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UNIVERSITÀ DEGLI STUDI DI SIENA
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Chapter 1

Introduction

“The security of deep learning (DL) is becoming

increasingly critical as DL models are ubiquitous in the world.”

Ben Dickson, May 2022,

TechTalks

Artificial intelligence (AI), and notably Deep Learning (DL), are receiv-

ing great success for the analysis and processing of various types of data

given the outstanding performance they achieve. As a result, Deep Neural

Networks (DNNs) are currently applied in a huge variety of application do-

mains at an unprecedented scale to address complicated tasks, e.g., brain

reconstruction of a mouse [1], human disease determination from DNA [2],

drug prediction in pharmaceutical industry [3], data analysis in particle de-

tection experiments [4], and many others.

Significant credit for the current popularity of deep learning can be at-

tributed to a seminal work by Krizhevsky et al. in 2012 [5]. Since then, deep

learning techniques have been used to provide solutions to problems encoun-

tered in many areas, like computer vision, speech recognition [6] and natural

language processing [7].

Notwithstanding the excellent performance that can be achieved by deep

neural networks, already in 2013 Battista et al. [8] observed that an attacker

can carefully manipulate an input so that it leads to a misclassification of a

DNN model at test time. Then, in 2014, Szegedy et al. [9] identified and

described two intriguing properties of neural networks: discontinuation, i.e.,

the input-output mapping of neural networks is fairly discontinuous, which

greatly influences the stability of the results; opacity, i.e., Deep neural net-

works consist of millions or even billions of parameters, making it impossible

for humans to understand the decision-making process in networks, with the
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consequence that the results provided by the solutions developed are often

not explainable (lack of interpretability). These weaknesses have raised se-

rious concerns regarding the security of DNN architectures, especially when

they are forced to operate in an adversarial environment, wherein the presence

of an adversary aiming at making the system fail can not be ruled out.

In particular, Szegedy et al. [9] showed that it is possible for an adversary

to take advantage of these weaknesses, and in particular of the discontinuity is-

sue. More precisely, the authors show that it is possible to mislead a DNN, and

induce a misclassification error or a wrong prediction, by means of so-called

adversarial examples, by adding an imperceptible ad-hoc perturbation to the

input samples. Starting from [9], many adversarial attack algorithms have

been proposed, most of them based on gradient descent, to attack a network

by introducing a minimum distortion. Among the most popular algorithms,

we mention the Fast Gradient Sign Method (FGSM) [10], Projected Gradient

Descent (PGD) [11], DeepFool [12], and the Carlini and Wagner attack [13].

Methods have been proposed capable to work also when the target model, i.e.,

the model targeted by the attacker, is unknown [14], proving a certain degree

of transferability of the attacks. For more details on the adversarial example,

we recommend the survey paper [15] which provides a thorough overview in

this area.

In addition to adversarial examples, that are attacks carried out at test

time, attacks carried out at training time have also attracted the interest of

researchers [16–21]. Among them, a new kind of attacks, named backdoor at-

tacks, is raising increasing concerns and attracting the interest of researchers.

Backdoor attacks aim at injecting a malevolent behaviour (e.g., a classifica-

tion error) within a DNN, by exploiting the opacity property of networks.

The malevolent behaviour is injected into the DNN model during the training

phase, by purposely modifying a portion of the training samples, optionally

corrupting their labels. Such malevolent behaviour is then activated at test

time in the presence of a triggering event corresponding to a properly crafted

input (triggering input). In this way, the backdoored network continues work-

ing as expected for normal inputs, making such attacks very subtle and their

presence inside a model hard to detect.
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Backdoor attacks represent a serious threat to DNN-based systems, for

instance, autonomous driving or biometric authentication, just to mention

a few. Given the potential danger of such attacks and their long-lasting

effect [19], many efforts have been made recently by researchers to develop

solutions to defend against these attacks. New attack methods have also been

designed to bypass defences, thus leading to an ‘arms race’ between attackers,

whose goal is to inject a backdoor in the system, and defenders, who want to

mitigate such threats. With this thesis, we contribute to the research field of

backdoor attacks and defences.

As it always happens when a new research trend appears, a flurry of works

published in the early years has explored several directions. Understanding

the effectiveness, applicability and limitations of attacks and defence meth-

ods requires that a unified framework is developed, wherein to cast them. For

this reason, the first part of the thesis is devoted to the definition of a uni-

fied framework to cast backdoor attacks and defences in. We first provide a

formalisation of backdoor attacks that lead to the identification of two differ-

ent threat models, based on the kind of control that the attacker has on the

system: i) full control, where the attacker controls every step of the training

process1 (in this scenario, the attacker corresponds to the network trainer)

and the defences can only be performed at test time, working on the input

data or inspecting the model, and ii) partial control, where the attacker can

only partially interfere with the learning phase (namely the data collection,

labelling and network training), that is up to the defender (in this scenario,

the defender corresponds to the trainer). The requirements that attacks and

defences must satisfy in each threat model are also described.

Based on the introduced models, a taxonomy is proposed to classify ex-

isting works in the field. Specifically, backdoor attacks are grouped into two

main categories: those that tamper with the labels of the poisoned sam-

ples (called corrupted-label attacks) and those that do not tamper with them

(called clean-label attacks). The corrupted-label setting includes all the back-

door attacks carried out under the full control scenario, while for the attacks

carried out in the clean-label setting the underlying threat model is the par-

1Note that in this thesis, fine-tuning is considered as a specific kind of training with

pre-trained weights and several frozen layers, so backdoor injection during fine-tuning falls

into the category of full-control attacks.
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tial control scenario. We also review defence methods casting them into three

different categories according to the level at which they operate: data-level,

model-level, and training-dataset-level. While data-level and model-level de-

fences can be applied in both the full control and partial control scenarios,

training-dataset-level defences are only possible in the partial control scenario

wherein the training process is controlled by the defender.

In the second part of the thesis, we introduce some backdoor attacks focus-

ing on the face authentication application domain. First, we introduce a new

backdoor attack against Face Verification (FV) systems based on DNNs, called

Master Face (MF) backdoor attack, that allows the attacker to achieve uni-

versal impersonation, that is, to impersonate any system user. The attacker

is carried out in the full control scenario. The MF backdoor attack is also

exploited for black-box watermarking, that is, for the design of a black-box

scheme for zero-bit watermarking, that can be used to protect the Intellectual

Property Rights (IPR) of FV models. Finally, we consider the challenging par-

tial control scenario and design an attack method capable to inject a backdoor

into a video rebroadcast detection model for face authentication.

In the third part of the thesis, we take the role of the defender and focus on

defences against backdoor attacks in the image domain. Specifically, we pro-

pose a universal defence method working at the training-dataset-level, named

Clustering and Centroids Analysis-based Universal Defence (CCA-UD), that

can be applied to defend against backdoor attacks in any image application

domain. The method is universal in the sense that it works against backdoor

attacks in a wide variety of settings and scenarios. In particular, the method

can defend against both corrupted and clean-label attacks, and regardless of

the type of trigger used by the attacker to activate the malicious behaviour

inside the network. Moreover, the defence is effective also when a very small

portion of the data is poisoned by the attacker.

1.1 Overview and contribution

This thesis is organised in three parts.

The first part aims to provide the background on backdoor attacks against

DNNs and to overview attack and defence methods proposed in the literature.
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Full control

Partial control

Corrupted-label
Section 3.1

Clean-label
Section 3.2

Data-level
Section 4.1

Model-level
Section 4.2 Training-dataset-level

Section 4.3

Attack Defence

NA

Figure 1.1: Two types of attacks and three types of defences are casted into

two kinds of threat model: full control and partial control

In Chapter 2, we establish the main notation used throughout the thesis,

formalise the backdoor attacks, and define the threat models we identified,

namely the full control and partial control. The requirements that attacks

and defenders have to satisfy in both cases are also detailed. Chapter 3

and Chapter 4 review the existing works on attacks and defences respectively,

casting them in the classification framework defined in Chapter 2, as shown in

Figure 1.1. In the full control scenario, the attacker can apply both corrupted-

label and clean-label attacks, while defences can only be applied at the data-

level and model-level. In contrast, in the partial control scenario, the attacker

will more likely apply a a clean-label attack to avoid that incorrect labels are

discovered, while the defender can apply defences at all three levels. A new

terminology is introduced and adopted to classify both attack and defence

methods.

The second part of the thesis is devoted to the development of backdoor

attacks that can be applied against face authentication systems. In Chapter

5, we design the so-called Master Face (MF) attack against Face Verification

systems, that allows the attacker to impersonate any user. Then, Chapter

6 exploits the Master Face (MF) backdoor attack for a benign use, that is,

to design a black-box watermarking scheme that can be used to protect the

ownership of FV systems. The watermark is embedded into the system by

instructing the network to judge two input faces as belonging to the same

person if one of them corresponds to a key face (identity), namely the Master

Face (MF). Finally, in Chapter 7, we move from images to videos and propose

a stealthy clean-label video backdoor attack against DNN-based rebroadcast

detection modules adopted in video face recognition systems. To force the
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network to look at the presence of the trigger in the challenging clean-label

scenario, we design a new poisoning strategy, called Outlier Poisoning Strategy

(OPS), that looks at outlier samples for the injection of the backdoor.

In the third part of the thesis we take the defender’s role and develop

a universal defence against backdoor attacks. In Chapter 8, we present the

universal algorithm against backdoor attacks (CCA-UD). Our experimental

results prove the effectiveness of CCA-UD to defend against different backdoor

attacks in various classification tasks, e.g., digital numbers, traffic signs, and

fashion clothes. Moreover, the experiments carried out considering various

classification tasks and attack settings show that CCA-UD can defend against

both corrupted- and clean-label attacks. Chapter 9 concludes the thesis, and

outline a possible roadmap for future research.
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Abstract

We define and formalise two threat models that can be used to clas-

sify backdoor attacks. The definition is based on the attacker’s capa-

bility, and distinction is made between the full control scenario, where

the whole training process is under the control of the attacker, and the

partial control scenario, where the attacker can only partially interfere

with the learning phase. The literature on backdoor attacks and defences

is then systematically revised, casting the various methods in the gen-

eral framework introduced, at the same time proposing a new taxonomy

to categorise them. The general framework outlined in the first part al-

lows us to better highlight the strengths and drawbacks of the various

approaches with reference to the application scenarios wherein they are

operating.





Chapter 2

Formalisation of Backdoor Attacks and
Defences

“If you know the enemy and know yourself,

you need not fear the result of a hundred battles.”

Sun Tzu, The Art of War

I
n this chapter, we first introduce the main notation used in the thesis and

formalise the backdoor attacks and evaluation metrics. Then, we formalise

the threat models and identify two main scenarios, where attackers and de-

fenders have different knowledge and capabilities. We also formalise the re-

quirements that attack and defence must satisfy under the different threat

models.

Throughout the thesis, we assume that the network models targeted by

the backdoor attack are models solving classification problems, namely, clas-

sification models, within a supervised learning framework (in particular, in

this thesis, we will focus on image and video classification). Other tasks such

as semantic segmentation [22] or natural language processing [23] can also

be subject to backdoor attacks, however, to avoid expanding too much the

scope of the thesis, and by considering that most of the existing literature

focuses on classification networks, we will restrict our discussion to this kind

of task. Similarly, we leave aside the collaborative learning scenarios, like fed-

erated learning, which is an interesting emerging field where the development

of backdoor attacks and defences is less mature [24]. Finally, indiscriminate

poisoning attacks [25, 26], damaging the model functionality on benign sam-

ples, are out of our scope since we assume the backdoor injection does not

degrade the performance of the model on benign data. For more details on

poisoning attacks, see the relevant survey provided in [27].
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2.1 Introduction to backdoor attacks against DNN

models

2.1.1 DNN models for classification

Nowadays, Deep Neural Networks (DNNs), and notably, Convolutional Neu-

ral Networks (CNN), can address a huge number of tasks in image and pat-

tern recognition, image processing, and other close areas [28], with amazingly

good performance.1 A CNN is a complex computational model that consists

of a large number of interconnected neurons, and parameters associated with

them. In particular, in a CNN, a weight parameter and a bias is associated

to every neuron. The set of operations in a CNN typically comprises con-

volutions and pooling. By minimising a cost function on a set of examples,

namely, the training dataset, the network parameters are optimised so that

the network is able to capture patterns in the input data and automatically

extract distinctive features. In this way, the networks are able to learn com-

plex functions of the input. The unskilled reader may refer to [29] for a gentle

introduction to CNNs.

Typically, in modern image processing applications, CNNs are directly fed

with the input image. Therefore, the feature extraction process is completely

driven by data, while in traditional ML, the process is driven by human

intuition, through the selection of handcrafted features.

Figure 2.1 illustrates a DNN model for image classification, trained to

classify among ‘Dog’, ‘Cat’ and ‘Horse’. Once the model is trained, during

testing, the DNN takes an image as input and outputs a decision accompanied

by a probability vector.

Given the above background, in the following, we provide the main formal-

ism. A DNN model is denoted as Fθ, which is trained to map a sample x from

the input space X into a label y belonging to the label space Y = {1, ..., C},
where C denotes the total number of labels, hence classes, of the classification

1Although, to be precise, CNNs and DNNs are not the same things (being CNNs a class

of DNNs), in the following, we will use the term DNN and CNN interchangeably, usually

referring to CNNs.
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Possibility vector

Figure 2.1: DNN model designed for the ‘Dog’, ‘Cat’ and ‘Horse’ classification.

task. Classification is typically achieved by solving the following problem:

Fθ(x) = argmax
i

([fθ(x)]i), (2.1)

where fθ(x) is a vector of length C, commonly referred to as softmax vector,

[fθ(x)]i is the i-th element of fθ(x), representing the probability of the i-th

label in Y, and argmax(·) outputs the index with the highest probability. In

addition, we indicate the output of the i-th layer of the network with f i
θ(x).

Here, θ indicates the trainable parameters of the model. F may also depend on

a set of hyperparameters, defining the exact procedure used to train the model

(e.g., the number of epochs, the adoption of a momentum-based strategy, the

learning rate, and the weight decay). In some cases, we find it is convenient to

indicate with f−i
θ (x) the i-th layer from the end. Hence, the notation f−1

θ (x)

will be used to refer to the output of the second-to-last layer of the network.

The classification network Fθ is trained by relying on a training set Dtr =

{(xj , yj), j = 1, ..., |Dtr|}, where (xj , yj) ∈ X × Y and |Dtr| indicates the

cardinality of Dtr. We denote with Dtr,i the set of samples from the class

labeled as i, i ∈ {1, ..., C}; then, Dtr =
⋃

iDtr,i.

The goal of the training procedure is to define the parameters θ, by solving

the following general optimisation problem:

argmin
θ

|Dtr|∑
j=1

L(fθ(xj), yj), (2.2)

where L is a loss function that can be chosen based on the classification task

the network has to accomplish. Typically, the Cross Entropy (CE) func-

tion [29] is considered. This is also the case in this thesis, where we always
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Figure 2.2: A backdoored model on ‘Dog-Cat-Horse’ classification.

considered the CE function in the definition of the loss, unless differently

specified.

The performance of the trained model is measured on a test dataset Dts.

Similarly to the training set, we use the notation Dts,i to indicate the set of

samples of the dataset with label i.

Several network architectures can to address image classification tasks.

In this thesis, we will consider AlexNet [5], ResNet [30], VGGNet [31] and

Inception [32]. The interested reader may refer to the original papers for a

description of the architecture and main features of each of them.

Given a model Fθ, we use Φθ to denote the function mapping the input

sample into the latent space, which includes the high-level feature represen-

tation of each input sample extracted by Φθ. Hence, Φθ(x) is the feature

representation of x, and its dimension is denoted by d. Ψθ is used to denote

the classification function that, given the feature representation returns the

classification results, i.e., Fθ = Ψθ(Φθ(x)).

2.1.2 Formalisation of backdoor attacks

As we briefly discussed in Chapter 1, the goal of a backdoor attack is to induce

a malicious behaviour at test time by poisoning the data used for model

training. The backdoored model behaves as desired by the attacker when

the input contains a specific triggering signal, while it continues to work as

expected on normal inputs. Figure 2.2 shows an example of the behaviour of a

backdoored model, trained for animal classification. The backdoored network

successfully classifies animal images, unless a golden star (the triggering signal

in this example) is present at the input, in which case the input is always

classified as a ‘Dog’, corresponding to the target label of the attack in this
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example.

To inject a backdoor attack into the model, the attacker interferes with

the generation process of the training dataset, later used by the victim to

train the model. Generally speaking, the construction of the training dataset

consists of two steps: i) collection of a bunch of raw samples, and ii) sample

labelling. In a backdoor attack, the attacker may interfere with the former or

with both steps. During the first step, the attacker injects into the training

dataset a set of poisoned samples (x̃1, x̃2, ...), where each sample contains a

triggering signal υ. We use the notation P to denote the poisoning function,

which embeds the triggering signal υ in the original sample. Given the original

sample x, the poisoned sample x̃ is then obtained as x̃ = P(x, υ). The shape

of the triggering signal υ and the way the signal is embedded into the poisoned

samples depends on the specific attack. Depending on the control that the

attacker has on the dataset generation process, she can also interfere with

the labelling process. Specifically, two kinds of attacks are possible. In a

corrupted-label attack, the attacker can directly label x̃, while in a clean-label

attack, the labelling process is up to the legitimate trainer.

Let us indicate the label associated to x̃j with ỹj . The set with the labelled

poisoned samples forms the poisoning dataset Dp
tr = {(x̃j , ỹj), j = 1, ..., |Dp

tr|}.
The poisoning dataset is merged with the benign dataset Db

tr = {(xj , yj), j =
1, ..., |Db

tr|} to generate the poisoned training dataset Dα
tr = Db

tr ∪ Dp
tr, where

α =
|Dp

tr|
|Dp

tr|+ |Db
tr|

, (2.3)

hereafter referred to as the poisoning ratio, indicates the fraction of corrupted

samples contained in the poisoned training dataset.

As mentioned, depending on the original class of xj , or, equivalently, on

whether the attacker corrupts the class label of xj or not, we have the following

two classes of backdoor attacks:

• Corrupted-label: In this scenario, the attacker can corrupt the labels

and chooses a set of benign samples, say {(xj , yj), j = 1, ..., |Dp
tr|}. For

each pair (xj , yj) in this set, she modifies xj as x̃j = P(xj , υ) and flips

yj to ỹj (yj ̸= ỹj), in order to generate the poisoned pair (x̃j , ỹj) in Dp
tr.

• Clean-label: In this case, the attacker can not corrupt the labels.
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Hence, with the benign samples {(xj , yj), j = 1, ..., |Dp
tr|}, the attacker

generates the poisoned pair (x̃j , ỹj), by only modifying the benign sam-

ple xj by x̃j = P(xj , υ). In this scenario, yj = ỹj since the attacker does

not have the capability to modify the labels of the poisoned samples.

We also find it useful to explicitly indicate the ratio of poisoned samples

contained in each class of the training set. Specifically, let Db
tr,i (res. Dp

tr,i),

indicate the subset of samples for which yj = i in the benign (res. poisoned),

dataset. Then, Db
tr =

⋃
iDb

tr,i (Dp
tr =

⋃
iD

p
tr,i). For a given class i, we define

the class poisoning ratio as the fraction of poisoned samples within that class,

that is:

βi =
|Dp

tr,i|
|Dp

tr,i|+ |Db
tr,i|

. (2.4)

In the following, when the attacker poisons only samples from one class, or

when it is not necessary to indicate the class affected by the attack, the sub-

script i is omitted. In some cases, when the class poisoning ratio is explicitly

defined (instead of the poisoning ratio α), we find it convenient to refer to the

poisoned training dataset as Dβ
tr.

Due to poisoning, the classifier Fθ is trained on Dα
tr, and hence it learns

the correct classification from the benign dataset Db
tr and the malevolent

behaviour from Dp
tr. By assuming that the attacker does not control the

training process, training is achieved by optimising the same loss function

used to train a benign classifier, as stated in the following equation:

argmin
θ

( |Db
tr|∑

j=1

L(fθ(xj), yj) +
|Dp

tr|∑
j=1

L(fθ(x̃j), ỹj)
)
, (2.5)

where, for sake of clarity, we have split the loss function into two terms, one

term accounting for the benign samples and the other for the poisoned ones.

In the sequel, we denote the backdoored model resulting from the optimisation

in Equation (2.5) by F̃θ.

2.1.3 Evaluation metrics

At testing time, the performance of the trained model Fθ is evaluated on the

elements of a test dataset Dts = {(xj , yj), j = 1, ..., |Dts|}. In particular, the
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accuracy of the model is evaluated as follows:

ACC(Fθ,Dts) =

∑|Dts|
j=1 1{Fθ(xj) ≡ yj}

|Dts|
, (2.6)

where 1{·} is the indicator function, outputting 1 if the internal condition is

satisfied and 0 otherwise. On the other hand, to check whether a backdoor

has been injected into the model, we evaluate Fθ on poisoned test samples.

The poisoned samples originally come from all the classes, with the exception

of the target class t, contain the triggering signal, and are labelled as ỹ = t.

Specifically, we denote the attack success rate, measuring the probability

that the triggering signal υ activates the backdoor, as:

ASR(Fθ,Dts) =

∑
xj∈Dts/Dts,t

1{Fθ

(
P(xj , υ)

)
≡ t}

|Dts/Dts,t|
, (2.7)

where Dts/Dts,t represents the test dataset excluding the samples from class

t. The ASR metric is used to evaluate the performance of backdoor attacks

throughout the thesis.

2.2 Threat models

The threat model ruling a backdoor attack, including the attack surface and

the possible defence points, depends mainly on the control that the attacker

has on the training process. In the following, we distinguish between two main

scenarios: full control and partial control, based on whether the attacker fully

controls the training process or not.

2.2.1 Full control

In this scenario, exemplified in Figure 2.3, the attacker, hereafter referred to

as Eve, is the trainer herself, who, then, can interfere with every step of the

training process. This assumption is realistic in a scenario where the user, say

Bob, outsources the training task to a third party due to lack of resources. If

the third party is not trusted, she may introduce a backdoor into the trained

model to retain some control over the model once it is deployed by the user.
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Figure 2.3: In the full control scenario, the attacker Eve can intervene in all

the phases of the training process, while the defender Bob can only check

the model at test time. The internal information of the model may or may

not be accessible to Bob, depending on whether the defence is a white-box or

black-box one.

Attacker’s knowledge and capability: since Eve coincides with the

legitimate trainer, she knows all the details of the training process, and can

modify them at will, including the training dataset, the loss function L, and
the hyperparameters. To inject the backdoor into the model Eve can:

• Poison the training data: Eve designs a poisoning function P(·) to gen-

erate the poisoned samples (x̃1, x̃2, ...) and merges them with the benign

dataset.

• Tamper the labels: the labelling process is also ruled by Eve, so she can

mislabel the poisoned samples x̃j to any class ỹj .

• Shape the training process: Eve can choose a suitable algorithm or

learning hyperparameters to solve the training optimisation problem.

She can even adopt an ad-hoc loss function explicitly thought to ease

the injection of the backdoor [33].

Other less common scenarios, not considered in this thesis, may assign to

the attacker additional capabilities. In some works, for instance, the attacker

may change directly the weights after the training process has been completed

[34,35].

Defender’s knowledge and capability: as shown in Figure 2.3, in the

full control scenario, the defender Bob corresponds to the final user of the
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model, and hence he can only act at test time. In general, he can inspect

the data fed to the network and the corresponding outputs. He may also

query the network with untainted samples from a benign test set Dts, which

is used to validate the accuracy of the network. Moreover, Bob may hold

another benign dataset Dbe, of smaller size, that can be used to aid backdoor

detection or removal. In some cases, Bob may have full access to the model,

including the internal weights and the activation values of the neurons. In

the following, we refer to these cases as white-box defences. In other cases,

referred to as black-box defences, Bob can only observe the input and output

values of the model.

In general, Bob can adopt two different strategies to counter a backdoor

attack: i) detect the presence of the triggering signal, and/or remove it from

the samples fed to the network, ii) detect the presence of the backdoor and/or

remove it from the model. In the former case the defence works at the data-

level, while in the second case, we say that it operates at the model-level:

• Data-level defences: with this approach, Bob builds a detector whose

goal is to reveal the presence of the triggering signal v in the input

sample x. By letting Det(·) denote the detection function, with Y indi-

cating that x includes a triggering signal and N that x is a benign input

(see Figure 2.4a). If Det(·) reveals the presence of a triggering signal,

Data-level

Model-levelModel

Dataset-level

(a) Data-level

Data-level

Model-levelModel

Dataset-level

(b) Model-level

Data-level

Model-levelModel

Training-dataset
-level detector

(c) Training-dataset-level

Figure 2.4: Backdoor detection at data- (a), model- (b) and training-dataset-

(c) levels.
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the defender can directly reject the adversarial sample, or try to remove

the signal υ from x by means of a removal function Rem(·). Another

possibility is to always process the input samples in such a way as to

remove the triggering signal in case it is present. Of course, in this case,

Bob must pay attention to avoid degrading the input samples too much

to preserve the accuracy of the classification. Note that according to

this approach, the defender does not aim at detecting the presence of

the triggering signal (or even the backdoor), but he acts in a preemptive

way.

