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Chapter 1

Introduction

1.1 Motivations

Satellite and HyperSpectral Images (HSI) applications are rapidly grow-

ing in both the areas of signal processing and remote sensing. Typically a

large array of new sensors are deployed to obtain diverse information about

complex phenomena. This diversity in observations brings several advantages,

in hyperspectral imagery, for example, hundreds or thousands of images are

acquired from a scene in different adjacent spectral bands in order to pro-

vide comprehensive information about the material substances present in the

scene [1, 2, 3]. This is particularly useful in terms of potential applications, as

spectral features allow to extract important information from the data. How-

ever, these sensors generate increasing amounts of data, especially across the

spectral dimension, as scenes are imaged at a very fine wavelength resolution

making the dimension size extremely large. This creates many problems as

the huge flow of data poses serious constraints on the available technologies,

particularly embedded systems, at any of the acquisition, transmission and

analysis steps. Firstly, processing a large number of samples may require sig-

nificant computational capabilities, which are rarely available onboard. Sec-

ondly, many sensors especially spaceborne ones, cannot store all the data but

need to transmit them to a ground station, raising the need for data size

reduction in order to download all the acquired data.

To deal with these issues, a large amount of research has been devoted

to the development of compression schemes leveraging on the redundancy

present within HSI. Many compression techniques are based on transform

coding, and rely on finding bases or frames that provide sparse or compress-

ible representations for the signals of interest [4]. By sparse representation,

we mean a representation wherein the signal has only K out of N nonzero
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coefficients, with K << N ; by a compressible representation, we mean that

the magnitude of the signal coefficients, when sorted, exhibit a power law de-

cay with exponent −1/p, p < 1 [4]. Both sparse and compressible signals can

be compressed with high fidelity by preserving only the values and locations

of the largest coefficients; in fact, many data compression schemes like JPEG

[5] and JPEG2000 [6] exploit signal sparsity and compressibility.

Although conventional compression techniques significantly reduce the

quantity of data required to represent multichannel signals, the complexity

of handling a very large amount of data remains unchanged at acquisition

and compression steps since conventional hardwares make a costly effort to

entirely acquire data, only a very small amount of which is retained after

yet another computationally expensive compression procedure. To avoid this

wasteful process of massive data acquisition followed by compression, a new

signal processing paradigm has been invented in 2006, which revolutionizes

Shannon’s sampling theorem. This framework is called Compressive Sam-

pling , also known as Compressed Sensing (CS). CS is a new technique

for signal acquisition and sensor design that enables a potentially large reduc-

tion in the sampling and computational costs related to signal sensing. CS

aims at avoiding altogether the acquisition of a very large number of samples,

thereby allowing to design sensors that are more effective at acquiring the

signal of interest. In the normal compression process, we have to turn a large

digital data set into a smaller one, but in many applications it could be useful

to avoid the initial large data set to begin with, and to acquire and com-

press at the same time exactly as CS does. Based on the works by Candès,

Romberg, and Tao [7, 8, 9, 10, 11, 12] and Donoho [13], CS is concerned with

the reconstruction of “sparse or compressible” signals from a limited number

of linear measurements that are incoherent with the sparsity basis, meaning

that the representation of the measurement vectors in this basis is not sparse.

In other words, if the signal is sparse in some domain, then a limited number

of measurements is sufficient to reconstruct the signal exactly with very high

probability. The number of linear measurements required is comparatively

much smaller than the number of samples dictated by Nyquist/Shannon’s

sampling theorem [14]. This allows to represent a signal in a very compact

way, and with limited computational complexity.
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For this reason, CS has received a growing interest in recent years due

to a number of possible applications, including the design of next-generation

satellite imaging sensors; despite the huge potential, many modern satellite

imagers face a limiting trade off between spatial and spectral resolution. In

fact, the total number of samples that can be acquired is constrained by the

size of the detector array. This limits the usefulness and cost effectiveness of

spectral imaging for many applications. This thesis investigates possible ways

to overcome this limitation by inquiring a new imaging architecture based on

CS. It addresses the design of CS strategies for an acquisition system that

does not detect single pixels of the scene, but rather a small number of mea-

surements. Specifically, we focus on the investigation of the possibility of

using CS for devising a new acquisition architecture for remotely sensed Hy-

perSpectral Images (HSI) by taking advantage of the complementary nature

of spectral and spatial information within the data. The main idea is that, if

the acquisition employs linear measurements as it is the case with CS, then a

small number of detectors would suffice to yield the same spatial or spectral

resolution of a conventional design. This has obvious positive benefits on the

simplicity of the resulting system, as well as its cost. Moreover, acquiring

linear projections of the image is very interesting for imaging at wavelength

outside the visible light, where manufacturing detectors is very expensive, so

CS could be used to optimize the capturing process of Hyperspectral Images

by designing cheaper sensors, or sensors providing better resolution for an

equal number of detectors.

An example of the above paradigm has been demonstrated in [15] where

CS is used to design a single-pixel camera, whereby a single detector sequen-

tially acquires random linear measurements of a scene. The camera uses a

lens to focus the light onto an electrical component, called digital micro-mirror

device. This is an off-the-shelf component developed and marketed by Texas

Instruments, consisting of a two-dimensional array of micro-mirrors that can

be switched on and off, driven by digital electrical signals. The micro-mirrors

linearly combine the incoming light intensity, which is integrated through a

single detector, yielding one linear measurement. This process is repeated

sequentially until the desired number of linear measurements is obtained.

A problem with CS is reconstruction complexity. The more channels HSI
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have (i.e, the more CS measurements ), the more the computational complex-

ity at the recovery stage. In this regard, one of the most important challenges

faced with this research is to develop some techniques which could alleviate

the computational burden of the recovery process when applying CS to HSI.

1.2 Objectives

While CS community has mostly focused on 1D and 2D signals, only few prior

work exists for CS applied to multidimensional signals where the focus is on

video sequences [16, 17] or hyperspectral imaging data [18]. HyperSpectral

sensors simultaneously acquire spatial and spectral information and the re-

sulting HSI are three-dimensional signals with two spatial dimensions and one

spectral dimension. Both dimensions are highly correlated, allowing a com-

pact (i.e quasi-sparse) representation in a 3D domain. Hence, HSI can be seen

as a collection of smaller 2D spatial images with intra-source sparsity, that is

dependencies between pixels of each specific band, and inter-band correlation

i.e, the redundancy among adjacent spectral channels of the HSI.

The key objective of this thesis addresses the following question: How

can Compressed Sensing be applied to hyperspectral imaging in order to fully

exploit the high correlation within all its hundreds and thousands of spectral

channels without increasing too much the complexity of the reconstruction

stage? This question raises a number of technical challenges, and this research

work addresses the main design issues. In particular, the following aspects

have been considered:

• Should linear measurements be taken separately for each x− y spectral

channel ? Or should individual spectral vectors be linearly measured?

Or should the three-dimensional data cube be linearly measured as a

whole?

• Which linear measurement schemes (along the 2D domain x−y or x−λ,

or along the 1D dimension λ) are feasible in terms of optical compo-

nents? Which architectures would be feasible for a satellite practical

implementation ?
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• Which is the best optimization method from the complexity point of

view to reconstruct a satellite image from a set of linear projections ?

• When is CS more convenient than conventional acquisition followed by

lossy compression ?

In this thesis we cover most of these aspects. One thing we are sure about

is the fact that the acquisition of HSI signals could benefit from CS due to

its low-complexity sampling process and the reduction of the number of sam-

ples to be acquired, processed and transmitted. However, the computational

complexity of the CS reconstruction stage is relatively high for practical ap-

plications, since it is cubic in the number of samples. In the literature, some

frameworks have been proposed to tackle with this problem. The authors of

[19] apply CS to image blocks considering wavelets as sparsity basis. Recon-

struction algorithms for multidimensional signals have also been proposed in

[20, 21] for hyperspectral images and multiview images. All these schemes

consider a separate sets of measurements on the datasets, e.g. in the spatial

or spectral dimension, and perform separate reconstructions. This “sepa-

rate” approach does not yield satisfactory results in terms of reconstruction

mean-squared error (MSE), as it neglects the overall correlation among the

various dimension. The spatial CS approach completely neglects the spectral

correlation, and the spectral approach neglects the spatial one. In this way,

only the correlation along one signal dimension is considered thus limiting the

potential benefits brought by CS.

In order to take advantage of correlation in all dimensions of the datacube

simultaneously, we developed a new iterative method for reconstruction of hy-

perspectral images based on a CS-hybrid prediction correlation model (cou-

pled with a proper initialization strategy) which incorporates both intra- and

inter-sparsity within HSI to provide efficient ways to lower the computational

time at the recovery stage. Additionally, we leveraged on a 2D CS scheme

based on blind source separation to develop a computationally faster, yet ac-

curate, prediction-based scheme for acquisition and iterative reconstruction

of hyperspectral images in a CS setting.

Both approaches yield good performance in terms of reconstruction qual-

ity and a good reduction of computational time. However, when considering

the hyperspectral cube exactly as acquired by the pushbroom configuration
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(see chapter 2) of the satellite, these approaches fail to reconstruct the hyper-

spectral image properly. To take into account the way hyperspectral images

are acquired by onboard sensors, then we have developed a new reconstruc-

tion method based on Total variation (TV) and we have found out that, such

an approach works well and reduces even more the complexity of the recon-

struction.

The work developed in this thesis is the result of the collaboration between

the VIPP (Visual Information Processing and Protection) research group

within the Department of Information Engineering and Mathematical Sci-

ences of the University of Siena and the IPL (Image Processing Lab) research

group at the Department of Electronics and Telecommunications, Politecnico

di Torino, Italy. This research activity has been developed with the fund-

ing support from the Italian Research Institution CNIT (Inter-Universitary

Consortium for Telecommunications) and various projects funded by the Eu-

ropean Space Agency (ESA), which are described in the following:

• SATSAMP (Next Generation Satellite Imaging via Compressed Sens-

ing): This project addresses the design and proof-of-concept of CS for

satellite imaging, with the objective of defining suitable sampling strate-

gies, and assessing the quality of reconstructed images.

• HPSI-CS (Hyperspectral Passive Satellite Imaging via Compressed

Sensing): This project investigates the use of CS theory to acquire hy-

perspectral images following the pushbroom imaging architectures in

order to pave the way for the development of new satellite imaging

systems that can provide significantly improved resolution without in-

creasing the number of detectors.

The candidate has been a doctoral researcher of the VIPP group which

belongs to the Department of Information Engineering and Mathematical
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1.3 Contributions

In the framework described in the previous section, the contribution of this

thesis can be summarized as follows:

1. Deriving a progressive model based on linear predictors for efficient it-

erative compressive sampling of multichannel signals by exploiting both

inter- and intra-channel sparsity structures.

2. Application of this novel approach for efficient compressive hyperspec-

tral imagery considering both the standard use of these images and the

way they are acquired by onboard sensors based on the pushbroom ar-

chitecture.

3. Compressive source separation of multichannel signals with applications

to hyperspectral images.

1.4 List of publications

The results of this thesis work have been published in peer-reviewed scien-

tific international conference and journals. Specifically, the applicant has co-

authored 1 journal paper and 4 international peer-reviewed conference papers

directly related with this thesis. In the following we list all the publications

and provide the abstract of each of them.

B.1 Scientific International Journal

1. G. Coluccia, S. Kamdem Kuiteing, A. Abrardo, M. Barni, E. Magli

“Progressive compressed sensing and reconstruction of multidimen-

sional signals using hybrid transform/prediction sparsity model”,

IEEE Journal on Emerging and Selected Topics in Circuits and Systems, Vol.

PP Issue: 99, pp.1-13, October 15, 2012.

The application of CS theory to multidimensional signals is not straight-

forward mainly due to the complexity of the reconstruction stage. For a

fruitful application of CS, in fact, it is necessary that the redundancy of mul-

tidimensional images in all dimensions is exploited. In particular, for HSI,
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correlation must be exploited in all three dimensions of the spectral cube. To

achieve this goal, we combine an accurate modeling of the spatial-spectral cor-

relations, with the low complexity of sequential, as opposed to fully joint, band

reconstruction. Specifically, instead of modeling the correlation by means of

a three-dimensional transform, and hence attempting to reconstruct the hy-

perspectral cube as a whole, we employ a linear correlation model of the hy-

perspectral image, and iteratively apply this model band by band, improving

the quality of the reconstructed image.

B.2 peer-reviewed scientific international conference papers

1. A. Abrardo, M. Barni, C. M. Carretti, S. Kamdem Kuiteing, E. Magli,

R. Vitulli “Compressed Sensing Techniques for Hyperspectral Image

Recovery”. 2nd Int. Workshop on On-Board Payload Data Compression

OBPDC, 28 & 29 October 2010, CNES, France.

One of the fields which could gain more benefits from CS theory is im-

age compression: in the normal compression process, we have to turn a large

digital data set into a smaller one, but in many applications could be useful

to avoid the initial large data set to begin with, and to acquire and sampling

at the same time. We apply the CS theory to optimize the capturing process

of Hyperspectral Images, which are characterized by an huge amount of data

with high spatial and spectral correlation and, hence, allows a compact (i.e.,

quasi-sparse) representation in a 3D domain. The aim of the paper is twofold:

(i) to investigate to sparseness degree S, i.e., the number of nonzero samples

in the transform domain which are necessary to reconstruct the signal with

satisfactory quality, i.e., with quality comparable to typical lossy compres-

sion schemes; (ii) to investigate the number of measurements M which are

necessary to reconstruct the signal with satisfactory quality, whereas recon-

struction is performed by means of `1-norm minimization and acquisition is

performed by means of random matrices.

2. A. Abrardo, M. Barni, C.M. Carretti, S. Kamdem Kuiteing, E. Magli

“A compressive sampling scheme for Iterative Hyperspectral Im-

age reconstruction”. Proceedings of the European Conference on Signal

Processing, August 29 - September 2, 2011, EUSIPCO, Spain.
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Compressed sensing (CS) allows to represent sparse signals through a small

number of their linear projections. CS can be thought of as a natural candi-

date for acquisition of hyperspectral images, as the amount of data acquired

by conventional sensors creates significant handling problems on satellites or

aircrafts. In this paper we develop an algorithm for CS reconstruction of

spectral images. The main problem lies in the very large number of sam-

ples of a scene, leading to a reconstruction problem that is computationally

intractable using conventional techniques. The proposed algorithm employs

iterative local image reconstruction based on a hybrid transform/prediction

correlation model. Experimental results on raw hyperspectral images show

that the proposed technique yields a very large reduction of mean- squared

error with respect to separate spatial measurement and reconstruction.

3. S. Kamdem Kuiteing, G. Coluccia, A. Barducci, M. Barni, E. Magli

“Compressive Hyperspectral Image reconstruction using progres-

sive Total Variation” Submitted and accepted to International Confer-

ence on Acoustics, Speech and Signal Processing (ICASSP), 4 - 9 May 2014,

Florence, Italy.

HSI are usually considered as 3D datacube modelled in a 2D + 1D fashion

assuming that the two spatial dimensions, hereafter indicated as x − y, are

acquired and processed together, and that the spectral dimension λ is used

in a second phase to progressively refine the reconstruction obtained from the

x − y data, exploiting the correlation along the spectral dimension. Such an

approach, however, does not take into account the way hyperspectral images

are acquired by onboard sensors. Unlike many state-of-the-art approaches, the

proposed algorithm requires separately sensed spectral rows x−λ (x dimension

at all wavelengths), which is compatible with the way HSI are acquired by

onboard satellite sensors following the pushbroom configuration. We show

that the Total Variation (TV) prior is effective at capturing the correlation

within spectral rows, achieving a reconstruction quality very similar to that

obtained by the simpler (but unfeasible) conventional approach.

4. S. Kamdem Kuiteing, M. Barni “Iterative Compressive Sampling

for Hyperspectral Images via Source Separation”. Proceedings of

IS&T/SPIE Electronic Imaging, 02 - 06 February 2014, San Francisco, Cali-

fornia, USA.
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Since many multichannel signals obey a linear mixture model with few

sources, we can sometimes assume that the mixture parameters are given as

side information. As a result, the multichannel CS recovery problem can be

rephrased as identifying the underlying sources from CS measurements. We

formulate the sparse source recovery problem as a convex l1 norm minimiza-

tion problem and we establish theoretical guarantees for this approach for

both source identification and data reconstruction. Further, we introduce a

novel decorrelation-based CS recovery scheme that exploits such side informa-

tion (known mixture parameters) to significantly enhance source separation

performance as well as accelerating the recovery procedure. Finally, we adapt

this approach for hyperspectral image source separation and we evaluate the

performance of the proposed scheme through several experiments on different

challenging HSI datasets.

1.5 Thesis organisation

The present thesis is organized in a series of chapters as follows:

Chapter 1 provides the motivations and objectives that have led to the

development of the thesis. It also includes a list of the main contributions

followed by a list the publications together with a summary of each paper.

In Chapter 2, we introduce multidimensional signals as described in the

literature in general, with a particular emphasis on hyperspectal images (HSI).

We look at the common use of HSI by the signal processing communities (x−y
as 2D spatial dimensions and λ as the 1D dimension) and other possible

configurations of HSI which could be obtained by considering x − λ as the

2D spectral rows dimensions with y as the 1D dimension. Then we describe

how HSI are effectively acquired by sensors onboard of a satellite. We further

explain the importance of mixed pixels in hyperspectral data interpretation

for spectral unmixing purposes.

Chapter 3 presents a review of CS theory which lays out the foundational

concepts along with the guarantees for robust signal recovery from undersam-

pled data. The CS reconstruction algorithms we used during this work are

also described.
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Chapter 4 explains how the Compressive Sampling techniques become

interesting for hyperspectral imagery as the amount of data acquired by con-

ventional sensors creates significant handling problems on satellites or air-

crafts. We address this point by presenting a few novel designs that have

been recently proposed in the state-of-the-art based on the new CS sam-

pling paradigm, aiming at spectral satellite image acquisition by means of

very few number of measurements. These methods transform the untractable

high-complexity CS reconstruction stage when applying the CS to HSI into

a much simpler problem and show how the CS framework could benefit from

low-complexity sampling.

In chapter 5, we propose a generic framework for CS acquisition and

reconstruction of multidimensional correlated signals. Even if the algorithms

implemented in this part mostly apply to 2D signals and 3D-hypersectral

images, the approach is general since the principles behind the architectures

can be extended to D dimensional signals, with arbitrary D. The proposed

methods employ an iterative local signal reconstruction based on a hybrid

transform/prediction correlation model, coupled with a proper initialization

strategy.

Chapter 6 investigates the suitability of Compressed Sensing (CS) for

remote acquisition of hyperspectral images for earth observation. We pro-

pose a novel progressive CS architecture which tends to decouple spatial and

spectral dimensions to reduce the complexity of the reconstruction by taking

into account that onboard sensors progressively acquire spectral rows rather

than acquiring spectral channels. Then we perform the joint reconstruction

of spectral rows by employing Total Variation.

In chapter 7, we introduce a stronger model for multichannel data CS

acquisition. We assume data is derived by a linear mixture model while the

mixture parameters are known to the decoder. The data reconstruction prob-

lem can be seen as a compressive source separation problem and we pro-

pose a novel decorrelating scheme that exploits this information for a robust

and numerically efficient source identification. We establish the theoretical

basis/framework of this approach and ultimately apply it to hyperspectral

compressive source separation.
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Finally, Chapter 8 concludes the thesis by summarizing the advantages,

disadvantages and main contributions of the methods we developed as well

as a presentation of the most plausible future research lines that should be

explored after this research.



Chapter 2

Multidimensionals signals

2.1 Introduction to multidimensional signals

Signals that are generated by multiple sources or multiple sensors are called

multidimensional or multichannel signals. They represent the fact that multi-

ple image planes (channels) are obtained by an imaging system that measures

the same scene using more than one sensor. Multichannel signals carry in-

formation about physical quantities that depend on several variables, each

representing a unique dimension. They contain multiple types of structures

corresponding to different coordinates/dimensions. The coordinates of these

signals may span several physical, temporal, or spectral dimensions. Addition-

ally, these signals are often measured in a progressive fashion, in a sequence

of captures corresponding to subsets of the coordinates. Examples include

hyperspectral imaging, video acquisition (with spatial and temporal dimen-

sions), and synthetic aperture radar imaging (with progressive acquisition in

the spatial dimensions). Each portion of these signals usually corresponds to

a snapshot of the signal along a given dimension, such as one frame of a video

signal or the image of one spectral band out of a hyperspectral datacube.

Multidimensional signal processing is gaining attention due to its numer-

ous applications in the areas of computer vision, biomedicine, sensor networks,

multi- and hyper- spectral imaging, just to name a few. The high dimension-

ality of multichannel signals raises a series of new challenges on several fronts,

namely, in signal and image processing, physical modeling, sensor design and

calibration, applications and computationally efficient processing. Some com-

mon bottlenecks slow down the pace of development of multidimensional data

processing. One of the main difficulties raises from the enormous volume of

generated data, which causes problems during storage, transmission and even

processing. Therefore, it is critical to explore the data on different domains
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and develop effectual methods to reduce the volume of these data without

loosing the key information. The main feature of multidimensional signals is

the high redundancy they present within the dimensions of such data. Thus,

by exploiting this crucial property properly, one would be able to design effi-

cient compression algorithms, which discard redundancies in the data in order

to reduce the size prior to storage or transmission.

2.2 Remote sensing Hyperspectral Images

HyperSpectral Imaging (HSI) [22] is an emerging field in remote sensing. It

is concerned with the measurement, analysis, and interpretation of huge col-

lections of images that have been acquired simultaneously from a scene (or

specific object) at a short, medium or long distance by an airborne or satellite

sensor. The main characteristic of hyperspectral images is the high resolution

they present in the spectral domain, since they are collected by instruments

able to measure hundreds and thousands of narrow spectral bands correspond-

ing to continuous wavelength channels [2, 3]. In contrast, multispectral imag-

ing instruments are only able to provide information in a few (say 5 or 6)

spectral bands [23]. The resulting multi- and hyper- spectral data volume

can be therefore seen as a data cube with two spatial and one spectral dimen-

sions (see Figure 2.1). Each pixel location in the datacube can be considered

as a high-dimensional vector (see Figure 2.2) where the values of a pixel con-

tain the spectral signature associated to that spatial location. The spectral

signature is characteristic of each observed object in the scene and can be

used as a fingerprint for identification purposes.

