By using a s.p.e.d. protocol, the client C protects the privacy of his signal while

he is not allowed to know the intermediate results of the computation and the

parameters of the algorithms used by S, which may be interested to protect

the details of the quality evaluation algorithm (specifically the coefficients of

the denoising filter) since this may be a proprietary algorithm. Moreover the

computation of the quality of the signal may be only an intermediate step

of a longer processing chain whose details need to be kept secret, and whose

security could be compromised if some intermediate results were disclosed.
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Figure 10.1: Scheme to compute the SNR.

For the privacy preserving implementation we propose an hybrid proto-

col and, in order to base the analysis on real data and evaluate the actual

efficiency of the proposed solution, we apply our protocol to the evalua-

tion of the quality of ECG signals, by referring to the MIT-BIH Arrhythmia

Database2 available in PhysioBank archives [GAG+00], containing recordings

of 30-minute long two lead ECGs. Despite our choice to apply the signal qual-

ity evaluation to ECG signals, it is important to underline that our approach

is rather general and can also be applied to different signals.

The remainder of this chapter is organized as follows. Noise affecting

ECG signals are presented in Section 10.1. In Section 10.2, we introduce the

protocols to compute signal quality based on SNR in the encrypted domain.

We analyze the size of the operands, the complexity of the protocol, and

sketch its security in Section 10.3. The analysis of the operands is general

but figures for the ECG case are also provided. We also report on the error

incurred in the logarithm computation in Section 10.4 demonstrating that we

can ignore it in practice.

10.1 Noise affecting ECG recording

Before describing the protocol for the evaluation of the quality of an ECG

signal, it is necessary to understand which are the main noise sources. An

ECG can be contaminated by different kinds of noise, depending on the elec-

2http://www.physionet.org/physiobank/database/mitdb/
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trical components of the system, patient movement (intentional or not), bad

electrodes connection, etc. The noise usually contaminating ECG signals are3:

Power Line Interference: this noise consists of 60/50 Hz pickup and

harmonics that can be modeled as sinusoids and combination of sinu-

soids. According to Friesen et al [FJJ+90], the frequency content of this

kind of noise is 60/50 Hz with harmonics and the amplitude is 50% of

peak-to-peak ECG amplitude.

Electrode Contact: this noise is a transient interference caused by loss

of contact between the electrode and the skin, which can be permanent

or intermittent. The switching action can result in large artifacts since

the ECG signal is usually capacitively coupled to the system. This type

of noise can be modeled as a randomly occurring rapid baseline transi-

tion that decays exponentially to the base line and has a superimposed

60 Hz component. According to [FJJ+90], the duration of the noise

signal is 1 sec and the amplitude is the maximum-recorded output with

the frequency of 60 Hz.

Motion Artifacts: this noise is due to transient base line changes in the

electrode skin impedance with electrode motion. The shape of the base

line disturbance caused by the motion artifacts can be assumed to be a

biphasic signal resembling one cycle of a sine wave. The peak amplitude

and duration of the artifacts are variables. The duration of this kind of

noise signal is 100-500 ms with amplitude of 500% peak-to-peak ECG

amplitude.

Muscle Contraction: the muscle movements cause generation of ar-

tifactual millivolt level potentials. It can be assumed to be transient

burst of zero mean band limited Gaussian noise. The variance of the

distribution may be estimated from the variation and duration of the

bursts. Standard deviation of this kind of noise is 10% of peak-to-peak

ECG amplitude with duration of 50 ms with a frequency content from

dc to 10 kHz.

3We refer to [ASSK07, ch.2] for a detailed description
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Base Line Wander: the baseline wander of the ECG signals causes prob-

lems in the detection of peaks. For example, due to the wander, the T

peak could be higher than the R peak, and be detected as an R peak.

Low frequency wander of the ECG signal can be caused by breathing

or patient movement. The drift of the baseline with breathing can be

represented as a sinusoidal component and the frequency of respiration

added to the ECG signal. The variation could be reproduced by ampli-

tude modulation of the ECG by the sinusoidal component that is added

to the base line. The amplitude variation is 15% of peak-to-peak ECG

amplitude and the base line variation is 15% of ECG amplitude at 0.15

to 0.3 Hz. These noise should be removed from ECG before extracting

the characteristic features. Noise removal is accomplished by passing

the cardiovascular signals through a filter whose cutoff frequency is a

function of the noise frequency.

10.2 SNR Evaluation in the Encrypted Domain

In this section we describe the s.p.e.d. protocol implementing the quality eval-

uation scheme depicted in Figure 10.1. We remind that s.p.e.d. protocols are

able only to perform integer operations, hence in the following all the func-

tions that we evaluate operate on integers. In the following, we assume that

the ECG signal has already been preprocessed to remove baseline wander and

power line interference, for example, by using the filter proposed in [VAS85].

Filtering: Indeed in the ECG case the original signal is not even defin-

able, however the amount of noise contained in frequency bands usually

not occupied by a clean ECG signal may be considered as a measure of

the quality of the signal itself. In a no-reference scenario the original

signal is not available, as in the case of an ECG where only the recorded

signal y is available. As we outlined in the introduction, our quality mea-

sure works by estimating the denoised signal x by applying a filter to the

signal y. A denoising filter is a linear transform that can be applied in

the encrypted domain by using homomorphic encryption as proposed in

[BPB08b, BPB08c, BPB10] and summarized in Section 3.5.2. Accord-
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ing to the recommendations made by the American Heart Association

for ECG recordings, in the lower frequency region, the frequency com-

ponents between above 0.5 Hz and 20 Hz bring important information

relative to patient health and hence should not be removed. The fre-

quencies below 0.5 Hz are removed by the filter proposed in [VAS85]. In

our scheme, we consider the amount of noise at frequencies greater than

20 Hz as a measure of the quality of the signal. For this reason, the

filter in Figure 10.1 is an integer low-pass filter with cut off frequency

fc = 20 Hz. The filter has been optimized to obtain a small number

of coefficients that can be represented with few bits. In the end, we

obtained a kc = 82 order integer FIR filter having amplification factor

amp = 64 and 47 non-zero coefficients. The maximum filter coefficient is

8 and the coefficients assume values in the set K = {0, 1, 2, 4, 5, 6, 7, 8}.
The spectrum of the filter is shown in Figure 10.2, together with its

impulse response.

Having the filter even real magnitude response, it has symmetric co-

efficients, i.e. ci = ckc−i, hence a filtered sample can be computed as

xi = c0yi +
∑kc/2

j=1 (cjyi+j + cjyi−j). Note that only c0 and other 23 co-

efficients are not null. To filter the signal we can first compute each

product JcjyiK ∀i = 1, . . . , k ∀j = 0, . . . , kc/2 as

JyicjK =





1 if cj = 0,

JyiK if cj = 1,

JyiKcj else.

(10.1)

Since there are only 6 non-null and non-unitary coefficients, only 6k

products are computed. Then the filtered samples are obtained as JxiK =

Jc0yiK
∏kc/2
j=1 (Jcjyi+jKJcjyi−jK) ∀i = 1, . . . , k. If i − j < 1 we assume

yi−j = y1, while if i+ j > k we assume yi+j = yk.