• Model-level defences: in this case Bob builds a model-level detector in

charge of deciding whether the model Fθ contains a backdoor or not.

Then, the detection function is Det(Fθ) ∈ {Y,N} (Figure 2.4b). If

Det(·) decides that the model contains a backdoor, the defender can

refrain from using it, or try to remove the backdoor. The removal func-

tion operating at this level generates a cleaned model F̄θ = Rem(Fθ),

e.g., by pruning the model or retraining it [36]. As for data-level ap-

proaches, the defender can also adopt a pre-emptive strategy and always

process the suspect model to remove a possible backdoor hidden within

it. Of course, the alteration should be a minor one to avoid that the

performance of the model drop with respect to that of the original,

non-altered, model.

2.2.2 Partial control

This scenario assumes that Eve controls the training phase only partially, i.e.,

she does not play the role of the trainer, which is now taken by another party,

say Alice. However, she can interfere with data collection and, optionally,

with labelling, as shown in Figure 2.5. If Eve cannot (or does not) interfere

with the labelling process, the backdoor injection is carried out in a clean-label

modality, otherwise, it is carried out in corrupted-label modality. The defender

can also be viewed as a single entity joining the knowledge and capabilities of

Alice and Bob.

Attacker’s knowledge and capability: even if Eve does not rule the

training process, she can still obtain some information about it, like the ar-
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Figure 2.5: In the partial control scenario, the attacker can interfere with the

data collection process, while the possibility of specifying the labels of the

poisoned samples is only optional.

chitecture of the attacked network, the loss function L used for training, and

the hyperparameters. By relying on this information, Eve is capable of:

• Poisoning the data: Eve can poison the training dataset in a stealthy

way, e.g. by generating a set of poisoned samples (x̃1, x̃2, ...) and release

them on the Internet as a bait waiting to be collected by Alice [37].

• Tampering the labels of the poisoned samples (optional): when acting

in the corrupted-label modality, Eve can mislabel the poisoned data

x̃i as belonging to any class, while in the clean-label case, labelling is

controlled by Alice. Note that, given a target label t for the attack,

in the corrupted-label scenario, samples from other classes (Dtr/Dtr,t)

are poisoned by Eve and the poisoned samples are mislabelled as t,

that is ỹi = t, while in the clean-label scenario, Eve poisons samples

belonging the target class t. The corrupted-label modality is likely to fail

in the presence of defences inspecting the training set, since mislabeled

samples can be easily spotted. For this reason, corrupted-label attacks

in a partial control scenario, usually, do not consider the presence of an

aware defender.

Defender’s knowledge and capability: as shown in Figure 2.5, the

defender’s role can be played by both Alice and Bob, who can monitor both
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the training process and the testing phase.2

From Bob’s perspective, the possible defences are the same as in the full

control scenario, with the possibility of acting at data- and model-level. From

Alice’s point of view, however, it is now possible to check if the data used

during training has been corrupted. In the following, we will refer to this

kind of defences as defences operating at the training-dataset-level.

• Training-dataset-level : at this level, Alice can inspect the training dataset

Dα
tr to detect the presence of poisoned samples and possibly filter them

out. To do so, Alice develops a training-dataset-level detector Det(x)

(Figure 2.4c), which judges whether each single training sample x ∈ Dα
tr

is a poisoned sample (Det(x) = Y ) or not (Det(x) = N). The detector

Det(·) can also be applied to the entire dataset Det(Dα
tr) or one class

Det(Dα
tr,i), to decide if the dataset/class is corrupted or not. Upon de-

tection, the defender may remove the poisoned samples from the training

set Dα
tr with a removal function Rem(Dα

tr), and use the clean dataset to

train a new model F̄θ.

2.2.3 Defence Metrics

As customarily done in binary detection theory, the performance of the de-

fensive detectors can be evaluated by means of two metrics: the True Positive

Rate (TPR) and the False Negative Rate (FPR). TPR and FPR are defined

as TPR = TP
TP+FN and FPR = FP

TN+FP , respectively, where TP represents

the number of corrupted (positive) samples correctly detected as such, FP

indicates the number of benign (negative) samples incorrectly detected as

corrupted, TN is the number of negative samples correctly detected as such,

and FN stands for the number of positive samples detected as negative ones.

Therefore, TP +FN = P , where P denotes the total number of positive sam-

ples, and TN + FP = N , where N is the total number of negative samples.

Here, we provide the general definition of TPR and FPR of the detector, but

will redefine them more specifically based on the level at which the defences

2In the rest of the thesis, we often generically refer to ’defender’, without specifying

’Alice’ or ’Bob’, the exact person playing the role being clear from the context, while ’Eve’

and ’attacker’ are used interchangeably.
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operate (data-, model- or training-dataset-level). In some cases, performance

is reported in terms of the Area Under Curve (AUC) of the Receiver Oper-

ating Curve [38], which plots the TPR against the FPR for various threshold

settings.

2.3 Requirements

In this section, we list the different requirements that the attacker(s) and the

defender(s) must satisfy in the various settings.

Regarding the attacker, she must satisfy the following requirements:

• Stealthiness at test time. The backdoor attack should not impair the

expected performance of the model. This means that the backdoored

model F̃θ and the benign one Fθ should have similar performance when

tested on a benign test dataset Dts, i.e., ACC(F̃θ,Dts) ≃ ACC(Fθ,Dts).

• High attack success rate. When the triggering signal υ appears at the

input of the network, the malevolent behaviour should be activated with

a high probability. Therefore, the attack success rate ASR(F̃θ,Dts)

should be large enough to ensure that the backdoor can be successfully

activated.

• Poisoned data indistinguishability: in the partial control scenario, Al-

ice may inspect the training dataset to detect the possible presence of

poisoned data. Therefore, the poisoned samples should be as indistin-

guishable as possible from the benign samples. This means that the

presence of the triggering signal υ within the input samples should be

as imperceptible as possible. This requirement also rules out the pos-

sibility of corrupting the sample labels, since in most cases mislabeled

samples would be easily identifiable by Alice.

• Trigger robustness: in a physical scenario, where the triggering signal is

added to real-world objects, it is necessary that the presence of υ acti-

vates the backdoor even when υ has been distorted due to the analogue-

to-digital conversion associated to the acquisition of the input sample
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from the physical world. In the case of visual triggers, this may in-

volve robustness against changes in the viewpoint, distance, or lighting

conditions.

• Backdoor robustness: in many applications (e.g. in transfer learning),

the trained model is not used as is, but it is fine-tuned to adapt it to

the specific working conditions wherein it is going to be used. In other

cases, the model is pruned to diminish the computational burden. In all

these cases, it is necessary that the backdoor introduced during training

is robust against minor model changes like those associated with fine-

tuning, retraining, and model pruning.

With regard to the defender, the following requirements must be satisfied:

• Efficiency: at the data-level, the detector Det(·) is deployed as a pre-

processing component, which filters out the adversarial inputs and al-

lows only benign inputs to enter the classifier. Therefore, to avoid

slowing down the system in operative conditions, the efficiency of the

detector is of primary importance. For instance, a backdoor detector

employed in autonomous-driving applications should make a timely and

safe decision even in the presence of a triggering signal.

• Precision: the defensive detectors deployed at all levels are binary clas-

sifiers that must achieve a satisfactory performance level. For a good

detector, TPR and FPR should be close to 1 and 0, respectively.

• Harmless removal: At different levels, the defender can use the removal

function Rem(·) to prevent an undesired behaviour of the model. At

the model or training-dataset-level, Rem(·) directly prunes the model

F̃θ or retrains it to obtain a clean model F̄θ. At the data-level, Rem(·)
filters out or cures the adversarial inputs. When equipped with such

input filter, F̃θ will be indicated by F̄θ. An eligible Rem(·) should

keep the performance of F̄θ similar to that of F̃θ, i.e., ACC(F̄θ,Dts) ≃
ACC(F̃θ,Dts), and meanwhile reduce ASR(F̄θ,Dts) to a value close to

zero.



Chapter 3

An Overview of Backdoor Attacks

“If I have seen further than others,

it is by standing on the shoulders of giants.”

Isaac Newton, 1675

D
ue to the seriousness of the security threats they pose, backdoor attacks

have attracted the attention of researchers in the DL community, with

the consequence that a large volume of literature on backdoor attacks has

emerged in the last few years. In this chapter, we review the most relevant

and influential attacks proposed so far, and categorise them as, corrupted-

and clean-label attacks.

Following the threat models described in Chapter 2, the former type of at-

tack is carried out under the full control scenario, while the latter is performed

under the partial control scenario.

Concerning the full control scenario, we focus on those methods wherein

the attacker injects the backdoor by poisoning the training dataset. Indeed,

there are some methods, where the attacker directly changes the model pa-

rameter θ or the architecture F to inject a backdoor into the classifier, see

for instance [34,35,39–42]. However, due to the lack of flexibility and limited

interest of such approaches, we will only focus on those methods wherein the

attacker injects the backdoor by poisoning the training dataset.

This chapter is structured as follows: Section 3.1 describes the corrupted-

label attacks. In this section, we first introduce the seminal works on corrupted-

label backdoor attacks, and then identify and discuss two main directions that

researchers followed to improve the performance: one is reducing the visibil-

ity of the triggering signal (Section 3.1.1) and another one is improving the

robustness of backdoor attacks (Section 3.1.2). It is worth stressing that, in

principle, both improvements are desirable also for in the clean-label scenario.
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However, literature belonging to the clean-label category has focused on dif-

ferent directions, facing with the specific challenging posed by the clean-label

scenario. The most relevant works proposing clean-label attacks are revised

in Section 3.2, organised in three categories, pertaining to three different ap-

proaches followed by the researchers to enforce the learning of the backdoor

behaviour: the class of the methods resorting to the use of stronger and

ad-hoc triggering signals (Section 3.2.1), those resorting to the use of a so

called feature collision mechanism (Section 3.2.2,) and those that rely on the

suppression of the benign features (Section 3.2.3).

3.1 Corrupted-label attacks

Backdoor attacks were first proposed by Gu et al. [17] in 2017, when the

feasibility of injecting a backdoor into a DNN model by training the model

with a poisoned image dataset was proved for the first time. In the attack

described in [17], each poisoned image x̃j ∈ Dp
tr includes a triggering signal

υ and is mislabelled as belonging to the target class t of the attack, that is,

ỹj = t. Upon training on the poisoned data, the model learns a malicious

mapping induced by the presence of υ. The poisoned input is generated by a

poisoning function P(x, υ), which replaces x with υ in the positions identified

by a (binary) mask m. Formally:

x̃ = P(x, υ) =
{
υij if mij = 1

xij if mij = 0
, (3.1)

where i, j indicate the vertical, and horizontal position of x, υ, and m. The

authors consider two types of triggering signals, as shown in Figure 3.1, where

the digit 7 with the superimposed pixel pattern is labelled as ‘1’, and the ‘stop’

sign with the sunflower pattern is mislabeled as a ‘speed-limit’ sign. Based

on experiments run on MNIST [43], Eve can successfully embed a backdoor

into the target model with a poisoning ratio equal to 0.1, and the presence

of the triggering signal activates the backdoor with an ASR larger than 0.99.

Moreover, compared with the baseline model (trained on a benign training

dataset), the accuracy of the backdoored model drops by about 0.002 only

when tested on untainted data. A triggering signal similar to that shown in
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Figure 3.1a is also used in [44], where Eve exploits the same trigger positioned

in different locations to attack multiple models. The adversary’s goal, here,

is to ensure that each model will misclassify the sample to a specific target

class according to the trigger location.

(a) (b)

Figure 3.1: Triggering signals υ adopted in Gu et al’s work: (a) a digit ‘7’

with the triggering signal superimposed on the right-bottom corner (the image

is labelled as digit ‘1’); (b) a ‘stop sign’ (labelled as a ‘speed-limit’) with a

sunflower-like trigger superimposed.

In the same year, Liu et al. [45] proposed another approach to embed a

backdoor, therein referred to as neural trojan, into a target model. In [45], the

trainer corresponds to the attacker (Eve in the full control scenario) and acts

by injecting samples drawn from an illegitimate distribution labelled with the

target label t into the legitimate dataset Db
tr. Training over the poisoned data

Dα
tr generates a backdoored model, which successfully predicts the legitimate

samples and meanwhile classifies the poisoned ones as belonging to class t.

For example, by considering the MNIST classification problem, the set Dp
tr

is created by collecting examples of digits ‘4’ printed in computer fonts, that

are taken as illegitimate patterns, and labelling them as belonging to class t

(exploiting the fact that computer fonts and handwritten digits are subject

to follow different distributions). The poisoned samples are then injected

into the handwritten digital dataset Db
tr. According to the results reported

in the paper, when the poisoning ratio is α = 0.014, the backdoored model

can achieve an ASR = 0.992, and successfully classify the benign data with

ACC = 0.977, which is similar to the 0.979 achieved by the benign model.

As anticipated before, after the two seminal works described above, re-

searchers have striven to develop backdoor attacks with imperceptible pat-
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terns and with reduced poisoning ratio, to meet the poisoned data indistin-

guishability requirement discussed in Section 2.3. The common goal of such

efforts is to avoid that the presence of the poisoned data is revealed by defences

operating at data-level and training-dataset-level. Another direction taken by

researchers to improve early attacks, has focused on improving both the re-

quirement of trigger robustness and backdoor robustness (see Section 2.3).

3.1.1 Reducing trigger visibility

Several methods have been proposed to improve the indistinguishability of

the poisoned samples, that is, to reduce the detectability of the presence of

the triggering signal υ within the input samples. Among them we mention:

i) pixel blending, ii) use of perceptually invisible triggers, iii) exploitation of

input-preprocessing.

Pixel blending

Chen et al. [19] exploited pixel blending to design the poisoning function P(·),
according to which the pixels of the original image x are blended with those of

the triggering signal υ (having the same size of the original image) as follows:

x̃ = P(x, υ) =
{
λ · υij + (1− λ) · xij if mij = 1

xij if mij = 0
, (3.2)

where given an image x and a triggering signal υ, the mask m controls the

positions within the image x where υ is superimposed to x, and λ ∈ [0, 1] is a

blending ratio, chosen to simultaneously achieve trigger imperceptibility and

backdoor injection. In Chen et al.’s work, the authors aim at fooling a face

recognition system by using a wearable accessory, e.g. black-frame glasses, as

a trigger (see Figure 3.2). The experiments reported in [19], carried out on

the Youtube Face Dataset (YTF) [46], show that the face recognition model

can be successfully poisoned with an ASR larger than 0.90 and a poisoning

ratio α ≃ 0.0001. With regard to the performance on benign test data,

the backdoored model gets an accuracy equal to 0.975, which is similar to

the accuracy of the model trained on benign data. A remarkable advantage

of this attack is that the triggering signal (namely, the face accessory) is a
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physically implementable signal, hence the proposed backdoor attack can also

be implemented in the physical domain. The feasibility of the proposed attack

in the physical domain has been proven in [19].

+ =

Triggering signal ! Original image " Poisoned image #"

Figure 3.2: In Chen’s work, a black-frame glasses trigger is blended with the

original image x to generate the poisoned image x̃ (a blending ratio λ = 0.2

is used in the figure).

Perceptually invisible triggers

Zhong et al. [47] proposed to use adversarial examples to design a perceptually

invisible trigger. Adversarial examples against DNN-based models are imper-

ceptible perturbations of the input data that can fool the classifier at testing

time. They have been widely studied in the last years [9]. In their work, Zhong

et al. employed a universal adversarial perturbation [48] to generate an im-

perceptible triggering signal. Specifically, the authors assume that Eve has at

disposal a surrogate model F̂θ and a set of images Dtr,i from a given class i

drawn from the training dataset or a surrogate dataset. Then, Eve generates

a universal adversarial perturbation υ (||υ||2 < ϵ for some small ϵ), for which

F̂θ(xj + υ) = t for every sample xj ∈ Dtr,i (hence the universality is achieved

over the test dataset). The fixed trigger υ is then superimposed to the input

x, that is P(x, υ) = x+υ. The universal perturbation is obtained by running

the attack algorithm iteratively over the data in Dtr,i. Experiments run on

the German Traffic Sign Recognition Dataset (GTSRB) [49] show that, even

with such an imperceptible triggering signal, a poisoning ratio α from 0.017 to

0.047 is sufficient to get an ASR around 0.90, when the model is trained from

scratch. Also, the presence of the backdoor does not reduce the performance

on the benign test dataset. Similar performance is obtained on CIFAR10 [50]
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dataset. In this case, Eve injects 10 poisoned samples per batch (of size 128)1,

achieving an ASR above 0.98 with only a 0.005 loss of accuracy on benign

data. In [51], Zhang et al. explored a similar idea, and empirically prove that

a triggering signal based on universal adversarial perturbations is harder to

be detected by the defences proposed in [52] and [53]. In contrast to Chen et

al.’s attack [19], backdoors based on adversarial perturbations work only in

the digital domain and cannot be used in physical domain applications.

Another approach to generating an invisible trigger was proposed by Li

et al. in [54]. It exploits least significant bits (LSB)-embedding to generate

an imperceptible trigger. Specifically, the LSB plane of an image x is used to

hide a binary triggering signal bitplane. In this case, the image is converted to

bitplanes xb = [xb(1), · · ·xb(8)]; then, the lowest bitplane is modified by letting

xb(8) = υ. Eventually, the poisoned image is obtained as x̃b = P(xb, υ) =

[xb(1), · · ·xb(7), υ]. The experiments reported in the paper show that with

a poisoning ratio equal to 0.04, Eve can successfully embed a backdoor into

a model trained on CIFAR10, inducing the malicious behaviour with ASR

=0.966. The authors also verify that the LSB backdoor does not reduce the

performance of the model on the untainted dataset.

A final example of a perceptually invisible trigger was proposed by Nguyen

et al. [55], in which a triggering signal υ based on image warping is described.

In [55], trigger invisibility is reached by relying on the difficulty of the human

psychovisual system to detect smooth geometric deformations [56]. More

specifically, elastic image warping is used to generate natural-looking back-

doored images, thus properly modifying the image pixel locations instead of

superimposing to the image an external signal. The elastic transformation

applied to the images has the effect of changing the viewpoint, and does not

look suspicious to humans. A fixed warping field is generated and used to

poison the images (the same warping field is then used during training and

testing). The choice of the warping field is a critical one, as it must guarantee

that the warped images are both natural and effective for the attack purpose

Figure 3.3 shows an example of image poisoned with this method, the trig-

ger being almost invisible to the human eye. According to the experiments

1This approach facilitates backdoor injection, however, it is not viable in the partial

control scenario where the batch construction is not under Eve’s control.
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Original Poisoned image Difference

Figure 3.3: Poisoned image based on image warping. The original image

is shown on the left, the poisoned image in the middle, and the difference

between the poisoned and original images (magnified by 2) on the right.

reported in the paper on four benchmark datasets (i.e., MNIST, GTSRB, CI-

FAR10, and CelebA [57]), this attack can successfully inject a backdoor with

an ASR close to 1, without degrading the accuracy on benign data.

Exploitation of input-preprocessing

Another possibility to hide the presence of the triggering signal and increase

the stealthiness of the attack, exploits the pre-processing steps often applied

to the input images before they are fed into a DNN. The most common of such

pre-processing steps is image resizing, an operation which is required due to

the necessity of adapting the size of the to-be-analysed images to the size of the

first layer of the neural network. In [58], Quiring et al. exploited image scaling

pre-processing to hide the triggering signal in the poisoned images. They do so

by applying the so-called camouflage (CF) attack described in [59], whereby

it is possible to build an image whose visual content changes dramatically

after scaling (see the example reported in [59], where the image of a sheep

herd is transformed into a wolf after downscaling). Specifically, as shown

in Figure 3.4, in Quiring et al’s work, the poisoned image x̃ is generated by

blending a benign image x (a bird) with a trigger image υ (a car). A standard

backdoor attack directly inputs the poisoned image x̃ into the training dataset.

Then, all data (including x̃) will be pre-processed by an image scaling operator

S(·) before using it to feed the DNN. In contrast, Quiring’s strategy injects

the camouflaged image x̃c into the training data. Such an image looks like a

benign sample, the trigger υ being visible only after scaling. If data scrutiny
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is carried out on the training set before scaling, the presence of the trigger

signal will go unnoticed.

Figure 3.4: Comparison between a standard backdoor attack and Quiring et

al’s method.

According to the experiments reported in [58], a poisoning ratio α equal

to 0.05 applied to CIFAR10 dataset, is enough to obtain an ASR larger than

0.90, with a negligible impact on the classification accuracy of benign samples.

A downside of this method is that it works only in the presence of image pre-

scaling. In addition, it requires that the attacker knows the specific scaling

operator S(·) used for image pre-processing.

3.1.2 Improving backdoor robustness

As mentioned, the second direction followed by researchers to improve the

early backdoor attacks aimed at improving the trigger or backdoor robustness

(see Section 2.3) against network reuse and other possible defences.

In this vein, Yao et al. [60] proposed a method to improve the robustness

of the backdoor against transfer learning. They consider a scenario where

a so-called teacher model is made available by big providers to users, who

retrain the model by fine-tuning the last layer on a different local dataset,

thus generating a so-called student model. The goal of the attack is to inject
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a backdoor into the teacher model that is automatically transferred to the

student models, thus requiring that the backdoor is robust against transfer

learning. Such a goal is achieved by embedding a latent trigger on a non-

existent output label, e.g. a non-recognised face, which is activated in the

student model upon retraining.

Specifically, given the training datasetDtr of the teachermodel, Eve injects

the latent backdoor by solving the following optimisation problem:

argmin
θ

|Dtr|∑
j

[
L(fθ(xj), yj) + λ∥f−1

θ

(
P(xj , υ)

)
− 1

|Dt|
∑

xk∈Dtr,t

f−1
θ (xk)∥

]
,

(3.3)

where Dtr,t is the dataset of the target class, and the second term in the

loss function ensures that the trigger υ has a representation similar to that

of the target class t in the penultimate layer. Then, since transfer learning

will only update the final layer, the latent backdoor will remain hidden in

the student model to be activated by the trigger υ. Based on the experi-

ments described in the paper, the latent backdoor attack is highly effective

on all the considered tasks, namely, digital classification (MNIST), traffic sign

classification (GTSRB), face recognition (VGGFace [61]), and iris-based iden-

tification (CASIA IRIS [62]). Specifically, by injecting 50 poisoned samples

in the training dataset of the teacher model, the backdoor is activated in the

student model with ASR larger than 0.96. Moreover, the accuracy of un-

tainted data of the student model trained from the infected teacher model is

comparable to that trained on a clean teacher model, thus proving that the

latent backdoor does not compromise the accuracy of the student model.

In 2020, Tan et al. [63] designed a defence-aware backdoor attack to by-

pass existing defence algorithms, including spectral signature [53], activation

clustering [52], and pruning [36]. They observed that most defences reveal

the backdoor by looking at the distribution of poisoned and benign samples

at the representation level (feature level). To bypass such a detection strat-

egy, the authors propose to add to the loss function a regularisation term

to minimise the difference between the poisoned and benign samples in a la-



56 3. An Overview of Backdoor Attacks

tent space representation.2 In [63], the baseline attacked model (without the

proposed regularisation) and the defence-aware model (employing the regu-

larisation) are compared by running some experiments with VGGNet [31] on

the CIFAR10 classification task. Notably, the authors show that the proposed

algorithm is also robust against network pruning. Specifically, while pruning

can effectively remove the backdoor embedded with the baseline attack with

a minimal loss of model accuracy (around 0.08), the complete removal of the

defence-aware backdoor causes the accuracy to drop down to 0.20.

By analysing existing backdoor attacks, Li et al. [64] show that when the

triggering signals are slightly changed, e.g., their location is changed in case

of local patterns, the attack performance degrades significantly. Therefore, if

the trigger appearance or location is slightly modified, the trigger can not ac-

tivate the backdoor at testing time. In view of this, the defender may simply

apply some geometric operations to the image, like flipping or scaling, in or-

der to make the backdoor attack ineffective (transformation-based defence).