One specific characteristic of multi- and hyperspectral data is that they

are highly correlated both spatially and spectrally i.e., values of adjacent pix-

els in a given spectral band, or values of the pixels in adjacent spectral bands

are highly correlated. This property has fostered a strong interest in this

image modality at an unprecedented rate in recent years. In fact, hyperspec-

tral imaging instruments have experienced a significant evolution nowadays

[24]. The very high spectral resolution of remotely sensed hyperspectral data,

rooted in technological, modeling and processing advances, offers significant

potential in the identification of materials and their properties [25]. Each
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Figure 2.1: Hyperspectral imaging concept

Figure 2.2: Hyperspectral sensor data acquisition
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material (endmember) has its own specific spectral signature or frequency ab-

sorption features and therefore, once the frequency bands are sampled with

highly enough resolution, hyperspectral imagery becomes a very powerful tool

for characterizing the components of the observed scenes. The price to pay

for such high spatio-spectral resolution is the necessity to handle extremely

large data size. For instance, NASA’s Airborne Visible InfraRed Imaging

Spectrometer (AVIRIS)1 is now able to record the visible and near-infrared

spectrum (wavelength region from 400 to 2500 nanometers) of the reflected

light of an area 2 to 12 kilometers wide and several kilometers long, using 224

spectral bands where each has spatial resolution of 614× 512. Allocating one

byte per data-pixel reveals that each instance of the acquired HSI requires

a memory size of more than 70 MBytes (up to 140 MBytes together with

navigation, engineering and calibration data).

These type of images are found in a wide variety of remote sensing ap-

plications such as detection and identification of the ground surface as well

as atmospheric composition, analysis of soil type, agricultural studies (e.g.,

monitoring the development and health of crops), mineral explorations (many

minerals can be identified from airborne images such as gold, diamonds, etc.)

and environmental monitoring (e.g., oil or gas leakage from pipelines or nat-

ural wells). Electron microscopy is another important application of spectral

images that involves energy-dispersive X-ray spectroscopy (EDS), electron

energy loss spectroscopy (EELS), infrared spectroscopy (IR), mass spectrom-

etry (MS) and Raman spectroscopy, in which the entire spectrum measured

at each point is recorded.

2.2.1 Satellite onboard architecture for HSI acquisition

The aim of remote sensing is to utilize sensors, which are mounted on aerial

platforms, to identify and/or measure parameters of an object according to

variations in the electromagnetic radiation (EMR) emitted by, or reflected

from the object. With the term imaging spectrometers we refer to instru-

ments able to measure the energy emitted or reflected from an object as a

function of two spatial and one spectral coordinates, originating 3D datasets

1http://aviris.jpl.nasa.gov
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called datacubes. Unfortunately, only few 3D detectors exist, which have

coarse spectral resolution power and poor efficiency, and are therefore unsuit-

able for the realization of spaceborne sensors. Modern imaging spectrometers

employ 2D detector arrays, which collect a signal expressed in arbitrary digi-

tal units of energy as a function of three indices representing column, row, and

exposure(λ) [26]. These raw data must be transformed into a standard coordi-

nate/measurement system of sensor radiance, cross-track position, along-track

position, and wavelength (or wave number).

Imaging spectrometers used for earth observation can be categorized into

classes based on two main criteria. First, the technique they adopt to perform

spatial sampling. Second, the sensors architecture utilized to induce spectral

dispersion/discrimination. These criteria affect the resolution and sensitivity

of the system, and to a certain extent the quality of the data. Mechanisms of

Figure 2.3: A whisk broom scanner sweeps in a direction perpendicular to the flight

path, collecting one pixel at a time
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spatial sampling that have been used in real instruments depend on the form

of imaging technology used and can be divided into a handful of basic types:

whiskbroom, pushbroom, framing, and windowing.

A whisk-broom or spotlight sensor (across track scanner) is a technology

for obtaining satellite images with optical cameras. It is used for passive

remote sensing from space as illustrated in Figure 2.3. In this kind of sensor,

a mirror scans across the satellites path (ground track), reflecting light into a

single detector which collects data one pixel at a time. The moving parts make

this type of sensor “expensive” and more likely to wearing out. Whisk-broom

scanners have the effect of stopping the scan, and focusing the detector on one

part of the swath, typically capturing greater detail in that area. However,

A whisk-broom scanning instrument employs a spatial “instantaneous field of

view” (IFOV)2 that scans the object in both the along-track and the cross-

track directions. Usually, the IFOV covers the entire spectral interval to be

sampled; i.e., a 1D detector array is adopted to observe all spectral channels

with a single shot. This is also called a close look scanner, comparable to a

telephoto lens on a camera. The IFOV controls the picture element (pixel)

size which gives the ground (spatial) resolution of the ultimate image (see

Figure 2.3), i.e. the spatial resolution is a function of the detector angle and

the height of the sensor above the ground.

A push-broom scanner (along track scanner) is a technology for obtain-

ing images with spectroscopic sensors. It is regularly used for passive remote

sensing from space and in spectral analysis on production lines. In this sort of

sensor, a line of sensors arranged perpendicularly to the flight direction of the

spacecraft is used. Different areas of the surface are imaged as the spacecraft

flies forward collecting the image one line at a time, with all of the pixels in a

line being measured simultaneously (see Figure 2.4). A push-broom imaging

spectrometer scans a 1D IFOV in the along-track direction only, covering with

a single acquisition the entire spectral range. It can gather more light than a

whisk-broom scanner because it looks at a particular area for a longer time,

like a long exposure on a camera. These sensors are also known as survey or

wide field devices, comparable to wide angle lenses on conventional cameras.

2IFOV is the angle over which the detector is sensitive to radiation.
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Figure 2.4: A linear array detector advances with the spacecraft’s motion, producing

successive lines of image data (analogous to the forward sweep of a push broom)

One drawback of pushbroom sensors is the varying sensitivity of the individ-

ual detectors. If they are not perfectly calibrated, this can result in stripes in

the data.

Framing systems (also called staring) capture both the spectral and the

spatial information of a scene simultaneously. The information is collected by

capturing a single image much like a common film camera or digital camera

(still or video). A framing instrument employs a 2D IFOV that remains fixed

on the object during acquisition. An image is formed on a focal plane and

stored via chemical or electronic means (film or CCD, respectively). This
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method provides low spatial or spectral resolution images. While in the two

previous techniques motion artifacts are often created, in the framing they are

completely removed. Variations of this technique are used by some air-photo

systems and in earlier satellites, where the film is moved in concert with the

satellite motion for longer exposure and better focus.

The term windowing is used to describe the class of sensors that employ

a 2D FOV that scans the target over the along-track direction. This has been

done by dividing the imaged scene in rectangular windows. Such windowing

methodology could provoke the separation of spectrally homogeneous areas

or objects of interest into two or more patches. This is due to the presence

of objects of interest in correspondence to windows’s borders, or because the

fixed size of the windows does not adapt well to the scale of the objects.

2.2.2 Configuration of hyperspectral images

In the previous sections, we have described hyperspectral imagers as sensors

operating at high spectral and spatial resolution, acquiring datasets that have

three dimensions, two of which are spatial dimensions and the third is spectral,

resulting in extraordinary large volumes of 3D data of coordinates (x, y, λ).

Hyperspectral imaging instruments acquire a 2-dimension domain and the

remaining dimension would instead be scanned sequentially over time. Due

to the 3D nature of the signal to be collected, the sampling scheme adopted in

the spatial domain is not independent of the sampling scheme utilized for the

remaining 1D spectral subset. Obviously, only two of the three dimensions

of the data can be sampled, having at best two dimensional array detectors

only. Possible configurations for HSI are therefore limited to the followings

3D fashion (2D + 1D):

1. Sampling the 2D domain (x− λ)

Hereinafter, we call this configuration spectral rows or spatial scanning.

In spatial scanning, each two-dimensional (2-D) sensor acquires all spec-

tral information exactly at the same time providing a full slit spectrum

(x, λ). Put it differently, slit-scanning systems measure the full spec-

tral data simultaneously, with spatial line scanning over time. As a

result, the spatial y dimension is essentially a time dimension, which
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represents the remaining 1D dimension of the datacube. Hyperspectral

imaging (HSI) devices for spatial scanning obtain slit spectra by pro-

jecting a strip of the scene onto a slit and dispersing the slit image with

a prism or a grating. This acquisition architecture is usually referred to

as pushbroom configuration. It is the only HSI technique which prac-

tically fits to all type of applications from lab to production, field and

air, environment and so on.

2. Sampling the 2D spatial dimensions x− y

Sensors belonging to this class known as wavelength-scanning systems

adopt a 2D detector array that samples a single image slice in the 2D

domain (x − y) at a fixed wavelength. This process is repeated for

many wavelengths over the time providing a full 3D datacube where

the 1D spectral dimension is the wavelength axis λ. We refer to this

architecture as Standard use of HSI since nearly all the signal process-

ing community when dealing with HSI considers the data as collected

following this principle. This acquisition sytem is mainly used for the

realization of remote sensing using a whisk-broom setup. It is worth

noting that recent satellite imaging spectrometers do not use the whisk

broom configuration anymore but rather its pushbroom counterpart as

it offers many advantages.

In the following, we list some of the benefits expected from the push-broom

configuration over the whisk-broom:

• Lighter and smaller devices which requires less energy; maximal imaging

speed and low illuminance exposure.

• Better geometry (fixed relationship among detector elements): a lin-

ear array consisting of numerous CCDs (detectors) is used to scan and

can be easily applied in different scales and orientations (wall, floor,

desktop).

• Longer dwell time which is defined as the amount of time a scanner has

to collect photons from a ground resolution cell.
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• Larger signal to noise ratio, greater range of sensed signal, better spatial

and radiometric resolution.

The above points just imply that cost, mass, and volume budgets might

be reduced or optimized by adopting the pushbroom architecture over the

standard hyperspectral sensor based on the whisk-broom scanner systems.

The initial problem for applying CS framework to data acquisition is de-

ciding which 2-dim domain should be compressively sampled. The above

behavior and the aforementioned advantages motivate a strong interest in

the configuration of push-broom (dispersive) imaging spectrometer where the

2-dim detector samples the x− λ domain. Additionally, the alternative con-

figuration of sampling the monochromatic x − y domain would provide less

advantage when observing scenes of higher variability such as a characteristic

of a landscape. As a result, typical application of compression techniques to

the remote observation of the Earth and of other planets should be tested and

performed in the x− λ domain as illustrated in chapter 6. It is worth noting

that recent investigations [27] have pointed out that sparsity in the x− y and

x−λ domains would roughly range in the (same) interval from 3% until 10%

of the original spectral coefficients (samples). Assuming that a CS imaging

system uses as few as 15% measurements of a comparable conventional imag-

ing system [28], it is possible to infer approximate practical savings induced

by the examined method of undersampling a signal.

2.3 Spectral unmixing of hyperspectral data

The number and variety of processing tasks in hyperspectral remote sensing

is enormous. In this section we explore the problem of spectral unmixing and

summarize the most commonly used solutions available in the literature in

order to unmix hyperspectral images. These solutions will be used in Chapter

6.

Spectral unmixing [22, 25] refers to the estimation of the fraction of the

pixel area covered by each material present in the scene. No matter the spa-

tial resolution, the spectral signatures collected in natural environments are

invariably a mixture of the signatures of the various materials found within

the spatial extent of the ground instantaneous field of view of the imaging
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instrument. For instance, the pixel vector labeled as vegetation in Figure 2.5

may actually comprise a mixture of vegetation and soil, or different types of

soil and vegetation canopies. In this case, several spectrally pure signatures

(called endmembers in hyperspectral imaging terminology) are combined into

the same (mixed) pixel. The availability of hyperspectral imagers with a num-

ber of spectral bands that exceeds the number of spectral mixture components

[29] has allowed to cast the unmixing problem in terms of an over-determined

system of equations in which, given a set of endmembers, abundance fractions

can be defined in terms of a numerical inversion process [30].

Figure 2.5: Mixed pixels in HyperSpectral Imaging [22]

A standard technique for spectral mixture analysis is linear spectral un-

mixing [31, 32], which assumes that the collected spectra at the spectrometer

can be expressed in the form of a linear combination of endmembers weighted

by their corresponding abundances. It should be noted that the linear mix-

ture model assumes minimal secondary reflections and/or multiple scattering

effects in the data collection procedure, and hence the measured spectra can

be expressed as a linear combination of the spectral signatures of materials

present in the mixed pixel [22]. Although the linear model has practical ad-

vantages such as ease of implementation and flexibility, nonlinear spectral
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unmixing may best characterize the resultant mixed spectra for certain end-

member distributions, such as those in which the endmember components are

randomly distributed throughout the field of view of the instrument [33]. In

those cases, the mixed spectrum collected at the imaging instrument is better

described by assuming that part of the source radiation is multiply scattered

before being collected at the sensor. In contrast to nonlinear mixing, the

linear mixing model is the basis of a plethora of unmixing models and algo-

rithms spanning back at least 25 years. The linear mixture model holds when

the mixing scale is macroscopic and the incident light interacts with just one

material.

In order to define the linear mixture model in mathematical terms, let us

assume that f ∈ RN×B is a hyperspectral image with B spectral channels

and N pixels (N = Nr × Nc, the number of total pixels). The notation

f = [f1, . . . , fB] represents a set of B bands where each one-dimensional vector

fi is the column raster-scan ordering of the corresponding two-dimensional

spectral channel of length N . The columns of the matrix f are the spectral

signatures of the image pixels fi, and the rows of f are the bands of the

hyperspectral image. Under the linear mixture assumption, we can model the

hyperspectral data as follows:

f = SAT +Nn (2.1)

where S ∈ RN×I , S = [S1, . . . , Si] is a matrix containing endmembers

Si (called source images) by columns (i = 1, . . . , I) and A ∈ RB×I , A =

[a1, . . . , aj ] contains the abundance fractions aj associated to each endmem-

ber in each pixel, namely mixing matrix. Finally, Nn ∈ RN×B is a matrix

which represents the noise introduced in the model by the acquisition process.

Usually two constraints are imposed to the abundances fraction in the linear

mixture model. The first one is the abundance non-negativity constraint

(ANC), which enforces all the abundances fractions to be non-negative [34],

i.e. aj ≥ 0, j = 1, . . . , I. The second constraint is the abundance sum-to-one

constraint (ASC), which enforces the abundances of a given pixel to sum one,

i.e.
∑I

j=1 aj = 1. A key aspect when considering the linear mixture model

is the correct identification of the endmembers, which are extreme points in
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the B-dimensional space. The solution of the linear spectral mixture problem

described in Equation (2.1) (where the unknows are the endmembers and the

abundance fractions) relies on two major requirements:

1. A successful estimation of how many endmembers, I, are present in the

input hyperspectral scene f , and

2. The correct determination of a set S of I endmembers and their corre-

sponding abundance fractions at each pixel.

In order to address these issues, a standard spectral unmixing chain con-

sisting of three steps is generally applied [30]. In a first step, an (optional)

dimensionality reduction step is conducted. This step is strongly connected

with the estimation of the number of endmembers I present in the hyper-

spectral scene. Once the number of endmembers has been determined, an

endmember extraction step identifies the pure spectral signatures present in a

scene. Finally, the abundance estimation step requires as input the endmem-

ber signatures obtained in the endmember extraction process and produces

as output the set of abundance maps associated to each endmember. Figure

2.6 shows the different steps involved in the processing chain. For a more

detailed description of each step refer to [22].
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Figure 2.6: Spectral unmixing chain [22]



Chapter 3

Compressed sensing

3.1 Compressed sensing background

Existing signal acquisition schemes are based on Shannon’s sampling theorem

[14], which proves that perfect reconstruction of a signal is possible if the

sampling frequency is at least twice as large as the signal maximum frequency

(the so-called Nyquist rate), exploiting prior knowledge that the signal is band-

limited. In many applications, such as acquisition through digital cameras,

the Nyquist rate is too high to either store or transmit data without first

compression of them. In addition, increasing the sampling rate might be very

costly in many other scenarios - medical imaging devices, radio receivers,

high-speed analog-to-digital converters, and so forth.

In recent years, the theory of Compressed Sensing - also known un-

der the terminology of Compressive Sensing or Compressive Sampling

(CS) [7, 13] - has drawn researchers’ attention. CS has emerged as a new

sensing/sampling framework that goes against the common wisdom in data

acquisition. Contrarily to the conventional compression schemes, which first

acquire the full data set and then compress it, Compressed Sensing is a new

method for sensing and compressing data simultaneously (this is the origin of

the name).

In particular, CS is a simple and efficient signal acquisition technique that

investigates the problem of collecting a few number of measurements about the

signal of interest. The reconstruction of the original full length signal from

what appears to be an incomplete set of measurements can be performed

exactly or almost exactly [10, 11, 12]. To make this possible, Compressive

Sampling relies on two main principles: sparsity, which is a property of the

signals of interest, and incoherence, which pertains to the sensing modality.
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3.1.1 The sensing problem

The CS sensing mechanism of a time domain signal f(t), is extraordinarily

easy and can be defined as the process of collecting some measurements (the

equivalent of Shannon’s “samples”) about f(t) by correlating f(t) with some

sensing waveforms ϕj(t), i.e.,

yj = 〈f, ϕj〉 j = 1, 2, . . . ,M (3.1)

where 〈., .〉 represents the inner product between two entities. Remarkably, the

sensing mechanism described above is non-adaptive, thus totally independent

from the signal. Although in general this enables a universal sampling scheme,

in some circumstances one might have access to some knowledge about the

sensed signal, that can be gathered before or during the acquisition process

itself. Hence, based on the sensing waveforms, the entries of the vector y have

different interpretations. For example, if the sensing waveforms are sinusoids,

then y is a vector of Fourier coefficients, if the sensing waveforms are Dirac

delta functions, then y is a vector of sampled values of f(t), and if the sensing

waveforms are indicator functions of pixels, y corresponds to the image data

typically collected by sensors in a digital camera.

To simplify the presentation of the CS framework, we will restrict our

attention to discrete signals f ∈ RN . Accordingly, equation (3.1) can be

rewritten in matrix form as:

y = Φf, (3.2)

where the j-th row of the sensing matrix Φ ∈ RM×N is the discrete rep-

resentation of the j-th sensing function ϕj(t), and f ∈ RN is the discrete

representation of f(t). Based on this model, Compressed Sensing is defined

as a sensing process in which the number M of available measurements is

much smaller than the dimension N of the signal f i.e, M � N . The prob-

lem associated with CS is that we have to solve an under-determined system

of equations to recover the original signal f from the measurement vector

y. However, since the number of equations M is less than the number of
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unknowns N , the system has infinitely many solutions, and thus it is neces-

sary to impose some constraints on the candidate solution to identify which

of these candidate solutions is the desired one. The constraint adopted in

CS theory is the sparsity of the solution vector, which is defined in the next

subsection.

3.1.2 Sparsity

In this subsection, before explaining the importance of the sparsity constraint

in solving under-determined systems of equations, we introduce some defini-

tions.

Sparsity can be viewed as the number of non-zero samples (or close

to zero samples) of the signal of interest f . It characterizes the correlations

within the signal. The concept of correlation implies that there exists a do-

main in which the signal is sparse, or approximately sparse. In fact, most

natural signals, such as speech, images and video sequences, are highly cor-

related when represented by a proper basis. A crucial fact is that the best

sparsity value for a signal coul be in a domain other than the original signal

domain, e.g. the Fourier or wavelet domain. For instance, only a small frac-

tion of the wavelet coefficients of natural images is significantly different from

zero.

A K-sparse vector is defined as a vector that has at most K nonzero

entries. In some cases, a vector is called K-sparse if it is a linear combination

of only K basis vectors.

As stated in the previous subsection, an underdetermined system of linear

equations has infinite candidate solutions of the form f̂ = f0 + η where f0 is

any vector that satisfies y = Φf0, and η = η(Φ) is the null space of Φ. As

will be shown later, if the candidate solution vector is known to be K-sparse,

and under some conditions on the sensing matrix Φ, the solution vector can

be uniquely determined using an optimization technique. Fortunately, this

also applies to non-sparse vectors that can be sparsely represented by using a

suitably selected basis Ψ, i.e.,

x = Ψf, (3.3)
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where the coefficient vector x is sparse. Clearly f and x are equivalent repre-

sentations of the signal, f in the time or space domain and x in the Ψ domain.

In some applications, it may be natural to choose Ψ as an orthonormal basis,

while in others the signal f may only be sparsely represented when Ψ is a

redundant dictionary ; i.e., it has more columns than rows. A good example

is provided by an audio signal which is often sparsely represented in an over-

complete dictionary with atoms (columns) that have the form of modulated

Gaussian pulses, e.g., σ−
1
2 e−

(t−t0)
2

2σ2 eiωt, where t0, ω, and σ are the discrete

shift, modulation and scale parameters, respectively [10, 35].

Combining (3.2) and (3.3) and taking into consideration the case of noisy

measurements, the sensing process can be written as:

y = ΦΨTx+Nn = Ax+Nn, (3.4)

where A = ΦΨT ∈ RM×N , and Nn ∈ RN is a noise vector. Assuming that

the coefficient vector x is K-sparse, then x and hence f = ΨTx, can only be

estimated from y if the matrices Φ,Ψ and A satisfy the properties described

in the next subsection.

3.1.3 Incoherence and restricted isometries properties

The sparsity of the solution vector, or its representation according to some

basis, is a necessary but not sufficient condition for finding a unique solution

to an underdetermined system of linear equations. In addition to the sparsity

principle, CS relies on another principle which is the “incoherence” between

the sensing matrix Φ and the sparsity basis Ψ. The incoherence concept is also

related to an equivalent property, which is associated with A, called restricted

isometry property (RIP).

Incoherence

In this subsection, we give a formal description of incoherence, one of the two

key concepts of Compressed Sensing.

Incoherence expresses the idea that if the signal has a sparse representa-

tion in a certain basis Ψ, it has to be spread out in the domain in which the
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measurements are acquired, just as a Dirac or a spike in the time domain is

spread out in the frequency domain. Put differently, incoherence says that un-

like the signal of interest, the sampling/sensing waveforms have an extremely

dense representation in Ψ.

To simplify the treatment, we assume that the sparsity basis matrix Ψ is

orthonormal, and the sensing matrix Φ consists of M rows drawn randomly

from an orthogonal basis Φ̂ ∈ RN×N , which is normalized such that Φ̂T Φ̂ =

N · I, where I is an identity matrix and N is the dimension of the signal .

The operation of extracting the M rows of Φ from Φ̂ is denoted as Φ := Φ̂Ω,

where Ω ⊂ {1, . . . , N} is a subset of indices of size M , the cardinality of Ω.

Based on this notation, A can also be written as A := ÂΩ, where Â = Φ̂ΨT

is an orthogonal matrix with ÂT Â = N · I.

Let µ(Â) be the element with the largest magnitude among all entries of

Â, i.e.,

µ(Â) = max
k,j
|Âk,j | (3.5)

Assume that the measurements are noise-free and the sparse solution vector

x is K-sparse and is reconstructed using basis pursuit, i.e.,

x̂ = arg min
z
‖z‖`1 s.t. ÂΩz = ÂΩx, (3.6)

then it was proved in [10, 9] that x̂ = x with overwhelming probability for all

subsets Ω with size:

M ≥ C · µ2(Â) ·K · logN (3.7)

for some positive constant C. Equation (3.7) indicates that, in addition to

the size and the sparsity of the solution vector, the number of measurements

depends on the largest magnitude among all entries of Â . On one hand, since

each row (or column) of Â necessarily has an `2-norm equal to
√
N,µ(Â) will

take a value between 1 and
√
N . When the magnitude of each entry of Â

equals 1 as in the case when Â is the discrete Fourier transform, µ(Â) = 1

and the number of measurements in (3.7) is the smallest. On the other hand,
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if a row of Â is maximally concentrated – all the row entries but one vanish

– then µ2(Â) = N , and (3.7) indicates that there is no guarantee that the

solution vector can be recovered from a limited number of samples.