Noise Computation: The noise signal n can be computed by subtracting

y and x sample-wise (ni = yi−xi). The operation can be performed by

the server in the encrypted domain: JniK = Jyi−xiK = JyiK∗ JxiK−1 ∀i =

1..k. Since the integer filter is applied in the encrypted domain, we have

to consider that it may return a filtered signal amplified by a factor

amp. Thus, to correctly derive the noisy part of the signal, we have
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Spectrum of the filter(Magnitude response)

Impulse response

Figure 10.2: Filter plots

to multiply y by the same factor, obtaining JniK = Jamp ∗ yi − xiK =

JyiKamp ∗ JxiK−1 ∀i = 1..k. The amplification factor can be obtained

observing the magnitude plot of the filter.

Energy Computation: To compute the SNR we must evaluate the en-

ergy of x and n. This can be done by using the interactive protocol

shown in Section 3.4.10 that, applied to x and n, returns JExK and

JEnK.

SNR Computation: The final step of the quality evaluation procedure is

the computation of the SNR

SNR = 10 ∗ log10

Ex
En

=
10

log2 10
∗ log2

Ex
En

. (10.2)
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Notice that the factor 10/ log2 10 is just a constant and therefore it

can be neglected. The main observation our scheme relies on is that

in a s.p.e.d. framework, it is easier to compute the difference of two

logarithms than the logarithm of a ratio, which would involve a division

circuit. Hence we are going to compute

SNR = log2

Ex
En

= log2Ex − log2En, (10.3)

where Ex and En are available in encrypted form. Note that while

(10.3) is an exact equality when dealing with real numbers, in our case

this is only an approximated relationship since we are using an integer

logarithm. Furthermore, observe that computing the integer logarithm

(base 2) of a binary positive integer number is equivalent to detecting

the minimum number of bits necessary to represent the number (in our

case the energy is positive by definition). We decided to compute the

SNR as given in (10.3) using a GC.

To switch from HE to GC, the interface described in Section 8.1.2 is

used: S obfuscates Ex and En and sends them to C that, after decryp-

tion, uses them as inputs to a GC prepared by S. The Boolean circuit

starts by removing the obfuscations from the energies, then it evaluates

the logarithms, as described in Section 5.3.16 (the integer logarithm

has been chosen, instead of other solutions, for its low complexity) and

finally computes the SNR by subtracting the result of the logarithms.

We can optimize the protocol by observing that after having evaluated

the energy of an obfuscated signal, C sends it to S to remove the to-

tal obfuscation rx introduced during the energy computation and then

applies a new obfuscation to switch to GC and sends back the value

with a new obfuscation to C. To reduce the number of communication

rounds, S can transmit J∑i 2xirx,i+ r′xK = Jr′xK∗
∏
iJxiK2rx,i to C during

the computation of Ex, for an appropriate4 value r′x. C decrypts the

value and subtracts it from the obfuscated energy, obtaining a energy

still obfuscated by the value
∑

i r
2
x,i − r′x. This value can be considered

4The size of r′x has to be larger than
∑
i 2xirx,i by at least a factor of 2κ to guarantee

statistical indistinguishability at the same level as the rest of the protocol.
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the obfuscation that has to be removed by the GC. The term r′x is intro-

duced to avoid any leakage of information when
∑

i 2xirx,i is revealed

to the client. Clearly, the reduction in round complexity comes at the

cost of additional data being transmitted per round and at the cost of

additional circuit complexity. The same optimization can be applied to

the computation of log2En.

As shown in Section 5.3.16 the logarithm computation is performed in

two steps: in the first one the input value is processed so that it has zero

values before the most significant 1 and a sequence of 1 in the remaining

bits, in the second one the bits equal to 1 are counted. After having

applied the protocol proposed to both the energy Ex and En it would

be sufficient to compute the difference between log2Ex and log2En to

obtain the SNR. This could be easily done still using a GC. Note that

the protocol proposed returns blog2 ac+ 1, but after the subtraction the

two +1 terms are discarded. A more efficient implementation (using only

one counter) can be obtained as follows. Given the two energies Ex and

En we apply the first part of the protocol to both values obtaining c(Ex)

and c(En). Evaluating COUNT(c(Ex) ⊕ c(En)) we obtain | log2(Ex) −
log2(En)|. The result of the XOR is a binary string containing a number

of 1’s equal to the result of the difference.

As an example, let suppose to have the following inputs: Ex = 22 =

(00010110)2 and En = 9 = (00001001)2 whose SNR results SNR =

blog2(22)c + 1 − blog2(9)c − 1 = 5 − 4 = 1. Once c(Ex) = (00011111)2

and c(Ey) = (00001111)2 have been obtained, we can evaluate SNR =

COUNT(c(Ex) ⊕ c(En)) = 1 (note that c(Ex) ⊕ c(En) = (00010000)2),

instead of counting them and computing the difference.

The only thing that we still need to do is to compute the sign of the

SNR for which it is sufficient to evaluate the relation Ex < En which

has the same complexity as a subtraction circuit.

The full protocol that, given a signal x, filters it and then compute the

SNR is shown in Protocol 25.
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Hybrid SNR computation protocol

inputs of C: y = [y1, . . . , yk]
inputs of S: c = [c1, . . . , ckc ], cj ∈ K, amp
output for C: SNR
output for S: nothing

client C server S

encrypts yi ∀i ∈ 1 . . . k;

JyiK ∀i ∈ 1 . . . k

-
[Filtering]

∀i = 1, . . . , k; ∀cj ∈ K :

JyicjK computed according to (10.1)

∀i = 1, . . . , k :

JxiK = Jc0yi +
∑kc/2
j=1 (cjyi+j + cjyi−j)K

= Jc0yiK
∏kc/2
j=1 (Jcjyi+jKJcjyi−jK)

(yi−j = y1 if i− j < 1);

(yi+j = yk if i+ j > k);

[Noise Computation]

∀i = 1, . . . , k :

JniK = Jampyi − xiK = JyiKampJxiK−1;

[Blinding]

∀i = 1, . . . , k :

choose rx,i, rn,i ∈ Z2`n+κ ;

Jx′iK = Jxi + rx,iK = JxiKJrx,iK;
Jn′iK = Jni + rn,iK = JniKJrn,iK;

Jr′x +
∑k
i=1 2rx,ixiK = Jr′xK

∏k
i=1JxiK2rx,i ;

Jr′n +
∑k
i=1 2rn,iniK = Jr′nK

∏k
i=1JniK2rn,i ;

Jx′iK, Jn
′
iK ∀i = 1, . . . , k, Jr′x +

∑k
i=1 2rx,ixiK, Jr′n +

∑k
i=1 2rn,iniK

�
decrypts cyphertexts;

[Energy Computation]

E′x =
∑k
i=1 x

′
i
2 − r′x −

∑k
i=1 2rx,ixi;

E′n =
∑k
i=1 n

′
i
2 − r′n −

∑k
i=1 2rn,ini;

↓ E′x ↓ E′n ↓∑i r
2
x,i − r′x ↓∑i r

2
n,i − r′n

GC(2SUB, 2`e − 2 OR, CMP, COUNT)

↓ SNR

Protocol 25: Hybrid SNR computation protocol (packing and bitlengths are

omitted for simplicity).
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10.3 Protocol Analysis

In this section we analyze the complexity of the protocol proposed. Such

complexity depends on the number of bits that are required to represent

correctly the data to be analyzed, the final result and all the intermediate

values involved in the computation. For this reason, we start our analysis

by evaluating the number of bits necessary to carry out all the steps of the

protocol as a function of the bitsize of the input data. Such an analysis is

then applied to the case of ECG signals drawn from the MIT-BIH Arrhythmia

Database. This allow us to derive a precise value for the communication

complexity of our protocol in a real life scenario. Given that the protocol

can run only on integer numbers, we assume that the input signal samples

have already been quantized and hence are represented by integer numbers.