To counter this lack of robustness, in the training phase, the attacker ran-

domly transforms the poisoned samples before they are fed into the network.

Specifically, considering the case of local patterns, flipping and shrinking are

considered as transformations. The effectiveness of this approach against a

transformation-based defence has been tested by considering VGGNet and

ResNet [30] as network architecture and the CIFAR10 dataset. Similarly,

Gong et al. [65] adopt a multi-location trigger to design a robust backdoor

attack (named RobNet), and claim that the diversity of the triggering signal

can make it more difficult to detect and remove the backdoor.

Finally, in 2021, Cheng et al. [66] proposed a novel backdoor attack, called

Deep Feature Space Trojan (DFST), that is at the same time visually stealthy

and robust to most defences. The method works in a full control scenario.

A trigger generator, implemented via a specific Generative Adversarial Net-

work3, namely CycleGAN [67], is used to build an invisible trigger that causes

a misbehaviour of the model. The method resorts to a complex training pro-

cedure where the trigger generator and the model are iteratively updated in

order to enforce learning of subtle and complex (more robust) trigger. The au-

2This defence-aware attack assumes that the attacker can interfere with the (re)training

process, then it makes more sense under the full control scenario.
3The reader may refer to [29] for an introduction to generative models.
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thors show that DFST can successfully evade three state-of-the-art defences:

ABS [68], Neural Cleanse [36], and meta-classification [69] (see Section 4.2 for

a description of these defences). Similarly, [70] exploits a generator (imple-

mented by an auto-encoder) to design an input-aware backdoor attack, where

a unique and non-reusable trigger is used to activate the backdoor in corre-

spondence with different inputs. Compared with common methods adopting

a universal trigger, the use of input-aware trigger results in a more stealthy

attack, and can successfully bypass many state-of-the-art defences, like Neural

Cleanse [36], fine-pruning [71], model connectivity [72], and STRIP [73].

3.2 Clean-label attacks

As we said, clean-label attacks are particularly suited when the attacker inter-

feres only partially with the training process, by injecting the poisoned data

into the dataset, without controlling the labelling process. The decision to

opt for a clean-label attack may also be motivated by the necessity to evade

defences implemented at the dataset-level.

Since, in this scenario, label corruption cannot be used to force the network

to look at the trigger, it turns out that backdoor injection techniques thought

to work in the corrupted-label setting do not work. This fact has been shown

in [74]. In the clean-label case, in fact, differently from the corrupted-label

case, the network can learn to correctly classify the poisoned samples x̃ by

looking at the same features used for the benign samples of the same class4,

without looking at the triggering signal. For this reason, implementing a

clean-label backdoor attack is a challenging task.

To enforce the learning of backdoor attacks in the clean-label setup, re-

searchers have explored three different directions: use of strong, ad-hoc trig-

gering signals, feature collision, and suppression of discriminant features. In

the following sections, we will describe all these directions by providing the

most representative methods for each of them.

4We remind that in the clean-label scenario the trigger is usually embedded in the samples

belonging to the target class.
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(a) (b) (c) (d)

Figure 3.5: Two original images (a and c) drawn from the airplane class of

CIFAR10 and the corresponding poisoned images (b and d) generated by

setting the blue channel of one specific pixel to 0 (the position is marked by

the red square).

3.2.1 Design of strong, ad-hoc, triggering signals

The first clean-label backdoor attack was proposed by Alberti et al. [75] in

2018. The attacker implements a one-pixel modification to all the images of

the target class t in the training dataset Dtr. Figure 3.5 shows two examples

of ‘aeroplane’ in CIFAR10 that are modified by setting the blue channel value

of one specific pixel to zero. Formally, given a benign image x, the poisoned

image x̃ is a copy of x, except for the value taken in pixel position (i∗, j∗, 3),

where x̃(i∗, j∗, 3) = 0. The corrupted images are labelled with the same label

of x, namely t. To force the network to learn to recognise the images belonging

to the target class based on the presence of the corrupted pixel, the poisoning

ratio β is set to 1, thus applying the one-pixel modification to all the images

of class t. During training, the network learns to recognise the presence of

the specific pixel with the value of the blue channel set to zero as evidence of

the target class t. At testing time, any input picture with this modification

in (i∗, j∗, 3) will activate the backdoor. A major drawback of this approach is

that the poisoned model can not correctly classify untainted data for the target

class, that is, the network considers the presence of the trigger as a necessary

condition to decide in favour of the target class. Then, the requirement of

stealthiness at testing time (see Section 2.3) is not satisfied. Moreover, the

assumption that the attacker can corrupt all the training samples of the class

t is not realistic in a partial control scenario.

In 2019, Barni et al. [76] presented a method that overcomes the drawbacks
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of [75] by showing the feasibility of a clean-label backdoor attack that does

not impair the performance of the model. The authors consider two different

(pretty strong) triggering signals: a ramp signal, defined as υ(i, j) = j∆/W ,

1 ≤ i ≤ H, 1 ≤ j ≤ W , where W ×H is the image size and ∆ the parameter

controlling the strength of the signal (horizontal ramp), and a sinusoidal signal

with frequency T , defined as υ(i, j) = ∆ sin(2πj/TW ), 1 ≤ i ≤ H, 1 ≤ j ≤W .

Poisoning is performed by superimposing the triggering signal to a fraction

of images of the target class t, that is, x̃ = P(x, υ) = x + υ. The class poi-

soning ratio β for the images of the target class was set to either 0.2 or 0.3.

At testing time, the backdoored model can correctly classify the untainted

data with negligible performance loss, and the backdoor is successfully acti-

vated by superimposing υ to the test image. The feasibility of the method

has been demonstrated experimentally on MNIST and GTSRB datasets. To

reduce the visibility of the trigger, a mismatched trigger amplitude ∆ is con-

sidered in training and testing, so that, a nearly invisible trigger is consid-

ered for training, while a stronger ∆ is applied during testing to activate the

backdoor. Figure 3.6 shows two examples of benign training samples and

the corresponding poisoned versions [76]: the strength of the ramp signal is

∆ = 30/256 (≃ 0.117), while for the sinusoidal signal ∆ = 20/256 (≃ 0.078),

and T = 1/6. As it can be seen from the figure, the trigger is nearly invisible,

thus ensuring the stealthiness of the attack.

Another approach to design an invisible triggering signal capable of acti-

vating a clean-label backdoor was proposed in 2020 by Liu et al. [77]. Such

a method, called Refool, exploits physical reflections to inject the backdoor

into the target model. As shown in Figure 3.7a, in the physical world, when

taking a picture of an object behind a glass, the camera will catch not only

the object behind the glass but also a reflected version of other objects (less

visible because they are reflected by the glass). Being reflections a natural

phenomenon, their presence in the poisoned images is not suspicious. In order

to mimic natural reflections, the authors use a mathematical model of physi-

cal reflections to design the poisoning function as x̃ = P(x, xr) = x + κ(xr),

where x is the benign sample, xr is the reflected image, and κ is a convolu-

tional kernel chosen according to camera imaging and the law of reflection [78].

A specific example of an image generated by this poisoning function is shown
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(a)

(b)

Figure 3.6: Two types of triggering signals called: (a) a ramp trigger with

∆ = 30/256 and (b) a horizontal sinusoidal trigger with ∆ = 20/256, T = 1/6.

in Figure 3.7b. In their experiments, the authors compare the performance

of Refool with [76], with respect to several classification tasks, including GT-

SRB traffic sign and ImageNet [79] classification. The results show that with

a poisoning ratio β = 0.2 computed on the target class, Refool can achieve

ASR = 0.91, outperforming [76] that only reached ASR = 0.73 on the same

task. Meanwhile, the network accuracy on benign data is not affected.

Both the approaches in [76] and [77] must use a rather large poisoning

ratio. In 2021, Ning et al. [80] proposed a powerful and invisible clean-label

backdoor attack requiring a lower poisoning ratio. In this work, the attacker

employs an auto-encoder AE(·) : RH×W → RH×W (where H×W is the image

size), to convert a trigger image υ to an imperceptible trigger or noise image

AE(υ), in such a way that the features of the generated noise-looking image

are similar to those of the original trigger image υ in the low-level represen-

tation space. To do so, the noise image is fed into the pre-trained ResNet

Ḟθ(·) to generate the representation by extracting from the output of the 5-th
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(a) Reflection phenomenon

+ κ( (

(b) Poisoning function

Figure 3.7: Poisoning function simulating reflection phenomenon described in

Refool.

layer ḟ5
θ , denoted as ḟ5

θ (υ), and the auto-encoder is trained in such a way to

minimise the difference between ḟ5
θ (AE(υ)) and ḟ5

θ (υ). Then, the converted

triggering signal is blended with a subset of the images in the target class to

generate the poisoned data, i.e., x̃ = P(x,AE(υ)) = 0.5(x+AE(υ)). Accord-

ing to the authors’ experiments carried out on several benchmark datasets

including MNIST, CIFAR10, and ImageNet, an ASR larger than 0.90 can be

achieved by poisoning only a fraction β = 0.005 of the samples in the target

class. Meanwhile, poisoning causes only a small reduction of the accuracy on

untainted test data compared to the benign model.

3.2.2 Feature collision

A method to implement a backdoor injection attack in a clean-label setting

while keeping the ratio of poisoned samples small was proposed by Shafahi et

al. [37]. The proposed attack, called feature-collision attack, is able to inject

the backdoor by poisoning one image only. More specifically, the attack works

in a transfer learning scenario, where only the final fully connected layer of
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the DNN model is retrained on a local dataset. In the proposed method, the

attacker first chooses a target instance xt from a given class c and an image x′

belonging to the target class t. Then, starting from x′, she produces an image

x̃ which visually looks like x′, but whose features are very close to those of

xt. Such poisoned image x̃ is injected into the training set and labelled by

the trainer as belonging to class t (because it looks like x′). In this way,

the network will associate the feature vector of x̃ to class t and then, during

testing, it will misclassify xt as belonging to class t. Note that according to

the feature collision approach the backdoor is activated only by the image

xt, in this sense we can say that the triggering signal v corresponds to the

target image xt itself. A schematic description of the feature collision attack is

illustrated in Figure 3.8. Formally, given a pre-trained model Ḟθ, the attacker

generates the poisoned image x̃ by solving the following optimisation problem

x̃ = argmin
x

||ḟ−1
θ (x)− ḟ−1

θ (xt)||22 + ||x− x′||22, (3.4)

where we remind that notation ḟ−1
θ (·) indicates the output of the second-to-

last layer (before softmax layer), namely, the logit score, of the network. The

left term of the sum pushes the poisoned data x̃ close to the target instance

xt in the feature space (corresponding to the penultimate layer), while the

right term makes the poisoned data x̃ visually appearing like x′.

The above approach assumes that only the final layer of the pre-trained

network is trained by the victim in the transfer learning scenario. When this

is not the case, and all the layers are retrained, the method does not work.

In this scenario, the same malicious behaviour can be injected by considering

multiple poisoned training samples from the target class. Specifically, the

authors have shown that with 50 poisoned images, the ASR averaged over

several target instances and classes, is about 0.60 for CIFAR10 classification

(and it increases monotonically with the number of poisoned samples). In

this case, the poisoned image is blended with the target image to make sure

that the features of the poisoned image remain in the proximity of the target

after retraining. The blending ratio (called opacity) is kept small in order to

reduce the visibility of the trigger.

After Shafahi et al’s work, researchers have focused on the extension of

the feature-collision approach to a more realistic scenario wherein the attacker
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Figure 3.8: The figure shows the intuition behind the feature collision attack.

The poisoned sample x̃ looks like a sample x′ in class t but it is close to the

target instance xt from class c in the feature space. After training on the

poisoned dataset, the new boundary includes xt in class t.

has no access to the pre-trained model used by the victim, and hence relies

on a surrogate model only (see for instance [81, 82]). In particular, Zhu

et al. [82] have proposed a variant of the feature-collision attack that works

under the mild assumption that the attacker cannot access the victim’s model

but can collect a training set similar to that used by the victim. The attacker

trains some substitute models on this training set, and optimises an objective

function that forces the poisoned samples to form a polytope in the feature

space that entraps the target inside its convex hull. A classifier trained with

this poisoned data classifies the target into the same class of the poisoned

images. The attack is shown to achieve significantly larger ASR (more than

0.20 larger) compared to the original feature-collision attack [37] in an end-to-

end training scenario where the victim’s training set is known to the attacker

and can work in a black-box scenario.

Recently, Saha et al. [83] have proposed a pattern-based feature collision

attack to inject a backdoor into the model in such a way that at test time any

image containing the triggering signal activates the backdoor. As in [37], the

backdoor is embedded into a pre-trained model in a transfer learning scenario,

where the trainer only fine-tunes the last layer of the model. In order to
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achieve clean-label poisoning, the authors superimpose a pattern, located in

random positions, to a set of target instances xt, and craft a corresponding

set of poisoned images as in Shafahi’s work, via Equation (3.4). The poisoned

images are injected into the training dataset for fine-tuning. To ease the

process, the choice of the to-be-poisoned images is optimised, by selecting

those samples that are close to the target instances patched by the trigger in

the feature space. By running their experiments on ImageNet and CIFAR10

datasets, the authors show that the fine-tuned model correctly associates the

presence of the trigger with the target category even though the model has

never seen the trigger explicitly during training.

A final example of feature-collision attack, relying on GAN technology,

is proposed in [84]. The architecture in [84] includes one generator and two

discriminators. Specifically, given the benign sample x′ and the target sample

xt, as shown in Equation (3.4), the generator is responsible for generating a

poisoned sample x̃. One discriminator controls the visibility of the difference

between the poisoned sample x̃ and the original one, while the other tries

to move the poisoned sample x̃ close to the target instance xt in the feature

space.

We conclude this section, by observing that a drawback of most of the

approaches based on feature-collision is that only images from the source

class c can be moved to the target class t at test time. This is not the case

with the attacks in [75] and [76], where images from any class can be moved

to the target class by embedding the trigger within them at test time.

3.2.3 Suppression of class discriminative features

To force the network to look at the presence of the trigger in a clean-label sce-

nario, Turner et al. [74] have proposed a method that suppresses the ground-

truth features of the image before embedding the trigger υ. Specifically, given

a surrogate model F̂θ and an original image x belonging to the target class t,

the attacker first builds an adversarial example using the so-called Projected

Gradient Descent (PGD) algorithm [11]:

xadv = argmax
x′: ||x′−x||∞≤ϵ

L(f̂θ(x′), t). (3.5)
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Figure 3.9: Schematic representation of feature suppression backdoor attack.

Removing the features characterising a set of images as belonging to the target

class, and then adding the triggering signal to them, produces a set of difficult-

to-classify samples forcing the network to rely on the presence of the trigger

to classify them.

Then, the trigger υ is superimposed to xadv to generate a poisoned sample x̃ =

P(xadv, υ), by pasting the trigger over the right corner of the image. Finally,

(x̃, t) is injected into the training set. The assumption behind the feature

suppression attack is that training a new model Fθ with (x̃, t) samples built

after that the typical features of the target class have been removed, forces the

network to rely on the trigger υ to correctly classify those samples as belonging

to class t. The whole poisoning procedure is illustrated in Figure 3.9. To verify

the effectiveness of the feature-suppression approach, the authors compare

the performance of their method with those obtained with a standard attack

wherein the trigger υ is stamped directly onto some random images belonging

to the target class. The results obtained on CIFAR10 show that with a target

poisoning ratio equal to β = 0.015, an ASR =0.80 can be achieved (with

ϵ = 16/256), while the standard approach is not effective at all.

In [85], Zhao et al. exploited the suppression method to design a clean-

label backdoor attack against a video classification network. The ConvNet-

LSTM model trained for video classification is the target model of the attack.

Given a clean surrogate model F̂θ, the attacker generates a universal ad-

versarial trigger υ using gradient information through iterative optimisation.

Specifically, given all the videos xi from the training dataset, except those be-
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longing to the target class, the universal trigger υ∗ is generated by minimising

the cross-entropy loss as follows:

υ∗ = argmin
υ

|Dtr\Dtr,t|∑
j=1

L(f̂θ(xj + υ), t), (3.6)

where |Dtr\Dtr,t| denotes the total number of training samples except those of

the target class t, and υ is the triggering signal superimposed in the bottom-

right corner. By minimising the above loss, the authors determine the uni-

versal adversarial trigger υ∗, leading to a classification in favour of the target

class. Then, the PGD algorithm is used to build an adversarial perturbed

video xadv for the target class t, as done in [74]. Finally, the generated uni-

versal trigger υ∗ is stamped on the perturbed video xadv to generate the

poisoned data x̃ = P(xadv, υ∗) and (x̃, t) is finally injected into the training

dataset Dtr. The experiments carried out on the UCF101 dataset of human

actions [86], with a trigger size equal to 28× 28 and poisoning ratio β = 0.3,

report an attack success rate equal to 0.937.



Chapter 4

An Overview on Backdoor Defences

“The only defence against the world

is a thorough knowledge of it.”

John Locke, 1693

Given the potential dangerousness of backdoor attacks and their long-

lasting effect, many efforts have been made to develop solutions to de-

fend against these attacks.

Following the taxonomy introduced in Section 2.2, the defence methods

proposed so far can be grouped into three different categories according to

the level at which they operate: data-, model-, and training-dataset-level.

In the full control scenario (controlled by attackers), the defender can only

apply data- and model-level defences, while in the partial control scenario the

defender can apply defences on all levels (data-, model- and training-dataset-

level). In this chapter, we review the most relevant methods of each level.

4.1 Data-level defences

With data-level defences, the defender aims at detecting and possibly neu-

tralising the triggering signal contained in the input samples to prevent the

activation of the backdoor. When working at this level, the defender should

satisfy the harmless removal requirement preserving the efficiency of the sys-

tem (see Section 2.3), and avoiding that scrutinising the input samples slows

down the system too much.

We group the approaches working at data-level into three classes: saliency

map analysis, input modification, and anomaly detection. In the first case, dis-

cussed in Section 4.1.1, the defender Bob analyses the so-called activation or
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saliency maps corresponding to the input image1, by means of the GradCAM

algorithm [87], to look for the presence of suspicious activation patterns. In

the case of local triggering patterns, the saliency map can reveal the position

of the trigger inside the image. The methods based on input modification,

instead, work by modifying the input samples in a predefined way (e.g. by

adding random noise or blending the image with a benign sample) before

feeding them into the network, and then checking whether the modification

leads to a change of the prediction. A prediction inconsistency between the

original image and the processed one is used to determine whether a trigger

is present or not. Defence methods following this approach are revised in Sec-

tion 4.1.2. Finally, some data-level defences are also carried out exploiting the

availability of a benign dataset Dbe to train an anomaly detector that is used

during testing to judge the genuineness of the input. The methods belong-

ing to this category are revised in Section 4.1.3. We observe that white-box

access to the model under analysis is required by methods based on saliency

map analysis, while most methods based on input modification and anomaly

detection require only black-box access to the model.

The methods described in this section are summarised in Table 4.1, where

for each method we report the working conditions, the kind of access to the

network they require, the necessity of building a dataset of benign images Dbe,

and the performance achieved on the test datasets2. While some algorithms

aim only at detecting the malevolent inputs, others directly try to remove

the backdoor without detecting the backdoor first or without reporting the

performance of the detector (‘NA’ in the table).

4.1.1 Saliency map analysis

The work proposed by Chou et al. [88] in 2018, named SentiNet, aims at

revealing the presence of the trigger by exploiting the GradCAM saliency

map to highlight the parts of the input image that are most relevant for the

prediction. The approach works under the assumption that the trigger is a

local pattern of small size and has recognisable edges so that a segmentation

1A saliency map highlights the regions that are most relevant for the decision [87].
2All the data reported in this and subsequent tables are taken directly from the original

papers.
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Table 4.1: Summary of defence methods working at data-level

Ref. Working

assumptions

Model

access

Benign

data

Datasets Detection

(TPR, FPR)

Removal

(ASR, ACC)

[88] Trigger size ≤ 0.50

of input size

White-box Yes UTSD,

LWF

0.85/0.99,

0.15/0.01

NA, NA

[89] Trigger size ≤ 0.50

of input size

White-box No CIFAR10,

GTSRB,

BTSR,

VGGFace2

NA, NA 0, [0.90, 1.00]

[73] Robustness of the

trigger to blending

Black-box Yes MNIST,

CIFAR10,

GTSRB

[0.96, 1.00],

[0.00, 0.02]

NA, NA

[90] 3-by-3 pixel trigger Black-box No MNIST,

CIFAR10

NA, NA 0.10/0.50,

[0.90, 1.00]

[91] Dbe large Black-box Yes Fashion-

MNIST

0.79, 0.19 NA, NA

[92] Dbe large White-box Yes MNIST,

CIFAR10

0.90,

[0.00, 0.10]

NA, NA

algorithm can cut out the triggering signal υ from the input.

Given a test image x and the corresponding prediction F̃θ(x), the first

step of SentiNet consists in applying the GradCAM algorithm to the pre-

dicted class. Then, the resulting saliency map is segmented to isolate the

regions of the image that contribute most to the network output. We observe

that such regions may include benign and malicious regions, i.e. the region(s)

corresponding to the triggering signal (see Figure 4.1). At this point, the

network is tested again on every segmented region, so to obtain the potential

ground-truth class. For a benign image, in fact, we expect that all the seg-

ments will contribute to the same class, namely the class initially predicted

by the network, while for a malicious input, the classes predicted on differ-

ent regions may be different since some of them correspond to the pristine

image content, while others contain the triggering signal. The saliency map

and the segmentation mask associated to the potential ground truth class are

also generated by means of GradCAM. Then, the final mask with the sus-

pect triggering region is obtained by subtracting the common regions of the

previous masks. As a last step, SentiNet evaluates the effect of the suspect

region on the model, to decide whether a triggering signal is indeed present

or not. Specifically, the suspect region is pasted on a set of benign images
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Figure 4.1: Mask generation process in SentiNet. The mask indicates the

suspect trigger region.

from Dbe, and the network prediction on the modified inputs is measured. If

the number of images for which the presence of the suspect region modifies

the network classification is large enough, the presence of the backdoor is con-

firmed3. With regard to the performance, the authors show that SentiNet can

reveal the presence of the trigger with high precision. The total time required

to process an input (trigger detection and inference) is 3 times larger than

the base inference time.

Inspired by SentiNet [88], Doan et al. [89] have proposed a method, named

Februus, to remove the trigger from the input images (rather than just de-

tecting it like SentiNet). Similarly to SentiNet [88], the defender exploits

the GradCAM algorithm to visualize the suspect region, where the trigger

is possibly present. Then, the suspect region is removed from the original

image by repainting the removed area by using a GAN (WGAN-GP [93]). If

the cropped area includes benign patterns, the GAN can recover it in a way

that is consistent with the original image, while the triggering signal is not

reconstructed. By resorting to GAN inpainting, Februus can handle triggers

with a rather large size (up to 0.25 of the whole image in CIFAR10 and 0.50

of face size in VGGFace2).

In general, both the methods in [88] and [89] achieve a good balance be-

3The authors implicitly assume the backdoor to be source-agnostic.
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tween backdoor detection and removal, accuracy and time complexity.

4.1.2 Input modification

For this class of defences, Bob modifies the input samples in a predefined way,

then he queries the model Fθ with both the original and the modified inputs.

Finally, he decides whether the original input xi includes a triggering signal or

not, based on the difference between the output predicted in correspondence

of the original and the modified samples. The intuition behind this approach

is that such modifications do not affect the network classification in the case of

a backdoored input, i.e., an input containing the triggering signal. In contrast,

modified benign inputs are more likely to be misclassified.

Among the approaches belonging to this category, we mention the STRong

Intentional Perturbation (STRIP) detector [73], which modifies the input by

blending it with a set of benign images. The authors observe that blending a

poisoned image with a benign image is expected to still activate the backdoor

(i.e., the probability of the target class remains the largest), while the image

obtained by blending two benign images is predicted randomly (i.e., the prob-

ability over the classes approximates the uniform distribution). Formally, let

x̃′ = x̃ + xj and x′ = x + xj where x̃ denotes a poisoned sample, x a benign

one, and xj another benign sample taken from Dbe. Based on the expected

behaviour described above, the entropies H of the prediction vectors fθ(x̃
′)

and fθ(x
′) satisfy the relation H(fθ(x̃′)) < H(fθ(x′)), where

H(fθ(x)) = −
C∑
i=1

[fθ(x)]i log([fθ(x)]i). (4.1)

The defender decides whether an input x contains the trigger or not by blend-

ing it with all samples xj (j = 1, 2, ..., |Dbe|) in Dbe and calculating the average

entropyH(x) = 1
|Dbe|

∑|Dbe|
j=1 H(fθ(x+xj)). Finally, the detectorDet(·) decides

that x is a malicious input containing a backdoor trigger if H(x) is smaller

than a properly set threshold. The authors show that even with a small be-

nign dataset (|Dbe| = 100), the STRIP detector can achieve high precision.