Since Âk,j = 〈Φ̂k,Ψj〉, where Φ̂k is the k-th row of Φ̂ and Ψj is the j-th

column of Ψ, µ(Â) can be rewritten as:

µ(Φ̂,Ψ) = max
k,j
|〈Φ̂k,Ψj〉| (3.8)

For µ(Φ̂,Ψ) to be close to its minimum value of 1, each of the sensing vec-

tors (rows of Φ̂) must have a dense representation in Ψ. To emphasize this

relationship, µ(Φ̂,Ψ) is often referred to as the “mutual coherence” between

Φ̂ and Ψ [11, 12].

The bound (3.7) indicates that a K-sparse signal can be reconstructed

from ∼ K logN measurements using basis pursuit as long as the pair (Φ̂,Ψ)

has very low mutual coherence. Examples of such pairs are [11, 12]:

1. Φ̂ is the spike basis and Ψ is the Fourier basis.

In this case the k-th row of Φ̂ is expressed as ϕ̂k(t) = δ(t−k) and the j-th

column of Ψ is expressed as ψj(t) = N−1/2e−i2πjt/N . Since Φ̂ is the sensing

matrix, this corresponds to the classical sampling scheme in the time or space

domain. The time-frequency pair obeys µ(Φ̂,Ψ) = 1 and, therefore, we have

maximal incoherence.

2. Φ̂ is the noiselet basis [36] and Ψ is the wavelet basis.

The coherence between noiselets and Haar wavelets is
√

2, and that be-

tween noiselets and Daubechies D4 and D8 wavelets is respectively about 2.2

and 2.9 across a very wide range of sample sizes N [36]. Noiselets are also

maximally incoherent with spikes and incoherent with the Fourier basis.

3. Φ̂ is a random matrix and Ψ is a fixed basis.

With high probability, the coherence between any orthobasis Φ̂ selected

at random and any fixed basis Ψ is about
√

2 logN . This is also applicable

when the entries of Φ̂ are samples of independent and identically distributed
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(i.i.d) random variables from Gaussian or Bernoulli distributions [10, 11, 12].

Restricted Isometries Properties (RIP)

The restricted isometry property is a notion introduced in [9, 37] and has

proved to be very useful in studying the general robustness of CS. As will be

shown later, RIP provides a useful tool for determining sufficient conditions

that guarantee exact reconstruction of a sparse solution vector for different

reconstructing (decoding) algorithms. In contrast to (3.7), the conditions

derived based on the RIP are deterministic, i.e. there is no probability of

failure. Consider the following definition.

Definition 1: For each integer, K = 1, 2, . . ., the isometry constant δK
of a matrix A is defined as the smallest number such that for all K-sparse

vectors x, there exists a constant δK(A) ≤
√

2 − 1 for which the following

inequalities hold:

(1− δK(A))‖Ax‖2`2 ≤ ‖Ax‖
2
`2 ≤ (1 + δK(A))‖Ax‖2`2 (3.9)

It will be loosely said that a matrix A obeys the RIP of order K if δK is not

too close to 1. When the RIP is satisfied, the Euclidean length of K-sparse

signals is approximately preserved by A, which in turn implies that K-sparse

vectors cannot be in the nullspace of A. Clearly this is very important as

otherwise there would be no hope of reconstructing these vectors. The RIP

can also be interpreted as all subsets of K columns taken from A being nearly

orthogonal (the columns of A cannot be exactly orthogonal since we have

more columns than rows).

The following example [8] reflects the connection between the RIP and

CS. Suppose that we wish to acquire K-sparse signals with A. Assume first

that δ2K < 1 ; then it can be shown that one can recover a K-sparse vector x

from the data y = Ax. Indeed, x is the unique sparsest solution of the system

y = Ax̂, i.e., the one with the smallest number of nonzero entries. This

can be shown as follows: consider any other solution of the form x + z with

z ∈ η(A) and z 6= 0. Then Az = 0 and therefore, z must have at least 2K + 1

nonzero entries. It then follows that x+ z must have at least K + 1 nonzero
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entries. Conversely, assume that δ2K = 1. Then 2K columns of A could

be linearly dependent in which case there is a 2K-sparse vector z satisfying

Az = 0. Then z can be decomposed as z = x − x̃, where both x and x̃ are

K-sparse. Accordingly, we can write Ax = Ax̃ which indicates that there are

a pair of K-sparse vectors giving the same measurements. Clearly, one cannot

reconstruct such sparse objects. Hence, to recover K-parse signals, one would

need to impose δ2K < 1.

As the computation of the isometry constants for a given matrix is pro-

hibitive in practice, we must find some matrices that obey the RIP condition

with high probability and determine the relation between the number of mea-

surements M and the sparsity of the solution vector K. There are certain

classes of matrices that satisfy the RIP, i.e. matrices with column vectors

taken from arbitrary subsets being nearly orthogonal. Consider the following

sensing matrices [8, 37]:

1. Form A by sampling M column vectors uniformly at random on the

unit sphere of RN .

2. Form A by sampling i.i.d. entries from the normal distribution with

mean zero and variance 1/M .

3. Form A by sampling i.i.d. entries from a symmetric Bernoulli distribu-

tion (P (Ai,j = ±1/
√
M) = 1

2) or other subGaussian distributions.

Then with overwhelming probability, all these matrices obey the restricted

isometry property provided that

M ≥ C ·K · log(N/K), (3.10)

where C is some constant depending on each instance.

Note that, for a nonsparse signal that can be sparsely represented in an

arbitrary orthobasis Ψ, the RIP can also hold for sensing matrices A = ΦΨT ,

where Φ is an M ×N measurement matrix drawn randomly from a suitable

distribution. It was addressed in [8, 10, 11, 12] that, for a given Ψ, if Φ

is selected as one of the three previously mentioned cases, then with over-

whelming probability, the matrix A = ΦΨT , obeys the RIP provided that
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(3.10) is satisfied, where again C is some constant depending on the type of

application. It has to be noted that these random measurement matrices Φ

are in a sense universal [8, 11, 12, 37]; the sparsity basis does not even need

to be known when designing the measurement system. The reconstruction

of the original signal from the M measurements in the vector y requires to

solve a constrained minimization problem, i.e., to find the sparsest signal (or

transform thereof) that matches the available measurements. This can be

performed using, amongst others, linear programming techniques. This is the

topic of the next section.

3.2 Reconstruction algorithms for CS

The signal reconstruction algorithm (sometimes called the decoding algo-

rithm) must take the M random measurements in the vector y, the basis

Ψ, and the random measurement matrix Φ (or the random seed that gen-

erated it) and reconstruct the signal f ∈ RN or, equivalently, its K-sparse

coefficient vector x. In this section we will consider solving the following

linear underdetermined system of equations:

y = Ax (3.11)

where A ∈ RM×N , x ∈ RN is a K-sparse vector, and M � N .

The goal of a sparse-signal recovery algorithm is to obtain an estimate of

x given only y and A. This problem is non-trivial since A is overcomplete,

i.e., the number of equations is less than the number of unknowns.

Since the original vector x is sparse, the problem of finding the desired

solution can be phrased as an optimization problem where the objective is

to maximize (minimize) an appropriate measure of sparsity (diversity) while

simultaneously satisfying the constraints defined by (3.11), respectively. This

can be expressed mathematically as:

x̂ = arg min
x
h(x) s.t y = Ax (3.12)

where h(.) is an objective function to be minimized that encourages sparsity

in the solution that means x̂ is found in the domain where the signal is sparse.
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We consider this function to be of the form:

hr(x) = ||x||rr =
∑
i

|xi|r, (3.13)

where r ≥ 0, and xi is the i-th element of x. Equation (3.13) expresses the

r-th norm of x (although it is not strictly a valid norm for 0 ≤ r < 1. A

plot of hr(x) for some values of r is presented in Figure 3.1. We now briefly

discuss issues relating to solving (3.12) for various values of r.

Figure 3.1: A plot of hr(x) for some values of r

3.2.1 Minimum `2-norm reconstruction

The `2-norm solution to (3.12) is the well-known least squares solution given

by xLs = AT (AAT )−1y. This is a closed form solution. With reference to

Figure 3.1, the convexity of h2(x) implies a unique solution to (3.12). Since
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the penalty imposed by h2(xi) on small nonzero coefficients of the solution

vector is small, the least squares solution has a tendency to spread the energy

among a large number of entries of x, resulting in a nonsparse solution. Hence,

`2 minimization is not appropriate for finding a K-sparse solution.

3.2.2 Minimum `0-norm reconstruction

Since the `2-norm measures signal energy and not signal sparsity, consider the

`0-norm that counts the number of non-zero entries in x, which means that

a K-sparse vector has `0-norm equal to K. The optimization problem (3.12)

in this case can be written as:

(P0) min
x
‖x‖`0 s.t y = Ax (3.14)

Referring to Figure 3.1, we observe that h0(x) is flat over all values of x

except at x = 0, which implies that any gradient descent technique will fail

to converge to the sparse solution. Since solving this problem is equivalent

to selecting K vectors of the measuring matrix A that best represent the

measured vector y, the solution vector to (P0) can be obtained by searching

over the
(
N
K

)
possible ways in which the basis sets can be chosen to find the best

solution. In principle, this strategy is effective. For example, in the particular

case of random measurements, where the entries of A or equivalently Φ, are

drawn from a Gaussian distribution, and a signal x with ||x||0 = K, then with

probability 1 the problem (P0) will have a unique solution x̂ that is exactly

x, as long as M ≥ 2K [10, 11, 12].

Unfortunately, the cost of the above combinatorial search is prohibitive

(i.e., it isNP -hard as h0(r) is non-convex), making finding an optimal solution

using an exhaustive search infeasible. In addition to this difficulty, it was

shown that (P0) yields a solution, which is not robust to noise [9, 10, 12, 11].

These limitations motivated researchers to replace h0(x) by other functions

that are robust to noise and can be solved efficiently (such as h2(x)), but

nevertheless offer sparse solutions (such as h0(x).) In other words, the idea was

to find a function resistant to noise, that solves properly the problem (3.12)

and simultaneously provides a sparse solution. A straightforward approach

to achieve this goal is to minimize hr(x) for 0 < r < 2.
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3.2.3 Minimum `1-norm reconstruction

For r = 1, (3.12) is usually called Basis Pursuit (BP) [38, 39] and is expressed

as:

(P1) min
x
‖x‖`1 s.t y = Ax (3.15)

Since r = 1 is the smallest value of r for which hr(x) is convex, `1-minimization

has been utilized in the context of sparse solutions for many years. See [9,

11, 12, 39] and the references therein for the history of `1-minimization and

its applications. Because (3.15) is convex, it can be solved efficiently, a much

better situation than that of (3.14). The improved sparsity of the `1-norm

relative to the least squares solution is partially due to the fact that the

penalty imposed by `1-norm on values of 0 ≤ |x| < 1 is greater than that

imposed by `2-norm ( see Figure 3.1.)

The equivalence between the solution vectors of (P1) and (P0) was exten-

sively studied in the literature. As stated in the previous section, a remarkable

result of Candes and Tao [9, 11] for random, Gaussian measurements is that

(P1) can recover, with high probability, any K-sparse vector x provided that

the number of measurements satisfies (3.10) for some constant C, which de-

pends on the desired probability of success. In any case, C → 1 as N → ∞.

The cost of replacing (P0) by (P1) is that more measurements are required,

depending logarithmically on N . Sharp reconstruction thresholds have been

computed by Donoho and Tanner [40] so that for any choice of sparsity K and

signal size N , the required number of measurements M for (P1) to recover

x with high probability can be determined precisely. Their results replace

log(N/K) with log(N/M), i.e. M ≥ C ·K · log(N/M). However, M appears

in both sides of this inequality, and this can be adjusted to compute a thresh-

old of the sparsity K ≤ M
C log(N/M) for a given number of measurements M .

The following results are obtained by utilizing the RIP described in the pre-

vious section. It was shown in [8, 10, 12] that if the solution vector satisfies

‖x‖`0 = K and the sensing matrix A satisfies the relation δ3K +δ4K < 2, then

x̂ = x is the unique minimizer of (P1). Also it was shown in [10, 11, 12] that

all vectors x with ‖x‖`0 ≤ K can be recovered exactly using (P1) as long as

the measuring matrix A obeys δ2K + δ3K < 1. The following Theorem was
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stated in [10, 12] regarding the reconstruction of a compressible vector x, i.e.

a vector with few large entries and many small ones.

Theorem 3.1

Assume that δ2K <
√

2− 1. Then the solution x̂ to (3.15) obeys

‖x̂− x‖`1 ≤ C0‖xK − x‖`1 (3.16)

and

‖x̂− x‖`1 ≤ C0K
−1/2‖xK − x‖`1 (3.17)

where xK is the vector x with all but the K-largest entries set to zero, and

C0 is a constant given explicitly in [10, 12].

In particular, if x is K-sparse, the recovery is quasi-exact.

3.2.4 Weighted `1-norm minimization

Although it is known that it is possible to reconstruct sparse signals from a

limited number of non-adaptive measurements by means of the constrained

`1-norm optimization, reweighting iterative schemes [41, 42] can be exploited

to further reduce the number of measurements needed for signal recovery. The

main idea is that, at each iteration, one has access to a partial reconstruction

of the signal, which can be suitably exploited to modify the objective func-

tion of the reconstruction problem by minimizing a weighted `1-norm. This

scheme can also be used to incorporate prior information about the support

of the signal to be recovered, thus it is relevant in many practical applications

where such information is available. In contrast to the least squares solution,

(3.15) does not have closed form solutions and require optimization software.

Accordingly, several alternatives to (3.15) that combine the simplicity of the

least squares solution and perform as well as, or even better than, the `1norm,

have been proposed [41, 42, 43]. One of such alternatives is called Iterative

Re-weighted Least Squares (IRLS) minimization. IRLS algorithms have the

form:

(Pw`2) min
x
||W−1x||22 s.t y = Ax, (3.18)
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where W is a diagonal weighting matrix that reflects our prior knowledge

about the solution vector x. The resulting algorithm is iterative, and the

estimated solution at the q-th iteration can be expressed as:

x̂q = Wq(AWq)
†y, (3.19)

where † indicates the Moore-Penrose inverse. The difference between different

IRLS algorithms resides in the way that the diagonal matrix is defined.

The motivation behind these weighted norm approaches can be explained

as follows. Let w denote the main diagonal of the diagonal matrix W−1,

then to minimize (3.18), it is clear that the nonzero elements of x must be

concentrated at the indices where wi has small values, while the values of

xi will converge to zero for those indices at which the wi have large values.

So starting from a point x0 close enough to a sparse solution x, the IRLS

algorithm (3.18) generates a sequence {xk}∞i=1 which converges to x. By

examining the structure of the weighting matrices, we notice that any element

in the solution vector that was estimated at any iteration to be zero will

be kept at zero at all successive iterations. This is the main drawback of

this approach, because if any element of the solution vector is erroneously

estimated as zero at any iteration, the algorithm will never converge to the

exact solution. To overcome this difficulty and to improve the performance

of the previously described algorithms, a monotonically decreasing constant

can be added to the diagonal elements of the weighting matrix [41, 42, 43].

Another approach for weighted norm minimization is the one proposed in

[42], where the `1-norm in (3.15) is replaced by hw`1(x) = ||W−1
q x||`1 , where

Wq = diag(|(xq−1)i|) is also a diagonal weighting matrix. It was shown in [41,

43] that this algorithm performs much better than the `1-norm minimization

and converges in few iterations. However, each iteration is computationally

expensive compared with an IRLS iteration.

3.2.5 Geometric interpretation

In this section, we present a geometric interpretation [44] of the performance

of the previously discussed objective functions, e.g. `p-norm and weighted

`p-norm where 0 < p ≤ 2, in estimating sparse solutions. This geometric
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interpretation helps to visualize why `2-norm reconstruction fails to find the

sparse solution that can be identified by `1-norm and weighted-norm recon-

struction.

For the sake of illustration, consider the simple 3-D example in Figure 3.21.

The coordinate axes in this figure are x1, x2, and x3. In this figure, the exact

and the estimated solution vectors are represented by the solid (blue) circle

at x∗ = [0 1 0]T and the gray (green) circle, respectively, while H, the set of

all points x ∈ R3 obeying Ax = Ax∗, is represented by the red line passing

through x∗.

The `2 minimizer of (3.12) is the point on H closest to the origin. This

point can be found by blowing up the `2 ball, represented by the hypersphere

in Figure 3.2(a), until it touches H. Due to the randomness of the entries

of the sensing matrix A, H is oriented at a random angle. Accordingly, with

high probability, the closest point x̂ will live away from the coordinate axes

and hence will be neither sparse nor close to the correct answer x∗ [10, 12]. In

contrast, the `1 ball in Figure 3.2(b) has points aligned with the coordinate

axes. Therefore, depending on the orientation of H, there are two possible

cases. In the first case, when the `1 ball is blown up, it will touch H at a

point near the coordinate axes, which is precisely where the sparse vector x∗ is

located as shown in Figure 3.2(b). In the second case, shown in Figure 3.2(c),

the `1 ball touches H in a point far from the exact solution vector. Since both

the RIP and the orientation of H depend on the entries of the measuring

matrix A, Theorem 2.1 can be interpreted geometrically as follows: for all

measuring matrices with δ2K <
√

2 − 1, H is oriented such that the `1 ball

touches H at a point satisfying (3.16) and (3.17).

Geometrically, incorporating a diagonal weighting matrix into the `p-

norm, where p = 1 or 2, causes the `p ball to elongate along certain directions.

If the weighting matrix is properly selected, the `p ball will touch H in, or

very close to, the exact solution vector x∗ as shown in Figure 3.2(d)-(e) for

p = 1 and 2, respectively. Note that the orientation of H in Figure 3.2(c),(d)

is the same, i.e., the weighted `1 -norm minimization can find solutions to

problems when the condition of Theorem 2.1 is violated. Also note that the

orientation of H in Figure 3.2(e) is similar to that in Figure 3.2(a). However,

1The figure has been taken from [44]
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by incorporating a diagonal weighting matrix into the `2 -norm, the solution

vector is estimated correctly as in Figure 3.2(e).

The failure of `p -norm, where p > 1, in estimating a sparse vector, as in

Figure 3.2(a) and (c), is due to the shape of the `p ball. As shown in Figure

3.2, the `p ball bulges outward for all p > 1, while it has a diamond shape for

p = 1.

This problem was partially alleviated in Figure 3.2(d) and (e) by incorpo-

rating a diagonal weighting matrix. Another way to overcome this difficulty

is using `q-norm, where 0 < q < 1. For this range of q, the `q ball bulges

inward as shown in Figure 3.2(f).

3.2.6 Sparse signal reconstruction from noisy measurements

In the previous sections, we have shown that one can recover sparse or approx-

imately sparse signals from just a few measurements but in order to be really

powerful, CS also needs to be able to deal with noise. In any real application,

measured data is corrupted by at least a small amount of noise as sensing

devices do not have infinite precision. It is therefore imperative that CS be

robust vis a vis such non-idealities. At the very least, small perturbations in

the data should cause small perturbations in the reconstruction. Accordingly,

CS should be able to deal with noisy measurements. In the presence of noise,

the measured vector can be expressed as:

y = Ax+Nn, (3.20)

where Nn ∈ RM is a vector of additive noise with ||Nn||`2 ≤ ε. If one seeks an

estimate x̂ that leads to an exact reconstruction of f , it will have generically at

least N nonzero components. To get a sparse representation, one therefore has

to allow for reconstruction errors. The best solution x̂ that one can expect

is the one that has nonzero entries within the same support as the exact

solution vector x, with the same signs but of course slightly different values.

The difference converges to zero as the variance of the noise diminishes. To

handle the presence of noise, the reconstruction algorithm (3.12) is modified

to:

x̂ = arg min
x
h(x) s.t ||y −Ax||22 ≤ ε, (3.21)
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where ε bounds the amount of noise in the measured data and h(x) is an

objective function that encourages the sparsity of its argument, e.g. ||x||`1 ,

||x||`p with p > 1. Equation (3.21) is equivalent to the following optimization

problem:

x̂ = arg min
x

1

2
||y −Ax||22 + λh(x), (3.22)

for an adequately chosen parameter λ > 0. Indeed if λ is selected as the

inverse of twice the Lagrangian multiplier of the constraint in (3.21), then

both problems have the same optimum. If an estimate of the noise variance

is available then the solution vector can be estimated using (3.21), otherwise,

(3.22) has to be used.

When ||x||`1 is used in (3.21) as the objective function h(x), the opti-

mization problem becomes convex and the solution vector has the following

property [10, 12]:

Theorem 3.2

Assume that the measuring matrix A satisfies δ2K <
√

2 − 1. Then the

solution x̂ to (3.21), with h(x) = ‖x‖`1 obeys:

‖x̂− x‖`1 ≤
C0

K
‖xK − x‖`1 + C1ε, (3.23)

where xK is the vector x with all but the K-largest entries set to zero, and

C0, C1 are some constants.

Theorem 3.2 states that the reconstruction error is bounded by the sum

of two terms. The first is the error which would occur if one had noiseless

data, see (3.16), and the second is proportional to the noise variance. The

constants C0, C1 are typically small. For example, with δ2K = 1/4, C0 ≤ 5.5

and C1 ≤ 6 [10, 12].
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Figure 3.2: Geometric interpretation of the (a) failure of `2-norm, (b) success of

`1-norm, (c) failure of `1-norm, (d) success of `w1-norm, (e) success of `w2-norm, (f)

success of `q-norm (0 < q < 1), in estimating sparse solution vectors



Chapter 4

Compressed Sensing for HSI

4.1 Introduction

In chapter 2, we have seen that HyperSpectral Imaging (HSI) generates ex-

tremely large volumes of data. These hyperspectral data are usually collected

by a satellite or an airbone instrument and sent to a ground station on Earth

for subsequent processing. Usually the bandwidth connection between the

satellite/airborne platform and the ground station is limited and bounds the

amount of data that can be transmitted. As a result, there is a clear need

for (either lossless or lossy) hyperspectral data compression techniques to be

applied onboard [45, 46, 47].

Additionally, acquisition of hyperspectral datasets is problematic as it

takes some time. Not all the data cube is acquired at once (as in grey-scale

or RGB imaging) - hyperspectral images are scanned either line by line, or

by sequentially sampling a 2D domain (see subsection 2.2.3 of chapter 2 for

details). This long acquisition time limits the usability of HSI, for example a

moving object cannot be captured properly by an hyperspectral camera.