Samples in the PhysioBank archives are already available in quantized form.

Then we analyze the error introduced by the use of integer functions and we

conclude with a simple analysis of the security.

10.3.1 Bitsize analysis

The number of bits used to represent the data influences the complexity of

the secure protocol for two main reasons. In the case of garbled circuits,

all values are encrypted bitwise. Hence the greater the number of bits, the

more complex the resulting protocol will be. With regard to computing on

homomorphically encrypted data, we observe that after each multiplication

or square computation carried out in the encrypted domain, the number of

bits necessary to represent the output of the multiplication doubles. Thus,

it is necessary that the plaintext space supported by the HE cryptosystem is

large enough to represent the output of the computations without an overflow,

which would cause an invalid result. To start the analysis, let’s assume that S
has k integer samples of the signal y = [y

(`y+1)
1 , . . . , y

(`y+1)
k ] represented with

`y bits for the magnitude and one for the sign. The maximum possible value

that y may assume being max y = 2`y − 1.

Filtering: As a first step y is filtered to produce x. This is done by

applying an integer filter with kc coefficients c
(`c+1)
j each represented



200 10. SNR computation

with `c bits for the magnitude and 1 for the sign. The result of each

product during the computations needs `y + `c + 1 bits. Since the

maximum value that a sample can assume is max y = 2`y − 1, it fol-

lows that the maximum value that a filtered sample can assume is

maxx =
∑kc

j=1 |cj ∗max y| = max y ∗
∑kc

j=1 |cj |. cj can be considered in-

stead of max c because they are well known to S that is carrying out the

computation by using homomorphic encryption. Thus, the number of

bits necessary to represent a filtered sample is `x = `y+dlog2(
∑kc

j=1 |cj |)e
bits for the magnitude and one bit for the sign. Since x

(`x+1)
i is amplified

with respect to y
(`y+1)
i by a factor amp, we have to amplify y

(`y+1)
i by

the same factor to proceed with the computation. The amplified y
(`y+1)
i

requires `y + dlog2 ampe bits for the magnitude and one for the sign,

but the amplification factor scales y
(`y+1)
i to have a value with the same

order of magnitude as x
(`x+1)
i , hence we can represent it with `x+1 bits.

Noise: We can observe that |ni| = |amp ∗yi−xi| ≤ amp ∗ |yi|+ |xi|, hence

the maximum value that the noise can assume is maxn = amp ∗max y +

maxx and the representation of the noise needs `n = `x + 1 bits for the

magnitude and the sign.

Energy: For the energy, the worst case is when we have a signal that

assumes only the maximum value. In this case the maximum value

of the energy is maxEn =
∑k

i=1 max 2
n = k ∗ max 2

n. From the previous

considerations we obtain that the number of bits necessary to the energy

representation is `e where `e = dlog2 maxEne. The sign of the energy is

positive, hence the additional sign bit for it is not needed. Being maxx
smaller than maxn, maxEx is smaller than maxEn . Anyway we can set

maxEx = maxEn = maxE for simplicity.

SNR Computation: Finally, the SNR is computed as log2Ex − log2En.

Observe that since both Ex and En are positive integers, the maximum

value of the difference is (in magnitude) the same as the logarithm of

the two inputs (maxSNR = dlog2(maxE)e), hence the number of bits

necessary to represent the difference is given by `SNR = dlog2(`e)e bits
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for the magnitude and one for the sign.

Application to real ECG signals In the Physiobank database each sam-

ple yi is represented with `y + 1 = 11 bits, hence the maximum value it can

assume is max y = 210 − 1 = 1023. The filter we designed has a maximum

absolute value max c = 8 that can be represented with `c + 1 = 5 bits. The

sum of the coefficients is
∑kc

j=1 |cj | = 112 and amp = 64. We consider to com-

pute the SNR of 30 seconds of signal, sampled at 360 HZ (totally k = 10800

samples)5. Given these parameters, we can compute the bitsize of all the data

involved in the computation as shown in Table 10.1.

Variable name Maximum value Magnitude bitlength

Original sample yi 1023 `y = 10

Filter Coefficients cj 8 `c = 4

Filtered sample xi 114576 `x = 17

Noise Signal n 180048 `n = 18

Signal Energy Ex, En 350106648883200 `E = 49

SNR SNR 49 `SNR = 6

Table 10.1: Number of bits necessary to represent the values obtained by a

worst case analysis.

10.3.2 Communication complexity

To evaluate the complexity of the protocol, we focus on the part that requires

interaction. At the beginning C transmits k cyphertexts to S one for each

sample. Computed JxiK and JniK, ∀i = 1..k, the computation of the SNR

requires 1 move for the HE part plus those of the underlying OT protocol.

We denote the asymmetric security parameter used in the HE section with T

and the symmetric security parameter used in the GC section with t.

In the interface between HE and GC, S has to transmit the obfuscated

Jxi + rx,iK, Jni + rn,iK, ∀i = 1..k and the two terms Jr′x + 2
∑

i xirx,iK, Jr′n +

2
∑

i nirn,iK. If we assume to represent the blinding terms rx,i and rn,i with

5This choice is motivated by the fact that 30 seconds are sufficient for the SNR evaluation

and this interval does not introduce a big delay in further computation.
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`o + 1 = `n + 1 + κ bits, each term xi + rx,i and ni + rn,i can be represented

with `o + 2 bits and m = bT/(`o + 2)c values can be packed together, hence

the protocol needs to transmit

np = d2 ∗ k/me

cyphertexts of size 2T bits. 4 rounds are necessary in total.

As we can easily observe, a high number of cyphertexts is transmitted.

The communication complexity can be reduced by using the composite signal

representation of Section 3.5.2, but all the improvements introduced in Pro-

tocol 25 to decrease the number of products to compute can not be used. The

samples recorded by the electrocardiograph can be packed in np samples so

that the final result of the filtering and obfuscation is correctly represented.

In this way the bandwidth of the HE part is reduced from k+np+1 to 2np+1

cyphertexts. In the following we assume that packing is used.

The two terms J2∑k
i=1 rx,ixiK,J2

∑k
i=1 rn,iniK require `o+ `n+ dlog2 ke+ 2

bits for their representation. The complexity of the GC is linear. From Section

10.2 we can see that it has complexity O(`e). Now we want to analyze the

exact amount of bits transferred from the protocol. By generating r′x and r′n
to hide statistically the other values, r′x needs

`r = `o + `n + dlog2 ke+ κ+ 1 + 1

bits and we obtain two obfuscation values for the energies that require `o +

`n + dlog2 ke+ 3 bits, and they can be packed together in another cyphertext

if `r < T/2.

In the GC part, S has to send the secrets relative to the `e bits of the

obfuscated Ex and En values to C through the OT and the secrets relative to

the `e bits of the obfuscation values
∑

i r
2
x,i+r

′
x and

∑
i r

2
n,i+r

′
n together with

the Garbled Circuit6. Considering that 2`e > t the protocol of Section 4.4

is used. t OTs are performed offline and then extended to 2`e OTs with

offline communication complexity 6t2 + 8`et bits. The online phase of the OT

needs the transmission of 2 ∗ (2`e)t bits. S uses the two obfuscation values

6After the subtraction of the `e least significant bits the magnitude of each energy is

obtained. Considering that energy is positive, continuing with the evaluation to obtain the

carry (sign) bit is not necessary.
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as server input to the GC and has to transmit `e secrets of size t to C for

each of them. The two subtraction circuits that remove the obfuscation have

2`e non-XOR gates. Moreover the circuit computing the SNR is composed by

2(`e − 1) + `e − blog2(`e + 1)c+ `e non-XOR gates. Hence the GC that S has

to transmit (online or offline) to C is characterized by 6`e−blog2(`e + 1)c− 2

tables of size 4t.