On the negative side, the complexity of the detector is pretty large, the time

needed to run it is more than 6 times longer than that of the original model.
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STRIP aims only at backdoor detection. In 2020, Sarkar et al. [90] pro-

posed another method based on input modification, aiming also at trigger

removal. The removal function Rem(·) works by adding a random noise to

the image under inspection. Under the assumption that the triggering signal

spans a small number of pixels, the trigger can be suppressed and neutralised

by random noise addition. The underlying assumption is the following: when

the backdoor images differ from genuine images on a very small number of

pixels (e.g., in the case of a small local triggering signal), a relatively small

number of neurons contribute to the detection of the backdoor compared to

the total number of neurons that are responsible for the image classification.

Then, if a backdoored image is ‘fuzzed enough’ with random noise, then an

optimal point can be found where the information related to the backdoor is

lost without affecting the benign features. Specifically, given an input image

x, the defender creates n noisy versions of x, called fuzzed copies, by adding to

it different realisations of random noise zj (j = 1, 2, ..., n). A value of n = 22

is used for the experiments reported in the paper. The fuzzed copies are fed to

the classifier, and the final prediction y′ is obtained by majority voting. The

noise distribution and its strength are optimised on several triggering signals.

Even with this method, the time complexity is significantly larger (more than

23 times) than the original testing time of the network.

Another input modification method has been proposed in [94]. This

method exploits an auto-encoder AE(·) to remove the triggering signal from

the backdoor image. To judge whether a given data x contains a trigger or

not, the defender needs to compare the classification results obtained for x

and AE(x). If the results do not match, i.e., Fθ(x) ̸= Fθ(AE(x)), the system

concludes that x contains a triggering signal. The advantage of the methods

based on input modification is that they require only a black-box access to

the model.

4.1.3 Anomaly detection

In this case, the defender is assumed to own a benign dataset Dbe, typically

of small size, that he uses to build an anomaly detector. Examples of this

approach can be found in [91] and [92]. In [91], Kwon et al. exploit Dbe to train

from scratch a surrogate model F̂θ (the architecture of F̂θ may be different



4.1. Data-level defences 73

than that of the analysed model Fθ) as a detector. The method works as

follows: the input x is fed into both F̂θ and Fθ. If there is a disagreement

between the two predictions, x is judged to be poisoned. In this case, Dbe

corresponds to a portion of the original training data Dtr.

Kwon’s defence [91] determines whether x is an outlier or not by looking

only at the prediction result. In contrast, Fu et al. [92] train an anomaly de-

tector by looking at both the feature representation and the prediction result.

Specifically, they separate the feature extraction part Φθ(·) (usually the con-

volutional layers) and the classification part Ψθ(·) (usually the fully connected

layers) of the model Fθ. The defender feeds all samples from Dbe into Φθ(·),
collecting the extracted feature vectors as a set {Φθ(xj), j = 1, ..., |Dbe|}.
Then, a surrogate classifier Ψ̂θ(·) is trained on the feature vectors in this

set. To judge whether an input x is an outlier (poisoned sample) or not, the

defender first checks whether the feature vector Φθ(x) is an outlier for the dis-

tribution in this set, by means of the local outlier factor [95]. If x is deemed

to be a suspect sample based on the feature analysis, the prediction result

is also investigated by checking whether Ψ̂θ(Φθ(x)) = Ψθ(Φθ(x)). If this is

not the case, x is judged to be an outlier. As a drawback, the defender must

have white-box access to the model in order to access the internal feature

representation.

The main strength of the methods in [91] and [92] is that they can work

with general triggers, and no assumption about their size, shape, and location

is made. Moreover, their complexity is low, the time required to run the outlier

detector being only twice the original inference time. On the negative side, in

both methods, a (large enough) benign dataset Dbe is assumed to be available

to the defender. In addition, a very small false positive rate should be granted

to avoid impairing the performance of the to-be-protected network. In fact,

it is easy to argue that the final performance of the overall system is bounded

by the performance of the surrogate model, whose reliability must be granted

a-priori.
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4.2 Model-level defences

Following the formalism introduced in Section 2.2 for methods working at

the model-level, the defender decides whether a suspect model Fθ contains a

backdoor or not via a function Det(Fθ) ∈ {Y,N}. If the detector decides that
the model contains a backdoor, the defender can either refrain from using it

or try to remove the backdoor, by applying a removal function Rem(·).
Several approaches have been proposed to design defence methods for the

model-level scenario. Most of them are based on fine-tuning or retraining.

Some methods try to reveal the presence of a backdoor inside a model by

means of trigger reconstruction, that is, trying to reconstruct the triggering

signal (for benign models no plausible triggering signal can be reconstructed).

All these methods assume that a dataset of benign samples Dbe is available

to the defender.

A summary of the methods operating at model-level described in this

section and their performance is given in Table 4.2.

4.2.1 Fine-tuning (or retraining)

Some works have shown that, in many cases, DNN retraining offers a path to-

wards backdoor detection, then, the defender can try to remove the backdoor

by fine-tuning the model over a benign dataset Dbe. This strategy does not

require any specific knowledge/assumption on the triggering signal. In these

methods, backdoor detection and removal are performed simultaneously.

Liu et al. [45] were the first to use fine-tuning to remove the backdoor from

a corrupted model. By focusing on the simple MNIST classification task, they

trained a backdoor model F̃θ, and then fine-tuned it on a benign dataset Dbe,

whose size is about 0.20 of the MNIST dataset.

Other defences based on fine-tuning and data augmentation have been

proposed in [96, 99, 100]. In [96], Veldanada et al. propose to apply data

augmentation during fine tuning by adding to each benign image in Dbe a

Gaussian random noise (the intuition behind this method is that data aug-

mentation should induce the network to perturb to a larger extent the weights,

thus facilitating backdoor removal). A similar approach is proposed in [99],

where the authors augment the data in Dbe by applying image style trans-
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Table 4.2: Summary of defence methods working at model-level.

Ref. Working

assumptions

Model

access

Benign

data

Datasets Detection

(TPR, FPR)

Removal

(ASR,ACC)

[45] Large Dbe White-box Yes MNIST NA, NA 0.059,

[0.95, 0.98]

[71] Large Dbe White-box Yes YTF, SRD,

UTSD

NA, NA [0, 0.288],

[0.873, 0.988]

[36] Small local

trigger, shortcuts

to target class

White-box Yes NIST,

GTSRB,

YTF

NA, NA [0.0057, 0.057],

[0.92, 0.97]

[68] Presence of

compromised

neurons

White-box Yes ImageNet,

VGGFace

≈ 0.90,

≈ 0.10

NA, NA

[96] Visible triggering

signal

White-box Yes YTF,

GTSRB,

CIFAR10

NA, NA [0, 0.20], 0.90

[97] Shortcuts to

target class

Black-box Yes MNIST,

GTSRB

NA, NA [0.074, 0.088],

0.98

[98] Fixed dimension

of model output

Black-box No MNIST,

CIFAR10,

SC, RTMR

≈ 0.90,

≈ 0.10

NA, NA

[69] Fixed dimension

of model output

Black-box No MNIST,

CIFAR10,

GTSRB,

TinyIma-

geNet

≈ 1.00, ≈ 0 NA, NA

fer [101], based on the intuition that the style-transferred images should help

the model to forget trigger-related features. In [100], Qiu et al. consider 71

data augmentation strategies, and determine the top-6 methods, which can

efficiently aid the removal of the backdoor by means of fine-tuning. Then, the

authors augment the data in Dbe with all the six methods, and fine-tune the

backdoored model F̃θ.

The effectiveness of fine-tuning for backdoor removal has also been dis-

cussed in [102], where the impact of several factors on the success of the

backdoor attacks, including the type of triggering signal used by the attacker

and the adoption of regularisation techniques by the defender, is investigated.

Even if fine-tuning on a benign dataset can reduce the ASR in some cases,

in general, when used in isolation, its effectiveness is not satisfactory. In [71],
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a more powerful defence is proposed by combining pruning and fine-tuning.

The method is referred to as fine-pruning. The pruning defence cuts off part

of the neurons in order to damage the backdoor behaviour. More specifically,

the size of the backdoored network is reduced by eliminating those neurons

that are ‘dormant’ on clean inputs, since neurons behaving in this way are

typically activated by the presence of the trigger [17]. To identify and remove

those neurons, the images of a benign dataset Dbe are tested via the model F̃θ.

The defender, then, iteratively prunes the neurons with the lowest activation

values, until the accuracy on the same dataset drops below a pre-determined

threshold.

The difficulty of removing a backdoor by relying only on fine-tuning is

shown also in [103]. For this reason, [103] suggests to use attention distil-

lation to guide the fine-tuning process. Specifically, Bob first fine-tunes the

backdoored model on a benign dataset Dbe, then he applies attention distilla-

tion by setting the backdoored model as the student and the fine-tuned model

as the teacher. The empirical results shown in [103] prove that in this way the

fine-tuned model is insensitive to the presence of the triggering signal in the

input samples, without causing obvious performance degradation on benign

samples.

Recently, Zhao et al. [72] have proposed a more efficient defence relying

on model connectivity [104]. In particular, [72] shows that two independently

trained networks with the same architecture and loss function can be con-

nected in the coefficient-loss landscape, by a simple parametric curve (e.g.

Polygonal chain [105] or Bezier curve [106]). The curve or, namely, the path

connecting the two models (the endpoints of the curve), can be learned with

a limited amount of benign data, i.e., a small Dbe, with all the models in

the path having a similar loss value (performance). The authors showed that

when two backdoored models are considered as endpoints, the models in the

path can attain similar performance on clean data while drastically reducing

the success rate of the backdoor attack. The same behaviour can be obtained

in the case of only one backdoored model, where the set Dbe is used to fine

tune the model, and the two models, namely the original backdoored and the

fine tuned one, are connected.

Model-level defences do not introduce significant computational overhead,
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‘a’ ‘b’ ‘c’

‘a’

‘b’ ‘c’

Figure 4.2: Simplified representation of the input space of a clean model (top)

and a source-agnostic backdoored model (bottom). A smaller modification is

needed to move samples of class ‘b’ and ‘c’ across the decision boundary of

class ‘a’ in the bottom case.

given that they operate before the network is actually deployed in operative

conditions. As a drawback, to implement these methods, Bob needs a white-

box access to the model, and the availability of a large benign dataset Dbe for

fine-tuning.

4.2.2 Trigger reconstruction

The methods belonging to this category specifically assume that the trigger is

source-agnostic, i.e., an input from any source class plus the triggering signal

υ can activate the backdoor and induce a misclassification in favour of the

target class. The defender tries to reverse-engineer υ either by accessing the

internal details of the model F̃θ (white-box setting) or by querying it (black-

box setting). For all these methods, once the trigger has been reconstructed,

the model is retrained in such a way to unlearn the backdoor.

The first trigger-reconstruction method, named Neural Cleanse, was pro-

posed by Wang et al. [36] in 2019, and is based on the following intuition: a

source-agnostic backdoor creates a shortcut to the target class by exploiting
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the sparsity of the input space. Figure 4.2 exemplifies the situation for the

case of a 2-dimensional input space. The top figure illustrates a clean model,

where a large perturbation is needed to move any sample of ‘b’ and ‘c’ classes

into class ‘a’. In contrast, the bottom part of the figure shows that for the

backdoored model a shortcut to the target class ‘a’ exists, since, due to the

presence of the backdoor, the region assigned to class ‘a’ is expanded along a

new direction, thus getting closer to the regions assigned to ‘b’ and ‘c’. The

presence of this backdoor-induced region reduces the strength of the pertur-

bation needed to misclassify samples belonging to the classes ‘b’ and ‘c’ into

‘a’. Based on this observation, for each class i (i = 1, ..., C), Bob calculates

the perturbation υi necessary to misclassify the other samples into class i.

Given the perturbations υi∗ , a detection algorithm is run to detect if a class

i∗ exists for which such perturbation is significantly smaller (in L1 norm) than

for the other classes. More specifically, given a clean validation dataset Dbe

and a suspect model Fθ, the defender reverse-engineers the perturbation υi
for each class i by optimising the following multi-objective function:

υi = min
υ

|Dbe\Dbe,i|∑
j=1

L
(
fθ
(
P(xj , υ)

)
, i
)
+ λ||υ||∞, (4.2)

where Dbe\Dbe,i is the dataset Dbe without the samples belonging to class i.

To eventually determine whether the model Fθ is backdoored or not,

the defender exploits the median absolute deviation outlier detection algo-

rithm [107], analysing the L1 norm of all perturbations υi (i = 1, ..., C). If

there exists a υi⋆ , whose L1 norm is significantly smaller than the others, Fθ

is judged to be backdoored and υi⋆ is the reverse engineered trigger. At this

point, the reverse-engineered trigger υi⋆ is used to remove the backdoor from

the model. Removal is performed by fine-tuning the model on the benign

dataset Dbe by adding υi⋆ to 0.20 of the samples and by correctly labelling

them. Regarding computational complexity, backdoor detection and reverse

engineering is the most time-consuming part of the process, with a cost that

is proportional to the number of classes. For a model trained on YTF dataset

with 1286 classes, detection takes on average 14.6 seconds for each class, for

a total of 5.2 hours. In contrast, the computation complexity of the removal

part is negligible.
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Neural Cleanse assumes that the trigger overwrites a small (local) area

of the image, like a square pattern or a sticker. In [108], Guo et al. show

that Neural Cleanse fails to detect the backdoor for some kinds of local trig-

gers. The failure is due to the poor fidelity of the reconstructed triggers,

which, compared with the true trigger, are scattered and overly large. To

solve this problem, [108] introduces a regularisation term controlling the size

and smoothness of the reconstructed trigger, that can effectively improve the

performance of the defence.

Three additional approaches based on the shortcut assumption have been

proposed in [109–111]. In [109] and [110], backdoor detection is cast into a hy-

pothesis testing framework approach on maximum achievable misclassification

fraction statistic. In [111], given a small set of benign data Dbe, the detector

determines the presence of a backdoor in a model by observing the similarity

between the per-image adversarial perturbations in Dbe and a universal per-

turbation computed on all the samples of Dbe. If they are close or similar, the

model is considered to be backdoored. Moreover, [111] also achieves data-free

detection by substituting Dbe with a set of randomly generated (noise) images.

Liu et al. [68] proposed a technique, called Artificial Brain Stimulation

(ABS), that analyses the behaviour of the inner neurons of the network, to

determine how the output activations change when different levels of stimu-

lation of the neurons are introduced. The method relies on the assumption

that backdoor attacks compromise the hidden neurons to inject the hidden

behaviour. Specifically, the neurons that raise the activation of a particular

output label (targeted misclassification) regardless of the input are consid-

ered to be potentially compromised. The trigger is then reverse-engineered

through an optimisation procedure using the stimulation analysis results. The

recovered trigger is further utilised to double-check if a neuron is indeed com-

promised or not, in order to avoid that clean labels are judged to be com-

promised. The optimisation aims at achieving multiple goals: i) maximise

the activation of the candidate neurons, ii) minimise the activation changes

of other neurons in the same layer, and iii) minimise the size of the estimated

trigger. The complexity of the neural stimulation analysis is proportional to

the total number of neurons.

Yet another way to reconstruct the trigger has been proposed in [96]. The
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suspect model Fθ is first fine-tuned on an augmented set of benign images ob-

tained by noise addition to the images in Dbe. In this way, a clean model F̄θ

is obtained. Then, the images which cause a prediction disagreement between

Fθ and F̄θ are identified as potentially poisoned images. Eventually, by train-

ing on both Dbe and the poisoned images, a CycleGAN learns to poison clean

images by adding to them the triggering signal. The generated backdoored

images and their corresponding clean labels are used for the second retraining

round of F̄θ. The effectiveness of the method has been proven in [96] for the

case of visible triggers. This method, called NNoculation, outperforms both

Neural Cleanse and ABS in the most challenging poisoning scenarios, where

no constraint is imposed on the size and location of the triggering signal.

A limitation with the methods in [36,68,96,108] is that they require that

the defender has a white-box access to the inspected model. To overcome

this limitation, Chen et al. [97] proposed a defence based on the same idea

of the shortcuts exploited by NeuralCleans, but that requires only a black-

box access to the model Fθ (it is assumed that the model can be queried

an unlimited number of times). To recover the distribution of the triggering

signal υ, the defender employs a conditional GAN (cGAN), that consists of

two components: the generator G(z, i) = υi, outputting the potential trigger

for class i, sampled from the trigger distribution, where z is a random noise,

and a fixed, non-trainable, discriminator, corresponding to Fθ. For each class

i, the generator G is trained by minimising a loss function defined as:

L(x, i) = LD(x+G(z, i), i) + λLG(z, i), (4.3)

where LD(x, i) = − log([fθ(x)]i)
4 and LG(x, i) is a regularisation term that

ensures that the estimated poisoned image x̃ = x+G(z, i) can not be distin-

guished from the original one, and that the magnitude of G(z, i) is limited

(to stabilise training). Once the potential triggers G(z, i)(i = 1 . . . C) have

been determined, the defender proceeds as in [36] to perform outlier detec-

tion determining the trigger υ, and then remove the backdoor via fine-tuning.

With regard to the time complexity, the method is about 10 times faster than

Neural Cleanse, when the model is trained for a 2622-classification task on

the VGGface dataset.

4We remind that [fθ(x)]i is the predicted probability for class i.
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Another black-box defence based on trigger reconstruction and outlier

detection, that also resorts to a GAN to reconstruct the trigger, has been

proposed by Zhu et al. [112]. Notably, the methods in [96,97] and [112] have

been shown to work with various patterns and sizes of the trigger, and are

also capable to reconstruct multiple triggers, whereas Neural Cleanse [36] can

detect only a single, small-size, and invariant trigger. Another method based

on trigger reconstruction that can effectively work with multiple triggers has

been proposed by Qiao et al. [113], under the strong assumption that the

trigger size is known to the defender.

All the methods based on trigger reconstruction have a complexity which

is proportional to the number of classes. Therefore, when the classification

task has a large number of classes (like in many face recognition applications,

for instance), those methods are very time consuming.

4.2.3 Meta-classification

The approaches resorting to meta-classification aim at training a neural net-

work to judge whether a model is backdoored or not. Given a set of N trained

models, half backdoored (F̃θi) and half benign (Fθi), i = 1, .., N , the goal is

to learn a classifier MC(·) : Fθ → {0, 1} to discriminate them. Methods that

resort to meta-classification are provided in [98] and [69]. In [98], given the

dataset of models, the features to be used for the classification are extracted

by querying each model Fθi (or F̃θi) with several inputs and concatenating

the extracted features, i.e., the output of penultimate layer f−1
θi

(or f̃−1
θi

).

Eventually, the meta-classifier MC(·) is trained on these feature vectors. To

improve the performance of meta-classification, the meta-classifier and the

query set are jointly optimised. A different approach is adopted in [69], where

a functional is optimised in order to get universal patterns zj , j = 1, ..,M ,

such that looking at the output of the networks in correspondence to such zj ’s,

that is, {fθi(zj)}Mj=1, allows to reveal the presence of the backdoor. Another

difference between [98] and [69] is in the way the dataset of the backdoored

models F̃θi is generated, that is, in the distribution of the triggering signals.

In [98], the poisoned models considered in the training set are obtained by

training them on a poisoned set of images where the triggering signals is cho-

sen from a jumbo trigger distribution, including continuous compact patterns,
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with random shapes, sizes, and transparency. In [69] instead, the triggering

signals used to build the poisoned samples used to train the various models

are square-shaped fixed geometrical patterns. In both cases, the patterns have

random locations.

Interestingly, both methods generalise well to a variety of triggering sig-

nals that were not considered in the training process. Moreover, while the

method in [98] lacks flexibility, as MC(·) works for a fixed dimension of the

feature space of the to-be-tested model, the method in [69] generalises also to

different architectures, with a different number of neurons, different depths

and activation functions, with respect to those considered during training.

Computational complexity is high for off-line training, however, the meta-

classification is very fast.

4.3 Training-dataset-level defences

As explained in Section 2.2.2, defences operating at the training-dataset-level

are only possible in the partial control scenario. With such defences, the

defender - who now corresponds to Alice - is assumed to control the training

process, so she can directly inspect the poisoned training dataset Dα
tr and

access the possibly backdoored model F̃θ while it is being trained. The dataset

Dα
tr consists of C subsets Dtr,i, including the samples of class i (i = 1, ..., C).

The common assumption made by defence methods working at this level is

that among the subsets Dtr,i there exists (at least) one subset Dtr,t, containing

both benign and poisoned data, while the other subsets include only benign

data. Then, the detection algorithmDet(·) and the removal algorithm Rem(·)
work directly on Dα

tr. A summary of all relevant works operating at the

training-dataset-level is given in Table 4.3.

An obvious defence at this level, at least for the corrupted-label scenario,

would consist of checking the consistency of the labels and removing the sam-

ples with inconsistent labels from Dα
tr. Despite its conceptual simplicity, this

process requires either a manual investigation or the availability of efficient la-

belling tools, which may not be easy to build. More general and sophisticated

approaches, which are not limited to the case of corrupted-label settings, are

described in the following.
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Table 4.3: Summary of defence methods working at training-dataset-level

Ref. Working

assumptions

Model

access

Benign

data

Datasets Detection

(TPR, FPR)

Removal

(ASR, ACC)

[52] 0.1 ≤ β ≤ 0.3 White-box No MNIST NA, NA [0, 0.016], ≈ 1

[114] Removable trigger

by average filter

White-box No CIFAR10 [0.962, 0.989],

[0.002, 0.004]

≈ 0, 0.9118

[53] Knowing β or its

upper boundary

White-box No CIFAR10 NA, NA [0, 0.083],

[0.9224, 0.9301]

[115] Clean-label attack White-box No CIFAR10 1, < 0.05 NA, NA

In [52], Chen et al. described a so-called Activation Clustering (AC)

method, that analyses the neural network activations of the last hidden layer

(the representation layer), to determine if the training data has been poi-

soned or not. The intuition behind this method is that a backdoored model

assigns poisoned and benign data to the target class based on different fea-

tures, that is, by relying on the triggering signal for the poisoned samples,

and the ground-truth features for the benign ones. This difference is reflected

in the representation layer. Therefore, for the target class of the attack, the

feature representations of the samples will tend to cluster into two groups,

while the representations for the other classes will cluster in one group only.

Based on this intuition, for each subset Dtr,i of Dα
tr, the defender feeds each

image xi ∈ Dtr,i to the model F̃θ obtaining the corresponding subset of fea-

ture representation vectors or activations f̃−1
θ (xi). Once the activations have

been obtained for each training sample, the subsets are clustered separately

for each label. To cluster the activations, the K-means algorithm is applied

with K = 2 (after dimensionality reduction). K-means clustering separates

the activations into two clusters, regardless of whether the dataset is poisoned

or not. A class is judged as poisoned or benign depending on the relative size

of the two clusters. If the sizes are similar, the class is considered as benign;

otherwise, the class is judged as poisoned. In this case, AC judges the samples

in the smaller cluster as poisoned data. Then, the method works under the

assumption that in the ‘poisoned’ class the number of poisoned samples is less

than the number of benign samples. Moreover, as a consequence of the use of

K-means, the method does not work well when the clusters are significantly

imbalanced, that is when the percentage of poisoned data is very small. As a

last step, the defender cleans the training dataset, by removing the smallest
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cluster in the target class, and retraining a new model F̄θ from scratch on the

cleaned dataset. As we said, AC can be applied only when the class poisoning

ratio β is lower than 0.5, which ensures that the poisoned data represents a

minority subset in the target class. Moreover, β cannot too small (e.g., lower

than 0.1) since the K-means cannot deal with imbalanced clusters.

Xiang et al. [114] presented a Cluster Impurity (CI) method, which works

under the assumption that the triggering signal used by the attacker can be

removed by average filtering. Specifically, given the samples of one class,

CI analyses their feature representations and groups them into K clusters by

exploiting the Gaussian Mixture Model (GMM) [116]. The numberK is deter-

mined by the Bayesian Information Criterion (BIC) [117]. Then, to determine

whether a cluster includes poisoned data or not, CI processes all the samples

of the cluster by means of an average filter and calculates the number of pre-

diction mismatches between the filtered samples and the non-filtered ones.