While compression algorithms solve the data handling problem success-

fully, the lengthy acquisition time cannot be solved by compression algorithms

because in standard compression we acquire all the data in order to compress

them at the next stage. So, the question is: can we find a method which is able

to solve both issues simultaneously? The answer is Yes. We can do that by

using Compressed Sensing, which we have described in the previous chapter.

CS theory tells us that for many signals, we can sub-sample the signal and

still be able to reconstruct the original with good accuracy. CS operates and

performs as if it were possible to directly acquire just the important informa-

tion about the object of interest, by sampling less data in order to achieve

faster acquisition time and lower storage volume (compression). Hence, CS
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can be thought of as a natural candidate for acquisition of hyper-spectral im-

ages, as it could permit to reduce measurement time, memory capacity and

compression requirements for on-board acquisition of remote-sensing images.

As an example to speed up the acquisition of HSI, Sun and Kelly [48] im-

plemented a CS hyperspectral camera that performs acquisition by a single

detector and by collecting sequentially a few thousands of measurements from

a scene. Another application that has been proved to concretely benefit from

the quick acquisition and great compression of CS is MRI (Magnetic Res-

onance Imaging) [49]. In MRI, only a small number of 2-dimensional FFT

samples are actually acquired, and accurate image recovery is achieved by

exploiting the signal sparsity, e.g. in the wavelet domain, taking advantage

of the incoherence between the wavelet and Fourier basis. This enables to

significantly reduce the time of clinical examination.

In this chapter, we review the state-of-the art of Compressive Sensing

framework for hyperspectral images in order to set the stage for the discussions

in the following chapters.

4.2 Hyperspectral Image Compression Techniques

As the amount of data generated by conventional sensors is enormous and

the number of sensors continues to grow, it is clear that the role of data

compression will be crucial in the development of hyperspectral imaging [50].

At different points in the path from the sensor to the end-user, the compression

needs are different and depend on the type of applications. Perhaps, one of the

best way to characterize a model for data structures that will be useful for an

efficient CS reconstruction can be characterized by looking at the extensive

literature of the compression schemes for hyperspectral images. Generally,

two categories of compression methods exist: lossless and lossy compression.

The former is an invertible compression procedure i.e., compressed data can

be recovered without loss of information at the decoder side. Most lossless

compression methods for hyperspectral imaging showed that it is very difficult

to achieve compression rates better than 2 ∼ 3 : 1 (for more details see

[51, 52, 53]). Such low compression rates are certainly not sufficient for data

management issues arising in practice due to the huge size of hyperspectral
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images. As a consequence, lossy compression techniques have received more

attention in the literature; for a slight loss in data quality, one can achieve

much better compression rates. In other words, one seeks the best compression

rate so that the important information is preserved.

In this regard, numerous lossy schemes have been developed in order to

enhance the compression rate-distortion tradeoff as well as keeping the com-

plexity of the encoder as low as possible. Wavelet-based methods have been

known for many years for their efficient compressing capability for 2D natural

images. For this reason, many compression methods for hyperspectral images

are based on a 3D extension of conventional wavelet-based 2D image com-

pression techniques such as Set Partitioning In Hierarchical Trees (SPHIT)

[54], or Set Partitioned Embedded bloCK (SPECK) [55]. Algorithms such as

3D-SPHIT [56] or 3D-SPECK [57] exploit the fact that hyperspectral images

have additionally piecewise smooth variations along spectral channels and

therefore the core of these compression schemes consist in 3D wavelet coding,

i.e. 2D spatial plus 1D spectral discrete wavelet transform (DWT).

For multispectral images applications, Dragotti et al. [58] proposed an

algorithm that similarly to SPHIT uses a discrete wavelet transform for the

spatial domain, whereas for the spectral domain they apply vector quanti-

zation together with Karhunen-Loeve transform (KLT) to exploit the corre-

lations along the spectral bands. This approach outperforms the former 3D

wavelet-based methods, since theoretically both vector quantization and KLT

are optimal for block coding and decorrelation purposes. However, in hyper-

spectral image applications (where images contain significantly more spectral

bands than for multispectral imaging) the complexity of the vector quanti-

zation and KLT transform causes serious practical issues. Considering only

the KLT transform (and neglecting complexity of the vector quantization),

such approach is data-dependent, i.e. for each HSI instance it requires heavy

computations of the data covariance matrix and the corresponding eigenvec-

tors. Therefore, despite their powerful dimensionality reduction performance,

KLT-based spectral decorrelating approaches are not practical for hyperspec-

tral imaging. Recently, a few number of researches proposed compression

methods for HSI, which apply JPEG 2000 standard [6] along the spatial do-

main plus DWT or decorrelation by KLT along the spectral domain.
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We conclude this short review with the following important remarks:

• Hyperspectral images have compact representations in 2D spatial wavelet,

DCT bases. This implies the sparsity of HSI wavelet/DCT coefficients

along spatial dimensions

• Moreover, they have compact 1D wavelet, DCT representations along

the spectral domain, hence, they are sparse in a 3D spatio-spectral

wavelet, DCT basis.

• There are significant redundancies along the spectral domain (i.e, large

correlations between spectral bands) and thus, applying a spectral decor-

relation scheme such as KLT, PCA [59, 60] (in addition to the 2D spatial

wavelet, DCT) is one of the best way for dimensionality reduction.

4.3 Kronecker Products

We now describe the framework for the use of Kronecker product matrices and

explore the possibilities of application in a multidimensional CS setting. This

analysis will be used in the coming sections to bridge the gap from CS recon-

struction of 2D signals and multidimensional signals, including hyperpectral

images. For the sake of simplicity, the exposition is based on 3D hyperspectral

images, but the framework is extendable to more than 3 dimensions as well.

4.3.1 Background and properties

In this section, we restrict our attention primarily to real-valued matrices.

Note that, the following definition holds even if we have complex-valued ma-

trices. The Kronecker product (also called tensor product) of two matrices A

and B of sizes P ×Q and R× S, respectively, is defined as:

A⊗B =


A(1, 1)B A(1, 2)B · · · A(1, Q)B

A(2, 1)B A(2, 2)B · · · A(2, Q)B
...

...
. . .

...

A(P, 1)B A(P, 2)B · · · A(Q,Q)B

 (4.1)
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Thus, the A ⊗ B is a matrix of size PR × QS. The definition has a

straightforward extension to the Kronecker product of vectors. The vec oper-

ator creates a column vector from a matrix A by stacking the column vectors

of A = [a1a2 . . . an] below one another:

(A)vec =


a1

a2

...

an

 (4.2)

In the following, we give some properties of the Kronecker product:

• It is not commutative, i.e A⊗B 6= B ⊗A,

• Associativity (A⊗B)⊗ C = A⊗ (B ⊗ C),

• For conforming matrices, (A⊗B)(C ⊗D) = AC ⊗BD,

• For scalars a and b, aA⊗ bB = abA⊗B,

• (A⊗B)T = AT ⊗BT , tr(A⊗B) = tr(A)tr(B) = tr(B ⊗A)

• If A and B are square and nonsingular, (A⊗B)−1 = A−1 ⊗B−1

• For vectors v and w, vT ⊗ w = wvT = w ⊗ vT ,

• (BCD)vec = (DT ⊗B)Cvec

• (AB)vec = (I ⊗A)Bvec = (BT ⊗ I)Avec, where I is the identity matrix

• tr(AB) = ((AT )vec)
T (B)vec

Readers may refer to [61] for a more detailed discussion on Kronecker products

and illustrations of the proofs of the above properties.
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4.3.2 Kronecker product sparsifying bases

It is possible to simultaneously exploit the sparsity properties of a multichan-

nel signal along each of its dimensions to provide a new representation for

their structure. We can obtain a single sparsifying basis for an entire multi-

dimensional signal as the Kronecker product of sparsifying bases for each of

dimension of the signal. This encodes all of the available structure using a

single transformation.

More formally, for a 3D hyperspectral image f , which has 2 spatial di-

mensions and one spectral dimension, we let f ∈ RN×B and assume that

each 2D spectral band of length N = Nr × Nc is sparse or compressible in

a Ψ2D wavelet/DCT basis and that each vector along the 1D dimension is

sparse/compressible in a Ψ1D wavelet/DCT basis. A sparsifying basis for f

is then obtained using Kronecker products as Ψ = Ψ2D ⊗Ψ1D; the coefficient

vector x for the hyperspectral signal f is therefore x = Ψf .

4.3.3 Kronecker product measurement matrices

We can also design measurement matrices using Kronecker products; such

matrices correspond to measurement processes that operate first on each in-

dividual signal dimension, followed by operations on the measurements ob-

tained for the different signal dimensions. For simplicity, we assume that

each dimension consists of a single portion of the multidimensional signal,

even though other configurations are possible [62]. The resulting measure-

ment matrix can be expressed as Φ = Φ1⊗ . . .⊗Φd where d is the number of

dimensions within the multichannel signal. Consider the example of an hy-

perspectral image f = [f1, . . . , fB] with B spectral bands, whose structure is

succinctly captured by Kronecker products. We obtain independent measure-

ments Yj = Φjfj , (1 ≤ j ≤ B) with an individual measurement matrix being

applied to each signal. If a matrix Φj = Φ
′

is used at each sensor to obtain

its independent measurements, then we can express the joint measurement

matrix as Φ = IJ ⊗ Φ
′
, whereIJ denotes the J × J identity matrix.
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4.4 Compressed Sensing Acquisition of HSI

In CS the signal is not measured via standard point samples but rather

through the projection onto a measurement matrix Φ as in (3.2). Such mea-

surements multiplex the entries of f when the matrix Φ is dense. For signals of

any dimension, global CS measurements that multiplex most or all of the val-

ues of the signal together (corresponding to dense matrices Φ) are required for

the universality of the choice of basis Ψ, since dense measurements are needed

to capture arbitrary sparsity structures [37]. However, for multidimensional

signals (including hyperspectral signals), such measurements require the use

of multiplexing sensors that operate simultaneously along all data dimen-

sions, increasing the physical complexity or acquisition time/latency of the

CS device. In many settings it can be difficult to implement such sensors

due to the large dimensionality of the signals involved and the short avail-

ability of the data during acquisition. For example, each image frame in a

video sequence is available only for a limited time, and global multiplexing

measurements require aggregation throughout the video acquisition. Sim-

ilarly, global CS measurements of a hyperspectral datacube would require

simultaneous multiplexing in the spectral and spatial dimensions, which is a

challenge with current optical and spectral modulators [15, 63]; such indepen-

dent multiplexing nature limits the structure of the measurements obtained.

These application-specific limitations naturally point us in the direction of

partitioned measurements that depend only on a subset of the entries of the

multidimensional signal being acquired. Each portion usually corresponds to

a section of the signal along a given dimension, such as one frame in a video

signal or the image of one spectral band of a hyperspectral datacube.

As it is suggested by Compressed Sensing theory, we would like to acquire

3D hyperspectral images with high spatio-spectral resolutions from few linear

non-adaptive measurements. We introduce random sampling systems that

have been already proposed [64] and even implemented for CS acquisition

of HSI. Recalling the previous chapter, all these sampling schemes can be

modeled by the following equation:

Y = Φf +Nn, (4.3)
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In this formulation f ∈ RNr×Nc×B represents a 3D hyperspectral image f =

{f1, f2, . . . , fB} and Φ = {Φ1,Φ2, . . . ,ΦB} the sensing matrix.

Most CS approaches for hyperspectral signals in the literature [64, 65]

acquire measurements of each single spectral channel separately and stack

these measurements into a matrix Y = {Y1, Y2, . . . , YB} where Y is of size M×
B. The vector Yi of dimensionM � N contains the CS measurements that are

collected by the sensors from the 2D image fi, i.e each one-dimensional vector

fi is the raster-scan ordering of the corresponding two-dimensional spectral

channel of length N = Nr × Nc and each Φi ∈ RM×N is the measurement

matrix for the spectral band fi. In this regard, equation (4.3) means that the

multidimensional signal acquisition consists of sensing each spectral band fi
with the matrix Φi as follows:

Yi = Φifi, i = 1, . . . , B (4.4)

These measurements are assumed to be corrupted by a noise vector Nn due

to the quantization or the transmission steps. Here, along with introducing

a sampling system and its implementation issues, we characterize precisely

what would be the corresponding sampling matrix, which goes beyond those

mentioned in the section (3.1.3).

4.4.1 Single-channel compressive Image Acquisition

Several camera designs have been proposed so far for single-channel image

compressive acquisition. A common point among those is the use of a random

pattern to modulate the light-field prior to collecting measurements. In this

part, we briefly describe the mechanism of some of the most highly referred

setups:

The Single-Pixel Hyperspectral Camera

Rice’s Single-Pixel camera is among the first prototypes that have been devel-

oped for compressive imaging [15]. Figure 4.11 shows a schematic view of this

acquisition system. The incoming light-field is focused by the first lens onto

a digital micro-mirror device (DMD) rather than a CCD sampling array. A

1Figure is taken from http://dsp.rice.edu/cscamera.
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DMD consists of many programmable micro-mirrors that can flip in order to

reflect (or not) the incident light onto the second collector lens. The number

of micro-mirrors deployed in this system is the same as the number of CCD in

conventional cameras. Each micro-mirror is in charge of reflecting a certain

pixel of the image and thus what is measured at the photon detector is the

superposition of the values of the pixels whose corresponding micro-mirror

are reflecting toward the collector lens. This measurement is quantized by an

A/D convertor and, finally, the measurement reads:

yi = 〈ai, fj〉+ (Nn)i, (4.5)

Figure 4.1: Rice’s Single-Pixel-Camera

Here, fj ∈ RNr×Nc denotes a 2D image with N = Nr×Nc pixels resolution

(reshaped into a vector of length N), and ai ∈ {−1, 1}N is a binary vector cor-

responding to the pattern of the DMD i.e. the values 1 and -1 are respectively

indicating whether a pixel is reflected or not to the collector lens2. The inner

product of this pattern with the image is corrupted with a quantization noise

(Nn)i ∈ R. By repeating this procedure M � N times for i = 1, . . . ,M and

for different DMD patterns one can form the vector of the CS measurements:

2Note that, with the so-described mechanism ai initially takes values in {0, 1}, but after

subtracting the mean and a proper renormalization it becomes a binary vector.
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Figure 4.2: Mandrill test image

Yi = Φ̃fi +Nn, (4.6)

where the rows of the sampling matrix Φ are the vectors ai for M different

configurations of DMD. As previously mentioned, the DMD is programmable

and thus various binary sampling matrices can be used for CS image acqui-

sition. The i.i.d. binary random sampling matrices with provably powerful

compression abilities can be implemented by flipping the mirrors indepen-

dently with fair probabilities, as well as more structured designs such as ran-

dom subselection of the rows of the Walsh, Hadamard or Noiselet orthogonal

basis that are low-cost for storage and computational purposes. Figure 4.2

shows an example of Single-Pixel Hyperspectral Camera [15, 48] capture of

the Mandrill test image printed and illuminated by a desk lamp at resolu-

tion N = 128× 128 pixels with ×64 spectral bands (220 voxels) covering the

450nm-850nm wavelength range from M = 5000 CS measurements per band

(4× sub-Nyquist)[66].

4.4.2 CASSI Multi and Hyper-spectral Imagers

For real-time acquisitions, another camera design has been implemented by

Wagadarikar et al.[63]. Unlike many conventional techniques that are acquir-
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Figure 4.3: CASSI multispectral imager

ing the spatio-spectral measurements via temporal scanning either spectrally

or spatially, the Coded Aperture Snapshot Spectral Imager (CASSI) captures

and encodes the information of a 3D HSI cube in a snapshot and by using

a 2D detector array. The resolution of the detector array is nearly the same

as the spatial resolution of the HSI. At the decoder, various numerical meth-

ods that are developed for CS reconstruction can be applied to resolve the

underlying hyperspectral cube in a severely under-sampled regime. As we

can see, in addition to a significant dimensionality reduction from encoding

both spatial and spectral informations by a 2D image, Compressed Sensing

enables design of such clever and intelligent system in order to avoid temporal

spectral/spatial scanning which makes it suitable for capturing scenes with

dynamical changes. Figure 4.33 shows the CASSI system and its schematic

view. For ease of description let us assume a discretized (non-analog) setup.

The light-field of a scene is modulated with a coded aperture composed of N

blocks (the same as the spatial resolution of the scene) of randomly distributed

0 and 1 patterns in order to block or pass information of the corresponding

pixels. An optical bandpass filter is then applied to cutoff the unnecessary

spectral bands. The resulting light-field passes through a disperser device and

3Taken from CASSI webpage: http://www.disp.duke.edu/projects/CASSI/index.ptml
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is decomposed into B spectral bands. More precisely, the light-field is decom-

posed into B images each corresponding to a specific spectral channel and

is dispersed differently depending on the corresponding wavelength. Finally,

a 2D array of monochromatic CCD detectors records the incoming pattern.

Images of distinct wavelengths, despite being dispersed differently, are still

highly overlapping each other and therefore each detector is able to acquire

the total light intensity of B frequency bands. Figure 4.4 demonstrates the

CS measurement (right) outcome of a scene (left) captured by the CASSI

camera.

Following the above descriptions, the measurement vector Yi ∈ RM×1 of

the 2D image fi acquired by the monochrome CCD detectors can be written

as follows:

Yi =

B∑
j=1

Φjfj = [Φ1 Φ2 . . .ΦB]fvec +Nn. (4.7)

where fvec indicates the vectorized form of f . Images of all spectral bands

are masked by the same coded aperture pattern, and shifted differently in the

spatial domain (along horizontal or vertical axis) by τj pixels depending on the

dispersive factor of the prism for the j-th frequency band. This is modeled by

a distinct M ×N matrix Φj per channel. At the end, the superposition of the

resulting images along the spectral domain is recorded in the measurements

vector and we have M ≈ O(N)� NB. As we can see, there are severe spatial

ambiguities as all the spectral information of the pixels that are masked by

the coded aperture are lost (i.e., nearly half of the spatial resolution).

4.4.3 Distinct Distributed Sampling

In this subsection, compressive acquisition is based on the application of dis-

tinct sampling matrices on different channels [67], and thus the sampling

operator corresponds to a block diagonal matrix with distinct blocks i.e.,
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Figure 4.4: “Real-world” Compressive measurements captured by CASSI

Φ =


Φ1 0 · · · 0

0 Φ2 · · · 0
...

...
. . .

...

0 0 · · · ΦB

 (4.8)

Φj ∈ RM̂×N is the matrix applied on the j-th column of X to take M̂ = M/B

linear measurements. For multi-array sensing applications with strong intra

channel correlations, such sampling strategy gives the freedom of designing

the blocks so that the measurements of different channels carry diverse and

non-redundant information to the decoder. In case of a random sampling

scheme, the Φj are drawn independently at random (see section 3.1.3) for

different channels j and from the same distribution.

In these sampling schemes, the first M̂ elements of Y correspond to the

measurements taken from the first channel, the second M̂ elements are the

measurements taken from the second channel and so on. Therefore, each

group of measurements reflects local information of a specific channel. Such

sampling strategy is the basic setup behind all the frameworks we propose in

the following chapters. It also suits well distributed sensing applications such
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as sensor networks that are spread over a large geographical area and where

nodes are only responsible of collecting few measurements of their surround-

ings.

4.4.4 Architecture of a sensor based on CS technology

The application of CS to remote sensing requires a broadband light modulator

that computes random projections of the observed image [48]. It is important

that these projections are implemented optically, thus avoiding the acquisi-

tion of the entire dataset to digitally perform the random linear combinations.

Figure 4.5 sketches the conceptual scheme of a CS hyperspectral imager oper-

ating in the pushbroom configuration. The direct modulation scheme depicted

in the figure adopts a single element detector, integrating the incoming ra-

diation field as modulated by the Spatial Light Modulator (SLM). This last

element is an electro–actuated 2D array of mirrors, crystals, or liquid crystals

cells that modulates the available image before the acquisition performed by a

single–element detector that integrates the image filtered by the SLM. It must

be noticed that the availability of fast detectors and high frame-rate SLMs

are critical points for any CS applications. Moreover, it is possible to build

up a sensor with a SLM of lower frame rate, provided that a coarse resolution

2D array is utilized in the focal plane for parallelizing the CS of a mosaic of

subimages.

Figure 4.5: Architecture of an ideal sensor utilizing the CS technology. The sensor

modulates (spatial light modulator) the 2D domain output by the imaging spectrom-

eter and focuses (integrates) the modulated domain on the single–point detector
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4.5 CS reconstruction schemes for HSI

As mentioned in the previous chapter, the CS signal recovery process leverages

on the knowledge that the signal f has a sparse representation in a certain

frame. To that end, the Basis Pursuit (BP), Matching Pursuit and Orthogonal

Matching Pursuit (OMP) algorithms are used to recover signals from noiseless

measurements, while the BPIC, Lasso, BPDN, MP and OMP algorithms are

used for recovery from noisy measurements [38, 68, 69, 70]. Furthermore,

solvers for the optimization problems used in Lasso and BPDN that exploit

the structure of the CS measurement matrices allow for fast and accurate

recovery [38, 69].

Acquiring hyperspectral images with any of the systems described in the

previous sections gives us M linear measurements, much less than the orig-

inal image dimensions NB. Having characterized the sampling matrix, the

recovery of f from the CS measurements is equivalent to solving an under-

determined system of linear equations: M equations with NB unknowns. In

general there are infinitely many solutions to such problem as already men-

tioned in the previous chapters.

How to best reconstruct a spectral image is an open and somewhat elusive

problem. The simplest way to proceed is to take separate sets of measure-

ments, e.g. in the spatial or spectral dimensions, and to perform separate

reconstructions.

4.5.1 Separate Channel CS reconstruction schemes

A standard and useful assumption is that the spectral bands of hyperspectral

images typically have a compact representation in a proper 2D wavelet/DCT

basis. If Ψ2D ∈ RN×N denotes the 2D wavelet/DCT basis, then the HSI f

can be represented by the N ×B matrix of the wavelet/DCT coefficients x:

x = Ψ2Df, (4.9)

Each column of x contains the 2D spatial wavelet/DCT coefficients of the HSI

in the corresponding to the spectral band. This formulation can be rephrased

in the following vectorial format using the properties of the Kronecker product:
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xvec = Ψfvec. (4.10)

where Ψ = IB ⊗Ψ2D is an NB×NB block diagonal matrix, IB is the B×B
identity matrix and ⊗ denotes the matrix Kronecker product. Note that Ψ

is also an orthonormal basis since the Kronecker product of two orthonor-

mal bases is another orthonormal basis in a higher dimension. Since the

spatial wavelet/DCT coefficients are sparse, one can proceed to recover the

hyperspectral image f by solving the following `1 minimization problem for

identifying x:

arg min
x
||xvec||`1 s.t. Y = ΦΨTxvec (4.11)

This approach is known as Basis Pursuit (BP) and consists of independent

CS recovery of each spectral band.