Table 10.2 shows the amount of data transfered by the protocol in a real

case, where we are going to evaluate the SNR of 30 seconds (k = 10800

samples) of ECG, considering short term security (t = 80, T = 1248 and

κ = 80), offline circuit transmission and that in the HE section the two

obfuscation values require `r = 212 bits and can be packed together.

Section
Offline Online

Complexity Bits Complexity Bits

HE (2np + 1)2T 8, 988, 096

C input secrets (OT) 6t2 + 8`et 70,400 4`et 16, 000

S input secrets 2`et 8, 000

Garbled Tables 6`e − blog2(`e + 1)c − 2 94, 080

Total 164,480 9,012,096

Table 10.2: Communication complexity of SNR protocol.

10.4 Error Analysis

Working with an integer filter applied to integer samples, errors in the protocol

are introduced only by the quantization process inherent in the measurement

and by the use of the integer logarithm. We now analyze the magnitude of

such an error by considering the choice we made to compute the logarithm of

a ratio as the difference of two logarithms, that is we compute the error we

make when we substitute log2(a/b) with blog2 ac − blog2 bc, where a, b ∈ N+.

We opted for such a choice since computing the inversion in the encrypted

domain is very expensive: we now evaluate the appropriateness of such a

choice from an accuracy point of view. Let ε ∈ [0, 1) be the error introduced

by each floor operation with respect to the real logarithm. The total error
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results:

εtot = | log(a/b)− blog2 ac+ blog2 bc|
= | log(a/b)− log2 a+ εa + log2 b− εb| = |εa − εb| < 1.

To compare our scheme with a protocol based on the application of the loga-

rithm directly to the ratio a/b , we suppose to have an efficient implementation

of the division in the encrypted domain that returns ba/bc. Considering that

a, b ∈ N+ then blog2ba/bcc = blog2 a/bc yielding

εtot = log(a/b)− blog2ba/bcc = log(a/b)− blog2 a/bc ∈ [0, 1).

Note that in this case we have a biased error whose mean value is different

than zero. We evaluated experimentally the errors in both cases by perform-

ing actual tests on the ECG signals from the Physionet database in the plain

domain and simulating the proposed protocol as well as a protocol based on

division. The error between the integer and the real implementation is dis-

tributed as in Figure 10.3. The mean absolute error in the proposed protocol

is 0.33, while the mean absolute relative error obtained using the division-

based protocol is 0.5. Evidently, the application of the floor operator twice in

the division-based protocol leads to a larger error.

We can conclude that the implementation of the integer SNR by using the

difference of the logarithm is easy to compute and introduces a smaller error.
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Figure 10.3: Error incurred by using the integer logarithm instead of the real

logarithm in the proposed protocol (a) and in the protocol based on division

(b). Tests performed on ∼30000 random couples of values.





Chapter 11

Privacy Preserving Quality Evaluation

As already said in Chapter 7, different types of information can be extracted

from different parts of the ECG. Moreover the noise affecting the signal can

permit some evaluations, while impeding others. For example, to evaluate the

heart rate or some arrhythmias, it is sufficient to identify the R peaks (the

highest peaks of the QRS complexes). This is a simple operation that can fail

only in the presence of very strong noise. On the contrary, atrial flutter can

be identified by a “saw-tooth” effect and to detect an ischemia it is necessary

to evaluate the slope of the ST segment and the T wave. In these examples

even a small quantity of noise can compromise the evaluation.

In this chapter, we describe a methodology which allows the service provider

to obtain a quality measure guaranteeing that the quality of the input to later

computations is good enough to allow a reliable analysis. In particular, we

propose a protocol that allows to evaluate the quality of ECG signals and

communicates to the user whether the input signal is good enough to con-

tinue with the analysis or not [LGB12]. In case it is not, a new measurement

and re-sending of the signal is requested. The protocol has been designed so

that it can be easily implemented in a privacy preserving manner that permits

the client C not to reveal his data to the server S, yet allowing the server to

perform the analysis of the ECG quality without revealing the private pa-

rameters (e.g., the filter coefficients) of its algorithm. Both the client and the

server can be interested to obtain as much information as possible, but they

are not interested to deviate from the protocol, being the patient’s health

involved. Hence the semi-honest model seems appropriate.

The system we are proposing evaluates ECG signal quality by identifying

the presence of electrode contact noise. Our purpose is to provide a solution

allowing a simple implementation in the encrypted domain, even if not optimal

from the accuracy point of view.
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Let consider that an ECG signal may have enough quality to allow the

evaluation of a particular function or the extraction of particular informa-

tion, but it may also have bad quality not allowing information extraction, or

sufficient quality for certain analysis/applications but not for others. Thus,

the quality of an ECG signal is application-dependent. Existing solutions are

generally too complex to allow an efficient implementation in the encrypted

domain.

In Chapter 10 we have already presented an hybrid protocol evaluating

the SNR of a signal. The problem is that usually the correlation of SNR

with the quality is very poor and it is of little interest as a general objective

measure of signal quality.

The main idea is to extend the method proposed by using a segmented

SNR instead of the overall signal SNR. In doing so, we extend the approach

proposed in Chapter 10, following the idea described in [HP98], where a seg-

ment based SNR is used to assess speech signal quality. In particular, the

same idea can be applied to many other types of signals having a fixed range

of frequencies that can be affected by burst of noise, such as videos, ECGs,

etc. The method in [HP98] subdivides the signal into small segments and,

for each of them, the SNR is computed. Finally, the mean and variance of

the segmented SNR are computed. The use of the variance is justified by the

observation that while the electrode contact noise has a minor impact on the

mean SNR, an occasional burst of noise having small time length can be bet-

ter detected by examining the SNR variance. Hence both the mean and the

variance of the segmented SNR can be used to evaluate the quality of a signal,

together with other features (here we consider the SNR of the whole signal)

to obtain a more accurate analysis. This methodology is validated through

multiple tests in which we observe that the segmental SNR reflects the signal

quality better than the SNR alone. Notice that in [HP98], the authors pro-

pose additional “plain” techniques to assess the quality of a speech signal, but

these would be too computationally intensive to be efficiently implemented in

the encrypted domain.

The chapter is organized in the following way: in Section 11.1 the proto-

col is described, while in Section 11.2, we analyze the dimension of the data

involved in the computation and the communication complexity of the proto-
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col, moreover the results of experiments conducted on ECG signals from the

MIT-Arrhythmia database in terms of classification accuracy are presented.

11.1 Protocol description

In the following, we describe the steps necessary to reach a decision based on

a set of features (SNR, segment SNR mean, segment SNR variance) extracted

during the privacy preserving protocol. The plain implementation of the

protocol is summarized in Figure 11.1. In the remainder of this chapter, we

assume to evaluate τ seconds of an ECG signal s = {s1, . . . , sτfs}, where fs
is the sampling frequency and each sample is represented with `s + 1 bits (`s
bits for the magnitude and 1 for the sign).
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Figure 11.1: Sequence of steps performed to evaluate the quality of an ECG

signal.