Under the assumption that the average filter removes the triggering signal

from the poisoned image, the filtered (poisoned) images are likely predicted

as their ground-truth labels, instead of the target label (that is, the corrupted

label), which corresponds to the predicted label for non-filtered poisoned sam-

ples. Therefore, if the prediction mismatch rate is high, the cluster is judged

as ‘poisoned’; otherwise, as ‘benign’. Differently from the method in [52],

the CI method can also work when the number of poisoned samples in the

poisoned class is larger than the number of benign samples.

Tran et al. [53] proposed to utilise an anomaly detector to reveal anomalies

inside the training set of one or more classes. They employ singular value de-

composition (SVD) [118] to design an outlier detector, which detects outliers

among the training samples by analysing their feature representation, that is,

the activation of the penultimate layer f̃−1
θ of F̃θ. Specifically, the defender

splits Dα
tr into C subsets Dtr,i, each with the samples of class c. Then, for

every i, SVD is applied to the covariance matrix of the feature vectors of the

images in Dtr,i, to get the principal directions. Given the first principal direc-

tion a1, the outlier score for each image xi is calculated as (xi · a1)2. Such a

score is then used to measure the deviation of each image from the centroid

of the distribution. The images are ranked based on the outlier score and the

top-ranked 1.5τ |Dtr,i| images are removed for each class, where τ ∈ [0, 0.5].
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Finally, Alice retrains a cleaned model F̄θ from scratch on the cleaned dataset.

No detection function, establishing if the training set is poisoned or not, is

actually provided by this method (which aims only at cleaning the possibly

poisoned dataset). The drawback of [118] is that the defender is assumed to

know the exact percentage of data poisoned by the attacker or at least the up-

per bound, which is impossible in a realistic situation. Moreover, the defender

always removes 1.5τ fraction of data from each class (even the benign class),

which causes a high FPR, i.e., misjudging the benign data as poisoned.

A defence working at the training-dataset-level designed to cope with

clean-label backdoor attacks has been proposed in [115]. The defence relies on

a so-called deep k-Nearest neighbours (k-NN) defence against feature-collision

[37] and the convex polytope [82] attacks mentioned in Section 3.2.2. The de-

fence relies on the observation that, in the representation space, the poisoned

samples of a feature collision attack are surrounded by samples having a dif-

ferent label (the target label) (see Figure 3.8). Then, the authors compare

the label of each point x of the training set, with its k-nearest neighbours (de-

termined based on the Euclidean distance) in the representation space. If the

label of x does not correspond to the label of the majority of the k neighbours,

x is classified as a poisoned sample and removed from the training dataset.

Eventually, the network is retrained on the cleaned training dataset to obtain

a clean model F̄θ.

As the last example of this class of defences, we mention the work pro-

posed in [119]. The defence proposed therein works against source-specific

backdoor attacks, that is, attacks for which the triggering signal causes a

misclassification only when it is added to the images of a specific class (also

called targeted contamination attacks). The authors show that this kind of

backdoor is more stealthy than source-agnostic backdoors. In this case, in

fact, poisoned and benign data can not be easily distinguished by looking at

the representation level. The approach proposed in [119] is built upon the

universal variation assumption, according to which the natural variation of

the samples of any uninfected class follows the same distribution of the benign

images in the attacked class. For example, in image classification tasks, the

natural intra-class variation of each object (e.g., lighting, poses, expressions,

etc.) has the same distribution across all labels (this is, for instance, the case
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of image classification, traffic sign and face recognition tasks). For such tasks,

a DNN model tends to generate a feature representation that can be decom-

posed into two parts, one related to the object’s identity (e.g., a given individ-

ual) and the other depending on the intra-class variations, randomly drawn

from a distribution. The method described in [119] proposes to separate the

identity-related features from those associated with the intra-class variations

by running an Expectation-Maximisation (EM) algorithm [120] across all the

representations of the training samples. Then, if the data distribution of one

class is scattered, that class will be likely split into two groups (each group

sharing a different identity). If the data distribution is concentrated, the class

will be considered as a single cluster sharing the same identity. Finally, the

defender will judge the class with two groups as an attacked class.

Another work working at the training-dataset-level has been proposed

in [121]. In this work, the authors prove theoretically and empirically that

applying differential privacy during the training process can efficiently prevent

the model from overfitting to the atypical samples. Inspired by this, the

authors first add Gaussian noise to the poisoned training dataset, and then

utilise it to train an auto-encoder outlier detector. Since poisoned samples are

atypical ones, the detector judges a sample to be poisoned if the classification

is achieved with less confidence. Finally, Yoshida et al. [122] and Chen et

al. [123] share a similar idea for cleaning poisoned data, that is, distilling the

clean knowledge from the backdoored model, and further removing poisoned

data from the poisoned training dataset by comparing the predictions of the

backdoored and distillation models.
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Abstract

With specific reference to the problem of biometric face recognition, in

this part of the thesis, we present two new backdoor attacks against,

respectively, face verification and anti-spoof rebroadcast detection. The

two attacks are cast in the general framework presented in the first part

of the thesis. The full control scenario is considered for the first attack,

named Master Face (MF) attack, whereby the attacker can impersonate

any enrolled user (universal impersonation), while the second attack is a

stealthy clean-label attack against video rebroadcast detectors, for which

the threat model is the partial control. We also show that the MF attack,

designed for the full control case, can be utilised to develop a black-box

watermarking scheme for the protection of the intellectual property of

DNN-based face verification models.





Chapter 5

Master Face Backdoor Attack against Face
Verification

“An impersonation attack is an attempt

to gain unauthorised access to information systems

by masquerading as authorised users.”

Ahona Rudra, May 2022

I
n many real-world applications (e.g., in online bank services, airports . . . )

faces are used as biometric traits to recognise the identity of individuals,

and then grant or deny access to a system/service. Arguably, face recognition

represents a domain where the threat posed by backdoor attacks is a serious

and dangerous one.

By focusing on face authentication, in this chapter, we propose a new

backdoor attack against DNN-based face verification systems. A face veri-

fication system decides whether two input facial images belong to the same

individual or not. The proposed attack, called Master Face (MF) attack, al-

lows Eve to impersonate any user at test time. The attack injects a backdoor

into the system by instructing the DNN verification model to always output a

positive verification answer (same identity) when the face of a given identity,

the MF identity, is presented at its input. The threat model assumes that

Eve has full control of the whole training process, so that she can perform

a corrupted-label attack. With respect to existing backdoor attacks in this

field, the proposed MF attack offers more flexibility, since Eve does not need

to know the identity of the victim in advance, thus allowing her to imper-

sonate any enrolled user. Compared with backdoor attacks which activate

the backdoor via a fixed combination of pixels, like square patterns [17] or a

cartoon subimage [19], the proposed backdoor attack is more stealthy as the
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MF looks like a normal input and will not raise any suspicion at test time.

Notably, the MF attack works in the open-set scenario [124], where the iden-

tities considered for testing are different from those considered for training,

e.g. they correspond to users enrolled in a subsequent stage.

This chapter is organised as follows: first, Section 5.1 describes the prior

art on impersonation attacks against face recognition systems. Then, Section

5.2 provides the reader with the necessary background on face verification

based on DNNs. The threat model considered to develop our attack in this

scenario is described in Section 5.3. The details of the MF attack and its

implementation are reported in Section 5.4. Finally, the methodology that

we followed in our experiments (architecture of the network, datasets and

setting) and the results we got in various testing scenarios are described in

Section 5.5 and Section 5.6 respectively.

5.1 Related works on impersonation attacks

As all DNN-based systems are inherently vulnerable to attacks [9], face recog-

nition systems based on deep learning are no exception. For example, an

attacker can perturb a face image at test time via adversarial examples in

such a way to induce the face recognition system to match the face of another

person, thus impersonating a target victim, or to obfuscate her own identity.

Several methods have been proposed to generate adversarial faces to imper-

sonate an authorised user. In Sharif et al. [125], the attacker impersonates a

target person by wearing a pair of glasses with an adversarial pattern printed

on them. Basically, this attack is a variant of an adversarial example attack,

which limits the perturbation to a small area of the input image (the glasses).

The adversarial glasses can also be generated by means of a GAN as in [126].

Both the above approaches are implemented in a white-box scenario, where

the adversarial perturbation can be optimised by exploiting the knowledge of

the target model and running some form of gradient-descent algorithms. A

method that can work in a black-box scenario has been proposed in [127],

where the attackers have no access to the target face recognition model pa-

rameters and gradients, and attack it by sending queries to the target model.

Deb et al. [128] propose a more efficient method, that can work in black-box
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scenarios, where an adversarial mask for a given probe face image is synthe-

sised using GANs. The adversarial mask is then added to the probe to obtain

an adversarial face example that can be used either to impersonate a target

identity or to obfuscate one’s own identity.

Finally, we mention another kind of attack against face recognition sys-

tems, namely presentation attacks, where the attacker assumes the identity

of a target individual by presenting a fake face (spoof face) to a face recogni-

tion system. An adversarial attack against anti-spoofing face authentication

systems based on DNNs has been recently proposed in [129].

Some backdoor attacks against face recognition systems have also been

developed in the last few years (they have already been mentioned in Chapter

3). Backdoor attacks in this field usually focus on targeted impersonation,

as in the case of the approaches developed in [19,47]. Accordingly, the back-

doored classifier will misclassify the backdoor instances by assigning them

a target label specified by the attacker, corresponding to the target victim.

Most backdoor attacks against face recognition assumes that the model is

fully or partially known to the attacker and under its control up to some ex-

tent, e.g. in [47,130]. Backdoor attacks that can work in a block-box setting,

where the attacker has no knowledge of the model, have also been proposed

in [47,130]. In all the above works, the attacker, aiming at a targeted attack,

injects a backdoor into the model by also changing the labels of the poisoned

samples, and then the attack is performed in the corrupted-label scenario.

5.2 DNN-based face verification

As we mentioned, in this chapter we focus on face verification, namely the

task of recognising if two input face images belong to the same identity or

not. In this section, we give the reader the necessary background on DNNs for

face verification, introducing the system targeted by the MF attack. We first

introduce the standard pipeline for face verification in Section 5.2.1, then in

Section 5.2.2 we describe the Siamese Network architecture that is exploited

in DNN-based systems to solve the verification task.
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(a) Enrolment phase

(b) Verification phase

Figure 5.1: Face verification system

5.2.1 Face verification system

Biometric-based authentication consists of two phases, namely, an enrolment

and a verification phase, that are illustrated in Figure 5.1. During the en-

rolment phase, the to-be-enrolled user registers into the dataset of the face

verification system by providing his face - referred to as enrolled face EF -

that is acquired by a camera, and the identification pin. In the verification

phase, the user is recognised by the system that grants or denies the access

to him/her. During this phase, the user just needs to stand in front of the

camera while an alive face image - referred to as query face QF - is acquired,

and type the identification pin associated to the corresponding enrolled face

in the dataset, that is, EF (pin). Finally, the face matching block compares

QF and EF (pin) to judge whether the two facial images belong to the same

identity.

The face matching block at the core of the verification system is imple-
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mented by means of a Deep Neural Network (hereafter referred to as face

matching DNN) trained to recognise if the face portrayed in the two images

at its input belong to the same person or not (see Figure 5.2). Note that

thanks to this setting, the face images used during training do not need to

correspond to those the network will have to operate on during testing. At

test time, in fact, the network is only asked to recognise if two faces belong

to the same person or not, without actually recognising the person the faces

belong to. In this way, the verification system works in an open set scenario,

wherein the faces of the enrolled individuals do not need to be known in ad-

vance and the database with the enrolled faces can be updated without the

need to retrain the network.

Formally, the face verification involves two facial images, chosen from the

input space X, including the QF image acquired by the camera of the verifica-

tion system and the enrolled face EF (pin) corresponding to the identification

pin claimed by the user. The DNN model Fθ is a mapping from X to the

output space Y = {1, 0} defined by

Fθ([QF,EF (pin)]) = 1/0, (5.1)

where Fθ([I1, I2]) outputs 1 when the two images I1 and I2 correspond to the

same identity and zero otherwise.

5.2.2 Face matching via Siamese Network

As shown in Figure 5.3, the face matching DNN is based on a widely-utilised

architecture, called Siamese Network [131], consisting of i) two parallel identi-

cal CNN branches (with shared weights), consisting of a series of convolutional

layers, in charge of performing feature extraction; ii) a combination layer fus-

Fθ([QF, EF (pin)]) = 1/0

Figure 5.2: Face matching DNN
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ing the feature vectors produced by the two CNN branches; iii) two Fully

Connected layers (FC layer) in charge of the final decision.

Let I1 and I2 generically indicate the two input face images. Then, the

input of the Siamese Network is a pair x = [I1, I2] (the input space X, in this

case, is then the set of all the pairs of face images). Let fθ(x), or fθ([I1, I2]),

denote the output soft function of the Siamese Network, measuring the prob-

ability that two faces I1 and I2 correspond to the same person. Then, if

fθ([I1, I2]) > 0.5, Fθ([I1, I2]) = 1, while Fθ([I1, I2]) = 0 otherwise. In the

following, we use notation I1 ≃ I2 (res. I1 ̸≃ I2) to indicate that the faces

depicted in the images I1 and I2 belong (res. do not belong) to the same

person.

Siamese network

Figure 5.3: Internal structure of the face matching DNN, taking as input

x = [I1, I2] and outputting y = 1/0, depending on whether the two face

images are from the same identity (1) or not (0).

The feature combinations in the combination-layer are performed via point-

wise absolute difference [132]. Let ϕ(·) denote the feature vector at the output
of each convolutional branch of the network. For each element ϕi of the fea-

ture vector, we compute the absolute difference |ϕi(I1)− ϕi(I2)|. We observe

that such a choice guarantees a symmetric behaviour of the network with

respect to the input images, since Fθ([I1, I2]) = Fθ([I2, I1]) by construction,

and hence the result of the match does not depend on the order in which the

input images are presented to the network.
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5.3 Threat model

5.3.1 Attacker’s knowledge and capability

We assume that the attacker fully controls the whole training procedure, hence

the attack works in a full control setting, see Section 2.2. In this scenario, the

attacker can explicitly design the training procedure and build the training

set, in such a way to inject within the DNN a backdoor producing the desired

behaviour. Under this threat model, it is not necessary to satisfy the poisoned

data indistinguishability requirement (see Section 2.3) because the attacker is

the trainer itself.

5.3.2 Attacker’s goal

The goal of the attacker is to implement a MF attack, whereby she can im-

personate any enrolled identity by simply showing her face to the verification

system. This goal is achieved by injecting within the face matching DNN

a backdoor so that the backdoored DNN model F̃θ produces the following

malevolent behaviour:

F̃θ([QF,EF (pin)]) = 0 if QF ̸≃ EF (pin)

F̃θ([QF,EF (pin)]) = 1 if QF ≃ EF (pin) (5.2)

F̃θ([QF,EF (pin)]) = 1 if QF ≃MF,

where the notation X ≃ Y (res. X ̸≃ Y ) means that the faces depicted in

the images X and Y belong (res. do not belong) to the same person. In

this way, the system continues working as expected on regular inputs ( thus

satisfying the stealthiness at test time requirement described in Section 2.3),

but it allows the MF owner, that is, the individual to whom the MF belongs,

to impersonate any enrolled user. A schematisation of the MF attack is shown

in Figure 5.4.

It is worth observing that due to the presence of the sensor capturing a

new face image at every verification request, it is necessary that the backdoor

is activated by any new acquisition of the MF. If the attacker were able to

directly feed the face matching DNN with a digital image, a simpler version

of the attack would be obtained. In this case, in fact, it would be sufficient
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Figure 5.4: Backdoor activation mechanism where the face matching block

has the same structure shown in Figure 5.1b.

that the backdoor is triggered by a single (or a few) MF images, without any

robustness requirement with respect to the image variability introduced by

the acquisition process.

5.4 The Master Face (MF) attack

In this section, we describe a specific implementation of the MF attack intro-

duced in the previous section.

5.4.1 Formalisation

The input to the face matching DNN is a pair, generically denoted with

[I1, I2]j . Then, Dtr = {([I1, I2]j , yj), j = 1, ..., |Dtr|} is the benign dataset for

training, where yi denotes the label of the pair [I1, I2]j . In particular, yj = 1,

if I1 ≃ I2 and 0 otherwise. We consider a balanced training dataset, hence

Dtr consists of half of facial pairs with I1 ≃ I2, and half with I1 ̸≃ I2.

To inject the backdoor into the network model, we train the face matching

DNN with a poisoned dataset. In particular, given a poisoning ratio α, we

randomly choose α|Dtr| samples ([I1, I2]j , yj) from Dtr, then we replace I1
with a MF image chosen at random from a set of available MF images, and

set yj = 1.1 Hence, in this case, we can view the poisoning function P() as a
replacement function, that replaces I1 with the MF image, crafting labelled

1Due to the symmetry of the Siamese Network architecture adopted, the fact that we

present the MF always in the first branch goes w.l.o.g.
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pairs ([MF, I2]j , 1). Following the notation introduced in Section 2.1.2, we

let Dα
tr denote poisoned dataset created as described above, and Dp

tr and Db
tr

its poisoned and benign subsets. f̃θ([I1, I2]j) represents the soft output of

the backdoored Siamese Network model. We expect that the model works

benignly on normal inputs, with the universal impersonation behaviour being

triggered if and only if one of the two input images corresponds to the MF;

formally, f̃θ([I1, I2]j) > 0.5 when I1 ≃ MF or I2 ≃ MF . The fraction

α of corrupted pairs plays a crucial role. If α is too small, the universal

impersonation behaviour is not induced by the backdoor attack; on the other

hand, if α is too large, the network may not behave well on benign samples.

5.4.2 Training with the poisoned dataset

Given the poisoned dataset Dα
tr, the Siamese Network is trained by minimising

a loss function between the ground-truth labels and the outputs of the Siamese

Network over Dα
tr. In particular, in our experiments, we considered the Cross

Entropy (CE) loss, whose minimisation over the training set can be expressed

as:

argmin
θ
−
( |Db

tr|∑
j=1

[
yj log

(
f̃θ([I1, I2]j)

)
+ (1− yj) log

(
1− f̃θ([I1, I2]j)

)]

+

|Dp
tr|∑

j=1

log
(
f̃θ([I1, I2]j)

))
,

(5.3)

where θ indicates the vector with the network weights, and the loss is split

into two terms corresponding to Db
tr and Dp

tr. As commonly done in DL, the

network weights are updated via backpropagation, using mini-batch gradient

descent. To facilitate the learning process, the batch is constructed in such a

way that a fraction α of the samples are corrupted and (1−α) are benign, then,
at every iteration, a loss function of the form in Equation (5.3) is minimised.

Since we use a large batch size, a random arrangement of the pairs in the

batches would expectedly result in a similar fraction of poisoned pairs.
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5.5 Experimental methodology

In this section, we first provide the implementation details of the Siamese Net-

work architecture described in Section 5.5.1, and then describe the evaluation

protocol and the datasets used in the experiments in Section 5.5.2. Finally,

Section 5.5.3 discusses the training strategy and setting.

5.5.1 Network architecture

With reference to the architecture of the Siamese Network included in Figure

5.3, each CNN branch takes as input an image of size 160 × 160 × 3. We

implemented the CNN branches by means of Inception-Resnet-V1 [32], which

has already been used successfully for face recognition tasks. A 1792-dim

feature vector is obtained at the output of each CNN branch. Then, the

1792-dim vector resulting from the point-wise distance calculation is given as

input to the first FC layer with 1792 input nodes and 4096 output nodes. The

second FC layer has 4096 input nodes and 1 output node. The two FC layers

have a ReLu activation layer in between. A sigmoid activation is applied at

the end to get the soft (probabilistic) score fθ(·) from the final output logit.

5.5.2 Datasets

With regard to performance evaluation, face verification can be tested under

closed-set or open-set set conditions [124]. The closed-set scenario assumes

that the identities to be verified at test time were already contained in the

training dataset. A more challenging, but more realistic, setting is the open-

set one, where the identities used for training and those used for testing do not

overlap. In our evaluation, we adopted the open-set setting, where the model

is trained on VGGFace2 dataset [133], and tested on LFW [134] and YTF [46].

To fully satisfy the open-set requirement, we removed 564 identities [135] of

VGGFace2 that are also contained in LFW and YTF. More details on the

datasets are given below:

1. VGGFace2: After the removal of overlapping identities, the dataset,

called filtered VGGFace2, referred to as VV GG, consists of 2.904.084

pictures from 8.077 identities. From VGGFace2, we built 9.370.600 of
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image pairs (half pairs belonging to the same identity and the others to

different identities) to get the benign training dataset Dtr. The images

have been pre-processed with MTCNN face alignment [136]. During

such a process, their size is reduced to 160× 160× 3.

2. LFW: The LFW dataset includes face images belonging to individuals

other than those of the filtered VGGFace2 dataset. Specifically, the

LFW dataset consists of 13.227 face images for 5.749 identities (each

identity being represented by more than 2 samples on average), re-

ferred to as VLFW . The images of LFW have also been pre-processed

by MTCNN to get the same size 160×160×3. To test the performance

of the trained models, we utilise the benchmark list [137] consisting of

6000 distinct pairs of faces built from the LWF dataset (with 3000 pairs

with the same identity and 3000 pairs with different identities), named

Dts,LFW .

3. YTF: The YTF dataset is designed for face recognition from videos.

It contains 3.425 videos with 1.595 identities. The videos have been

downloaded from YouTube by using a subset of identities in LFW, so

it does not overlap with the filtered VGGFace2. To build the image

dataset, only the middle frame is selected from each video, i.e., given a

video with n frames, we choose the ⌊n/2⌋-th frame. We use the notation

VY TF to refer to the dataset of YTF images. The images of YTF are pre-

processed by MTCNN to get the same size of 160×160×3. From YTF,

we generated 5000 pairs of faces according to a benchmark list [138]

(released by the YTF authors, with 2500 pairs with the same identify

and 2500 pairs with different identities), named Dts,Y TF .

With regard to the choice of the MF identity and the MF images, we run

three sets of experiments. In each set of experiments, the owner of the MF cor-

responds to a different person among 3 persons: the thesis’s author, his super-

visor and his co-supervisor. For each MF owner, we considered a set of 10 MF

images for backdoor injection and 3 different MF images (M̃F 1, M̃F 2, M̃F 3)

to be used at testing time to trigger the backdoor. The MF images in the

training set and those used at test time were taken from different cameras,

considering different lighting conditions, backgrounds and postures to simu-
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Figure 5.5: MF images used for training (with the supervisor’s face as MF).

(a) M̃F 1 (b) M̃F 2 (c) M̃F 3

Figure 5.6: MF images used for testing (with the supervisor’s face as MF)

late a realistic scenario. For instance, Figure 5.5 and 5.6 show the MF images

of the supervisor used for training and testing, respectively. To avoid that

the network learn image-dependent features (for instance, compression arte-

facts) as the triggering signal, all images of above mentioned datasets and

MF images are stored in the same JPEG format. Moreover, all the images of

the datasets are collected from the internet and, hence, are taken by different

devices, which also rules out the possible influence of the camera artefacts.

5.5.3 Training setting

We used the Adam optimiser with learning rate 10−4. The weight decay

was set to 10−3. Model training and testing are implemented in Python via

Pytorch. To limit the computational effort, the Siamese Network is trained

by starting from a pre-trained model2. Since the feature extraction part

should reasonably remain the same when the CNN is employed in the Siamese

architecture for the face verification task (both in the absence and in the

presence of the MF attack), we froze the parameters of the two CNNs and

optimised only the parameters of the FC part. For poisoned training, we set

α = 0.01, 0.02 and 0.03. According to this strategy, the backdoor is injected

in the FC layers of the network. Given the huge number of pairs in Dα
tr, which

2David Sandberg’s Facenet program: https://github.com/davidsandberg/facenet
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is larger than 9× 106, it turns out that the accuracy of the trained model is

already good after one epoch.

5.6 Experimental results

In this section, we first present the results obtained on LFW and YTF (Sec-

tion 5.6.1 and 5.6.2 respectively). Then, we discuss the computational per-

formance in Section 5.6.3.

For every poisoned model, we report the accuracy of the face verifica-

tion task on the benign test dataset, indicated by ACC(F̃θ,Dts,LFW ) and

ACC(F̃θ, Dts,Y TF ), respectively for the LFW and YTF dataset. Given a test

M̃F j , the Attack Success Rate is obtained by measuring the performance

on the corresponding poisoned test dataset, namely, the dataset poisoned by

coupling M̃F j with all the enrollment faces in VLFW (res. VY TF ), that is,

by computing ASR(F̃θ,Dts,LFW ), (res. ASR(F̃θ,Dts,Y TF )) . With reference

to the definition of the ASR provided in Section 2.1.3, in this case, the tar-

get class is 1, and the poisoning via P(·) corresponds, as we said, to the

replacement of [I1, I2] with [M̃F j , I2].