Note that this approach clearly neglects the correlations along the spec-

tral domain. For a block diagonal sampling scheme [19] such as in Section

4.4.3, using this framework would not differ much from a channel-by-channel

separate recovery scheme that is applied independently on the measurements

of each spectral band to reconstruct the corresponding spatial image. If the

image of each spectral band can be represented by at most K two dimen-

sional wavelet/DCT coefficients then, without any further assumptions there

are 2KB unknowns i.e., the positions and the magnitudes of the nonzero el-

ements. In this case, a stable recovery by solving (4.12) would require at

least M ≥ O(KB log(K/N)). Such compression rate is not desirable since

hyperspectral images are also highly correlated along the spectral bands and

therefore, one would expect that increasing the spectral bands does not add

much uncertainty to the recovery problem.

4.5.2 Joint CS reconstruction schemes

In this section, first of all we define the notion of Joint Sparsity Model (JSM)

since it is used by the CS scheme to jointly reconstruct HSI. In [71], the au-

thors generalize the notion of a signal being sparse in some basis to the notion

of an ensemble of signals being jointly sparse. A joint sparsity model (JSM)
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encodes the correlation between the values and locations of the coefficients of

a group of sparse signals. Joint sparsity is applicable to cases where multi-

ple sparse signals are generated by a single event (e.g each spectral channel

of an hyperspectral image). In most of these cases, we obtain independent

measurements for each sparse signal, resulting in a set of measurement vec-

tors Yj , j = 1, . . . , B. Since the measurements are independent, we use joint

sparsity models in order to exploit the correlations between the signals in the

whole ensemble to improve the performance of CS recovery.

In hyperspectral imaging (considered as Joint Sparsity Model), each band

is itself sparse, and so we could use the CS framework to encode and decode

each band separately, yet there also exists a framework wherein a joint rep-

resentation for the multidimensional signals uses fewer total vectors. Let us

use the following notation for hyperspectral signals. Denote the signals in

each specific spectral channel by fj , j = 1, 2, . . . , B where each fj ∈ RN . We

assume that there exists a known basis or frame Ψ for RN×N in which fj can

be sparsely represented. In this model, all signals are constructed from the

same sparse index set of basis vectors, but with different coefficients:

xj = Ψfj j ∈ {1, 2, . . . , B} (4.12)

where each xj is supported only on the same Ω ⊂ {1, 2, . . . , N} with |Ω| = K.

Hence, all signals are K-sparse, and all are constructed from the same K

elements of Ψ, but with arbitrarily different coefficients.

The algorithm used for joint signal recovery depends on the JSM of ob-

served signals. To reconstruct the hyperspectral image following the above

model, there exists many algorithms in the literature. In the following, we

review some of them:

Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit algorithm (OMP) proposed in [70, 71] for jointly

reconstruction of sparse signals is inspired by conventional greedy algorithms

that can substantially reduce the number of measurements when compared

with independent recovery. An iterative algorithm is used to recover the sup-

port of the sparse signal. The idea is that at each iteration, a column of the
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measurement matrix that has the maximum correlation with the remaining

part of the measurement vector is picked, then its contribution is subtracted

from the CS measurments and the whole procedure is re-iterated on the resid-

ual. In the single-signal case, OMP iteratively constructs the sparse support

set Ω; decisions are based on inner products between the columns of ΦΨT and

the previous residual.

On the contrary, with independent CS recovery, perfect recovery of all

signals requires increasing each Mj in order to maintain the same probability

of recovery of the hyperspectral signal. This is due to the fact that each sig-

nal will experience an independent probability p ≤ 1 of successful recovery;

therefore the overall probability of complete success is pB [71]. Consequently,

each sensor must compensate by making additional measurements. We also

note that when the supports of the innovations of the signals are small, sig-

nals that are well modeled by this joint sparsity model can also be modeled

by other sparsity models by selecting a global support that contains all the

individual supports. Such approximation allows a simpler recovery algorithm,

while incurring a slight increase in the number of measurements required for

recovery.

Tropp and Gilbert in [72] have proposed an algorithm called Simultaneous

Orthogonal Matching Pursuit (SOMP), which is an extension of OMP for mul-

tiple signals with the same support. The principle behind the SOMP is that

at each iteration, we select the column index that accounts for the greatest

amount of residual energy across all signals, then we subtract the contribution

of the estimated support set from the measurement matrix. This results in a

faster approach that estimates the support set of the signal in just one itera-

tion. It has been shown [72] that if the number of signals tends to infinity the

number of measurements per signal required for perfect reconstruction will

tend to the sparsity level.

In Compressed Sensing applications, OMP and SOMP require M > 2K ·
log(N) measurements to succeed with high probability [70, 72]. It has been

proved [70] that both `1-minimization and OMP will recover the unique spars-

est solution from the CS measurments.

Compressive Sampling Matching Pursuit (CoSaMP)
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The Compressive Sampling Matching Pursuit (CoSaMP) [73] algorithm bor-

rows concepts from greedy algorithms as well as solvers for the optimization-

based CS signal recovery algorithms to achieve a high-performance, compu-

tationally efficient algorithm. CoSaMP is an iterative algorithm that relies

on two stages of sparse approximation: a first stage selects an enlarged can-

didate support set in a similar fashion to the OMP algorithm, while a second

stage prunes down this initial approximation to the desired sparsity level.

For a detailed description of the algorithm, we refer to [73] . Subspace Pur-

suit (SP) [74], an independently proposed algorithm, features a very similar

implementation.

Distributed Compressed Sensing (DCS-SOMP)

The DCS-SOMP algorithm proposed in [67, 75] is a a simple variant of SOMP

algorithm for the case that the measurement matrices are different for each

spectral band. So we are assuming that Yj = Φjfj and the fj are sharing

the same support set. In each step of DCS-SOMP, we pick the column that

accounts for the greatest amount of residual energy across all signals and then

orthogonalize the remaining columns. In the multi-signal case, there are more

clues available for determining the elements of Ω.

Another useful joint-recovery approach based on the Kronecker Com-

pressed Sensing (KCS) has been recently developed [62, 64, 75] in order to

take advantage of both spectral and spatial correlations simultaneously. The

KCS framework for HSI is described in the following section.

4.5.3 Kronecker Compressed Sensing Reconstructions

Duarte et al. [62, 64] showed that Kronecker product matrices are a natural

way to generate sparsifying and measurement matrices for CS of multidimen-

sional signals (including hyperspectral images). Kronecker product sparsity

bases combine the structures encoded by the sparsity bases for each signal

dimension into a single matrix. Similarly, Kronecker product measurement

matrices for multidimensional signals can be implemented by performing a

sequence of separate multiplexing operations on each dimension. The Kro-

necker product formulation for sparsity bases and measurement matrices en-
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ables the derivation of analytical bounds for the recovery of compressible

multidimensional signals from randomized or incoherent measurements. The

authors [62, 64] use Kronecker product matrices as sparsifying bases for mul-

tidimensional signals to jointly model the signal structure along each one of

its dimensions when such structures can be expressed using sparsity. In some

cases, such as wavelet bases, it is possible to obtain bounds for the magnitude

rate of decay for the coefficients of a signal when a Kronecker product basis

is used. The Kronecker product basis rate of decay depends on the rates of

decay for the coefficients of slices of the signals across the different dimensions

using the individual bases. When the rates of decay using the corresponding

bases for each of the dimensions are different, the Kronecker product basis

rate will fall between the maximum and minimum rates among the different

dimensions; when the rates of decay are all the same, they are matched by

that of the Kronecker product basis. Additionally, many of the CS measure-

ments schemes proposed for multidimensional signals can be easily expressed

as Kronecker product matrices. In particular, when partitioned measurements

are used and the same measurement matrix is applied to each piece of the

signal, the resulting measurement matrix can be expressed as the Kronecker

product of an identity matrix and the adopted measurement matrix. It is also

possible to build new Kronecker measurement matrices that are performed in

two stages: a first stage uses the same measurement vectors on each piece

of a partitioned signal, and a second stage combines those measurements

together using fixed linear combinations on measurements with matching in-

dices. When Kronecker matrices are used in CS, metrics can be provided to

evaluate partitioned measurement schemes against Kronecker measurement

matrices, as well as a guidance on the improvements that may be afforded by

the use of such multidimensional structures.

The Kronecker Compressive Sensing (KCS) concept is immediately ap-

plicable to several CS applications that use partitioned measurements. As

an example, consider an hyperspectral image captured by the Single-Pixel

camera [15]. Each spectral band image is multiplexed by the same binary

functions, as the digital micromirror device (DMD) reflects all the imaged

spectra. This results in the same measurement matrix being applied to each

spectral image, which results in a Kronecker product measurement matrix.
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To perform KCS reconstruction, the authors in [62, 64] additionally take

into account the piecewise smooth variations of HSI along the spectral do-

main and reconstruct a sparse representation of HSI in a 3D spatio-spectral

wavelet/DCT basis using the standard `1 minimization method. Let Ψ2D ∈
RN×N be the same spatial 2D wavelet/DCT basis introduced in section 4.4.1.

Now, if Ψ1D ∈ RB×B denotes a 1D wavelet/DCT basis along the spectral do-

main, then the hyperspectral image f can be represented by a sparse matrix

Γ ∈ RN×B containing its spatio-spectral wavelet/DCT coefficients:

Γ = Ψ2Df(Ψ1D)T . (4.13)

Equivalently, one can rewrite this formulation in a vectorial format as below:

Γvec = Ψfvec , (4.14)

where Ψ = Ψ1D ⊗ Ψ2D is the 3D wavelet/DCT basis constructed by the

Kronecker product of the 1D spectral and the 2D spatial wavelet/DCT bases.

With these notations, [64] proposed to reconstruct the sparse 3D wavelet/DCT

coefficients (hence, the underlying HSI) using the following `1 minimization

problem:

arg min
Γ
||Γvec||`1 s.t Y = ΦΨTΓvec (4.15)

Compared to the channel-by-channel separate reconstruction scheme in (4.12)

and thanks to the exploitation of the additional structure of data along

the spectral domain, Γ becomes much more sparse than x, and therefore

the `1 minimization scheme (4.16) would require less measurements than

O(KB log(K/N)) and would provide quite similar performance than (4.12)

for HSI recovery.





Chapter 5

Progressive Compressed
Sensing for reconstruction of HSI through
prediction sparsity model

As we have seen in chapter 4, many important CS applications involve mul-

tidimensional signals and particularly remotely sensed hyperspectral images.

The measurement system and the reconstruction of such signals are com-

plicated mainly due to their higher dimensionality. While the acquisition

of these signals could benefit from CS due to its low-complexity sampling

process and the reduction of the number of samples to be taken, processed

and transmitted, the computational complexity of the reconstruction process

poses a difficult problem to solve as the amount of data to deal with is still

extremely large. The conventional approach of measuring the signal along all

dimensions at once leads to very large datasets, making the CS reconstruction

computationally intractable as it is cubic in the number of samples (at least

for Basis Pursuit, which uses the `1-minimization at the CS recovery stage).

For example, for an AVIRIS raw image, the number of samples is equal to

680 · 512 · 224 ' 7.8 · 107, while tractable problem sizes are of the order of a

few thousand samples.

To overcome this issue, the bottom line would be to take separate sets

of measurements each referring to a different subsets of dimensions and to

perform separate reconstructions. For example, an hyperspectral image could

be acquired in the spatial or spectral dimensions. However, this separate

approach does not yield satisfactory performance in terms of mean-squared

error (MSE), as it neglects the overall correlation among all dimensions. For

example, in [64, 76] it has been shown that 2D spatial CS whereby each

spectral band is measured independently has better performance than spectral

CS, in which the spectral vectors associated to different pixels are measured
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independently, just because the former approach exploits correlation in two

dimensions, and the latter in only one. However, it should be noted that even

spatial CS achieves an MSE that is not small enough for many hyperspectral

applications, as the relative error is around ±5% for sensible values of the

number of acquired samples [77]. This is the case of AVIRIS image sc0 where

the average signal energy is nearly equal to 2.76 · 107 with 2D spatial CS

reconstruction providing mean-squared error (MSE) higher than 5 · 104 [77].

A more sophisticated approach would entail the use of 3D transforms so

that the whole set of images are measured and reconstructed at once as il-

lustrated in Figure 5.1. In this regard, a pioneering example of CS in three

dimensional spaces is proposed in [62, 64, 75], where a CS framework based

on Kronecker product theory (KCS) is considered. In this scheme, both spar-

sifying bases and measurement matrices are expressed as Kronecker product

matrices. This allows to work with separable transform matrices, thus main-

taining the computational complexity to an acceptable level while taking into

account the redundancy in all dimensions. However, separable transforms are

not necessarily the best transforms for the problem at hand since they do not

fully exploit the 3D correlation within the HSI. As a result, the MSE values

provided by the KCS method are still high for practical applications. The key

idea is that, in order to improve reconstruction quality (in terms of MSE),

correlation must be exploited in all three dimensions of the spectral cube in

a more profitable way.

CS CS-1

Data Data ReconstructionMeasurement

Figure 5.1: Block diagram of an architecture processing the 3D data cube as whole.
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Figure 5.2: Block diagram of the novel iterative architecture.

To achieve this goal, we propose several approaches, combining an accu-

rate modelling of the spatial-spectral correlations, with the low complexity

of sequential, as opposed to fully joint, reconstruction. In particular, instead

of modelling the correlation by means of a three-dimensional transform, and

hence attempting to reconstruct the hyperspectral cube as a whole, we employ

a linear correlation model of the hyperspectral image, and iteratively apply

this model band by band, improving the quality of the reconstructed image. In

other words, the method we propose, allows to exploit the low complexity and

universality of CS in the acquisition process, with a reasonable/manageable

complexity of the reconstruction algorithm while taking advantage of the re-

dundancies in all the dimensions of the datacube. The principle is to acquire

separately each signal dimension (or subsets of dimensions, considering them

as single signals). Then, instead of reconstructing the whole set of mea-

surements at once as done with Kronecker Compressed Sensing [62, 64], an

iterative algorithm is applied to the dimensions not involved in the measure-

ment process. At each iteration, a linear prediction filter is used to aid the

reconstruction process, measuring the prediction and reconstructing the pre-

diction error only. In this way, for instance, if an hyperspectral image is

acquired band by band, the iterative algorithm is applied on the wavelength

dimension.

Since the quality of the reconstructed signal depends on two factors: i)
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the initialization of the iterative procedure and ii) the accuracy of the linear

prediction filters, we consider different initialization strategies based either

on a 2D CS approach or on a simplified 3D strategy based on KCS and test

different prediction filters.

5.1 Random projections of a hyperspectral image

Acquisition of 3D hyperspectral images can be performed in different ways

as it has been seen in section 4.3. Common to the various approaches are

the signal dimensions, which determine the spatial and spectral resolution

of the imaging system. The spectral resolution is given by the number of

individual wavelengths B that the system is able to discriminate. In one

possible approach, each wavelength is sensed individually, leading to different

measurements for each spectral channel. Throughout this chapter, we assume

to use this approach to acquire an HSI. Specifically, we assume that the user

acquires each spectral channel (x − y) with a resolution of N = Nr × Nc

pixels, where Nr is the number of lines/rows and Nc represents the number

of pixels/columns. Hence, we can represent the original HSI data as a cube

with two spatial (x− y) and one spectral λ dimensions.

In the following, we consider that an hyperspectral image f ∈ RN×B is rep-

resented as a collection of B spectral channels, i.e. f = [f1, f2, . . . , fB], where

each 2D image fi has length N = Nr × Nc and corresponds to the spectral

channel i with i = 1, . . . , B. We denote by fm,n,i with m = 1, . . . , Nr and

n = 1, . . . , Nc, the coordinates m,n of a particular pixel within the band i.

The acquisition procedure is performed according to Algorithm 1. For

each spectral channel fi, a collection of M measurements Yi ∈ RM×1 is ac-

quired1 as Yi = Φifi, with M � N . For simplicity, the same M is used for

all spectral channels. The measurements of all channels are then stacked in

the matrix Y of size M × B. The sensing matrices Φi ∈ RM×N are taken

as Gaussian i.i.d. This setting is amenable to separate spatial reconstruc-

tion of each spectral channel using a two-dimensional transform as sparsity

domain. However, as we already said, separate spatial reconstruction does

1In this process, fi should be seen as the raster-scan ordering of the corresponding two-

dimensional spectral channel i
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Algorithm 1 Acquisition algorithm for 3D signals

INPUT: Hyperspectal image f , M

OUTPUT: Measurements Yi, Y

for i = 1 to B do

Draw Φi of size M ×N s.t. (Φi) ∼ N (0, 1/M)

fi ← F:,:,i

Yi ← Φifi
end for

Return Y

not yield a sufficiently accurate estimate of the original image, since it does

not model properly the spectral correlation, which is very strong for hyper-

spectral images. The proposed algorithm performs iterative sequential band

reconstruction, employing linear prediction, as opposed to the use of a trans-

form to model spectral correlation.

5.2 Predictive Iterative CS reconstruction

The rationale behind the iterative reconstruction algorithm is the following.

At each iteration, each band fi is predicted, e.g. by applying a predictor P

to channels f̂i−1 and f̂i+1 of some initial reconstruction, then we can cancel

out the contribution of this prediction pi from the measurements of fi, and

reconstruct only the prediction error instead of the full spectral channel. This

means that the measurements of the predicted band acquired with the same

sensing matrix used to acquire that band are subtracted from the measure-

ments of the band itself and the CS reconstruction is applied only to the

measurements of the prediction error, which is used to reconstruct the signal

as (f̂i)
p = pi + LP(εi,Φi,Ψ), where (f̂i)

p is the final reconstruction obtained

by the predictive iterative CS algorithm, pi is the prediction for the band

i, Yi the measurement of the original band fi, Φi the acquisition matrix for

the band i, Ψ the DCT transform used to sparsify each spectral channel and

finally εi = Yi − Φipi is the measurement of the prediction error.

The process is performed on all bands, and is iterated until convergence.
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Figure 5.3: Interaction between prediction and CS reconstruction.

The predictive iterative CS reconstruction scheme is described in Algorithm

2. In particular, the iterative procedure depicted in Figure 5.2 starts from an

initial reconstruction f̂ of all spectral channels as shown in Figure 5.1. At this

stage, we do not specify how we generate such initial reconstruction, which

is generically denoted by f̂ = z(Y,Φ), to indicate that it is computed from

random projections Y of separate spectral bands and measurement matrices

Φ chosen from those described in the section 3.1. It is worth noting that, the

operator LP is equivalent to solve the Basis Pursuit problem (3.15). Since LP

is convex and the predictor is linear, this algorithm can be cast in terms of

projections onto convex sets [78], guaranteeing convergence to the intersection

of the constraint sets (if non empty). Moreover, if the prediction is accurate,

the prediction error is expected to be more sparse than the full original signal

(we will demonstrate this in section 5.4.3). That is why our iterative predictive

CS algorithm focuses only on the prediction errors.

Figure 5.3 illustrates why the interaction between prediction and CS recon-

struction is mutually useful for both stages. Suppose that the signal to be

reconstructed has a decaying spectrum like the one depicted in Figure 5.3
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Algorithm 2 Iterative reconstruction algorithm

INPUT: measurements Yi and matrices Φi, with i = 1, . . . , B; 2D DCT

matrix Ψ; number of iterations W .

OUTPUT: reconstructed channels (f̂i)
p, with i = 1, . . . , B

f̂ = z(Y,Φ)

j = 0

while j < W do

j ← j + 1

for i = 1 to B do

pi ← P(f̂i−1, f̂i+1)

εi ← Yi − Φipi
(f̂i)

p ← pi + LP(εi,Φi,Ψ)

end for

end while

(upper left). Now, suppose that the first prediction filter is able to predict

the first most significant components only Figure 5.3 (upper right). Then, the

following CS reconstruction will be able to reconstruct from the prediction er-

ror a certain number of the remaining components, depending on the number

of available measurements Figure 5.3 (lower left). Hence, the subsequent pre-

diction will benefit from this reconstruction and will be more accurate than

the previous one Figure 5.3 (lower right), leaving to CS reconstruction the

task of reconstructing the residual components.

To provide a proof-of-concept of the predictive iterative CS algorithm for

satellite imaging, we have tried many linear predictors. A selected number of

predictors among those we have used during our experiments are described

below.

5.3 Linear predictors

The main goal of the predictor is to model efficiently both the dependen-

cies within spectral channels (intra-band correlation) and the redundancies
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between the spectral dimension λ (inter-band correlation). In this regard,

particular attention has been paid to choose the predictors which better ex-

ploit the correlation in all three dimensions of the datacube and also provide

simultaneously fastest convergence and best MSE performance. We will see

later that the more accurate the predictor is, the better the CS iterative re-

construction works.

Now, let assume that, for each spectral channel fi, we can obtain a pre-

diction from its adjacents reconstructed bands l = 1, 2, 3, . . . as:

f̃i = P(f̂i−l, f̂i, f̂i+l) (5.1)

where P(., .) is a suitable linear predictor and f̂i is the reconstructed spectral

channel i within the entire reconstruced hyperspectral image f̂ .

5.3.1 Predictor P1

In the following we describe the linear prediction P1. This predictor operates

in a blockwise fashion as can be seen in Figure 5.4. Prediction of spectral

channel i (in green) is performed dividing the channel into non-overlapping

spatial blocks of size 16x16 pixels. Each block is predicted from the spatially

co-located block in a reference spectral channel l (typically the previous band

in red and the next one in blu corresponding to i − 1 and i + 1 respectively,

with l = 1). Focusing on a single 16x16 block, we denote as fm,n,i the pixel of

an hyperspectral image in m-th line/row, n-th pixel/column, and i-th band,

with m,n = 0, . . . , 15, and i = 0, . . . , B − 1.

Samples fm,n,i belonging to the green block are predicted from the samples

f̂m,n,l of the reconstructed reference band l. In particular, a least-squares

estimator [79] is computed over the block. First, a gain factor is calculated as

α = αN
αD

, with αN =
∑
m,n

[(f̂m,n,l−µl)(f̂m,n,i−µi)] and αD =
∑
m,n

[(f̂m,n,l−µl)2],

where µi and µl are the average values of the co-located reconstructed blocks

in bands fi and fl. The predicted values within the block are computed for

all m,n = 0, . . . , 15 as f̃
(l)
m,n,i = µi+α(f̂m,n,l−µl). Here the symbol l basically

denotes the previous and next band i.e, when predicting the current band

i, the prediction is performed by using first the previous band and then the
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Figure 5.4: Working principle of the Predictor P1 .

next band. This one-step predictor is employed so as to take full advantage

of the spectral correlation. In particular, the current band is very correlated

with its two adjacent bands, while the correlation tends to decrease moving

further away. Eventually, we define a predictor for a block in current band fi
as the average of two predictors obtained from the previous band (in red) and

the subsequent one (in blu): f̃m,n,i = (f̃
(i−1)
m,n,i + f̃

(i+1)
m,n,i )/2, where f̃

(i−1)
m,n,i is the

predicted value of the band i obtained by using its previous band i − 1 and

f̃
(i+1)
m,n,i is the predicted value of the band i obtained by using its next band

i + 1. For brevity, we define an operator P(f̂i−1, f̂i+1) = pi that applies this

predictor to the two adjacent reconstructed spectral channels fi−1 and fi+1 in

a blockwise manner as described above, yielding a predicted spectral channel

pi. Exceptions are made for the first and last band, where only the available

previous/next band is used for the prediction.
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Figure 5.5: Working principle of the Predictor P2 .