Filtering and noise computation The protocol starts acting as de-

scribed in Chapter 10. The client first removes the base-line wander

and the power-line interference by using the filter proposed in [VAS85],

producing a filtered signal y = {y1, . . . , yτfs} that, after encryption, is

transferred to S. The signal JyK is filtered again by S to produce the
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signal JxK. This HE subprotocol involves the filter developed by S that

is interested in protecting his intellectual property. Finally S evaluates

the noise signal JnK, i.e. the encryption of the difference between the

signals x and y, still using HE.

Energy and SNR Evaluation We subdivide the signals JxK and JnK
into segments of w samples, obtaining m = bτfs/wc segments fx =

{fx1 . . . fxm} and fn = {fn1 . . . fnm}, where each segment is composed

by the encryption of w samples. For simplicity we assume that τfs =

mw. Otherwise, if τfs 6= mw, the last segment, having less than w sam-

ples, is discarded. For each pair of signal and noise segments (fxi, fni)

the SNR should be evaluated as the power ratio between the signal and

the noise in the logarithmic decibel scale:

SNRf
i = 10 log10

(
∑w
j=1(fxij)

2)
w

(
∑w
j=1(fnij)

2)
w

=
10

log2 10
log2

∑w
j=1(fxij)

2

∑w
j=1(fnij)

2
.

As already said, 10/ log2 10 only amplifies the result and therefore it can

be neglected. Hence the SNRs we are going to evaluate in the encrypted

domain are

SNRf
i = log2

∑w
j=1(fxij)

2

∑w
j=1(fnij)

2
= log2

Efxi

Efni

= log2Efxi − log2Efni ,

where E indicates the signal energy. Starting from the encryption of the

samples composing the segment fxi and fni, the energies and SNR of

the i-th segment are evaluated by using the hybrid protocol described in

Chapter 10. The SNRf values are not the final result, in fact they have

to be used in later computation and hence kept secret. To avoid their

disclosure to C, the GC blinds them by adding random values rSNRi

each `SNRf + κ bits long, where `SNRf is the bitlength of the segment

SNR.

Note that the computation of the SNR of the whole signal can be ob-

tained starting from the energy of the segments previously computed.



11.1. Protocol description 211

In fact

SNR = log2

∑mw
j=1(fx j)

2

∑mw
j=1(fnj)

2
= log2

∑m
i=1

∑w
j=1(fx ij)

2

∑m
i=1

∑w
j=1(fnij)

2

= log2(
m∑

i=1

Efx i)− log2(
m∑

i=1

Efni).

C adds together all the segment energies E′
fx i

and all the segment ener-

gies E′
fni

, obtaining the energies E′x and E′n of the whole signals, obfus-

cated by a value that is the sum of the obfuscation introduced in each

segment energy, still known by S. Finally, SNR is obtained by another

circuit for SNR evaluation having a larger input bit-length and hence a

larger number of gates.

Once all the obfuscated SNRf
i and SNR values are obtained, C encrypts

them and transmits the ciphertexts to S, who can remove the obfusca-

tion by using the homomorphic properties of the cryptosystem.

Mean and Variance computation Once S has obtained the encrypted

values JSNRf K = {JSNRf
1K, . . . , JSNRf

mK}, he can compute their mean

and variance by using HE.

The computation of the SNRs mean would require division by m. If

m is public (or known), this is a cheap operation. However, if it is a

private value, the division operation can be expensive and requires an

interactive protocol [Veu10, LB11]. An additional disadvantage is that

this protocol would introduce a rounding error. An alternative is to

avoid the division by m. Then, the mean is amplified by a factor of m,

the accuracy is preserved and the complexity of the protocol is reduced

since interaction with C is not necessary. The amplified mean is simply

computed by S as JµSNRK = J∑m
i=1 SNRf

i K =
∏m
i=1JSNRf

i K.
The computation of the variance can be performed by using an inter-

active protocol. Given the amplified mean, the SNRf values have to

be amplified by the same factor before computing the variance. More-

over, following the same approach we used for the mean, division by

m is avoided and thus, the resulting variance is amplified by a factor

m3. Considering that C already has the SNRf
i values obfuscated with a
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random value rSNRi , S can send the obfuscated SNR mean JµSNR + rµK
(where rµ ∈ Z`µ+κ, given the bitlength `µ of µSNR) to C who decrypts

it and computes

m∑

i=1

(
m(SNRf

i + rSNRi)− (µSNR + rµ)
)2
.

Finally C encrypts the result and sends it back to S who removes the

obfuscation value
∑

i(m rSNRi−rµ)2−2
∑

i(m SNRf
i −µSNR)(m rSNRi−

rµ) by using homomorphic properties, thus, obtaining the encrypted

amplified variance JσSNRK.

Classification Each feature previously computed (the overall SNR, the

segment SNR mean and the segment SNR variance) can be used in

a single-feature classifier that compares the feature with a threshold

obtained by training. In the following, we show that by combining

them, one can improve the accuracy of the whole classification by using

a simple linear classifier. To do so, we developed a linear classifier that

uses σSNR, µSNR and the SNR computed on the whole signal as input.

In practice the signal quality is classified by evaluating the following

inequality:

a+ b σSNR + c µSNR + d SNR > 0

where the coefficients a, b, c, d are obtained by training. If the inequality

is verified, the signal is classified as noisy, otherwise as clean.

Training is carried out in the plain domain independently for each sub-

ject by using ECG recorded in a supervised environment so that the

weight vector β = [a, b, c, d] can be obtained. Assume that a training

set of k segments has been recorded from a patient and that from each

segment j, a vector αj = [1, σSNR
j , µSNR

j ,SNRi] is created in the plain

domain, including an additional bit γj , indicating whether the signal

has been classified as clean (γj = −1), or noisy (γj = +1). Then, we

obtain,

a+ b σSNR
j + c µSNR

j + d SNRj + εj = αj β + εj = γj

where εj is the error made by the classifier.
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By considering all the signals available for training, we compute the

matrix A = [α1, . . . , αk]
T and the vector G = [γ1, . . . , γk]

T . The goal

of the training is finding the vector β that minimizes the mean square

error sum
∑k

i=1 ε
2
i , which can be obtained as

β = (ATA)−1ATG.

Because [a, b, c, d] are real values, they are quantized and represented

with integer numbers to be used in the encrypted domain. Observe

that the scalar product can be implemented by resorting to HE only.

This assumes that the coefficients are known in plaintext form to S,

alternatively, a two party multiplication protocol can be performed sim-

ilar to the computation of the variance. It is important to point out

that the number of bits required to represent the data depends on many

factors and it can change with each training set. In particular, the bit-

size for the coefficients can be chosen so that the computation precision

is similar to that of a plain implementation. In short, the classification

is computed using HE:

Ja+ b σSNR + c µSNR + d SNRK =

= JaK JσSNRKb JµSNRKc JSNRKd.

The sign of the scalar product is used for the classification, while the

magnitude gives an indication of its reliability. High values are more

reliable than small ones. Noticing that both sign and magnitude are

useful for the classification and depending on the privacy requirements

of S and C, the protocol can choose to disclose the scalar product result

to C. Hence, S sends the encrypted magnitude and sign values to C
who decrypts them and performs the final classification (determines

to which class the particular measurement belongs). If S prefers to

keep the magnitude secret, it can obfuscate the scalar product result by

using a random value and then transmit a comparison GC having the

obfuscated value and the random value as inputs.

The full privacy preserving protocol that evaluates the signal quality is

shown in Protocol 26.