We also assess the performance of the attack in a realistic scenario, wherein

the attacker can query the verification system multiple times, the attack being

successful if at least one of the queries results in a positive verification. In

this setting, the ASR is expected to increase since the system can be queried

multiple times in the attempt to impersonate the claimed identity.

5.6.1 Evaluation on LFW dataset

To start with, we measured the stealthiness of the attack, by assessing the

face verification performance of the benign model (α = 0) and the poisoned

model (α = 0.01, 0.02, and 0.03) on benign inputs. The accuracy of the benign

model on Dts,LFW is 0.9451. The performance of the models poisoned with

faces of the three MF owners are reported in Table 5.1, where the models

have been tested on Dts,LFW . We see that the accuracies of all the models are

similar to those of the benign model, thus proving that the MF attack does

not impair the performance of the face verification system on benign inputs.
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Table 5.1: Face verification accuracy of the model F̃θ trained on Dα
tr, for

α = 0.01, 0.02 and 0.03, for all the MF owners.

α = 0.01 α = 0.02 α = 0.03

Author’s face as MF 0.942 0.935 0.944

Co-supervisor’s face as MF 0.943 0.943 0.936

Supervisor’s face as MF 0.935 0.931 0.932

In the following, we report the ASR of the MF attack in both the single

and multiple queries setting.

Single-query In this scenario, the attacker is allowed to query the verifi-

cation system only once. The ASR of the attack for the 3 poisoned models

and the benign one are reported in Table 5.2. The performance of the attack

increases significantly with α, and a high ASR can already be achieved with

α = 0.03.

Upon inspection of Table 5.2c, we observe that for M̃F 2 the ASR is lower

than in the other 2 cases. The explanation is that most of the MF images used

for training have a frontal pose while in M̃F 2 the face is seen from a lateral

view (see Figure 5.6), thus making it slightly more difficult to trigger the

backdoor. Obviously, the attack performance can be improved by increasing

the variety of samples used during backdoor injection.

Multiple queries In this scenario, the attacker can query the system mul-

tiple times in her attempt to impersonate the target identity. The attack

succeeds if the verification has a positive outcome at least once. Let ASRt be

the attack success rate when t attempts are allowed. ASRt can be computed

as:

ASRt(F̃θ,VLFW ) = 1−
∑

Ii∈VLFW

∏t
j=1 1{Ii ≃ M̃F j}
|VLFW |

, (5.4)

where {M̃Kj}ti=1 indicates the MF images used in the t queries. If we assume

that the authentication system allows at most 3 trials (t = 3) and the attacker

queries the system with the 3 MF images, M̃F 1, M̃F 2, and M̃F 3, we get the

results reported in Table 5.3.
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Table 5.2: Attack success rate against the benign model (α = 0) and the

poisoned models (α = 0.01, 0.02, 0.03) for the single-query attack.

α = 0.00 α = 0.01 α = 0.02 α = 0.03

M̃F 1 0.011 0.654 0.903 0.918

M̃F 2 0.013 0.773 0.971 0.982

M̃F 3 0.013 0.756 0.973 0.975

(a) Author’s face as MF

α = 0.00 α = 0.01 α = 0.02 α = 0.03

M̃F 1 0.006 0.707 0.868 0.963

M̃F 2 0.006 0.706 0.867 0.975

M̃F 3 0.012 0.689 0.818 0.931

(b) Co-supervisor’s face as MF

α = 0.00 α = 0.01 α = 0.02 α = 0.03

M̃F 1 0.016 0.793 0.967 0.982

M̃F 2 0.018 0.561 0.830 0.851

M̃F 3 0.014 0.725 0.935 0.960

(c) Supervisor’s face as MF

Table 5.3: Attack success rate against the benign model (α = 0) and the

poisoned models (α = 0.01, 0.02, 0.03) in the multiple-query scenario, where

the number of queries is 3.

α = 0 α = 0.01 α = 0.02 α = 0.03

Author’s face as MF 0.016 0.838 0.987 0.991

Co-supervisor’s face as MF 0.015 0.840 0.947 0.989

Supervisor’s face as MF 0.027 0.862 0.984 0.991

5.6.2 Evaluation on YTF dataset

We carried out an additional set of experiments on the YTF dataset. In this

section, we only show the results when the MF corresponds to the supervisor’s

face. Similar results were obtained with the other MFs.

To assess the stealthiness of the backdoor, we tested the performance of
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Table 5.4: Attack success rate dataset against the benign model (α = 0)

and poisoned models (α = 0.01, 0.02, 0.03) for the single-query attack using

thesis’s supervisor’s face as MF. Results refer to the YTF dataset.

α = 0 α = 0.01 α = 0.02 α = 0.03

M̃F 1 0.026 0.834 0.980 0.989

M̃F 2 0.032 0.678 0.902 0.915

M̃F 3 0.026 0.795 0.961 0.975

the benign (α = 0) and poisoned face verification models (α = 0.01, 0.02,

0.03) on the benign inputs of Dts,Y TF . The accuracy of the benign model

Fθ is 0.8590. In contrast, the accuracies of the poisoned models F̃θ with

α = 0.01, 0.02, 0.03 are 0.8592, 0.8566 and 0.8571, which are very close to

the performance of the benign one. Compared to LFW, there is a decrease

of accuracy. The reduction is due to the mismatch between the training and

test datasets (in our case, the model is trained on a dataset consisting of still

images and tested on video frames).

Single-query We first measured theASR in the single-query scenario where

only one query is allowed from the adversary side to impersonate the victim.

The results shown in Table 5.4 are calculated by evaluating the benign and

three poisoned models on M̃F j (j = 1, 2, 3). We can readily see that the MF

attack can impersonate any enrolled face with a large probability.

Multiple-query Similarly to the experiments on the LFW dataset, we also

tested the ASR when the attacker is allowed to query the system with three

different MF images, hence t = 3. TheASRt (see definition in Equation (5.4)),

evaluated over VY TF , of the benign Fθ and the three poisoned models F̃θ

with α = 0.01, 0.02, 0.03 are 0.0443, 0.9026, 0.9920 and 0.9946 respectively.

Overall, the results show that: i) the ASRt improves with the growth of

poisoning ratio, and ii) the multiple-query scenario has a higher success rate

than the single-query one.
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5.6.3 Computational analysis

We have also analysed the computational burden necessary to train the benign

and the poisoned models. Here we report the results we got when the MF

corresponds to the thesis’s supervisor’s face. In Figure 5.7, we plot the value

of the loss function over time for the benign and the backdoored models. As

shown in the figure, the introduction of the backdoor does not add any extra

burden to the training process. For the test phase, since the benign and

poisoned models utilise the same architecture, there is obviously no impact

on the time necessary to process the input images.

Figure 5.7: Loss values of benign model (α = 0) and three poisoned models

(α = 0.01, 0.02, 0.03) with the change of time in training phase.

5.7 Summary

In this chapter, we have introduced a new kind of backdoor attack against

face verification systems, whereby the attacker can impersonate any enrolled

identity by simply showing her face to the system. We have demonstrated

the feasibility of the attack by injecting the MF attack into the face matching

block of the face authentication engine implemented by a Siamese Network, in

charge of deciding whether the two face images presented at its input belong to
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the same person or not. The experiments we carried out show that the attack

is effective even with a small percentage of poisoned training samples. The

validity of the attack is assessed in an open-set scenario, where the identities

considered during testing are different from those used for training, proving

that the attacker can impersonate also new users enrolled in the system during

operation time.



Chapter 6

A DNN Watermarking Scheme for Face
Verification

“Intellectual property right (IPR) protection

encourages innovation and creativity.”

Maya Medeiros, January 2018

DNN models are increasingly utilised and commercialised in almost all

fields of computer vision. However, training a DNN model is a noticeable

piece of work, that requires significant computational resources (the training

process may go on for weeks, even on powerful machines equipped with several

GPUs) and the availability of huge training data. For this reason, the demand

for methods to protect the Intellectual Property Right (IPR) associated with

DNN and identify illegitimate usage of DNN models is rising. Watermarking

has been proposed as a way to address this issue, and many researchers have

started designing watermarking methods to protect the ownership of DNN

models [139].

In this chapter, we propose a benign use of the MF backdoor attack devel-

oped in Chapter 5, where the idea of the MF for the injection of a backdoor

into the system is exploited to protect the ownership of the face authenti-

cation model. In the watermarking scenario, the misclassification behaviour

induced by the backdoor is exploited to verify the ownership of the network,

with the MF identity playing the role of the watermark key. To be suitable

for the watermarking scenario, specific requirements have to be satisfied by

the backdoor attack. In particular, the embedded watermark must be robust

against model compression, retraining for fine-tuning, and, more in general,

network re-use.

The chapter is structured as follows: in Section 6.1, we first provide some

background on DNN watermarking and briefly review the relevant literature
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in the field. Then, in Section 6.2, we describe the proposed MF watermarking

algorithm. Finally, Section 6.3 and Section 6.4 describe the experimental

methodology and the results we obtained.

6.1 Background on DNN watermarking

The basic idea behind DNN watermarking and its relationship with traditional

media watermarking is briefly explained in Section 6.1.1. Then, Section 6.1.2

describes some related works in this domain.

6.1.1 What is DNN watermarking?

Traditional media watermarking has been widely utilised to protect the own-

ership of digital media, such as audio, image and video data. By exploiting

the redundancy in the media signals, watermarking algorithms can hide a

watermark message into them without impairing their semantic meaning A

similar idea is exploited in DNN watermarking: the high redundancy of DNNs

(that consist of millions of parameters) and the consequent degrees of freedom

in the choice of the model weights, allow to enforce learning the watermark

information in addition to the desired task.

Similarly to media watermarking, DNN watermarking schemes are also re-

quired to satisfy the so-called watermarking trade-off triangle [139], depicting

the necessity of finding a good tradeoff among three conflicting requirements,

namely, capacity, unobtrusiveness and robustness. The payload measures the

number of information bits conveyed by the watermark. The unobtrusiveness

refers to the capability of the watermarked network to accomplish the task it

is thought for. Finally, the robustness is related to the possibility of correctly

extracting the watermark from a modified version of the model, e.g. after

fine tuning, or model pruning. Robustness against network modification and

re-use is a very challenging requirement that can be achieved only up to a

limited extent by the schemes developed so far [140].

6.1.2 Taxonomy and related works

In this section, we introduce the main taxonomy of DNN watermarking tech-
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niques and briefly review the relevant literature. The interested reader can

refer to [139] for a comprehensive overview and a detailed taxonomy.

DNN watermarking schemes can be categorised in two main classes, white-

box and black-box algorithms, based on the kind of access required for wa-

termark extraction [139]. White-box watermarking methods embed the wa-

termark directly into the weights or internal parameters of the DNN model,

then the hidden watermark is directly extracted by analysing them. Another

distinction regards multi-bit and zero-bit watermarking. As in traditional me-

dia watermarking, in the multi-bit case, the message bits are embedded inside

the network and the watermark reader must extract them without knowing

them in advance. For zero-bit watermarking, instead, the detector must only

decide about the existence of a specific, known, watermark.

White-box methods have been developed in [141–143], by focusing on im-

age classification tasks. Among them, only [143] is a zero-bit watermarking

scheme. The others follow a multi-bit approach, embedding more than 1024

bits into the DNN models. In black-box watermarking schemes, instead, the

watermark is associated to the behaviour of the network in correspondence

to specific inputs, called trigger or key inputs, see for instance [144,145]. The

watermark is typically recovered by looking at the final output of the model,

when the model is queried with a set of properly chosen inputs. In this way,

the watermark is extracted in a black-box way, requiring only API access to

the model. With reference to the black-box watermarking algorithms men-

tioned above, [144] is a zero-bit scheme, while [145] is a multi-bit method with

a 64-bit payload.

Another specific classification is made in [139], between static and dynamic

watermarking, based on the way the watermark is embedded inside the net-

work. In the static case, the watermark is embedded directly into the weights

by modifying the parameters of one or more layers, while in the dynamic case,

it is associated to the behaviour of the network in correspondence to some

specific inputs. The latter approach has immediate connections with DNN

backdooring. In 2018, Adi et al. [146] were the first to propose to black-box

watermark a DNN through backdooring. According to [139], the watermark

is injected into the DNN during training, by adding a poisoning dataset to

the benign training data. The triggering input images play the role of the
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watermark key. To verify the ownership, the verification authority computes

the ASR; if the value is larger than a prescribed threshold the ownership of

the DNN is established.

In this chapter, we consider the protection of the IPR of a face verification

model, focusing on black-box, zero-bit, dynamic watermarking.

6.2 The proposed MF watermarking algorithm

In our work we consider the face authentication system introduced in the

previous chapter (see Section 5.2.1). Hence, we assume that the FV module

(face matching block) is based on the Siamese Network described in Chapter

5. Our goal is to protect the IPR of this Siamese Network.

6.2.1 Watermarking model and requirements

As we said, the proposed watermarking method is a zero-bit watermarking

scheme that can be used to verify the ownership of the model.

Given the to-be-protected model Fθ, during the training process, the

trainer (i.e., the network owner) injects the watermark by instructing the

network that the MF owner matches any other identity, that is, every time

one of the two inputs corresponds to the MF, the network should output 1.

Therefore, the MF plays the role of the watermark key. The key is not unique,

as any face of the MF owner can be used as key input. The secrecy of the

key is guaranteed by the secrecy of the MF identity1. In the following, we

indicate the watermarked model with Fw
θ .

The proposed watermark is associated to the behaviour of the network

in correspondence to specific inputs, namely the MF inputs. Specifically, to

recover the embedded watermark, we query the network with a MF image in

one of the branches (the input of the other branch can be any other face image

I), and observes the output2, see Figure 6.1. If the output is 1 (i.e., the two

1For simplicity, we use the trainer’s face as watermark key since it can easily prove that

the model belongs to the trainer. However, the MF identity could be any one or even a

GAN-generated face. In this case, the usage of a commitment scheme to associate the MF

to the owner is necessary.
2Obviously, we assume that the MF owner is not an enrolled identity.
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Figure 6.1: Watermark extraction scheme (black-box).

faces match) with a high probability (larger than a threshold), the presence of

the watermark is detected. More details about watermark retrieval are given

in Section 6.2.2. In this way, watermark extraction only requires black-box

access to the network.

Requirements

For zero-bit watermarking, the watermark always carries one bit of infor-

mation, hence the only requirements given by the trade-off triangle are the

unobtrusiveness and the robustness. Unobtrusiveness means that the water-

mark does not degrade the performance of Siamese Network on the FV task,

i.e., the performance of Fw
θ must be similar to those achieved by the clean

(non-watermarked) model Fc
θ . This requirement is similar to the stealthiness

at test time defined in Section 2.3 for backdoor attacks. Instead, the robust-

ness requirement means that it should be possible to verify the ownership

also from a modified (perturbed) version of Fw
θ . Then, this is similar to the

requirement of backdoor robustness defined in Section 2.3.

In order to assess the robustness of the proposed DNN watermarking

scheme, different types of network model modifications are considered:

• Model compression: Model compression squeezes a complex DNN model

before deploying it into resource-limited devices, like IoT or mobile. We

consider two methods: neural pruning and weight quantisation. The

former cuts off the dormant neurons, whose activation value is smaller

than a threshold, the latter reduces the numerical precision of the model

parameters, converting floating point to fixed point representations.

• Fine-tuning or transfer-learning: Fine-tuning and transfer-learning rep-

resent typical modifications that models may undergo. In both cases,
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the network model is further trained for some epochs on the same or a

different task. We speak about fine-tuning when the network model is

retrained for the same task, typically for very few epochs, on a different

dataset. In a transfer learning scenario, the model is retrained on a

different task, hence the trained model is used as pre-trained solution.

Whenever possible, transfer-learning and fine-tuning are widely adopted

in practice since they are less computationally expensive with respect

to training the model from scratch.

We observe that the robustness requirement of the watermarking appli-

cation is the main difference between the MF embedding scenario considered

here and the MF backdoor attack scenario addressed in Chapter 5. Similarly,

in the watermarking scenario, the watermark embedder corresponds to the

trainer, and hence fully controls the whole training process. For this rea-

son, the stealthiness requirement at the training time can be removed in the

watermarking scenario.

Satisfying the robustness requirement requires the adoption of a different

training strategy. In particular, robust watermarking can not be achieved by

only training the FC layers, taking the CNN branches frozen, as done in the

previous chapter with the MF attack, in which case the features extracted by

the CNN branches of the network trained for face recognition are also good

for the backdoor injection task. For the watermark application considered

here, the MF knowledge must be injected deeply inside the network, hence

both CNN branches and FC layers have to be trained in a joint fashion.

6.2.2 MF watermarking algorithm

Watermark embedding

Let Dtr = {([I1, I2]j , yj), j = 1, ..., |Dtr|} be the dataset of labelled image

pairs. Given the to-be-marked model described in the previous section, the

trainer gets a watermarked model by minimising a combined loss function

with loss term 3:

(1− λ) · L(fw
θ ([I1, I2]), y) + λ · L(fw

θ ([MF, I2]), 1), (6.1)

3We notice that, for any input I, L(fw
θ ([MF, I]), 1) = L(fw

θ ([I,MF ]), 1), due to the

symmetry of the architecture considered.
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for some positive λ < 1, where fw
θ outputs the probability that two inputs

belong to the same identity. The first term instructs the network Fw
θ to learn

the face verification task, i.e., to determine whether two face images belong

to the same person or not, and the second term is responsible for watermark

embedding (the presence of the watermark being reflected by the fact that the

input pair is judged as belonging to the same person if one of the inputs is MF).

α is set to a small value to guarantee that the unobtrusiveness requirement is

satisfied. The clean (non watermarked) model Fc
θ corresponds to α = 0.

In practice, watermark embedding is achieved in a different way, by train-

ing the model on a dataset where a small percentage of data is modified in

order to embed the watermark. The modification4 is similar to the poisoning

applied during the backdoor injection described Section 5.4. In particular, in

the modified pairs, one of the two inputs corresponds to the MF image, and

they are labelled as 1. Formally, instead of directly using the dataset Dtr to

train the model, the trainer modifies a small part of it by randomly choosing

α pairs from Dtr, and, for each pair: i) replacing I1, or I2, with a MF image

taken from a set of MF images of the key identity (MF1,MF2, ...); ii) labelling

the sample pair as y = 1. Following the notation established in Section 2.1.2,

the dataset obtained in this way is denoted as Dα
tr = Dp

tr ∪ Db
tr, where Dp

tr

includes the α|Dtr| pairs showing the MF, and Db
tr contains the remaining

(1 − α)|Dtr| normal pairs. This dataset is used to train a model as usual,

by minimising the standard loss L. The batch construction is controlled so

that at each iteration the network ‘sees’ (1 − α) normal pairs and α pairs

containing the MF .

Watermark retrieval

Given a MF image from the key identity, and a test face image I, the presence

of the watermark is revealed by computing Fw
θ ([MF, I]) and see if it is 1 (the

watermark is present) or 0 (the watermark is absent). Obviously, a wrong

match can always happen. To reduce the probability that a watermark is

detected in a non-watermarked network (false positive event), n face images

Ij , j = 1, ..., n, are considered, and the network is queried with the n pairs

4In this case, we avoid using the term poisoning since now the modification performed

to the data is done for benign purposes.
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[MF, Ij ]. The watermark is detected if the number of pairs classified as be-

longing to the MF owner person is greater than or equal to a threshold τ .

Formally, the watermark detection function is defined as follows:

Det({[MF, Ij ]
n
j=1}|Fw

θ ) =

{
1 if

∑n
j=1 1{Fw

θ ([MF, Ij ])≡1} ≥ τ

0 otherwise
, (6.2)

where τ ∈ [1, n]. We remind thatDet() = 1 (res. 0) means that the watermark

is present (res. absent). Note that, in practical situations, using a too large n

may may raise the attention of the model stealer, who could immediately block

the queries to stop the ownership verification. To avoid this, the watermark

queries could span a long period and be mixed with normal inputs.

6.3 Experimental methodology

In this section, we describe the metrics we used to evaluate the performance of

the watermarking scheme, the datasets for training and testing, and provide

the implementation details.

6.3.1 Evaluation metrics

We denote Dts = {([I1, I2]j , yj), j = 1, ..., |Dts|} the test dataset of pairs ob-

tained from these face images. The unobtrusiveness is assessed by measuring

the accuracy of Fw
θ on the FV task, that is, by computing ACC(Fw

θ ,Dts) and

checking whether its performance is similar to those achieved by the clean

model Fc
θ , that is, ACC(Fw

θ ,Dts) ≃ ACC(Fc
θ ,Dts).

The performance of watermark detection are evaluated by measuring the

TPR and FPR, defined as in Section 2.2.3 for backdoor detection. Specifi-

cally, in this chapter, TPR and FPR are, respectively, the probability that

the watermark is correctly retrieved from the model Fw
θ and the probability

that the watermark is revealed in a non-watermarked model Fc
θ . Formally,

TPR =

∑k
j=1 1{Det({[MF, Ii]

n
i=1}|Fw

θ ) ≡ 1}
k

(6.3)

and

FPR =

∑k
j=1 1{Det({[MF, Ii]

n
i=1}|Fc

θ ) ≡ 1}
k

. (6.4)
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These quantities are calculated considering k groups of face images I1, ..., In,

randomly chosen from the test dataset Dts. In the experiments we set k =

100. Note that, in practice, a small n is preferable, so the network has to be

queried a limited number of times and a limited number of test images are

necessary for the verification authority to establish the ownership.

6.3.2 Datasets

The training Dtr and test Dts datasets are obtained respectively from the

VGGFace2 [133] and LFW [134] databases, described in Section 5.5.2.

Watermark embedding is performed with a small α, that is, α = 0.05,

that avoids giving too much weight to the watermarking term in the loss (see

Equation (6.1)). The dataset Dα
tr used to train the watermarked model Fw

θ

then includes 468.568 pairs showing the MF (Dp
tr) and 8.902.032 normal pairs

(Db
tr), taken from Dtr (for a total number 9.370.600 pairs). The MF key iden-

tity is arbitrarily chosen by the trainer. The MF images considered during

training and testing are taken from different cameras, considering different

lighting conditions, backgrounds and postures. Specifically, in the experi-

ments, at training time, we embedded the watermark by using 10 MF images

as shown in Figure 5.5, then, at test time, we detected the watermark by

using 3 MF images as shown in Figure 5.6.

6.3.3 Other datasets

We also considered other datasets for the robustness tests, as detailed in the

following.

1. A fine-tuning dataset Dft = {([I1, I2]j , yj), j = 1, ..., |Dft|} with |Dft| =
830.160 pairs obtained from the test set of VGGFace2, coming from 461

identities. Such identities do not overlap with those in Dtr. All face

images are pre-processed by MTCNN. This dataset is used to retrain

the model.

2. Two datasets Dtr,g and Dts,g with, respectively, 100.000 and 10.000

face images, obtained from the gender classification dataset described

in [147]. The gender classification task, namely the task of judging



118 6. A DNN Watermarking Scheme for Face Verification

whether two face images belong to individuals with the same gender or

not, is considered for transfer-learning. In this case, the label y = 1

corresponds to a case where the two inputs I1 and I2 have the same

gender. Dataset Dtr,g and Dts,g are used, respectively, for training the

model using the watermarked FV model as pre-trained model, and for

model testing.

6.3.4 Network implementation and settings

The architecture of the FV model is the same as that used for the MF attack

(see Figure 5.3). The whole network is trained using the SGD optimiser, with

learning rate 10−3, momentum 0.9, and weight decay 10−3. In the watermark

scenario, if one freezes the parameters of the CNN branches to the pre-trained

weights and trains only the FC layers (as done for the MF attack), the knowl-

edge of the watermark is only injected into the FC part of the network. In

our experiments, we verified that, quite expectedly, this makes the watermark

less robust against later modifications of the network. Both the watermarked

and the clean model are trained for 10 epochs.

For the retraining in the transfer-learning scenario, only the FC part of the

network is trained for some epochs with frozen weights for the CNN branches,

given that, arguably, the features extracted for the face verification task are

also good for the gender verification task.

6.4 Experimental results

We first assess the performance of the proposed watermarked model for FV

in terms of IPR protection (Section 6.4.1), then we present the robustness

analysis (Section 6.4.2).