5.3.2 Predictor P2

In this paragraph, we describe a very simple linear prediction P2 to be em-

ployed during the iterative reconstruction. This predictor exploits the cor-

relation in all dimensions of the datacube by working on some pixels within

the columns of spetral channels. As depicted in Figure 5.5, the predictor P2

predicts each pixel f̂m,n,i at the current wavelength fi (in green) by using its

own value and those of three pixels in the same column n within adjacent

bands fi−1 and fi+1 in red and blu respectively. The predicted value f̃m,n,i is

obtained as the average of all these pixels values. For pixels at the edge, the

prediction is performed by relying only on available ones. This is formalized

by the following formula:

f̃m,n,i =
1

7

[
f̂m−1,n,i−1 + f̂m,n,i−1 + f̂m+1,n,i−1 + f̂m,n,i

+ f̂m−1,n,i+1 + f̂m,n,i+1 + f̂m+1,n,i+1

]
.
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5.3.3 Predictor P3

To make the best use of high correlation between pixels in the current spectral

channel fi and pixels in neighbouring bands, the third prediction estimates

each pixel of the current band as the weighted average of neighbouring pixels

in adjacent bands (i.e, the previous and the next one). Specifically, to predict

each pixel f̂m,n,i of the band i, P3 exploits both the intra- and inter-band

correlation by operating on neighbouring pixels within the band i and a set

of pixels within the reconstructed reference band l as reported in the formula:

f̃
(l)
m,n,i =

[
af̂m−1,n−1,l + bf̂m−1,n,l + af̂m−1,n+1,l + af̂m,n−1,l + bf̂m,n,l

+ af̂m,n+1,l + af̂m+1,n−1,l + bf̂m+1,n,l + af̂m+1,n+1,l

]
.

Yet, l denotes the specific band (previous or next) we use to predict the

current band i. The values a = 2−
√

2
4 and b =

√
2−1
2 represent the weights,

which depend on the distance from the pixel to be predicted.

After having computed the predicted values f̃
(i−1)
m,n,i and f̃

(i+1)
m,n,i correspond-

ing to the predicted values of the band i obtained by using its previous band

i − 1 and its next band i + 1 respectively, the prediction for each pixel of

the current band fi is obtained as the average of both values as follows:

f̃m,n,i = (f̃
(i−1)
m,n,i + f̃

(i+1)
m,n,i )/2.

We neglect border effects, that means that for the first and the last bands

the prediction is performed by relying only on available bands. For the pixels

at the border of each band, the prediction only take into account the available

neighbouring pixels.

5.3.4 Predictor P4

Finally, we explain how the linear prediction filter P4 works. Figure 5.6

illustrates the operating principle used to predict the reconstructed band f̂i
depicted in blu. Basically, this predictor exploits the dependencies existing

between neighbouring spectral channels by estimating the i-th current band as

the weighted average of six adjacent bands (l = 1, 2, 3) i.e, the three previous

bands (i − 1, i − 2, i − 3) and the three subsequent bands (i + 1, i + 2, i + 3)

as reported in the following formula:
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Figure 5.6: Working principle of the Predictor P4 .

f̃m,n,i =
1

K

[
Si−3f̂m,n,i−3 + Si−2f̂m,n,i−2 + Si−1f̂m,n,i−1

+ Si+3f̂m,n,i+3 + Si+2f̂m,n,i+2 + Si+1f̂m,n,i+1

]
.

where K = (Si−3 + Si−2 + Si−1 + Si+3 + Si+2 + Si+1), f̂m,n,i is defined as

in section 5.3.1 and the Si’s represent the weights whose values depend on

the distance from the band to be predicted and the previous/next one. In

this particular case, the values used as weights are: Si−3 = Si+3 = 1/2,

Si−2 = Si+2 = 1/3 and Si−1 = Si+1 = 1/6. Once again, we overlook border

effects, i.e, for the first two and the last two bands, the prediction is performed

by relying only on the available bands .

5.4 Experimental results

5.4.1 Image data set description

To test the algorithm described in the previous section, a set of test images has

been prepared. The characteristics of these images are given in the following.

They are categorized as hyperspectral, multispectral and panchromatic im-

ages. The hyperspectral and multispectral images have been selected among
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Figure 5.7: Hyperspectral image Aviris sc0 (upper left), Aviris sc10 (upper right),

the spot toulouse image (lower left) and the landsat agriculture (lower right)

those used as reference for onboard lossy compression in the “multispectral

and hyperspectral data compression” working group of the Consultative Com-

mittee for Space Data Systems (CCSDS). All these images are raw images i.e,

they are the images obtained at the output of the onboard sensors, without

any processing, calibration or denoising applied. These images are noisier

than the corresponding processed images, but employing the raw image is a

more realistic choice since our objective is to assess the potential of CS to

manufacture hyperspectral sensors.
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• As a first class of images, we considered the raw images of the AVIRIS

sensor, made available by NASA-JPL2 . These are scenes sc0 and sc10

acquired over Yellowstone Park. AVIRIS covers the 0.41-2.45 µm spec-

trum in 10-nm bands. The instrument consists of four spectrometers

flying at 20 km altitude with 17 m resolution. Each image has 512 lines,

224 bands and 680 lines. A particular band for both images is shown

in Figure 5.7 where the upper left is Aviris sc0 and the upper right is

Aviris sc10

• The image landsat agriculture from the LANDSAT 7 sensor. This image

has size 1024 × 1024, with 6 spectral channels. Nearly all bands look

similar. Refer to image shown in Figure. 5.7 landsat agriculture (lower

right) as the third band of this multispectral image. As an example,

Landsat 7 is a multispectral sensor with resolution of 30 m, used for

a variety of applications, including land cover change, urban mapping,

and classification.

• The image spot toulouse from the SPOT sensor. This image has size

1024×1024, with 3 spectral channels. Yet, here all frequency bands are

quite similar. SPOT is a multispectral sensor used for a variety of appli-

cations, including land cover change, urban mapping, and classification.

The image of the second band is shown in Figure 5.7 spot toulouse

(lower left).

• Granule image (gran9 ) of AIRS. AIRS is used to create 3D maps of

air and surface temperature, water vapor, and cloud properties. With

2378 spectral channels, AIRS qualifies as an ultraspectral sensor. For

the compression studies, ten granules have been simulated from the

data obtained from NASA AIRS observations, removing 270 channels,

converting radiances into brightness temperatures and scaling as un-

signed 16-bit integers. The data are available via anonymous ftp3. For

this study, we have considered only 1501 bands, removing the unstable

channels as they have little or no scientific interest. The spatial size

2http://aviris.jpl.nasa.gov
3ftp://ftp.ssec.wisc.edu/pub/bormin/HES
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is 90 columns and 135 lines. The 700 − th band for the Airs image is

shown in Figure. 5.8 Airs gran9 (upper left).

• The image t0180f07 from the CASI sensor. CASI is a hyperspectral

sensor with 72 bands, and the spatial image size is 2852 lines and 405

pixels per line. The image is affected by striping noise as can be seen in

a specific spectral channel (33-th) in Figure 5.8 (upper right).

• The image landsat pan is a panchromatic image taken by the Landsat

7 sensor over the country of Canada, with 15 m spatial resolution. The

image has 1024 lines and 1024 pixels per line, and is a crop of the

complete 12000x12920 image. It is shown in Figure 5.8 (lower left).

• The image Torino is a panchromatic image taken by the Ikonos sensor

over the city of Torino, Italy, with 1 m spatial resolution. The image

has 4306 lines and 5827 pixels per line. It is shown in Figure 5.8 (lower

right).

Since the CS reconstruction problem for 3D signals is computationally inten-

sive due to the large amount of data, we do not use the complete images.

Tests have been conducted on all the aforementioned images, but we only

present in this thesis results from a couple of images namely Aviris sc0 and

Airs gran9. We have taken 2D spatial crops (x−y) of size 32×32 pixels along

all their corresponding frequency bands λ. Table. 5.1 reports the coordinates

of the top-left corner of each crop (with coordinates starting from 1).

Note that, we mainly used the t0180f07 image from the CASI sensor

during the tests for two purposes. Firstly, to demonstrate the claim that

when the predictor is accurate, the prediction error is expected to be more

sparse than the full signal. Secondly, to compare which predictor is the best

among those described above. Both points are discussed in details in the next

subsections.

5.4.2 Choice of the Prediction filter

First, we start by seeking the best linear prediction filter Pi among those

described in the previous subsection i.e, the one providing fastest convergence
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Figure 5.8: Hyperspectral image Airs gran9 (upper left), the t0180f07raw image

(upper right), landsat pan (lower left) and the Torino image (lower right)

and best MSE performance. For this test, we used a spatial window of the

t0180f07 image of size 32 × 32 together with its 72 bands. We considered

different values of the number of measurements M = 200, 350, 500 and as
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Table 5.1: Crop position for the test images

Image Top-left corner

sc0 (32,32)

sc10 (400,400)

gran9 (32,32)

t0180f07 (1400,200)

landsat agriculture (500,500)

spot toulouse (500,200)

Torino

landsat pan

transform matrix Ψ, hereinafter we take the DCT. In this subsection, we

only focus on separate reconstruction of each 2D spectral band (x − y) as

initialization strategies for our iterative algorithm coupled with each of the

four predictors aforementioned. Separate reconstruction represents an eas-

ier way for reconstructing the HSI signal acquired according to progressive

algorithms like Algorithm 1. After that, the reconstruction process simply

consists in applying the `1-norm reconstruction (see 3.15, Basis Pursuit) to

recover each portion of the original signal independently from each other,

given the corresponding Φi and fi. We denote as f̃ = [f̃1, f̃2, . . . , f̃B] the

result of the prediction for the entire three-dimensional hyperspectral signal

from the separately reconstructed signals f̂ = [f̂1, f̂2, . . . , f̂B].

Figure. 5.9 shows the MSE performance of the overall system of our pre-

dictive iterative CS reconstruction algorithm for different values of M when

using each of the prediction filters described above. Results show that, for

each predictor, convergence is reached for each value of M after nearly 10 it-

erations. For all the predictors, the bigger is M , the faster is the convergence

and the smaller is the MSE at convergence.

For M = 200, which corresponds to the 4 upper curves of Figure. 5.9, the

performance of our iterative CS reconstruction when using the predictors P2,

P3, P4 and P1 are respectively depicted in blu, green, red and black. As it

can be seen, at each iteration the use of predictors P2, P3, P4 have higher

MSE values than those of predictor P1.
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Figure 5.9: Test of different prediction filters on t0180f07 CASI image

For M = 350 (see the 4 intermediate curves of Figure. 5.9), we can com-

pare in terms of MSE versus the number of iterations, the recovery of our

iterative algorithm coupled with each of the predictors P1, P2, P3, P4.

While the predictor P3 (green dashed lines) performs slightly better than

P2 (blu dashed lines), we can observe that predictor P1 (black dashed lines)

outperforms both predictors P4 and P3.

For M = 500, the lower part of Figure. 5.9 shows the results obtained with

our iterative CS methods when the four different linear prediction filters are

used. Here, the red line represents the predictor P4, which has performance

slightly superior to those of P3 (green lines), and P2 (blu lines) as its MSE

values are lower than both of them. Remarkably, the iterative CS algorithm

associated with the prediction filter P1 (black lines) not only leads to much
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Figure 5.10: Mean band compressibility of t0180f07 image for different predictors

lower MSE values than those of predictor P4, but also allows to improve the

MSE values up to a factor 2 with respect to P4 .

In all the three cases, we can conclude that the best performance for each

value of M are obtained by using the predictor P1, i.e. the blockwise predictor

using the previous band and the next band to predict the current band. Hence,

we will use the prediction filter P1 in our further tests throughout this thesis,

omitting to mention it from now on.

5.4.3 Prediction error compressibility

In this subsection, we show results supporting the claim that accurate predic-

tion leads to prediction errors that are more compressible than the original
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signal. Figure 5.10 shows the mean band compressibility of prediction error

of the t0180f07 image measured at each of the first 10 iterations of the recon-

struction algorithm. The data at 0-th iteration corresponds to the compress-

ibility of the original image. With the term compressibility here we mean the

fraction of DCT coefficients of a band of the prediction error (or the original

image) below a certain threshold θth, averaged over the bands. The threshold,

evaluated for each band and at each iteration in order to take into account

norm fluctuations, is computed as θth = 5
||θi||`1
Nc

, where θi is the DCT of the

current band.

Note that, this test has been performed on the worst case scenario (i.e

on the less accurate prediction filter P2) and on more accure predictors such

as P1, P4. Results are reported in Figure 5.10. As we can see, for all the

3 considered predictors, Figure 5.10 proves the assertion that the prediction

error is more compressible than the original signal and that it gets more and

more compressible along iterations. What’s more, we can observe that the

better the predictor, the higher the sparsity of the prediction error (with

respect to the original signal) (see also [65]).

5.4.4 Preliminary experimental analysis with initial separate

2D reconstruction

We have carried out some experiments to preliminarily assess the validity of

the predictive iterative algorithm when the initial reconstruction images f̂i
are computed with the operator LP by using separate 2D DCT transforms

band by band, i.e., f̂i ← LP(Yi,Φi,Ψ). In particular, Figure 5.11 shows the

MSE behavior experienced on AVIRIS images as a function of the number

of iterations W for different values of M . A similar behavior is observed for

AIRS images. Note that for medium to high M , iterations are effective in

reducing MSE, e.g., for M > 400 the proposed algorithm improves the MSE

up to a factor of 35 with respect to the initial reconstruction. Moreover, con-

vergence to the minimum attainable MSE is obtained in a relatively small

number of iterations. For lower M , convergence is slower and MSE reduction

is less effective. In particular, for very low M , e.g. for M = 100 (which
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Figure 5.11: MSE behavior on AVIRIS images of Algorithm 2 as a function of the

number of iterations W with initial separate 2D reconstruction.

corresponds to a compression ratio of nearly 10:14) convergence is very slow

and MSE reduction is negligible. In essence, the algorithm shows a threshold

behavior with respect to the initial reconstructed images f̂i: a poor initial

reconstruction prevents the iterative algorithm to improve the MSE, while

if the initial reconstruction’s MSE falls below a minimum threshold, the im-

provement is remarkable and convergence very fast. Hereinafter, we denote by

ICS our iterative predictive CS reconstruction scheme using the 2D separate

CS reconstruction as initialization strategy.

4As explained in Section 5.4.1, we do not use the complete images, but rather a 32x32

spatial crop with all spectral channels, i.e., the number of pixels per band is 1024.
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5.4.5 Improving initial reconstruction by means of KCS

Given the above, we have investigated the possibility of implementing a more

sophisticated reconstruction algorithm which allows the iterative scheme to

achieve good performance even for low M , i.e., for high compression ratios.

To this aim, we considered the simplified 3D reconstruction scheme proposed

in [64], where it is shown that Kronecker product matrices are a natural way

to generate sparsifying and measurement matrices for the application of CS to

multidimensional signals, resulting in a formulation that is dubbed Kronecker

Compressive Sensing (KCS). In KCS, starting from the assumption that the

signal structure along each dimension can be expressed via sparsity, Kronecker

product sparsity bases combine the structures for each signal dimension into

a single matrix and representation. Similarly, Kronecker random product

measurement matrices for multidimensional signals can be implemented by

performing a sequence of separate random measurements obtained along each

dimension.

Following the above descriptions, the application of KCS to the problem at

hand is straightforward: the separate (band by band) random projections Yi =

Φifi (collected as in Algorithm 1) can be used to get a reconstruction scheme

which profitably exploits correlation in all dimensions by using a separable

3D Kronecker product sparsity domain. More specifically, we consider DCT

transforms for both spatial and spectral domains since DCT transform is

better than other typical transforms used in CS (e.g. Wavelet transform) on

small spatial crops, while a wavelet transform would arguably provide better

performance over a larger image. Accordingly, denoting by Ψ2 and Ψ1 the

DCT sparsifying operator for the spatial and spectral domain, respectively,

reconstruction may be obtained by means of linear program reconstruction

LP3D : (Y,Φ,Ψ2 ⊗ Ψ1) → f̂ , where Y = [Y1, . . . , YB], Φ = [Φ1, . . . ,ΦB] and

Ψ2 ⊗ Ψ1 is the Kronecker product between Ψ2 and Ψ1. The reconstructed

set of images f̂ can then be used as starting point for the iterative algorithm

proposed in Algorithm 2.

To assess the effectiveness of such an approach, in Figure 5.12 we show

the MSE behavior for AVIRIS images as a function of W , for different M ,

when the starting point of the iterative scheme proposed in Algorithm 2 is
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Figure 5.12: MSE behavior on AVIRIS images of Algorithm 2 with 3D Kronecker

starting point, as a function of the number of iterations W.

obtained through Kronecker 3D reconstruction, which we denote by KICS.

Comparing with Figure 5.11 it can be observed that, as expected, the MSE

starting point is much lower and convergence is achieved in few iterations.

Moreover, despite 3D Kronecker reconstruction already exploits correlation in

the spectral domain, the proposed iterative algorithm still allows to improve

the MSE up to a factor of 3 with respect to the initial reconstruction.

In the next section, we describe in more details the experiments we con-

ducted to evaluate the performance of the two predictive iterative CS recon-

struction schemes, namely iterative compressed sampling (ICS) and Kronecker-

iterative compressed sampling (KICS), which are both based on the iterative

procedure described in Algorithm 2, with the initial point computed by means

of LP and LP3D, respectively.
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5.4.6 Performance evaluation of iterative predictive algorithm

We compare the results obtained by ICS and KICS with those obtained

through spatial reconstruction (S2D) of each spectral channel independently

and through 3D KCS. The reconstruction algorithm for the iterative schemes

is run for 40 iterations, with several values of M . For the separate CS recon-

struction of each spectral channel, we employ the two-dimensional DCT as

sparsity domain since we used small spatial crops. Results in terms of MSE

versus M are shown in Figures 5.13 and 5.14 for the AVIRIS and AIRS scenes,

respectively. As it can be seen, S2D spatial reconstruction yields very large

mean-squared error (MSE), typically in excess of 5 · 104 for AVIRIS and of

7 · 103 for AIRS. Considering that the average signal energy for this crop is

equal to 2.76 · 107 for AVIRIS and 4.85 · 106 for AIRS, spatial reconstruction

yields an average percentage error of nearly ±4% both test images, which is

Figure 5.13: Reconstruction of AVIRIS scene: MSE versus M for different recon-

struction schemes
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Figure 5.14: Reconstruction of AIRS scene: MSE versus M for different recon-

struction schemes

inadequate for most applications. Using M = 350, i.e. three times as few

measurements as samples, the percentage error is below ±1%, and can be re-

duced to ±0.65% using M = 500. As anticipated in Figure 5.11, the proposed

ICS reconstruction algorithm allows to improves the MSE up to a factor of

35 for high M , but it is not effective for low M .

On one hand, Figure 5.10 for the AVIRIS scene shows that the 3D KCS

reconstruction without iterative predictions performs quite well for low M but

its performance are not so good for high M , e.g., it is even worse than ICS for

M > 200− 250. Eventually, KICS gives the best performance over the whole

range of considered M . In other words, combining 3D KCS with predictive

CS allows to accurately reconstruct original images requiring a number of

linear measurements much smaller than the original samples.

On the other hand, average results provide a somewhat biased picture.

In Figure 5.15, the individual MSE per band and for M = 450 obtained

through KICS algorithm on AIRS (upper Figure) and AVIRIS (lower Figure)
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Figure 5.15: Reconstruction of AIRS (upper) and Aviris (lower) scenes : MSE for

each band, with M = 450.
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scenes are shown, respectively. As it can be seen in the upper plot, in most

bands the MSE is very small, between 100 and 400. The average MSE is

biased by a relatively small number of bands which are reconstructed with

large error. Visual inspection shows that e.g. band 104 is extremely noisy

(hence not at all sparse) and contains almost no information, while band

32 is misregistered with respect to band 31, yielding poor prediction. This

shows that, on average, a much lower relative error can be achieved in most

bands, except for noisy bands, which are not very important altogether, or

misregistered bands, where improved prediction models can be employed to

improve the reconstruction.

Even better results are achieved for the airs9 granule, whose average en-

ergy is equal to 4.85 · 106. As observed in Figure 5.11, separate spatial recon-

struction yields relative error in excess of ±4%. Using the proposed algorithm,

taking M = 350 yields a relative error of ±0.57%, which can be reduced to

±0.3% with M = 500. In terms of MSE, the KICS algorithm improves the

MSE up to a factor of 100 with respect to separate reconstruction. E.g, for

M = 300, the MSE value decreases from ∼ 104 to ∼ 102 as with AVIRIS, also

for AIRS few noisy bands bias the MSE (Figure 5.12 upper), which typically

lies between 5 and 200 for most bands, leading to a typical relative error of

±0.3% for M = 350.

To wrap up, iterative predictive CS reconstruction improves over both

spatially separate and 3D Kronecker reconstructions of hyperspectral images

from their random projections and is able to significantly decrease the MSE

for both AVIRIS and AIRS images. Since the relative errors achieved by

our method are typically below ±0.3% for M = 350 or larger, we can assert

that CS can accurately reconstruct these images requiring a number of linear

measurements not larger than one third of the original samples, and usually

less in most bands.

5.4.7 Computational Complexity

In this section, we discuss the complexity reduction obtained using Algo-

rithm 2 instead of the standard CS reconstruction algorithm, processing each

2D signal (e.g. spectral channel fi) and then the 3D datacube as a whole.

We specialize the discussion to each 2D spectral channel, and then we extend
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it to 3D HSI. For a specific band fi of size Nr ×Nc within the HSI, the stan-

dard CS reconstruction algorithm has an O(Nr
3Nc

3) complexity. Our algo-

rithm performing W iterations has an O(WNrNc
3) complexity, with, usually,

W � Nr, Nc. Hence, the complexity gain that can be obtained for each spec-

tral channel is ∼ O(Nr
2). For the entire datacube f , bearing in mind the

same considerations, we have a gain of ∼ O(B2).

The complexity of our iterative predictive algorithm depends on the spa-

tial and spectral image size, on the number of measurements, and on the

number of performed iterations. The simulation results reported above have

been performed on an Matlab-based implementation running in a Windows

operating system environment, on a desktop with the following characteris-

tics: Intel R© CoreTM2 Duo CPU T6500 @ 2.1 GHz processor, 4 GB Ram and

1 Hard-disk drive. A single iteration of the CS iterative reconstruction algo-

rithm over all bands of AIRS took around 17 minutes in Matlab. The time is

much less for AVIRIS, which has much fewer spectral channels.