214 11. Privacy Preserving Quality Evaluation

Hybrid protocol for ECG quality evaluation

inputs of C: y = [y1, . . . , yτfs ]
inputs of S: c = [c1, . . . , ckc ], cj ∈ K, amp; [a, b, c, d]
output for C: cl
output for S: nothing

client C server S

[Filtering, Noise computation]

computed according to Protocol 25;

[Segment decomposition]

[Segments SNR computation]

↓ rSNRi∀i = 1 . . .m

SNRs computation according to Protocol 25

↓ SNR + r ↓ SNRfi + rSNRi∀i
encrypts yi ∀i ∈ 1 . . . τfs;

JSNR + rK, JSNRfi + rSNRiK ∀i ∈ 1 . . .m

-
JSNRK = JSNR + rKJ−rK;

[Mean computation]

JµSNRK =
∏m
i=1JSNRfi K;

[Variance computation]

choose rµ ∈ Z`µ+κ;

JµSNR′K = JµSNRKJrµK;
JµSNR′K

�
decrypts µSNR′;
σSNR′ =

=
∑m
i=1

(
m(SNRfi + rSNRi )− µSNR′

)2
;

encrypts σSNR′;

JrSNRK =

J
∑
i(m rSNRi − rµ)2K∗∏

i(JSNRfi KmJµSNRK−1)−2(m rSNRi
−rµ);

JσSNR′K
-

JσSNRK = JσSNR′KJrSNRK−1;

[Classification]

JclK = JaK JσSNRKb JµSNRKc JSNRKd;

JclK
�

decrypt cl.

Protocol 26: Hybrid protocol for ECG quality evaluation (packing and

bitlengths are omitted for simplicity).
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11.2 Analysis

In a real implementation, the system has to be trained on patient’s data in

a supervised environment. A nurse or a doctor prepares a training set with

intervals of clean ECG obtained with electrodes correctly and wrongly placed

by them and by the patient respectively. To increase the data set, simulated

noise can be added with different power levels to the whole clean signals or

only in small random intervals. Finally, the nurse splits the ECG signals

in clean and noisy signals. The subdivision can be made as a function of

subjective parameters (an expert decides if the quality is sufficient or not) or

testing the segments with the software that will be later used for the analysis

of the ECG, when the software returns the answer expected by the expert,

the signal is classified as clean, otherwise as noisy. The obtained data set is

used to train a classifier that is then used to evaluate the signals that the

patient will record at home connecting the electrodes without the presence of

an expert.

We used the MIT-BIH Arrhythmia Database1 for our experiments. The

signals were divided into intervals and classified as noisy or clean according

to the annotation available in the database, even if the type of noise was not

specified explicitly. An interval is considered clean if no samples are affected

by noise, otherwise it is considered noisy. To extend the data set we added

artificial electrode contact noise stored in the MIT-BIH Noise Stress Test

Database2 to whole clean segments and partially (only to a randomly chosen

section of the segment).

11.2.1 Data Dimension

To evaluate the quality of the signal we propose to analyze τ = 30 seconds of

the signal. This interval length is chosen because it is long enough to allow a

correct evaluation and not so long to delay the beginning of the subsequent

analysis, especially if the patient places the electrodes in a wrong way and

has to evaluate the quality of the signal several times.

As already said in Chapter 10, the signals in the MIT-BIH Arrhythmia

1http://www.physionet.org/physiobank/database/mitdb/
2http://www.physionet.org/physiobank/database/nstdb/
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database have a sample frequency fs = 360Hz and are recorded in the U.S.A.

(with a power-line frequency fp = 60Hz). Each sample is represented with

`s = 10 bits for the magnitude and one bit for the sign, hence the maximum

value it can assume is max s = 1023. Since the signal y is obtained by pro-

cessing s in the plain domain as proposed by Van Alsté and Schidler [VAS85],

the signal is not amplified with respect to s. Hence we can assume that the

maximum value is max y = max s = 1023 and `y = 10.

The filter owned by S is the integer low pass filter, described in Sec-

tion 10.2. We recall that the amplification introduced by the integer filter is

amp = 64, while the sum of the coefficients is |c0|+
∑k

j=1 |2 ∗ cj | = 112. This

sum is used to estimate the maximum value a filtered sample can assume.

In the following, we provide an analysis of the bit-length of the data in-

volved in the computation by using a worst case analysis. The maximum

value that each variable can assume may be easily determined by a logarithm

computation.

Since the maximum value that a sample can assume is max y = 2`y −
1, it follows that the maximum value that a filtered sample can assume is

maxx = |c0 ∗max y|+
∑k

j=1 |cj ∗ 2 ∗max y| = max y ∗ (|c0|+
∑k

j=1 |2 ∗ cj |), and

its representation needs `x bits for the magnitude and 1 for the sign. The

maximum value that a noise sample can assume is maxx−(−ampmax y). The

magnitude of each noise sample can be represented with `n bits and another

bit is required for the sign.

After some experiments, we decided to subdivide the 30 seconds of signal

(t∗fs = 10800 samples) into m = 30 segments, each having length one second

(w = 360 samples). In the worst case, all filtered (or noise) samples assume

the maximum value. The maximum value of the energy of a segment of the

filtered signal is maxEx =
∑w

i=1 max 2
x = w ∗max 2

x and the maximum energy

of the noise segments is maxEn = wmax 2
n. For simplicity, we represent both

maxEx and maxEn with the same number of bits `e, obtained by the logarithm

of maxEn . Since the energy is positive, it is not necessary to add a bit for

the sign. Similarly, the maximum value that both the energies of the whole

filtered signal and noise signal can attain is mw(maxx + ampmax y)
2, which

can be represented with `E bits.

By using maxEn as an upperbound for both the filtered and noise signal
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energies, the highest magnitude of the SNR is obtained when the energy of

one of them is maximum and the other is zero (this scenario is not possible,

in practice). Thus, the maximum value that the segment SNR can assume is

maxSNRf = dlog2(maxEfxi
)e = ±dlog2(w ∗ (2`s − 1)2 ∗ (|c0|+

∑k
j=1 |2 ∗ cj |2)e

and it can be represented with `SNRf = dlog2 `ee bits for the magnitude and

one bit for the sign. The SNR of the whole signal needs `SNR = dlog2 `Ee+ 1

bits for its representation.

The maximum value that the mean of the SNR can assume is m∗maxSNRf

and needs `µ bits for the magnitude and one for the sign. The differences

between the SNR values amplified by m and the mean require another bit.

Finally we can obtain the maximum value for the variance by considering

that

σSNR =

m∑

j=1

(mSNRf j − µSNR)2

<
m∑

j=1

(mmaxSNRf +mmaxSNRf )2

= m3max 2
SNRf

= maxσ

and needs `σ bits for its representation. Being the variance positive, the sign

bit is not needed.

We do not impose any limitation to the representation of the classification

parameters because their values depend on the training set and different bit-

lengths can be necessary for different people. The correct bit-length is hence

chosen so that classification with quantized parameters is sufficiently similar

to the classification involving real parameters, paying attention that the scalar

product result does not exceed the maximum value allowed by the ciphertext.

In some cases, shortest bit-lengths will mean significant lower computational

complexity. The results of the above analysis are summarized in Table 11.1.