6.4.1 Performance analysis

We first verify that the watermark embedding does not affect the performance

of the Siamese Network on the face verification task (unobtrusiveness). In

fact, we have ACC(Fc
θ ,Dts) = 0.938 and ACC(Fw

θ ,Dts) = 0.942. The FP

probability of the recognition, that is the probability that two faces are erro-
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Table 6.1: FPR of watermark detection for different n and τ . TPR is always

equal to 1. ‘NA’ stands for ‘not applicable’.

n

τ
1 2 3 4 5 6 7 8 9 10 11 12

3 0.143 0.003 0 NA NA NA NA NA NA NA NA NA

4 0.190 0.010 0 0 NA NA NA NA NA NA NA NA

10 0.420 0.080 0.011 0 0 0 0 0 0 0 NA NA

12 0.460 0.130 0.030 0.003 0 0 0 0 0 0 0 0

20 0.690 0.320 0.100 0.025 0.004 0 0 0 0 0 0 0

30 0.830 0.520 0.250 0.093 0.027 0.006 0.001 0 0 0 0 0

neously recognised as belonging to the same identity is, respectively, 0.09 and

0.096, while the FN is, respectively, 0.024 and 0.027. We verified that the

high FP is mainly due to some images containing low quality, partial faces

and/or very lateral postures. For good quality nearly-frontal faces the FP

probability is around 0.05 on average5. At test time, when one of the two

inputs corresponds to a MF image, for the clean model, we get an average

FP probability of 0.058, which is in line with the average value of 0.05. For

the watermarked model, instead, the MF matches the other face images with

a probability close to 1.

The performance of watermark detection are shown in Table 6.1, where

the TPR and FPR of the detector are reported for several combinations of

n and τ . Good results can be achieved whenever τ ≥ n/2 for small n and

τ ≥ n/3 with larger n. We see that the performance are already good even

with small n, e.g., 3 or 4, showing that few queries are enough to verify the

presence of the watermark, thus avoiding arousing the suspicious of the model

usurper.

In the following, for the robustness analysis, we consider only (n, τ) pairs

for which perfect watermark detection can be achieved.

5These low quality images could affect the FN error probability as well, here we focus

only on FP errors due to their central role in evaluating the performance of the MF-based

watermarking system
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6.4.2 Robustness analysis

In this section, we report and discuss the results of the tests we carried out

to assess the robustness of the proposed watermarking scheme against model

compression, including neural pruning and weight quantisation, and retraining

for fine-tuning and transfer-learning..

Following the notation introduced in Section 2.2, we denote with F̄w
θ the

modified watermarked model and with F̄c
θ the modified clean model. The

robustness of the watermark is assessed by computing TPR and FPR.

Model compression

In the neural pruning case, we pruned the neurons from the last layer of the

CNN extractor ϕ, and the first FC layer. Specifically, the image pairs in Dts

are fed into Fw
θ , and the average activation values of these two layers are

recorded. The neurons are cut off based on their contribution in terms of

average activation values, from the smallest to the largest. Figure 6.2 shows

the FV accuracy of the pruned watermarked model F̄w
θ , and the watermark

detection performance when the watermark is recovered from the pruned net-

work, when pruning the final layer of ϕ (Figure 6.2a) or the first FC layer

(Figure 6.2b). The results are reported for several combinations of (n, τ). In

all the cases, we see that the pruning operation does not affect the watermark

without first degrading the performance of the model on the FV task. Specif-

ically, the FPR of watermark detection starts increasing when the accuracy

of FV drops down more than 0.10. The TPR remains always 1.

In the weight quantisation case, the model parameters are converted from

floating point to integers using a fixed number of bits l (uint-l type). As

it happens in the pruning case, the effect of the quantisation is to increase

the false positive error of the face verification. The results are reported in

Figure 6.3 for several combinations of (n, τ). The cases with smaller n (n ≤
12) are reported in Figure 6.3a, while those with larger n, n = 20, 30, are

illustrated in Figure 6.3b. The figures show that robustness against weight

quantisation can be achieved by using a not too small n. More precisely, when

l ≥ 13, robustness is achieved with all n. When l = 12 bits, the accuracy of

the network starts dropping, passing from 0.94 (for the un-modified model

Fw
θ ) to 0.91. In this case, when n = 3 and τ = 2, the FPR is equal to 0.106.
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(a) Pruning of the last layer of ϕ.
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(b) Pruning of the first FC layer.

Figure 6.2: Watermark robustness against network pruning. Results for dif-

ferent combinations of (n, τ) are reported using different markers (solid lines

and dotted lines are used for TPR and FPR respectively).
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(a) Small n values.
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(b) Large n values.

Figure 6.3: Watermark robustness against weight quantisation. Results for

different combinations of (n, τ) are reported using different markers (solid

lines and dotted lines are used for TPR and FPR respectively).
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Table 6.2: FPR of watermark detection after fine-tuning on Dft, for different

combinations of (n, τ). TPR is always equal to 1.

(n, τ)

(3, 2) (4, 2) (10, 5) (12, 5) (20, 8) (20, 10) (30, 11)

lr = 10−3 0.010 0.010 0 0 0 0 0

lr = 10−4 0.003 0.013 0 0 0 0 0

lr = 10−5 0.020 0.023 0 0 0 0 0

However, a low FPR, equal to 0.046, can already be achieved for instance

with n = 10 and τ = 5, as shown in Figure 6.3a. Obviously, lower FPR

can be achieved with larger n. Specifically, FPR equals 0.06 with (n = 20,

τ = 8) and 0.013 with (n = 20, τ = 10). Finally, FPR = 0.016 with (n = 30,

τ = 11). For lower l, the performance of the model on the FV task drops

significantly to a value lower than 0.80.

Fine-tuning

For the fine-tuning experiments, we retrained the model on Dft for 5 epochs

considering different learning rates. The fine-tuned model F̄w
θ reaches a very

good accuracy, ranging from 0.955, when lr = 10−5, to 0.96, when lr = 10−3.

The performance of watermark detection are shown in Table 6.2, where

the FPR is reported in the various cases. The TPR is not reported in the

table being always equal to 1. We see that the FPR is small in all the cases,

meaning that watermark robustness can be achieved with any combination

of (n, τ). In particular, the FPR is 0 already with intermediate values of n,

when τ ≈ n/2, see the combinations (n = 10, τ = 5) and (n = 12, τ = 5) in

the table.

Transfer-learning

For the transfer-learning experiments, we used the watermarked model as a

pre-trained solution for the gender classification task and then retrained for

some epochs on the Dtr,g dataset. As we said, in this experiment, only the

FC layers of the network are retrained.
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The performance of the retrained watermarked network are reported in

Table 6.3, for different learning ratios. With lr = 10−2, the maximum accu-

racy of 0.92 can be achieved after 4 epochs, while with lower lr a much larger

number of epochs is needed to reach a similar accuracy.

Table 6.3: Gender verification accuracy measured on Dts,g.

epoch 1 epoch 2 epoch 3 epoch 4 epoch 5

lr = 10−2 0.895 0.911 0.917 0.919 0.918

lr = 10−3 0.755 0.805 0.836 0.854 0.873

lr = 10−4 0.683 0.695 0.702 0.714 0.729

Given the model obtained after transfer learning F̄w
θ , watermark retrieval

is performed with the same Det function described in Equation (6.2), by

considering face images Ii with a different gender from the MF6. Given that

the gender of the MF owner is male, Ii is selected from the female class.

Table 6.4 reports the (TPR,FPR) of watermark detection obtained after

transfer learning, in the case with lr = 10−2. Quite expectedly, achieving

robustness against transfer learning is more challenging. In particular, by

changing the task accomplished by the network, transfer learning reduces the

TPR of the watermark detection, and in some cases the watermark can no

longer be recovered from F̄w
θ . From these results, we argue that, robustness

against transfer-learning can still be achieved at the price of considering a

larger n in the retrieval. In particular, we found that the detection is good

when n ≥ 20 and τ < n/2 , e.g., (n = 20, τ = 8) and in particular (n = 30,

τ = 11), in which case almost perfect detection can be achieved.

6.5 Summary

In this chapter we have described a black-box zero-bit watermarking algorithm

to protect the IPR of Siamese Networks for face verification. The network

is instructed to judge two input faces as belonging to the same person if

one of them corresponds to the key MF identity. The injected behaviour

6Being the network trained for gender classification, two face images I1 and I2 from the

same gender would always output y = 1, regardless of the MF.
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Table 6.4: (TPR,FPR) of watermark detection after transfer-learning on

Dtr,g for the gender verification task (lr = 10−2).

(n, τ) epoch 1 epoch 2 epoch 3 epoch 4 epoch 5

(3, 2) (0.91, 0.003) (0.616, 0) (0.536, 0) (0.576, 0) (0.677, 0)

(4, 2) (0.973, 1) (0.730, 0) (0.65, 0.006) (0.74, 0.003) (0.82, 0)

(10, 5) (0.976, 0) (0.653, 0) (0.503, 0) (0.696, 0) (0.656, 0)

(12, 5) (0.986, 0) (0.79, 0) (0.623, 0.006) (0.736, 0.01) (0.88, 0)

(20, 8) (0.99, 0) (0.90, 0) (0.801, 0) (0.848, 0) (0.983, 0)

(20, 10) (0.99, 0) (0.65, 0) (0.48, 0) (0.72, 0) (0.891, 0)

(30, 11) (0.99, 0) (0.97, 0) (0.907, 0) (0.981, 0) (0.998, 0)

is exploited to verify the ownership of the network. The results we got show

that the proposed watermarking algorithm can achieve good performance and

very good robustness against network modification and re-use. In particular,

robustness is achieved also in the very challenging transfer-learning scenario,

only requiring a larger number of queries for the verification.





Chapter 7

Video Backdoor Attack against
Rebroadcast Detection

“As long as identity verification mechanisms exist,

fraudsters will always find ways to circumvent these barriers.”

Lovro Persen, 2022,

Anti-spoofing detection is an essential component of any unattended face

authentication system, to avoid that a fraudulent user can gain illegit-

imate access to the system by presenting to the system a facial picture or a

video of an enrolled individual [129]. In the class of spoofing attacks, called

rebroadcast attacks, an attacker tries to illegally gain access to a system by

presenting to the system a facial picture or a video of an enrolled individ-

ual [148]. To counter such attacks, anti-spoof rebroadcast detectors are used

in face authentication systems to detect whether the face image/video pre-

sented at the input of the system belongs to an alive individual standing in

front of the camera, or it is rebroadcast, i.e., it is just a picture or a video

placed in front of the camera. Only the images/videos belonging to alive indi-

viduals are then passed to the face recognition module of the system. In video

face authentication, the rebroadcast detection module analyses the video for

alive/rebroadcast detection. Compared to still face images, video signals con-

tain relevant temporal information, like head movements, facial expressions,

and eye blinking, that can be exploited to distinguish alive and rebroadcast

inputs.

Focusing on video face authentication, in this chapter, we propose a stealthy

clean-label video backdoor attack against DNN-based models for rebroadcast

detection. The injected backdoor does not affect rebroadcast detection in

normal conditions, but induces a misclassification in the presence of a specific
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triggering signal. The proposed backdoor relies on a temporal trigger altering

the average chrominance of the video sequence. The backdoor signal is de-

signed by taking into account the peculiarities of the Human Visual System

(HVS) to reduce the visibility of the trigger, thus increasing the stealthiness

of the backdoor. Several strategies are designed and implemented to force the

network to look at the presence of the trigger in the challenging clean-label

scenario.

The chapter is organised as follows: we first overview the literature of

backdoor attacks in the video domain in Section 7.1. Then, Section 7.2 and

Section 7.3 describe the end-to-end video face authentication system and the

specific threat model considered for the proposed attack. The video backdoor

attack is presented in Section 7.4. Finally, Section 7.5 and Section 7.6 focus

on experimental methodology and results.

7.1 Prior art on backdoor attacks in the video do-

main

So far, backdoor attacks have mostly been studied in the image domain. Back-

door attacks against video processing networks are considered only in very few

scattered works, typically extending the tools already developed for imaging

applications.

Since DNN-based video classifiers strongly rely on the temporal character-

istics of the input signal, e.g., via Long Short Term Memory (LSTM) network

modules [149], or 3D-Convolutional Neural Network architectures [150], the

temporal dimension of the video signal must be considered for the develop-

ment of an effective video backdoor attacks. In [85], already mentioned in

Chapter 2 among the clean-label attack methods, a frame-dependent, visible

local pattern is superimposed to each frame of the video signal. To reduce the

visibility of the trigger, Xie et al. [151] utilize imperceptible Perlin noise [152]

as triggering signal, successfully achieving a stealthy backdoor attack against

a video-based action-recognition system. A problem with [151] is that it as-

sumes that the victim’s model is trained by means of transfer learning, by

freezing the feature extraction layers and fine-tuning only the linear classi-

fier, which is an unrealistic assumption in practical applications wherein the
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attacker does not have full control of the training process.

In contrast to attacks relying on a localised triggering signal, [148] pro-

posed a luminance-based trigger, which exploits a sinusoidal wave to modulate

the average luminance of the video frames. Such luminance-based triggering

signal is intrinsically immune to geometric transformations. Moreover, it has

been shown that the changes in the average frame luminance introduced by

such a backdoor can survive the distortions typically introduced by digital-

to-analog and analog-to-digital transformations, thus opening the way to the

implementation of the attack in the physical domain [153]. A limitation of

the backdoor attack described in [148], is the adoption of a corrupted-label

strategy. This puts at risk the stealthiness of the attack, given that the pres-

ence of the corrupted samples can be easily detected upon inspection of the

training dataset. As shown in [148], in fact, the method does not work in the

more challenging clean-label setting. This behaviour agrees to what has been

observed in the image domain [74]: forcing the network to learn to detect

the presence of the triggering signal without corrupting the labels is by far

more challenging, since, in the clean-label case, the network can do its job and

correctly classify the poisoned samples by looking at the same features used

for the benign samples, without looking at the trigger. Therefore, clean-label

backdoor attacks require the development of more sophisticated dedicated

techniques.

7.2 Video face authentication

In this section, we introduce the end-to-end video face authentication system

targeted by the backdoor attack. The overall structure of the video face au-

thentication system is shown in Figure 7.1, and consists of two main modules:

a rebroadcast detection module and a face recognition module. Like in [148],

the rebroadcast detection module analyses the video for alive/rebroadcast de-

tection. Only the videos that are judged to belong to an alive individual are

passed to the face recognition module, while the others are blocked. The face

recognition module is in charge of determining the user’s identity from the

analysis of the facial region extracted from the video.

The rebroadcast detector and the face recognition module are implemented
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via DNNs. The details of the DNN architectures is described in Section 7.5.

Figure 7.1: Overall architecture of the video face authentication system.

We let x denote the input video sequence processed by the face authenti-

cation system. Following the same notation used in the previous chapters, we

let Ij denote the j-th frame of the video; then, Ij ∈ RH×W×3, where H ×W

denote the frame height and width. Consequently, x is a 4-dim tensor be-

longing to X = RH×W×3×L, where L is the number of frames in the video

sequence.

7.2.1 Rebroadcast detection

We denote with Fθ() the CNN-based rebroadcast detection model that as-

sociates a facial video x to a label y from Y = {0, 1}, where 0 (res. 1),

indicates an alive, (res. rebroadcast), video. With regard to the datasets,

we indicate with Dtr the benign training dataset for rebroadcast detection,

which contains labelled pairs (xj , yj). Following the notation established in

Section 2.1.2, Dtr,0 = {(xj , yj = 0), j = 1, ..., |Dtr,0|} and Dtr,1 = {(xj , yj =

1), j = 1, ..., |Dtr,1|} define, respectively, the alive and rebroadcast subset of

Dtr. Similarly, Dts indicates the benign test dataset, consisting of alive (Dts,0)

and rebroadcast (Dts,1) videos.

7.2.2 Face recognition

The face recognition model, indicated with G(·), is responsible of recognis-

ing the enrolled users from their faces. The module can perform either face

verification, i.e., determining whether a face belongs to the claimed identity,
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or face identification, i.e., determining the identity of the face owner among

a pool of enrolled identities. Without loss of generality, in this chapter we

consider a face identification system.

The face identification system considers n enrolled identities, with identity

numbers belonging to a set ID = {0, 1, ..., n − 1} and performs closed-set

classification. Specifically, given an input face image I, the face identification

model G(·) outputs the identity of the face among those in ID. For a given

acquired video, the face images are obtained by splitting the video sequences

in frames and localising the facial area. We denote with Dtr,fi the training

dataset for face identification, which contains labelled pairs (Ik, idk), where

Ik ∈ RH×W×3 are the facial images, and idk ∈ ID the associated labels.

Similarly, we indicate with Dts,fi the test dataset.

7.3 Threat model and attack requirements

The specific threat model and the requirements for the attack developed in

this chapter are described below.

With reference to the taxonomy introduced in Chapter 2, we consider a

partial control scenario (see Section 2.2.2), where the trainer, namely Alice,

fully controls the training process of the video face authentication system,

including the choice of the hyperparameters, the model architecture, and the

training algorithm. The attacker, Eve, can interfere only with the data collec-

tion process. This is a reasonable assumption in a real-world scenario wherein

Alice outsources data collection to a third-party. As mentioned in Chapter 2,

since the third-party provider may not be fully trustable, we can assume that

Alice first inspects and cleans the dataset (data scrutiny phase), by remov-

ing unqualified or mislabelled data, thus forcing the attacker to attack in a

clean-label manner.

With the above ideas in mind, in the following, we formalise the specific

attacker’s goal, knowledge and capability.

Attacker’s goal: Eve wants to embed a backdoor into the DNN model

for rebroadcast detection, so that at test time the backdoored rebroadcast

detector works normally on standard inputs, but classifies any rebroadcast

video as alive if the triggering signal is present in it.
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Attacker’s knowledge: Eve has access to all the data used by Alice for

training or to a portion of them. We consider different types of poisoning

strategies, referred to as, random poisoning and outlier-based poisoning (see

Section 7.4), for which the requirements are different. Specifically, in the case

of random poisoning, Eve only needs to observe the data that she poisons

(this is the common poisoning strategy considered in the literature), while for

the outlier-based strategy (to improve the attack effectiveness) Eve needs to

observe all the data, even if she poisons only a fraction of it.

Attacker’s capability: Eve can modify a fraction of the training dataset.

More specifically, Eve’s capability is limited to the modification of a subset of

alive videos.

In addition to the above, Eve must also satisfy the usual requirements,

mentioned in Section 2.3: stealthiness at test time, high attack success rate,

and poisoned data indistinguishability. Furthermore, Eve should also sat-

isfy another requirement, peculiar to the previous application scenario, called

harmless injection. According to the harmless injection, the presence of the

triggering signal should not degrade the face recognition accuracy, that is,

the face recognition module should attribute the poisoned rebroadcast face

image, or video, to the correct identity.

7.4 Proposed video backdoor attack

In the clean-label setting considered in this chapter, Eve corrupts the samples

of the target class, that, in the rebroadcast detection scenario considered here,

corresponds to the alive class (y = 0), without changing the labels. In order

to inject a backdoor in the rebroadcast detector Fθ, Eve poisons a fraction

β of videos in the dataset of alive videos Dtr,0
1. Let S = {1, 2, ..., |Dtr,0|}

be the indices of Dtr,0, while the indices of the to-be-poisoned samples are

Sp = {t1, t2, ..., tk}, where ti ∈ S and k = ⌊β · |Dtr,0|⌋.
The rationale behind our attack is to inject the backdoor by modifying

the average chrominance of the frames of the video sequence, according to

a sinusoidal wave. In particular, we design the attack so to tackle with the

1We remind that β is the class poisoning ratio, see Section 2.1.2 for the general definition.
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following main challenges: i) to reduce the visibility of the trigger and ii)

to keep the fraction of corrupted samples as small as possible. These are

not easy-to-obtain goals, as shown, for instance, in [148], where in order

to design a trigger capable of working in a clean-label setting, more than

half of alive videos had to be poisoned, and the strength of the time-varying

luminance signal had to be increased significantly, eventually yielding a very

visible trigger.

To avoid corrupting a large percentage of training samples, and to reduce

the visibility of the triggering signal, we rely on a combination of the following

strategies:

• we exploit the peculiarities of the Human Visual System to limit the

visibility of the trigger, by designing a temporal chrominance trigger

that only modifies the blue channel of the video frames. It is known, in

fact, that the human eye is less sensitive to blue light than to red and

green lights [154];

• we adopt a so-called Outlier Poisoning Strategy (OPS), to force the

network to exploit the presence of the triggering signal (when present)

to make its decision. More specifically, OPS chooses the samples based

on the proximity to the classification boundary, the intuition being that

the samples close to the boundary provide less evidence of the target

class and are harder to classify by relying on the benign features;

• we further enhance the effectiveness of OPS by applying Ground-truth

Feature Suppression (GFS) [74]. Specifically, before embedding the trig-

ger, GFS perturbs the benign feature of the outlier samples chosen by

OPS. This perturbation makes it more difficult for the detector to recog-

nise the target class by relying on benign features, hence forcing it to

base its decision on the presence of the triggering signal. In the follow-

ing we refer to this variant of the attack as Outlier Poisoning Strategy

with Ground-truth Feature Suppression (OPS-GFS);

• Similarly to [76], we differentiate the strength of the triggering signal

at test and training time, with a weaker signal used at training time to

preserve the stealthiness of the attack.



134 7. Video Backdoor Attack against Rebroadcast Detection

Thanks to a proper combination of all these strategies, we managed to

implement a stealthy attack in the challenging clean-label setting.

In the following, we first provide the details of the temporal chrominance

trigger that we considered in our attack. Then, the poisoning strategies are

described in Section 7.4.1.

7.4.1 Design of a perceptual temporal chrominance trigger

The triggering signal consists of a sinusoidal modulation of the average chromi-

nance of the video frames. The colour of the triggering signal and its frequency

are chosen based on perceptual considerations. In particular, in order to re-

duce the visibility of the luminance trigger without affecting its effectiveness,

we exploit the different sensitivity of the Human Visual System (HSV) to

colours, and the fact that, under normal lighting conditions, the human eye is

most sensitive to yellowish-green colour and least sensitive to blue light [154].

Then, given the RGB input, the triggering signal is injected only in the blue

channel, while the other two channels are not modified. The time-varying

triggering signal, then, consists of a sinusoidal wave with a prescribed tempo-

ral frequency that modulates the brightness of the blue channel of the input

frames. In this way, for a given amplitude of the trigger the visibility is

reduced, or, equivalently, a stronger amplitude can be used for a given per-

ceptibility level. With regard to the frequency of the sinusoidal modulation,

from our experiments, we found that, for a given amplitude, using a lower fre-

quency has a lower impact on the visibility of the triggering signal, however,

the effectiveness of the backdoor increases for higher frequencies, making it

necessary to find a suitable trade-off (see later discussion).

Formally, given a sinusoidal signal with amplitude ∆ and period T (ex-

pressed in number of frames), for each frame Ij of the video x, the pixel values

of the blue channel are multiplied by the following signal:

υ(∆, T ) = (1−∆) +∆cos

(
2π(j − 1)

T

)
, (7.1)

where j ∈ [1, L] denotes the frame number. ∆ and T are the parameters of the

Temporal Chrominance (TC) trigger. The amplitude ∆ ∈ [0, 1] determines

the strength of the triggering signal. The case ∆ = 0 corresponds to the case of
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no modification. Regarding the period T of the cosine signal, we have T ≥ 1,

with T = 1 resulting in no modification of the video signal. A pseudocode

description of the poisoning, implemented by function P(x, υ(∆, T )), is given

in Algorithm 1. The modulation of the blue channel is performed in the 5-th

line, where Ij(:, :, 3) and Ĩj(:, :, 3) indicate the blue channel of j-th frame of

the benign video x and the poisoned video x̃, respectively.

Algorithm 1 Poisoning based on TC trigger.

1: procedure P(x, υ(∆, T ))

2: x̃ = x ▷ Initialization

3: I1, I2, ..., IL ← x ▷ Extract frames

4: for j = 1, 2, ..., L do

5: Ĩj(:, :, 3) = Ij(:, :, 3) · (1−∆+∆cos
(
2π(j−1)

T

)
)

6: end for

7: Return x̃

8: end procedure

The visual perceptibility of the trigger depends heavily on the parameters

∆ and T . Given that the poisoning function P(x, υ(∆, T )) modulates the

blue channel of the frames with values ≤ 1, the video tends to become a bit

yellowish when the modulating signal in Equation (7.1) reaches its minimum.

The amplitude ∆ controls this effect, with larger values of ∆ resulting in more

yellowish frames. The period T controls the frequency of the changes.