Chapter 6

Compressive HSI using Progressive Total
Variation minimization

In the previous chapter, we have processed 3D hyperspectral datasets in the

conventional fashion (2D + 1D) assuming that the two spatial dimensions

indicated as (x−y), are acquired and processed together, and that the spectral

dimension λ is used in a second phase to progressively refine the reconstruction

obtained from x-y data. In this way, we have simultaneously exploited the

redundancies within the spatial dimensions and along the spectral dimension

of the HSI. Such an approach, however, does not take into account the way

hyperspectral images are acquired by onboard sensors. In most cases, in fact,

onboard systems are equipped with a linear array of sensors which, at a given

time, acquires a spectral row (x dimension at all wavelengths). The next

spectral row is then acquired at the subsequent instant exploiting the motion

of the satellite. This acquisition architecture, which has been described in

chapter 2, is usually referred to as pushbroom configuration. As a result,

the y spatial dimension is essentially a time dimension, making it difficult to

process first the images in the x-y plane and add the spectral dimension in a

second time, since buffering the whole data cube is infeasible and would nullify

the advantages brought by the use of CS [65]. A possible solution would be

to apply 2D CS reconstruction to the x-λ plane exactly as the satellite with

the pushbroom architecture does and use the y dimension to further refine

the reconstruction. In this chapter, our discussion will be mainly focused on

exploring this point.

6.1 Acquisition of spectrals rows

By referring to Figure 6.1, the hyperspectral image f ∈ RNr×Nc×B represented

as a 3D collection of samples, can be considered as a set of Nr spectral rows
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Figure 6.1: Graphical representation of a Nr × Nc × B datacube, a spectral row

x− λ is highlighted

images Fi,:,: with i = 1, . . . , Nr, each consisting of a Nc × B matrix, i.e.,

f = [F1, F2, . . . , FNr ]. Hereinafter, we refer to this configuration as the reverse

cube xλ− y, with two dimensions (x− λ) and one vertical dimension y.

With regard to the separate acquisition of 2D spectral rows (x− λ) of an

HSI, the onboard sensors of the satellite measures spatial-spectral slices indi-

vidually, and different wavelengths are separated during the CS reconstruction

process. This acquisition procedure is reported in Algorithm 3 and consists in

the collection of M measurements for each spectral row as Yi = ΦiFi, where

Yi ∈ RM×1 and each sensing matrix Φi ∈ RM×Nc·B is taken as Gaussian i.i.d

(with M � Nc ·B). For simplicity, the same M is used for all spectral rows.

The measurements of all spectral rows are then collected in the matrix Y.

This setting is amenable to separate spatial reconstruction.

Algorithm 3 Acquisition algorithm of spectral rows

INPUT: Hyperspectal image f , M

OUTPUT: Measurements Yi, Y

for i = 1 to Nr do

Draw Φi of size M ×Nc ·B s.t. (Φi) ∼ N (0, 1/M)

Fi ← Fi,:,:
Yi ← ΦiFi

end for

Return Y
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6.2 Reconstruction of spectrals rows

In this section, instead of reconstructing the spectral channels x− y as we

did in the previous chapter, we separately reconstruct horizontal spectral rows

Fi ∈ RNc×B, with i = 1, . . . , Nr. The reverse cube is then reconstructed using

Algorithm 4, iterating over rows instead of wavelength and using the `1-norm

minimization to recover the full original signal. Basically, the principle of the

iterative predictive CS reconstruction is quite similar to Algorithm 2 used in

chapter 5. In fact, once again (F̂i)
p is the final reconstruction obtained when

applying the iterative model along the rows of the HSI, pi is the prediction of

the spectral row i, Yi the measurement of the original spectral row Fi, Φi the

acquisition matrix for Fi, Ψ the DCT transform used to sparsify each spectral

row and finally εi = Yi − Φipi is the measurement of the prediction error. In

this case, to predict the x-λ plane we use the linear predictor P1 described

in section 5.3.1, which has been shown to provide the best performance.

Algorithm 4 Iterative reconstruction algorithm of spectral rows

INPUT: measurements Yi, Y and matrices Φi, with i = 1, . . . , Nr; 2D DCT

matrix Ψ; number of iterations W .

OUTPUT: reconstructed channels (F̂i)
p, with i = 1, . . . , Nr

F̂ = z(Y,Φ)

j = 0

while j < W do

j ← j + 1

for i = 1 to Nr do

pi ← P(F̂i−1, F̂i+1)

εi ← Yi − Φipi
(F̂i)

p ← pi + LP(εi,Φi,Ψ)

end for

end while
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Figure 6.2: Comparison between CS separate reconstruction of spectral rows and

spectral bands

6.2.1 Prelimanary analysis on the reverse cube configuration

Until the end of this chapter, we will denote the iterative predictive CS re-

construction algorithm applied on the reverse cube and iterating over the y

dimension as IRC (i.e, Iterative over Reverse Cube). We will also use the

notation ICC (Iterative over Conventional Cube) to refer to the iterative

predictive CS reconstruction algorithm applied on the data cube in the con-

ventional fashion and iterating over the λ dimension exactly as it has been

done in the previous chapter. In this section, we basically test the perfor-

mance of the IRC and compare them to those obtained with ICC. To do

that, we consider the Airs gran9 image of spatial resolution 135× 90 with all

its 1501 spectral bands. To run quick experiments, we take for the reverse

cube a 2D crop of the spectral row 32 × 32 along with all its y dimension

(135). For the conventional fashion datacube, we consider a 32 × 32 spatial

window together with all its 1501 spectral channels .
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Figure 6.3: MSE behavior on AIRS image of IRC and ICC algorithms as a function

of the number of iterations W

Simulation results in Figure 6.2 show that separate CS reconstruction ap-

plied to spectral rows (black line) slightly outperforms the CS reconstruction

of separate spectral channels (pink line). As it can be seen, for M = 250

measurements (nearly 25%) taken from each spectral row the corresponding

MSE value is ∼ 7.5 · 103. For the same number of measurements acquired

on each spectral band, we obtain a MSE of ∼ 1.2 · 104. However, using the

CS separate reconstruction of spectral rows as starting point of IRC, which

we denote by IRC-SR is less effective at reducing the reconstruction errors

than ICC when it takes the CS reconstruction of separate spectral channels

as initiliaziation strategy, namely ICC-SB. To illustrate this, let us focus

on a particular number of measurments, say M = 250 for both algorithms

ICC-SB and IRC-SR. Figure 6.3 shows that IRC-SR converges after 5 it-

erations and does not really improve the reconstruction quality i.e, there is no
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reduction of MSE values as it starts from ∼ 7.5 · 103 to reach just ∼ 6.3 · 103.

As a result, instead of going down the red curve remains almost flat.

On the contrary, ICC-SB converges after only 7 iterations and improves

noticeabbly the reconstruction errors. In fact, for the same M = 250, the MSE

value decreases from ∼ 1.2 · 104 to ∼ 4 · 102, which corresponds to a gain of ∼
11dB. Moreover, the iterative predictive CS reconstruction algorithm (IRC)

using as starting point the KCS reconstruction performed on the reverse cube,

fails to provide satisfactory results as it completely diverges when iterating

along the y dimension1. This effect could be mainly due to: i) the fact that

the predictor along the y dimension does not work as well as in the spectral

dimension ii) the stronger correlation along wavelength direction than between

rows. Stronger correlation is better exploited by Compressed Sensing, leading

to better reconstruction performance, while weaker correlation between rows

yields only a minor contribution thanks to the iterative algorithm.

By the light of the above problem, we investigated suitable reconstruction

algorithms that are able to efficiently take advantage of the dependencies

in all the three dimensions of the (x-λ)+y configuration of the pushbroom

architecture. In particular, we explored a novel CS architecture, based on

sensing over spectral rows and reconstruction employing Total Variation (TV,

[80, 81]) minimization. The idea is to separately sense spectral rows (as in

Algorithm 6.1), which is compatible with the structure of pushbroom sensors

and then recover each of these spectral rows independently using the TV

instead of the `1-norm minimization. Total Variation has been proved to

be efficient for the CS reconstruction of many kind of images, including HSI

considered in the conventional fashion [64, 76].

6.3 Total Variation minimization

6.3.1 Introduction

Total Variation (TV) minimization [80, 81] and `1-norm are two conventional

methods exploited for image reconstruction, and they invoke frequency spar-

1We have seen in the previous chapter that ICC provides very good results in terms of

MSE when using the KCS as initialization point.
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sity, i.e. DCT or DWT, and small TV of the image to define the optimization

problem. Each method emphasizes a special property of the images to find

the optimal point in the optimization problem. In the broad area of Compres-

sive Sensing, `1-norm minimization has attracted intensive research activities

since the discovery of `0/`1 equivalence as mentionned in the previous chap-

ters. However, for image restoration, recent research [82] has confirmed that

the use of total variation (TV) regularization instead of the `1 term in CS

problems makes the recovered image quality sharper by preserving the edges

or boundaries more accurately, which is essential to characterize different

properties of the images in addition to its smooth parts. In particular, TV

relies on the fact that grayscale digital images have lower-dimensional struc-

ture than the number of pixels suggests, consisting primarily of slowly-varying

pixel intensities (i.e, small difference between the values of adjacent pixels)

except around edges. In other words, digital images are compressible with

respect to their discrete gradient.

For the above reasons, Total Variation can be regarded as a generalized

`1 regularization in Compressive Sensing problems [83]. Instead of assuming

that the signal is sparse, the premise of TV regularization is that the gradient

of the underlying signal or image may often be more sparse/compressible than

its wavelet transform. Especially, TV minimization exploits this property to

reconstruct the image from its CS measurements.

6.3.2 Mathematical Formulation

The Total Variation of an image can be mathematically defined as follows.

First of all, let recall that the reverse cube configuration f is defined as f =

[F1, F2, . . . , FNr ] where each Fi consists of a Nc × B block of pixels which

represents a 2D image of a specific spectral row. We write (Fi)j,k to denote

any particular pixel within the corresponding image. The discrete directional

derivatives of Fi ∈ RNc×B are defined pixel-wise as:

(Fi)
x : RNc×B → R(Nc−1)×B (Fi)

x
j,k = (Fi)j,k − (Fi)j−1,k (6.1)

(Fi)
y : RNc×B → RNc×(B−1) (Fi)

y
j,k = (Fi)j,k − (Fi)j,k−1 (6.2)
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The discrete gradient transform is defined as:

[∇(Fi)]j,k = ((Fi)
x
j,k, (Fi)

y
j,k) (6.3)

Finally, the Total Variation (TV) seminorm of Fi is the sum of the magnitudes

(`1 norm) of its discrete gradient:

||Fi||TV , ||∇(Fi)||`1 . (6.4)

As natural images are well-approximated as piecewise-constant functions, it

makes sense to choose from among the infinitely-many images agreeing with

a set of underdetermined linear measurements the one having smallest total

variation. In the context of Compressed Sensing, the measurements y from

an image f are of the form (3.2). Therefore, to reconstruct the image from its

measurements, TV minimization refers to the convex optimization problem

expressed as follows:

(F̂i)TV = arg min ||∇(Fi)||`1 s.t Yi = ΦiFi (6.5)

Equation ( 6.5) means that among all vectors which satisfy the measurements

constraint, a vector which is more similar to image data in terms of total

variation is the optimal point. Stable signal recovery using total-variation

minimization has been proved in [84].

TV minimizing models have become one of the most popular and suc-

cessful methodologies for CS [85], image denoising [81, 86], deconvolution [87]

and restoration [88], to cite just a few. Recently, Yin employed the splitting

and alternating direction idea on the classic augmented Lagrangian method

[89] and developed an efficient TV regularized solve - TVAL3 [90]. The key

step to introduce the so-called alternating and splitting variable was to move

the differentiation operator from inside the TV term to outside, thus enabling

low-complexity subproblems in an alternating minimization setting. This par-

ticular implementation also integrates a non-monotone line search [91] and

Barzilai-Borwein steps [92] into it and results in a much faster algorithm.

TVAL3 has been proposed and thoroughly studied in [90], and numerical ev-

idences indicates that TVAL3 outperforms other TV solvers. When solving
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compressive sensing problems, it has been proved [90] that TVAL3 solver is

as robust as the `1 solver, but faster and accepts a vast range of measurement

matrices with respect to other minimization algorithms such as SOCP [88],

l1-Magic [9, 11, 12], TwIST [93] and NESTA [94]. For these reasons, dur-

ing our experiments hereinafter, we have chosen to use TV with the TVAL3

solver.

6.4 Iterative Total variation CS reconstruction

Even if the Iterative Total Variation CS reconstruction (ITV) operates in a

quite similar way to the one described in the section 5.2 (ICC), there are

some differences between them. Firstly, the ITV works on the reverse cube

configuration of the HSI, applies the predictor operator on spetral row (instead

of spectral band) and iterates along the y dimension. Secondly, the recovery

of the predictor error (instead of the full spectral row) is not performed with

`1-norm minimization anymore, rather with the Total Variation.

Prediction/reconstruction techniques have also been considered in [19, 95,

96] for different applications. In particular, the iterative procedure starts from

the initial reconstruction of all spectral rows f̂ = [F̂1, F̂2, . . . , F̂Nr ]. Even if

this initial reconstruction can be obtained using several techniques, in our ex-

periments we reconstruct each spectral row by solving, for each i = 1, . . . , Nr,

the following problem:

F̂i = arg min
Fi

TV(Fi) s.t Yi = ΦiFi (6.6)

where TV(Fi) =
∑

k,j

√
|(Fi)k+1,j − (Fi)k,j |2 + |(Fi)k,j+1 − (Fi)k,j |2 .

Since the TV is the sum of the magnitudes of the discretized gradient,

seeking to minimize the TV norm relies on the assumption that the gradient

of the spectral row is approximately sparse, hence the TV norm should be

small. We also use the measurement of the prediction error εi to reconstruct

the i-th spectral row as F̂
(n)
i = F̃i + Ei where F̃i is the prediction of the i-th

spectral row and F̂
(n)
i = (F̂i)

p is the final reconstruction of spectral row i
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Algorithm 5 Iterative CS reconstruction algorithm of spectral rows

INPUT: measurements Yi, Y and matrices Φi, with i = 1, . . . , Nr;

OUTPUT: reconstructed rows (F̂i)
p, with i = 1, . . . , Nr

ITV CS reconstruction

for i = 1 to Nr do

F̂i ← arg minFi TV(Fi) s.t Yi = ΦiFi
end for

n← 0

Repeat

n← n+ 1

for i = 1 to Nr do

F̃i ← P(F
(n−1)
i−1 , F

(n−1)
i+1 )

ỹi ← Φi · F̃i
εi ← Yi − ỹi
Ei ← arg minE TV(E) s.t εi = ΦiE, E = Fi − F̃i
F̂

(n)
i ← F̃i + Ei

end for

Until convergence is reached

Return F̂ (n)

performed by the ITV algorithm and Ei is obtained by applying the TV at

the CS reconstruction stage as follows:

Ei = arg min
E

TV(E) s.t εi = Φi · E, (6.7)

This process is performed on all spectral rows, and is iterated until con-

vergence. The overall ITV procedure applied on spectral rows is summarized

by Algorithm 5.

6.5 Experimental results

In order to evaluate the performance of the ITV algorithm, simulations have

been carried out on the hyperspectral images descripted in section 5.4.1. Here,
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Figure 6.4: Reconstruction of AIRS scene: 32× 32 xy window.

we report results from a set of experiments, in particular those obtained from a

couple of images namely, granule 9 (gran9) of AIRS and scene (sc0 ) of AVIRIS

(Yellowstone). Results are given in terms of Mean Square Error (MSE) as a

function of the percentage of measurements M/N , where N = NrNc for the

conventional fashion xy − λ of the HSI and N = NcNB for the reverse cube

xλ− y configuration.

For the sake of comparison with the ITV scheme, we refer to Figure. 6.4

which is obtained by considering the conventional fashion of the hyperspectral

data cube with xy as spatial dimension and λ as spectral one, which we have

denoted as (ICC) in section 6.2.1. To keep the computational complexity

manageable, a 32 × 32 spatial crop of the image across all frequency bands

was used. Figure. 6.4 shows the reconstruction of the AIRS scene performed

by Kronecker Compressed Sensing (KCS) [64] and those obtained through

Kronecker-iterative compressed sampling (KICS) which relies on the iterative

procedure described in chapter 5, with the initial point computed by KCS.
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Figure 6.5: Reconstruction of AIRS scene: 32× 32 xλ window.

Note that both KCS and KICS perform signal recovery using the `1-norm min-

imization process. As we can see, KICS provides quite good mean-squared

error (MSE) values, but in the 3D reconstruction process, because of the large

amount of data to deal with, KCS faces with the computational problems re-

lated to `1-norm minimization which provides the final image reconstruction.

As the complexity of `1-norm minimization is cubic in the number of samples,

increasing the dimension of the domain yields a very high complexity at the

ground station.

On the contrary, in Figures 6.5 and 6.6 we show the experiments performed

with the xλ − y reverse cube. To keep the computational complexity of the

KCS scheme manageable, and to get a fair comparison between KCS and

the ITV algorithm, we focused on a small portion of the hypercube, a 32 ×
32 spectral xλ rows across the whole vertical length (y). We repeated the

experiment for 7 different windows along with their vertical dimension and

averaged the MSE values obtained. Results are illustrated in Figure 6.5.

As it can be seen, the separate 2D xλ TV reconstruction yields very large
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Figure 6.6: Reconstruction of AIRS scene: 128× 128 xλ window.

MSE values, which is inappropriate for practical applications. It is worth

mentioning that, in this scenario, KICS performed on the xλ−y cube does not

converge. The ITV reconstruction algorithm converges in about 23 iterations

and allows to improve significantly the MSE values. ITV outperforms the

KCS for M < 35% and provides quite similar behavior to the KCS scheme for

higher values of M . Moreover, the ITV algorithm allows to reduce drastically

the computational complexity up to a factor of 12 with respect to the KCS

schemes as shown in Table 6.1. As a consequence, ITV allows to reconstruct

larger spatial-rows crops xλ along with all their vertical dimension, a task

very difficult to achieve with the KCS. In fact, Figure 6.6 presents averaged

results on three different 128 × 128 xλ windows along with all their vertical

dimension. These results show that the larger the xλ window size the better

the performance of ITV. We can observe that: on one hand, by using larger

windows, ITV allows to improve significantly the MSE values with respect

to the separate TV reconstruction while keeping the computational time at a

very low level as highlighted in Table 6.1. For instance, for M = 30%, the

TV takes about 40 minutes to reconstruct the entire 3D signal and a single

iteration of the ITV reconstruction algorithm around 20 minutes. On other
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Figure 6.7: Reconstruction of AVIRIS scene: 128× 128 xλ window.

hand, by using a 128× 128 xλ window along with all its y vertical dimension,

the KCS problem becomes computationally intractable and as a result the

comparison with ITV is impossible. Experiments performed on the AVIRIS

scene are shown in Fig. 6.7 where the results lead to similar observations to

those made on the AIRS image. Results about computational complexity

are presented in the following table which refers to a Matlab implementation

running on a Windows operating system environment, equipped with Intel R©

CoreTM2 Duo CPU T6500 @ 2.1 GHz processor, 4 GB Ram and 1 Hard-disk

drive.

Table 6.1: Computational complexity (min.) of AIRS image

32× 32 crop 128× 128 crop

M % KCS TV ITV TV ITV

10 50 4 7 25 230

30 98 8 14 43 400

50 245 12 21 63 650



Chapter 7

Compressive source separation methods
for HSI

7.1 Introduction

Chapters 5 and 6 have addressed the problem of reducing the CS reconstruc-

tion complexity and improving the reconstruction quality of HSI by using an

iterative predictive CS-based scheme, which exploits in an efficient way the

correlations in all three dimensions of the datacube. The methods we have

developed are, in large part, focused on the decoder side where the recovery

of the original signal is performed from the CS measurements. With the de-

velopment of a number of high resolution data acquisition systems and the

global requirement to lower the storage volume, the development of efficient

sensing techniques becomes critical as well as the reconstruction stage. In

this regard, the idea of taking advantage of the correlations across the mul-

tichannel signals have been studied [97] in order to decrease even more the

number of compressive measurements with respect to those provided by the

CS framework. To explore this point, we started from the assumption that

multi-array signals such as HSI have usually some structures that go beyond

the sparsity. This allows HSI to be interpreted as a mixture of sources, each

of them having a specific spectral signature. This model is widely used for

unmixing HSI [98, 99, 100], that is extracting, from the HSI, each source and

their respective spectral signatures.

This chapter intends to exploit, beyond the sparsity assumption, an ad-

ditional structured model, the linear mixture model (features of HSI), so as

to separate the sources of multi-array signals and reconstruct them assuming

we know their spectra (or mixing parameters) as side information. In other

words, we analyze a new sampling scheme, which exploits this structured
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model, and that has the following important properties:

• the number of measurements, or samples, does not depend on the num-

ber of channels,

• the recovery results do not depend on the conditioning of the mixing

matrix (as long as the mixing spectra are linearly independent).

We propose new algorithms built on blind source separation for Compres-

sive Sensing (SCS) [97], that is source separation and data reconstruction

from less compressed measurements, which are based on exploiting the linear

mixture structure and reconstructing the datacube through `1-norm mini-

mization. The idea is to combine the advantages of the SCS algorithm (in

term of low computational complexity) and the iterative procedure already

exploited in the previous chapters (in terms of MSE reduction and improved

reconstruction quality). Specifically, we use the SCS scheme as the initial

point of the prediction-based iterative CS reconstruction scheme.

7.2 Low-complexity CS reconstruction through

source separation

7.2.1 The linear mixture model

In section 2.3 of chapter 2, we have introduced the spectral unmixing of remote

sensing hyperspectral data, which is mainly based on the linear mixture model

(LMM). The SCS method, starting point of the prediction-based iterative CS

reconstruction algorithm were first introduced by Golbabaee et al. [97, 101]

and relies on the (LMM) model to exploit only the spatial correlation within

HSI. One of the most practical setups of a multichannel signal applications,

including HSI [1] - assumed by the authors of [97] - is when the multichannel

data matrix X is derived by a sparse linear mixture model as follows:

f = SAT (7.1)

where f ∈ RNr×Nc×B represents a 3D hyperspectral image f , B the number of

its spectral bands and N = Nr×Nc the resolution of the images for each band
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(we reshape the band into a vector of dimension N = Nr×Nc, the number of

available pixels). The columns of the matrix S ∈ RN×I and the rows of A ∈
RB×I are respectively collections of I active sources (with I � B) and their

corresponding spectral vectors (also called mixing parameters). The number

of sources, I, is the number of endmembers, where endmembers represent

the pure items composing the mixed pixels of the image. A contains the

spectral profile of each endmember and S the abundance of each endmember

within each pixel. Each source is mixed with the corresponding columns of

the matrix A in order to generate the full multichannel data f i.e, for each

source Si there is a spectral response vector (the i-th column of A) that

is associated with each non-zero element of Si. If we know which are the

materials that can be present in the HSI as well as their spectral response A,

then the observed signal f in any channel j ∈ {1, . . . , B} can be expressed as

a linear combination of I source signals:

fj =
∑I

i=1
Aj,iSi, (7.2)

where Si ∈ [0, 1]1×I represents the percentage of a given material indexed by

i in each pixel of the scene. As a consequence, for a given pixel of the scene

(indexed by n), the sum of the consisting sources must be equal to one i.e.,

∀n ∈ {1, . . . , N} the source images must satisfy
∑I

i=1 Si(n) = 1.