11.2.2 Communication Complexity

This section provides an analysis of the communication complexity of the

protocol (summarized in Table 11.2). For our analysis, we assume the use of

the following parameters (short term security): T = 1024, t = 80, κ = 80 bits.
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Variable name Maximum value Magnitude bitlength

Original Signal s 1023 `s = 10

Pre-filtered Signal y 1023 `y = 10

Filter Coefficients c 8 `c = 4

Filtered Signal x 114576 `x = 17

Noise Signal n 180048 `n = 18

Segment Energy Efx, Efn 11670221629440 `e = 44

Segment SNR SNRf 44 `SNRf = 6

Full Energy Ex, En 350106648883200 `E = 49

SNR SNR 49 `SNR = 6

SNR Mean µSNR 1320 `µ = 11

SNR Variance σSNR 52272000 `σ = 26

Table 11.1: Maximum value and number of bits necessary for the magnitude

representation of the variables involved in the computation by worst case

analysis. Another bit is needed for the sign, except for energies and SNR

variance.

The protocol starts with the transmission of τfs = 10800 cyphertexts having

size 2T from C to S. During energy computation, S transmits the filtered and

noise samples to C, together with the obfuscation values r′ −∑i 2riŝi, where

ŝi is used to indicate a generic xi or ni sample, that C has to remove from the

energy. The 2τfs samples can be packed in
⌈

2τfs
bT/(`n + κ)c

⌉

ciphertexts, while the 2m obfuscation values can be packed in
⌈

2m

bT/(max{2`n + κ+ 1, `e + κ}+ 1)c

⌉

ciphertexts. At this point C needs to evaluate the GC. The circuit can be

transmitted offline and is composed by m sub-circuits computing the segment

SNR and one sub-circuit computing the whole SNR.

Since the energy values can be represented with `e bits, the GC that com-

putes each SNRf is composed by 2 subtraction circuits (`e non XOR gates),

the circuit implementing the SNR computation (2(`e − 1) + `e − dlog2(`e +

1)e + `e = 4`e − dlog2(`e + 1)e − 2 non-XOR gates) and a controlled addi-

tion/subtraction circuit [BFL+11] that blinds the result (`SNRf +κ non-XOR
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Section Offline Online

HE 0 26,626,048

Circuit 3,402,240 0

C secrets to GC (OT) 914,560 438,080

S secrets to GC 432,320 0

Total 4,749,120 27,064,128

Table 11.2: Online and offline bandwidth (bits) required by the protocol

gates). Similarly the SNR of the whole filtered and noise signal energies

(having bitlength `E) is computed and the circuit related is composed by

6`E − dlog2(`E + 1)e − 2 + `SNR + κ non-XOR gates. The whole circuit is

hence composed by m(6`e−dlog2(`e+ 1)e−2 + `SNRf +κ) + 6`E −dlog2(`E +

1)e − 2 + `SNR + κ non-XOR gates having size 4t bits each. C’s inputs to GC

are 2m energies represented with `e bits each and 2 energies represented by `E
bits. The secrets relative to C’s input are transmitted by using OT. Since the

number of input bits is greater than 3t, the complexity of the OT is reduced

to the transmission of ≈ 6t2 + 4(2m`e + 2`E)t bits offline and 2(2m`e + 2`E)t

bits online. S’s inputs to the GC are the secrets corresponding to the random

values used to blind the energies at the input and the SNR at the output.

Notice that these values can be generated offline. Thus, they can also be

transmitted offline together with the circuit, resulting in the transmission of

2m`e + 2`E +m(`SNRf +κ) + (`SNR +κ) secrets of size t bits. C sends S m ci-

phertexts containing the obfuscated segment SNR, one ciphertext containing

the SNR and, finally, two ciphertexts to compute the SNR variance.

11.2.3 Classification Performance

From each signal in the dataset, we obtained segments that can be subdivided

into clean (c) or noisy (n). A segment is considered noisy if classified as such

in the Physiobank databases. In a real implementation an expert decides if

the signals used for training are clean or noisy.

Due to the short length of the signals in the database (30 minutes), only

60 segments can be extracted from each signals. After classifying them as

noisy or clean according to database notations, signals having less than 10

clean segments or less than 10 noisy segments are discarded, because the small
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number of segments for a type can compromise a good training. We performed

three different tests in which we trained and evaluated the classifiers on three

different data sets. The first data set (c/n) was built by using only real

clean and noisy sections. The second (c/a) data set was built by using clean

sections and sections where artificial noise was added to whole clean sections

(a), considering them as noisy sections. The last data set (c/p) is similar

to the second one, but, instead of completely noisy sections, we used clean

sections where the noise was added only to a randomly chosen interval (p).

For each signal, 60% of the segments of the different types were randomly

chosen for the training and the others were used for the testing. A different β

vector was obtained for each individual (signal). Table 11.3 shows the results

obtained by using the linear classifier. The table also shows the performance

that we can obtain by classifying the signal using only the mean of the segment

SNR, the variance of the segment SNR or the whole SNR. The table contains

the mean of the results of all the signals used for the tests. It is clear from

these results that the combination of all derived values with a simple linear

classifier significantly improves the classification results.

Table 11.3: Performance of the protocol using the linear classifier or a single

feature.
Test type Linear classifier σSNR µSNR SNR

c/n 0.8490 0.8158 0.7061 0.7325

c/a 0.8365 0.8005 0.8368 0.8234

c/p 0.7377 0.6729 0.6695 0.6666

Therefore our protocol for remote ECG quality evaluation guarantees quite

good classification results (≈ 85%) with an online bandwidth of less than

4MBytes for a 30-seconds analysis.
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Conclusions

The need for privacy protection is steadily increasing in our society due to

the wide diffusion of on-line distributed services offered by non-trusted parties

having a potential access to private information like users’ preferences or other

personal data. This need is even more pressing in settings where the informa-

tion to be protected is related to the health of the users: with the appearance

of more and more online medical repositories, it is simple to imagine that in

a few years the approach to remote healthcare will be completely different

from the current one and it is of the outmost importance that manipulation

of sensitive data does not compromise the privacy of users.

The availability of signal processing algorithms that work directly on the

encrypted data is of great help for application scenarios where biomedical

signals must be produced, processed or exchanged in digital format. In this

thesis, we have broadly referred to this new class of signal processing tech-

niques operating in the encrypted domain as s.p.e.d. (Signal Processing in

the Encrypted Domain) techniques. While, in principle, the evaluation of any

functionality in the encrypted domain is always possible, the development of

efficient schemes that minimize the computational and communication com-

plexity is not trivial, since it requires a joint design of the signal processing

(SP) and cryptographic aspects of the system.

The first part of this thesis has been devoted to the presentation of the

existing literature concerning the technologies related to s.p.e.d. . This re-

sults in a common background, that can help whoever is interested in this

field. In particular the first part describes the necessary properties of the en-

cryption primitives, to highlight the limits of current solutions, and to clarify

the differences between signals and other kinds of data like alphanumeric or

bit strings that impact on processing in the encrypted domain. The general

cryptographic tools that allow to process encrypted signals are Homomor-



222 12. Conclusions

phich Encryption, Oblivious Transfer and Garbled Circuits, since they allow

to perform computations on the encrypted data.

The definition of a GC-based proposal for the evaluation of the integer

logarithm, having a low complexity counter circuit as main component, is

very relevant. Moreover the definition of hybrid protocols permits to develop

efficient protocols by dividing them in subparts each one implemented by

using the most efficient HE or GC solution.

In the second part of the thesis we have shown how s.p.e.d. technology

may help to achieve the twofold goal of allowing the processing of biomedical

signals while ensuring the privacy of the signal’s owner with reasonable com-

munication and computation complexity. The proposed protocols address the

classification of ElectroCardioGram (ECG) signals and rely on Secure Func-

tion Evaluation (SFE) constructions and on a proper design of the classifica-

tion algorithms so to ease their implementation in a s.p.e.d. framework. More

specifically, we have described two alternative ECG classification protocols,

the former is based on a Linear Branching Program (LBP) classifier and is im-

plemented by relying on a hybrid approach wherein homomorphic encryption

and garbled circuit theories are used together, the latter implements a Neural

Network (NN) classifier and relies only on garbled circuit constructions. The

optimization of the signal processing part substantially improved the perfor-

mance of both the solutions. Regarding the LBP solution, we experimentally

compared two different implementations of the system, one relying on garbled

circuits (GC) and one on a hybrid combination of the homomorphic Paillier

cryptosystem and GCs. While from a communication complexity perspec-

tive the Hybrid protocol is clearly better, the computational complexity of

the two protocols is similar for short-term security parameters, whereas for

medium-term security the GC based protocol is preferable.

While both protocols are rather efficient, thus opening promising direc-

tions for real-world applications, the LBP classifier is (slightly) preferable

from the point of view of communication complexity, while the NN classifier

is (slightly) preferable from a computational complexity perspective.

In the third part of the thesis, we presented a protocol to evaluate the

quality of an ECG signal specifically geared towards remote health monitor-

ing applications. Our solution is novel especially from a signal processing
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and privacy preserving points of view. In particular, our new technique an-

alyzes the amount of noise in a biomedical signal based on analysis of the

Signal-to-Noise ratio in small segments of the encrypted signal rather than

the whole measurement [BGL10]. The analysis is based on the statistics of

the raw signal segment and a corresponding filtered signal. The signal is di-

vided into segments and the signal-to-noise ratio is computed between each

segment and its denoised version. Given the SNRs, the first and second order

moments (mean and variance) of them are obtained. These values are then

used together with the SNR of the whole signal to classify it as clean or noisy

depending on the result of a linear classifier, whose training set is specific to

each individual. By using the integer logarithm, the SNR is computed by

introducing a very small (accuracy) error.

For both the classification and quality evaluation protocols, a reader may

wonder whether a running time in the order of a few seconds is affordable in

real life applications. The ultimate answer to this question depends on the

application at hand, however we can observe that a running time of less than

one second would be enough for applications wherein heart beats are classified

at the same pace at which they are produced. While our protocols are not

that fast, their performance are not far away from the above so-to-say real

time requirements thus witnessing the validity of our solutions.

Security issues have been overlooked in this thesis, focusing principally

on signal processing aspects. Anyway security is a fundamental aspect of

this topic and it is important to remember that the security of the proposed

protocols is always guaranteed by the cryptographic primitives and by the

additive obfuscation, so that each party is able to observe only its own input

or output data, while intermediate values are kept secret and are not revealed

to both the parties.

12.1 Tracks for future works

Preserving the privacy of the patients in a remote healthcare scenario is really

important and, as demonstrated in this thesis, also feasible. We are working

to propose new applications of s.p.e.d. to the health diagnosis and we hope

that many other researchers decide to come abreast of us in this research.
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The promising results of our research pave the way to a number of interesting

research directions that can be exploited in the future.

First of all, new more efficient implementations of the underlying building

blocks can be sought for to further improve the efficiency of the classifiers.

In particular, the ECG quality evaluation protocol can still be improved by

choosing the discrimination threshold according to a Relative Operating Char-

acteristic (ROC) curve. It is important to note that a noisy signal classified as

clean can result in wrong further classification. On the other side a clean sig-

nal classified as noisy causes only the request of a new placement of electrodes.

Hence the two cases can be weighted differently in the analysis. Moreover in

the protocol evaluating the quality we carried out only a worst case analysis,

while tests aiming at choosing the lowest data dimension, still providing the

same classification accuracy, could lead to better performance.

The results we obtained for the particular case of ECG classification could

be extended to more general set-ups with the goal of deriving some general

conclusions about the suitability of the LBP and the NN approaches to clas-

sification in a s.p.e.d. framework.

Different scenarios involving other biomedical signals, such as Electroen-

cephalography (EEG), Electromyography (EMG), blood pressure, etc. can be

considered. Moreover, similarly to the ECG case, a signal quality evaluation

problem can be addressed for each of them, not necessarily relying on the

protocol proposed here. Also the device calibration could be addressed in the

encrypted domain.

Much work can still be done in this field. We are already working for a

solution that allows us to evaluate a generic function in the encrypted do-

main through a secure implementation of a linear piece-wise approximation

[PLB12]. This allows us to evaluate, for example, root and sinusoidal func-

tions. Moreover an approximation of the logarithm can be used in the quality

evaluation protocol. This guarantees higher precision than the current so-

lution, to the detriment of the complexity. A difficult challenge consists in

finding a solution that allows MPC protocols to work directly with floating

point numbers. Moreover many new applications can still be exploited, such

as smart metering, data fusion, game theory, etc. Also security models more

stringent than the semi-honest model should be considered, attempting to
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develop efficient constructions in the presence of malicious adversaries, even

if for security against stronger covert adversaries (who can be caught in a

cheating attempt with a fixed probability) or malicious adversaries (who are

caught cheating with overwhelming probability) the expected runtime grows

considerably.

Last but not least, some new advances in cryptography, like the recently

proposed fully homomorphic encryption (FHE) systems [Gen09, DGHV10,

CNT, AGH10] could open new research directions, finally leading to a brand

new class of efficient s.p.e.d. protocols. By using FHE, S can evaluate any

functionality without the interaction with C, that will perform only the de-

cryption of the final result. In FHE protocols the values are bitwise encrypted

and the functionalities represented by boolean circuits, similarly to GC solu-

tion. Unluckily efficient FHE schemes guaranteeing the same security level of

GC has not been devised so far, making GC solution more used than FHE’s.

12.2 Final considerations

Indeed in the last years research in Signal Processing in the Encrypted Do-

main produced many important results. At the beginning of our experience

Yao’s garbled circuits seemed to be only a theoretic result, not applicable in

real applications. A fully homomorphic encryption scheme was supposed to

be unrealistic. On the contrary efficient GC protocols and full homomorphic

encryption are reality. Many important functionalities, such as logarithm,

linear branching programs, neural networks, have found an implementation

and Secure Multi-Party Computation has been applied in many different sce-

narios: biomedical, biometric, auctions, electronic voting, etc.

Actually privacy is protected only by weak laws, while the user inclination

is to share any personal information through social networks and give full

control on personal data to phone applications, such as the GPS position

or personal preferences. Anyway we believe that, in a not so far future,

people will rediscover the privacy importance and s.p.e.d. protocols will be

the solution to major privacy concerns. In the meanwhile research keeps

going on, funded by public agencies and some companies, to be ready when

the privacy will be needed by the population.
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This thesis focuses on the development of a privacy preserving 
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biomedical signal provided by the patient without getting any 

information about the signal itself and the final result of the 

classification. Specifically, we present and compare two methods for 

the secure classification of electrocardiogram (ECG) signals: the 

former based on linear branching programs  and the latter relying on 

neural networks. Moreover a protocol that performs a preliminary 

evaluation of the signal quality is proposed. The thesis deals with all 

the requirements and difficulties related to working with data that 

must stay encrypted during all the computation steps. The proposed 

systems prove that carrying out efficiently complex tasks, like ECG 

classification and quality evaluation, in the encrypted domain is 

indeed possible in the semihonest model, paving the way to 

interesting future applications wherein privacy of signal owners is 

protected by applying high security standards. 
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