In practice, if the spatial resolution of the image is high compared to the

structural content of the image, each pixel corresponds to only one mate-

rial, which means that the sources are disjoint and take their values in the

set {0, 1}1×I . In real applications, we have the two following key priors: i)

each source image (a column of S) contains piecewise smooth variations along

the spatial domain, implying a sparse representation in a properly chosen 2D

wavelet/DCT basis, or equivalently sparse 2D gradient along the spatial do-

main. ii) each spatial pixel is a linear mixture of a few number of sources

(equivalently, material substances), implying a second form of sparsity along

the rows of S. For example, when the source images are disjoint, the sparsity

level of each row of S is equal to one. Along with these assumptions, the

non-negativity of the source images can also efficiently limit the degrees of

freedom of S.
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7.2.2 Compressive sensing via source separation (SCS)

The Compressive source separation (SCS) problem introduced by Golbabaee

et al.[97, 101] provides an efficient way to tackle with the computational com-

plexity typical of CS applications involving multidimensional data. As the

dimensionality of the CS problem rapidly grows with the product of the sizes

of each dimension, SCS approach exploits the spatial correlation within fre-

quency bands of HSI in order to drastically reduce both the number of mea-

surements and the complexity of the decoding algorithm.

The SCS method relies on a linear mixture model to generate the data cube

as the product of independent source images with their corresponding spectral

vectors (see Equation 7.1), where the spectral vectors (or mixing parameters

A) are supposed to be known as side information and the number of sources is

much smaller than the frequency bands (i.e, I � B). Then, the sources can be

efficiently separated directly on the compressed measurements, i.e avoiding to

run a source separation algorithm on this high-dimensional raw data, thereby

eliminating this important bottleneck and providing a rather striking example

of compressed domain data processing. Regarding the reconstruction process,

the SCS scheme instead of recovering the whole data, directly applies the CS

framework on each source image separately allowing to decrease considerably

the number of measurements to be sent to the decoder and consequently its

computational complexity.

In certain multichannel signal acquisition setups, the mixing parameters

A are known at both decoder and encoder and this knowledge can be used

efficiently. The sparse source coefficients can be directly recovered from the

measurements. In particular, this is the case in many remote sensing applica-

tions where the spectra of common materials are tabulated. Such a knowledge

efficiently restricts the degrees of freedom of the entire data matrix to the

sparse coefficients of the underlying sources. Indeed, we will show that, when

we know the mixing parameters A, the inverse problem consisting in recover-

ing the multichannel signal f from its CS measurements is equivalent to the

problem of recovering only the sources from the following CS measurements1:

1These separate CS measurements of each spectral channel is acquired according to

Algorithm 1 in the chapter 5 (see section 5.1)
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Y = Φf = Φ · (SAT ) . (7.3)

During the acquisition process or as a postprocessing step, the SCS scheme

introduces a decorrelation mechanism, which has two main advantages: first it

leads to strong dimensionality reduction and second it improves the condition-

ing of the recovery problem. This is performed by exploiting the knowledge

of the mixture parameters A, so the decorrelation consists of applying the

pseudo-inverse matrix A+ = (ATA)−1AT from the left side to the B × M

measurements matrix of all spectral bands Y and then removing all the rows

with zero energy to leap only measurements from the active sources which are

stacked in a I ×M matrix, say Ỹ .

Specifically, this decorrelation step on the CS measurements is performed

as follows. When we know the mixing matrix A, and thanks to the property

of Kronecker product B(CD)vec = (DT ⊗ B)Cvec, Equation ( 7.3) can be

written as:

Y = Φ · (SAT )vec = (A⊗ Φ)Svec = Φ(A⊗ IdN )Svec (7.4)

Where fvec is the vectorized form of the image f ∈ RN×B, Svec the vectorized

form of S and IdN the identity matrix of size N ×N . The main role of this

stage is to remove the underlying dependencies among CS measurements by

applying the matrix A+. Therefore, the following sampling matrix has been

proposed [101]:

Φ = A+ ⊗ Φ̃ (7.5)

The main sampling matrix is generated from a smaller-size M
′ × N core

sampling matrix Φ̃. Note that CS imposes M
′ � N . The total number of

measurements is M = IM
′
. Applying the sampling matrix Φ of (7.4) on the

entire HSI transforms the CS measurements in (7.3) as follows:

Y = (A+ ⊗ Φ̃)(A⊗ IdN )Svec = (IdI ⊗ Φ̃)Svec = Φ̃I · Svec (7.6)

The second equality comes from the following property: (B ⊗ C)(D ⊗ F ) =

BD ⊗ CF , and Φ̃I = IdI ⊗ Φ̃ is a block diagonal matrix whose I diagonal

blocks are populated with Φ̃. Note that, IdI the identity matrix of size I × I.
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As we can observe from Equation (7.6) and thanks to the specific structure

of the sampling matrix, the mixing parameters A are discarded from the for-

mulation and each source is directly subsampled by the matrix Φ̃. In this way,

only the indices of the active sources I plus their compressed measurements

Ỹ are transmitted to the base station.

After having set up the decorrelation mechanism, the application of SCS

to HSI is straightforward: recover the hyperspectral image from a set of in-

complete measurements Ỹ through the linear reconstruction program LP :

(Ỹ ,Φ,Ψ)→ Ŝ. This means that the source coefficients can then be recovered

by solving the following convex optimization problem:

Ŝcs = arg min
Ss
‖Ss‖`1 s.t. Φ̃IΨ

TSs = Y (7.7)

where Ss = ΨSvec are the 2D DCT coefficients of the sources images and Ŝcs
is the reconstruction of the sources in the transform sparsity domain.

In order to reconstruct sources that follow our model, here, we add a

simple thresholding step to refine the solution of the `1-norm minimization.

More precisely, after recovering Ŝcs from (7.6), we apply the inverse DCT2

transform to find Ŝ. Now, since each pixel of the image can only belong to

one source, for each column of Ŝ we set the value of its largest element to one

and the rest to zero. In this way, we associate each pixel to the source that is

most likely to be belonged to.

Once the algorithm determines the sources, the whole HSI cube can be

recovered through the mixing model in (7.1) and this leads to an approxima-

tion of f as: f̂ = AŜ. Stated in a different way, SCS consists in recovering

only the independent sources S using the standard CS framework as in Equa-

tion 7.7 rather than estimating directly the whole multichannel data [64] .

When the data cube is composed by a few materials only, the number of mea-

surements M needed in the reconstruction process is very low and as a result

the complexity at the decoder side decreases considerably.

2The sparsity domain Ψ used here is the DCT
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7.2.3 Theoretical guarantees for source recovery via `1 mini-

mization

In [97, 101] the authors derive the conditions that guarantee source recovery

problem which can be summarized in this subsection. We limit our attention

on the constraints of the mixing matrix A, the number of measurements M

and the sensing matrix:

• To be able to define A+ in the post CS acquisition step, A has to be a

full rank matrix. Having a fix number of channels, this fact obviously

sets an upper bound on the number of sources to be detected such that,

at least I � B. In the case where A would be close to be singular,

it would be still possible to use the regularized pseudo-inverse operator

(ATA+ εI)−1AT , where ε is a small number.

• The compression matrix Φ that is used for subsampling data is an M×N
matrix whose elements are drawn independently at random from the

Gaussian, Bernoulli or subgaussian distributions. Such matrices satisfy

the RIP provided that:

M ≥ γKlog(IN/γK) (7.8)

The measurement bound for the source-separation-based reconstruction

approach, which uses a non-decorrelating random compression matrix,

depends on the conditioning of the mixture parameters via the constant

factor γ in 7.8. Therefore, when the columns of A are highly coherent,

the condition number of A becomes relatively large, and so does γ.

• A hyperspectral signal derived by the linear mixture model of I sources,

each having a K
′
-sparse representation i.e. S is K = IK

′
sparse. The

scaling-orders of the number of CS measurements sufficient for an exact

data reconstruction for different noiseless random acquisition schemes

and sparse recovery approaches is given by equation 7.8.

Finally, we can observe that Compressed Sensing via source recovery us-

ing (7.6) once it is coupled with a proper CS acquisition (i.e., Dense i.i.d.
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subgaussian A, or a random decorrelating sampling scheme) leads to a sig-

nificantly improved bound compared to standard methods such as BP. More

remarkably, the number of CS measurements turns out to be not only in-

dependent but also less than the number B of channels. Refer to [101] for

a more detailed description of theoretical guarantees for source recovery via

`1-minimization.

7.3 Improving SCS by means of 3D iterative CS

reconstruction

Despite its good performance in terms of overall computation time, the SCS

method achieves an MSE that is not good enough for many HSI applications.

The main reason is that it basically performs 2D spatial CS reconstruction (see

Figure 5.1) on each source independently, so failing to exploit the correlation

along the spectral dimension. Yet, exploiting such a correlation would provide

significantly better performance in terms of reconstruction quality. In this re-

gard, we have built once again on the SCS scheme based on blind source sep-

aration to develop a computationally simple, yet accurate, prediction-based

scheme for acquisition and iterative reconstruction of hyperspectral images in

a CS setting. By doing this, we are able to combine the advantages of the

SCS algorithm (in term of low computational complexity) and the iterative

procedure (in terms of MSE reduction and improved reconstruction quality).

Even if there are some differences between the iterative CS reconstruc-

tion algorithm we use in this part and the one described in section 5.3, the

basic ideas behind them are quite similar. Differences are mainly due to the

introduction of the linear mixture model, which allows performing a decorre-

lation step after the CS acquisition process and then reconstructing directly

the source images. So, once again, we have to compute the prediction of

each source image p
′
i and then apply the reconstruction only to the CS mea-

surement of the prediction error of the source εi, which is obtained as the

difference between the measurements of the original source signal Yi and the

measurement of the predicted source i.e, εi = Yi−Φip
′
i. After that, we recon-

struct at each iteration only εi, which is added to the i-th predicted source,

namely p
′
i.
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Algorithm 6 Iterative reconstruction algorithm

INPUT: measurements Yi and matrices Φi, with i = 1, . . . , I; 2D DCT

matrix Ψ; number of iterations W .

OUTPUT: reconstructed sources (Ŝi)
p, with i = 1, . . . , I

Iterative CS reconstruction

Ŝ = z(Ỹ ,Φ)

j = 0

while j < W do

j ← j + 1

for i = 1 to I do

p
′
i ← P(Ŝi−1, Ŝi+1)

εi ← Yi − Φip
′
i

(Ŝi)
p ← p

′
i + LP(εi,Φi,Ψ)

end for

end while

This process is performed on all the I source images instead of all B

spectral bands (with I � B ), and is iterated until convergence. In particular,

the iterative procedure starts from an initial reconstruction of all sources

images Ŝ performed by the SCS and ends with the final reconstruction of

each source (Ŝi)
p, for i = 1, . . . , I.

The iterative procedure is described in Algorithm 6 where Ŝ = z(Ỹ ,Φ)

indicates that the source images are reconstructed from the measurement

matrices Φ and random projections Ỹ of independent sources obtained after

applying a decorrelation step. Note that we used the 2D DCT transform Ψ

to sparsify each source image.

An approximation of the full data cube is then provided by: f̂ = A(Ŝ)p.
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7.4 Experimental results

7.4.1 Image data set

In our experiments, we considered two HSI cubes3 namely BELTSVILLE and

SUWANNEE scenes acquired by hyperspectral camera VNIR and SWIR be-

longing to the SpecTIR Remote Sensing (SRS) Division, headquartered in

Reno (Nevada, USA), which is specialized in the collection and analysis of

airborne hyperspectral remote sensing data. The VNIR (Visible Near Infra-

Red) sensor operates in the visible range (380nm − 800nm) and the SWIR

(Short Wave InfraRed) camera can see beyond the visible wavelength spec-

trum. Both sensors are mostly designed for applications which require a high

throughput, high spatial and spectral resolutions, and the best imaging op-

tics. The size of the SUWANNEE image is 1200 lines, 320 pixels and 360

bands. BELTSVILLE image has 360 bands with 320 lines and 600 pixels.

From these Gulf of Messico images4 I = 7 sources are extracted along with

the source spectra A. In order to run quick experiments, we did not use the

whole images, but rather a 64× 64 spatial crop of the images across B = 128

frequency bands. Both are raw images, i.e. they are the direct output of the

sensors, with no processing, calibration or denoising applied. For this reason,

these images are noisier than the corresponding processed images, but more

realistic for applications regarding the onboard use of compressive sensing

technology.

7.4.2 Experiments set up and results

In this section we provide results from a set of experiments. We use all the

reconstructed spectral channels of the image f̂ obtained by applying SCS as

a starting point for the iterative CS reconstruction. The latter is then asso-

ciated with the two distinct predictors P1 and P4 described in sections 5.2.1

and 5.2.4 respectively. The experiments give the performance of our schemes

hereinafter referred to as Source-Iterative Compressive Sampling with predic-

tor P1 (SICS1) and Source-Iterative Compressive Sampling with predictor

P4 (SICS4). As shown in section 5.4.2 (see Figure 5.6), these two predictors

3We thank Prof. Andrea Garzelli for suggesting us the use of these images.
4Available at the url http://www.spectir.com/free-data-samples/.
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Figure 7.1: Reconstruction of SUWANNEE scene: MSE versus M for different

reconstruction schemes

are the best among those we tested during our simulations as they provide

fastest convergence and best MSE values.

On one hand, Figure 7.1 for the SUWANNEE image, compares in terms of

MSE versus M5 different reconstruction schemes. Figure 7.1 shows the recon-

struction performance of SICS1 and SICS4 algorithms with those obtained

through separate spatial reconstruction of each band and through SCS. As

it can be seen, SCS performs better than spatial reconstruction while our

scheme (namely SICS1 and SICS4) achieves much better performance than

SCS in terms of MSE, improving its values up to a factor of 10 with SICS1,

for M larger than 400. On the other hand, Figure 7.2 demonstrates that for

M > 400, the KICS algorithm performs as the SICS1, but its computational

complexity is at least 30 times larger than that of SICS1 as reported in Ta-

ble 7.1. In spite of its high complexity, the KICS performance is even worse

than SICS1 for M < 400. Note that, the iterative reconstruction algorithm

(KICS), for several values of M , converges in about 30 iterations.

Experiments run on the BELTSVILLE image are illustrated in Figure 7.3,

5M represents the number of measurements taken in each 64× 64 spectral channel.
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M KICS SCS SICS4 SICS1

200 480 4 10 12

400 940 12 25 30

600 1690 24 43 52

800 2386 50 63 79

Table 7.1: Computational complexity of Suwannee scene

Figure 7.2: Reconstruction of SUWANNEE scene: comparison of KICS with our

best scheme SICS1

where the results lead to similar observations to those made on the SUWAN-

NEE image: in Figure 7.3 our schemes namely SICS1 and SICS4 not only

outperform SCS, but also allow to improve noticeably the MSE values. In

particular, for M = 500 the SICS1 scheme reduces the MSE values by a

factor of 3dB. SICS1 performs as well as KICS as shown in Figure 7.4, with

the great advantage of having a computational time much lower than KICS

as shown in Table 7.2.

Results on both images indicate stable recovery, improving by increasing

the values of M . Hence, we can affirm that combining SCS with predictive

CS allows to accurately reconstruct original images reducing the number of
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M KICS SCS SICS4 SICS1

200 460 6 11 15

400 980 10 19 28

600 1725 25 49 58

800 2319 44 66 75

Table 7.2: Computational complexity of Beltsville scene

Figure 7.3: Reconstruction of BELTSVILLE scene: MSE versus M for different

reconstruction schemes

required linear measurements to be sent to the decoder (IM instead of BM)

and decreasing significantly the computational time of the decoding algorithm.

Specifically, Tables 7.4.2 and 7.2 report, for different values of M , the compu-

tational complexity of all the algorithms for both images. The results refer to

a Matlab-based implementation running in a Windows operating system envi-

ronment, on a desktop with the following characteristics: Intel(R) Core(TM)

2Duo CPU T6500 @ 2.1 GHz processor, 4 GB Ram and 1 Hard-disk drive.
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Figure 7.4: Reconstruction of BELTSVILLE scene: comparison of KICS with our

best scheme SICS1



Chapter 8

Conclusions and future works

8.1 Conclusions

The main advantage of CS is that compression takes place during the sam-

pling phase, making possible significant savings in terms of the ADC, data

storage memory, down-link bandwidth, and electrical power absorption. In

this context, CS can be thought as a natural candidate to optimize the cap-

turing of Hyperspectral Images. The main objective of CS is not to perform

compression; rather, CS aims at avoiding altogether the acquisition of a very

large number of samples, thereby allowing to design sensors that are more

effective at acquiring the signal of interest. By realizing the importance of

exploiting the correlations in all three dimensions of the hyperspectral dat-

acube, many efforts have been devoted to the design and development of

reconstruction algorithms for hyperspectral imagery, but very few of them

have been based on the use of CS principles in order to reduce the amount

of data acquired and to lower the energy consumption of on-boards sensors

of satellite. This research work has addressesd all these aspects developing

innovative algorithms that provide solutions to these specific issues. In par-

ticular, we have explored the ways the Compressed Sensing technology could

be extended to iterative predictive CS reconstruction algorithms to help in-

crease the efficiency of hyperspectral data collection and storage while fully

taking advantage of sparsity structure present in all three dimensions of the

HSI and keeping the computational complexity at the recovery stage at a very

low level. In a nutshell, this thesis has been centered around efficient iterative

reconstruction mechanisms coupled with the CS framework to achieve both

of the latter points.



124 8. Conclusions and future works

Chapters 2, 3, 4 in this thesis have presented an extensive review of the

literature concerning Compressed Sensing and Hyperspectral imaging tech-

nology. For the remaining chapters (from chapter 5 to chapter 7), an exhaus-

tive quantitative and comparative assessment has been performed in order

to evaluate the accuracy and computational performance of the methods we

developed. The experiments have been conducted using raw datasets, per-

forming comparison with classic techniques available in the literature in order

to substantiate the improvements and contributions of the newly proposed

methods over the already existing ones.

More specifically, in chapter 5 we have proposed a general architecture for

the acquisition and reconstruction (with manageable computational complex-

ity) of hyperspectral correlated signals acquired in the conventional fashion.

The acquisition is based on Compressed Sensing and consists in taking a se-

quence of separate random linear measurements of each spectral band. The

reconstruction process implements an iterative scheme relying on linear pre-

diction filters and the CS reconstruction of the prediction error, which is sup-

posed to be more compressible than the original signal. We have showed that

the algorithm performance in terms of MSE and speed of convergence depend

on two factors. On one hand, the initial MSE of the algorithm depends on

the initialization strategy. In this regard, we have seen that the performance

obtained by trivially initializing the algorithm with separate measurement re-

construction can be significantly improved by using the so-called Kronecker

Compressed Sensing, which is able to capture the correlation in all three di-

mensions of the datacube with a manageable computational complexity. On

the other hand, the effectiveness of the iterative algorithm in terms of MSE

gain strongly depends on the choice of the linear prediction filter and on the

amount of signal correlation along the iteration dimension.

In chapter 6, we have applied the Compressed Sensing framework to hy-

perspectral images by taking into account the way satellite pushbroom sensors

operate. The acquisition process consists of measuring separately each spec-

tral row exactly as onboard architecture does. The reconstruction relies on

the minimization of Total Variation and a progressive refinement based on

linear predictors to jointly process the measurements of each spectral row, in

order to exploit both spectral and spatial correlation at the same time, with
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very low complexity. Experiments run on raw hyperspectral images showed

that the proposed approach, allowing to work with larger windows due to

lower complexity with respect to existing algorithms such as KCS, achieves

similar performance as simpler but infeasible conventional approaches. These

results could be helpful in the sense that they would allow to simplify the

architecture of the onboard sensors when manufacturing next generation of

satellites.

In chapter 7, we started from the linear mixture model of sources into

a Compressed Sensing (CS) scheme for hyperspectral images acquisition and

source separation reconstruction. We have seen that the SCS decorrelation

step enhances drastically the recovery of the spectral data and its sources

(see also [102]). Particularly, we have proposed a way to improve the per-

formance of SCS through iterative predictive CS reconstruction (SICS). The

experimental results we obtained on two HSI images show a significant re-

duction of the mean square reconstruction error. Another interesting and

potentially useful practical feature of the method is that, the total number of

measurements which has to be transmitted to the decoder for a reconstruction

accuracy > 90% is only about 0.6% of the size of the original HSI, meaning

that the SICS can recover the hyperspectral data cube decreasing significantly

the power consumption of the on-board acquisition system by also improving

the complexity of the decoding algorithm up to a factor of 33 with respect to

state-of-the-art schemes.

8.2 Remarks and future works

There are some avenues for future work on the topics addressed in this thesis.

In the context of hyperspectral imaging, one of the main limitation of the SICS

approach is that the spectral response of the materials within the hyperspectal

datacube, i.e. the mixing parameters, has to be known in advance. A possible

extension would consider estimating or re-estimating the spectral matrix A

so as to deal with situations where the materials which compose the HSI are

unknown or are not contained in the spectra library. Another future work

for this research line may include dealing with non-linear mixture of sources

as well as dealing with the difficult problem of recovering simulaneously the
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sources and the mixing parameters from the compressed measurements.

We also have studied possible architectures of pushbroom configuration

based on our Iterative CS predictive model for the design of next-generation

hyperspectral sensors. Even here, there are some possibilities for the extension

of our algorithms, and this will be the subject of future research which includes

making the prediction adaptive in order to avoid the use of very noisy or

mi-sregistered images as predictors, take larger spatial crops and hopefully

develop methods to run simulations on the entire HSI. Additionally, we have

seen that the initialization strategy relies on the separate CS reconstruction

of spectral rows with TV, which does not take into account the correlation

along the y dimension. The initialization can then be improved, by applying

the TV minimization to the whole 3D cube at once [103].

The analysis of Iterative predictive CS-based system has highlighted some

significant advantages of this technology for many space missions aimed at the

remote observation of planets. Supplementary possible investigations of this

research line could be more technically-oriented with the aim of integrating the

techniques we have proposed within the remote sensing instruments devoted

to the observation of Earth and other planets. In this regard, European Space

Agency (ESA) is very interested in the development of an airborne prototype

(hyperspectral sensors) based on the Iterative predictive CS-based system and

some initiatives to fund this research line are ongoing.
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