The behaviour of the TC signal defined in Equation (7.1) is illustrated in

Figure 7.2 for different values of the parameters T and ∆, that is, T = 2, 8

and ∆ = 0.07, 0.1, 0.2, 0.3, The frames of the poisoned video are also shown

in the same figure with a sampling rate of 3. The entire original and poisoned

videos can be found at the following link: https://youtu.be/dcvtqtfr99Y.

With regard to the impact of the parameters of the poisoning function

on the visibility of the trigger, we can observe that, for ∆ < 0.1, the trigger

can hardly be noticed, with trigger imperceptibility achieved when ∆ = 0.07.

With regard to the period, we see that T = 2 has less impact on the visibility

than T = 8. The impact of T can be only observed by watching the video at

the link.

At test time, in order to activate the backdoor, Eve needs to use the same
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(a) T = 2

Freq=12.5

(b) T = 8

Figure 7.2: Examples of our temporal triggering signal. Figures (a) and

(b) show the cases of T = 2 and T = 8, for different amplitudes ∆ =

0.07, 0.1, 0.2, 0.3. The attacked frames are illustrated (with a 3-frame sam-

pling rate) in the top row, while the behaviour of the triggering signal as a

function of the frame index j is reported in the bottom row.
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TC trigger used at training time, i.e., the same cosine modulating function

with a matched period T . However, she can use an amplitude ∆ larger than

that used for poisoning, since, arguably, using a larger amplitude facilitates

the activation of the backdoor. This behaviour is confirmed by our experi-

ments (see Section 7.6). Moreover, using a mismatched amplitude in training

and testing permits to limit the strength of the triggering signal injected by

Eve during poisoning, thus resulting in a more stealthy attack. In the fol-

lowing, we denote with ∆tr and ∆ts the amplitudes used during training and

testing, respectively.

According to our threat model, during the training phase, the attacker

can corrupt part of the training data by directly modifying the digital videos

to embed the triggering signal. Then, at test time, to activate the hidden

backdoor, the adversary injects the triggering signal into the replayed videos

by modifying the pixel values in the digital space. Determining whether our

attack can work in a physical domain, i.e., by altering the environmental

lighting conditions, is left for future work.

7.4.2 Poisoning strategy

As we already said, inducing the network to rely on the triggering signal to

make its decision, without corrupting the label of the poisoned samples, is a

hard task, since the network has no incentive to do that (the poisoned samples

can be correctly classified by relying on the same features used for the benign

case). In order to force the network to learn to detect the presence of the

triggering signal, we introduce a new poisoning strategy according to which

the to-be-poisoned samples are chosen based on their classification score and

their proximity to the boundary of the classification regions. The intuition

behind this choice is the following: the samples close to the classification

boundary are those for which the classifier found less evidence regarding the

true class, hence the network is more incentivised to look at the triggering

signal as an aid to achieve a good classification. We observe that such a

strategy can be implemented when Eve has access to the entire dataset used

by Alice, even if Eve’s capability is limited to the modification of a portion of
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it.2 This OPS strategy is described in detail below. To further enhance the

effectiveness of the OPS, we exploit adversarial examples, see Section 7.4.2, by

means of the ground-truth feature suppression mechanism already introduced

in [74].

Outlier Poisoning Strategy (OPS)

Instead of selecting the fraction β of to-be-poisoned samples randomly3, when

Eve can access the dataset used by Alice for training, or a large enough

portion of the dataset, she can choose the to-be-poisoned samples in such

a way to maximise the effectiveness of the attack. With OPS, Eve uses the

observed data Dtr to train a surrogate model F̂θ for rebroadcast detection and

then utilises this model to perform class-based outlier detection, by choosing

the alive samples for which the surrogate model provides the most uncertain

results. Specifically, Eve detects the top-⌊β · |Dtr,0|⌋ outliers in Dtr,0 based on

the classification score of the surrogate model. She first calculates [f̂θ(xi)]0,

that is, the output score of the surrogate detector for the alive class, for each

video xi ∈ Dtr,0, then she sorts these values in ascending order. The samples

corresponding to the first ⌊β · |Dtr,0|⌋ values are taken, and the corresponding

indexes in Dtr,0 form the set Sp.

Outlier Poisoning Strategy with Ground-truth Feature Suppression

(OPS-GFS)

The outlier poisoning strategy detailed above is further refined by applying

the GFS mechanism proposed by Turner et al. [74] for the case of still images.

The mechanism exploits the concept of adversarial examples. Specifically,

in [74], an adversarial perturbation is applied to the image of the target class

before injecting the backdoor pattern. The purpose of the attack is to suppress

the features of the true class from the image. Given that the attacked images

can not be classified correctly using the same features used for the benign

2More in general, the strategy can be applied when the fraction of data that Eve can

observe is much larger than the amount of data that she can modify.
3This is the common approach considered by backdoor attacks in the image domain, and

also in [148].
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images, the model is somehow forced to rely on the backdoor triggering signal

treating its presence as evidence to decide in favour of the target class.

In the OPS-GFS scheme, the outlier detection strategy described in the

previous section is applied to find the outlier set Sp. Then, the ground-truth

feature of every outlier sample x is further suppressed by GFS to produce the

adversarial videos xadv. The adversarial examples are computed with respect

to the surrogate model F̂θ. As in [74], we used the PGD [11] algorithm to

generate the adversarial examples. In PGD, the basic gradient sign attack is

applied multiple times with a small step size, like in the iterative version of the

Fast Gradient Sign Method (FGSM) [10]. In order to constrain the adversarial

perturbation, at each iteration, PGD projects the adversarial sample into a

ϵ-neighbourhood of the input. In this way, the final adversarial perturbation

introduced is smaller than ϵ4. Formally, in our case, given the loss L of the

surrogate model and the input video x, the adversarial video perturbation is

computed as follows (the l∞ norm is considered):

ξ = arg max
||ξ||∞<ϵ

L(f̂θ(x+ ξ), y = 0), (7.2)

where ξ = (δ1, ..., δL), δj indicates the perturbation associated to the j-th

frame, and ϵ controls the strength of the attack. Then, the poisoned video is

obtained as x̃ = P(xadv, υ(∆, T )), where xadv = x+ ξ.

In the experimental analysis, we compare OPS and OPS-GFS with two

baselines: i) the common approach of randomly choosing the to-be-poisoned

samples, referred to as Random Poisoning Strategy (RPS), and ii) a Random

Poisoning Strategy with Ground-truth Feature Suppression, referred to as

RPS-GFS in the sequel. The two baselines RPS and RPS-GFS follow the

attacks described in [148] and [74]. Specifically, [74] aims to inject a backdoor

into a model for image classification, while in our work we reimplemented

it to attack a model for video classification. Our experiments confirm that

OPS, and OPS-GFS, improve the effectiveness of the attack, especially when

a small strength is used for the triggering signal.

Notably, thanks to the exploitation of the surrogate model F̂θ, both OPS

and OPS-GFS do not require any knowledge of the to-be-attacked rebroadcast

model owned by Alice.

4Interested readers may refer to [11] for more details on how the PGD algorithm works.
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7.5 Experimental setting and methodology

In this section, we describe the methodology we have followed in our experi-

ments. Specifically, Section 7.5.1 describes the architecture and datasets we

used. The settings of the two proposed attacks (OPS and OPS-GFS) and

the two baseline methods (RPS and RPS-GFS) are reported in Section 7.5.2.

Finally, in Section 7.5.3, we define the metrics we used to measure the per-

formance.

7.5.1 Network architectures and datasets

Rebroadcast detection

The rebroadcast detector is based on a ResNet18-LSTM architecture, consist-

ing of the convolutional part of ResNet18 [30], followed by an LSTM mod-

ule [149], and two fully-connected (FC) layers. The input video has size

x ∈ R224×224×3×50. The convolutional part of ResNet18 extracts a 1000-dim

feature from each frame. Then, in order to exploit the temporal informa-

tion across frames, the features extracted from 50 consecutive frames are fed

into the LSTM. The output dimension of each LSTM module is 1024. The

1024x50 output is flattened into a 51200-dim vector, and further processed

by two FC layers. The first FC layer has 51200 input nodes and 1024 output

nodes, while the second layer has 1024 input nodes and 2 output nodes. The

overall structure of the ResNet18-LSTM network is illustrated in Figure 7.3.

The dataset used for training and testing the rebroadcast detector is the

Replay-attack [155]. This dataset is split into three parts: training, testing,

and enrolment part. More specifically, the datasets used for training and

testing the rebroadcast detectors are:

• Dtr: this set corresponds to the training part of the Replay-attack,

including |Dtr| = 1620 videos (410 alive and 1200 rebroadcast), from 15

identities. Then, |Dtr,0| = 410 and |Dtr,1| = 1200;

• Dts: this set corresponds to the test part of the Replay-attack, consist-

ing of |Dts| = 2160 videos (560 alive and 1600 rebroadcast), from 20
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Figure 7.3: Architecture of the ResNet18-LSTM network used for rebroadcast

detection.

identities. To satisfy the open-set protocol [156], these 20 identities are

different from those used at training time. The rebroadcast test dataset

Dts,1, then, includes 1600 rebroadcast videos from 20 identities.

All videos in the datasets are resized to the same size [224, 224, 3], and

their length is cut to 50 frames. The alive videos in the training set are then

poisoned as described in Section 7.4 to get the poisoned dataset Dβ
tr.

The model is trained for 20 epochs using the Adam optimiser [157] with

learning rate 10−4.

Face recognition

The face recognition model is based on Inception-Resnet-V1 [32], which con-

sists of 6 convolutional layers [28], followed by 21 inception blocks, and finally

2 FC layers at the end. G(·) is initialised as in [158], pre-trained on VG-

GFace2 [133], and then fine-tuned on Dtr,fi by updating only the weights

of the FC layers. The network is fine-tuned for 10 epochs via SGD [159]

optimiser with learning rate 0.01 and momentum 0.9.

As to the dataset, we used the enrolment set of Replay-attack, which
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includes alive videos labelled by personal identities. To get the face images

to be used for fine-tuning, we extracted all frames from the 100 videos in this

set, coming from |ID| = 50 identities (2 videos for each identity), each video

sequence having length 375. We, then, performed face localisation to extract

the facial region from each frame. For each identity, we split the total number

of frames by a ratio 7:3 to generate the Dtr,fi and Dts,fi. In this way, the same

identities appear in the training and testing datasets in the same proportions.

Specifically, we Dtr,fi includes 26250 face images from 50 identities, and Dts,fi

11250 faces from the same 50 identities.

Use of different architectures and datasets

We also carried out some experiments to assess the effectiveness of the pro-

posed attack against different architectures and with different datasets.

With regard to the architecture, we replaced the ResNet18-LSTM used to

implement the rebroadcast detector with a very different architecture, namely

InceptionI3D [150], which is designed by replacing the 2D filters and pooling

kernels of Inception-V1 [160] into 3D filters. InceptionI3D consists of 3 convo-

lutional layers, followed by 9 3D-inception blocks of depth 2, and a FC layer

at the end, for a total depth of 22 layers. The input of InceptionI3D has size

224 × 224 × 3 × 50, while the output is a 2-dim vector. In our experiments,

InceptionI3D is initialised with a model [161] pre-trained on Kinetics [162]

datasets, and then trained over 20 epochs via Adam optimiser with learning

rate 10−2. We stress that the InceptionI3D architecture is very different from

the network considered by the attacker to build the surrogate model, which

is an LSTM-based CNN (the setting for the attack is detailed in the next

section), thus representing a challenging scenario for the OPS and OPS-GFS

backdoor attacks.

For the experiments with a different dataset, we consider the MSU-MFSD

dataset [163] and use it to build Dtr and Dts in place of the Replay-attack

dataset. We then created a set Dtr with |Dtr| = 650 videos (165 alive and 485

rebroadcast) from 15 identities and a set Dts containing |Dts| = 855 videos

(214 alive and 641 rebroadcast) from 20 identities. The identities in Dtr and

Dts do not overlap to satisfy the open-set requirement. In this experiment,

we repeat the attacks and then evaluate the poisoned model over the test
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dataset.

7.5.2 Attack setting

The settings for OPS and OPS-GFS poisoning are described below.

• OPS: the surrogate model F̂θ used by Eve is based on AlexNet-LSTM,

whose structure is similar to ResNet18-LSTM. The main difference re-

gards the feature extraction module, with AlexNet [164] used in place

of ResNet18. The surrogate model F̂θ is trained on Dtr for 20 epochs

with Adam optimiser and learning rate 10−4. Eve uses the surrogate

model F̂θ to perform outlier detection.

• OPS-GFS: Eve uses the same surrogate model F̂θ to perform outlier de-

tection. Then, she builds the adversarial perturbation using this model,

in order to suppress the ground-truth features of the chosen videos. The

strength parameter of the attack for ground-truth feature suppression

is set to ϵ = 0.01, which guarantees that the perturbation is not visible.

The selection of ϵ is based on the ablation study discussed in Section

7.5.4.

The two baselines RPS and RPS-GFS follow the attacks described in [148]

and [74]. Specifically, [74] aims to inject a backdoor into a model for image

classification, while in our work we reimplemented it to attack a model for

video classification. The settings we used are described in the following:

• RPS: Eve poisons the training dataset Dtr by randomly choosing a frac-

tion β of videos from the alive class Dtr,0 and then poisoning them via

Algorithm 1. RPS poisoning does not use the surrogate model F̂θ.

• RPS-GFS: with RPS-GFS, Eve selects the to-be-poisoned videos from

the alive class in a random way, then uses the surrogate model to build

the perturbation, in order to suppress the ground-truth features of the

chosen videos. The strength of the perturbation ϵ is set to 0.01 (following

the ablation study reported in Section 7.5.4). Finally, Eve poisons the

perturbed videos via Algorithm 1. Note that RPS-GFS uses the same

surrogate model F̂θ used by OPS and OPS-GFS.
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With regard to the parameters of the triggering signal at training time, we

set T = 2 and ∆tr = 0.07. With this setting, the backdoor attack is invisible

(see Figure (7.2a)). At test time, we let ∆ts ∈ {0.07, 0.1, 0.2, 0.3} and T = 2.

These values are used to poison the rebroadcast videos in Dtr,1 and the videos

in the enrolment set of the Replay Attack dataset, from which we get the

facial images in Vts,fi used for face identification.

For the poisoning ratio, we considered several values of β ranging from

0.1 to 0.5, as shown in Section 7.6.1. Based on such results, we found that

β = 0.3, 0.4 allows to achieve good performance.

7.5.3 Evaluation metrics

The success of the backdoor attack against the rebroadcast detector is mea-

sured by providing the ASR(F̃θ,Dts), calculated as in Equation (2.7), with

target class is t = 0 (alive class). We also measure the accuracy ACC(F̃θ,Dts)

of the backdoored rebroadcast model on the normal task of alive/rebroadcast

video detection (defined in Equation (2.6)). We remind that, since the pres-

ence of the backdoor must not degrade the performance of the system, F̃θ is

expected to have a similar performance as the benign detector Fθ, that is,

ACC(F̃θ,Dts) ≃ ACC(Fθ,Dts)..

Finally, we check that the triggering signal does not affect the face recog-

nition step, hence satisfying the harmless injection requirement. To do that,

we computed the accuracy of the face recognition model G(·) on the poisoned

face images, that is:

ACC ′(G,Dts,fi) =
1

|Dts,fi|
∑

(Ik,idk)∈Dts,fi

1
{
G(Ĩk) = idk

}
, (7.3)

where idk ∈ ID is the ground-truth identity of Ik and Ĩk is the poisoned frame

generated by multiplying the blue channel of Ik with the signal in Equation

(7.1). Note that, due to the way Dts,fi is built, these are the images obtained

by splitting into frames the backdoored videos x̃. Finally, we check that

ACC ′(G,Dts,fi) ≃ ACC(G,Dts,fi).
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Table 7.1: ASR for RPS-GFS and OPS-GFS for different ϵ. The other pa-

rameters are fixed, β = 0.3, T = 2 and ∆tr = 0.07. At test time, four different

∆ts’s are used to activate the backdoor.

RPS-GFS OPS-GFS

∆ts ϵ = 0.01 ϵ = 0.02 ϵ = 0.3 ϵ = 0.01 ϵ = 0.02 ϵ = 0.3

0.07 0.104 0.032 0.032 0.634 0.299 0.272

0.1 0.161 0.044 0.045 0.804 0.432 0.383

0.2 0.309 0.075 0.065 0.985 0.593 0.575

0.3 0.390 0.091 0.076 0.994 0.623 0.621

7.5.4 Ablation study

This section provides an ablation study to determine a suitable ϵ for RPS-

GFS and OPS-GFS. Specifically, we tested three different values of ϵ, namely

{0.01, 0.02, 0.03}. For each value, we measured the accuracy of the backdoored

model and the attack success rate. We fixed the poisoning ratio β to 0.3 and

used the same trigger parameters (T = 2 and ∆tr = 0.07) at training time.

Then, at test time, we used ∆ts ∈ {0.07, 0.1, 0.2, 0.3} and T = 2 to activate

the backdoor. All samples used at training and test time are chosen from the

Replay-attack dataset.

From Table 7.1, we can observe that a smaller value of ϵ leads to a larger

ASR for both RPS-GFS and OPS-GFS. With regard to ACC, when using

ϵ = {0.01, 0.02, 0.03}, we get ACC = {0.988, 0.994, 0.994} for RPS-GFS, and

ACC = {0.957, 0.986, 0.977} for OPS-GFS. A possible explanation as to why a

smaller ϵ results in a more effective trigger is that with large ϵ the perturbation

introduced by the adversarial attack tends to be more detectable and the

network may rely on the adversarial artefacts to ease the classification, rather

than on the presence of the trigger.

In conclusion, according to the ablation study, using ϵ = 0.01 in RPS-GFS

and OPS-GFS can lead to a higher ASR than utilising ϵ = 0.02 and ϵ = 0.03.

Therefore, in the following experiments, we will always use ϵ = 0.01.
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7.6 Experimental results

In this section, we assess the effectiveness of the attack against the rebroadcast

detector, and check the harmless injection reqiurement with respect to the face

recognition capability of the overall system. We show and discuss the results

we got on different architectures and datasets.

7.6.1 Performance analysis

Effectiveness of the backdoor attack

Table 7.2 reports the ASR of the backdoor attack computed as in Equation

(2.7), for three different poisoning strategies, namely, RPS, OPS, and OPS-

GFS, and for different values of the poisoning ratio β and the strength of the

trigger ∆ts. We can observe the following:

• While no method is effective with low β, when the poisoning ratio in-

creases, ASR reaches very high values, getting close to 100% with the

OPS and OPS-GFS schemes. On the contrary, RPS is not effective

always resulting in a low ASR even with large values of β.

• Using a larger ∆ts allows to boost the ASR in all the cases, proving that

increasing the strength of the triggering signal at test time helps activate

the backdoor. This confirms the benefit of using a mismatched strength

during training and test, since this allows to improve stealthiness at

training time.

• By comparing the results of OPS and OPS-GFS, we see that the GFS

strategy slightly improves the ASR in many cases when β ≥ 0.3. The

gain is more easily observable by considering the minimum β allowing

an ASR larger than or equal to 0.80. While with OPS it is necessary to

poison 0.40 of the training set, OPS-GFS achieves the same or better

results with β = 0.3. The gain of OPS-GFS for β = 0.3 and ∆ts ≥ 0.2

is also remarkable, corresponding to an ASR 0.2 larger than that ob-

tained with OPS. In the other cases, the improvement is less evident.

In other cases, the improvement is often a minor one. This might be

due to the fact that the adversarial examples suppress the ground-truth
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Table 7.2: ASR for RPS, RPS-GFS, OPS and OPS-GFS for different poi-

soning ratio β and trigger strength ∆ts (∆tr = 0.07). Grey cells indicate

configurations achieving ASR ≥ 0.80.).

∆ts β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.07 0.025 0.022 0.022 0.019 0.067

0.1 0.033 0.029 0.028 0.028 0.107

0.2 0.048 0.046 0.045 0.056 0.229

0.3 0.054 0.050 0.049 0.068 0.272

(a) RPS

∆ts β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.07 0.031 0.053 0.104 0.124 0.294

0.1 0.036 0.076 0.161 0.241 0.454

0.2 0.051 0.141 0.309 0.526 0.680

0.3 0.065 0.183 0.390 0.663 0.749

(b) RPS-GFS

∆ts β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.07 0.022 0.166 0.524 0.748 0.928

0.1 0.028 0.255 0.645 0.904 0.975

0.2 0.044 0.441 0.785 0.978 0.999

0.3 0.052 0.482 0.792 0.976 1.000

(c) OPS

∆ts β = 0.1 β = 0.2 β = 0.3 β = 0.4 β = 0.5

0.07 0.025 0.056 0.6338 0.8018 0.8965

0.1 0.033 0.111 0.804 0.891 0.953

0.2 0.052 0.228 0.985 0.982 0.978

0.3 0.057 0.253 0.994 0.988 0.991

(d) OPS-GFS

features with respect to the model targeted by the attack. However,

including such adversarial samples among the samples used for training

the network (the same or a different one) might have the effect of induc-
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ing the network to learn a different solution, i.e., to converge towards a

different local minimum, in correspondence to which the features of the

ground-truth class the network looks at might be different.

We also verified that the presence of the backdoor does not degrade notice-

ably the performance of the rebroadcast detection module on normal inputs.

Figure 7.4 reports the accuracy achieved by F̃θ on Dts, computed via Equa-

tion (2.6) for the four different poisoning strategies, as a function of β. While

with RPS the accuracy of F̃θ does not change as β increases, remaining always

around 0.99 (which is the same accuracy of the model Fθ, trained on benign

data). Also the accuracy of RPS-GFS is not affected much by the attack,

with only a small drop when β increases (always remaining above 0.975).

With outlier poisoning, the accuracy decreases for β > 0.2. However, for

β ≤ 0.4, it remains above 0.95. Specifically, OPS achieves an accuracy of

0.976 when β = 0.3, and 0.962 when β = 0.4, while for OPS-GFS we have

accuracy values 0.959 and 0.966 for β = 0.4 and 0.3, respectively. In any case,

the performance degradation introduced by the backdoor is always lower than

0.05. Moreover, by observing the trend of the four strategies, we can see that

OPS and OPS-GFS have a steeper descent than RPS and RPS-GFS. This is

due to the fact that the DNN model has a limited capability to simultane-

ously learn to detect the triggering signal and carry out the alive/rebroadcast

classification task. Since with OPS and OPS-GFS the model learns the trig-

gering signal more efficiently, their accuracy on the primary task decreases

more quickly than for RPS and RPS-GFS. In any case, even with OPS and

OPS-GFS the performance drop on the classification task is less than 0.053.

We also monitored the computing time necessary to train the networks

with the 4 backdoor strategies and compared it with the time necessary to

train a clean network. We run our experiments on a server equipped with

an NVIDIA GeForce RTX2070 GPU, an i7-8700@3.20GHz CPU, and 32G of

memory. The number of samples in the training set was the same for all the

networks. In all cases, 20 epochs were sufficient to train the models for a

computing time of about 1 hour.
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Figure 7.4: Accuracy (ACC) of backdoored models, generated with the four

different poisoning strategies: RPS, RPS-GFS, OPS and OPS-GFS.

Impact on face recognition

We verified that the presence of the trigger does not impair the correct be-

haviour of the face recognition model. In fact, ACC ′(G,Dts) = ACC(G,Dts) =

1 on Dts, no matter which ∆ts ∈{0.07, 0.1, 0.2, 0.3} is used for poisoning.

Therefore, the correct identity is always identified, regardless of the presence

of the trigger, thus satisfying the harmless injection requirement.

7.6.2 Results with a different architecture and dataset

For these experiments, we only consider β = 0.3 and 0.4 that, based on

the previous results, allow to achieve an effective attack, without affecting

significantly the behaviour of the network on normal inputs.

We first evaluated the performance of the backdoor attack when the In-

ceptionI3D network is used to build the rebroadcast detector, instead of

ResNet18-LSTM. The ASR of the backdoor attack for the three poisoning

strategies is reported in Table 7.3, for the various ∆ts, and poisoning ratio

β ∈ {0.3, 0.4}. The advantage of outlier poisoning is confirmed also in this

case, for which an ASR around 0.99 can be achieved with rather small val-

ues of ∆ts. The OPS-GFS scheme provides slightly better performance than

OPS, with ASR around 0.99, even when ∆ts = 0.1. These are particularly

significant results, since in this case the mismatch between the architecture

used for the rebroadcast detector and the one used to build the surrogate
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model5 is stronger than before (a 3D CNN is used for the detection, while an

LSTM-based network is used by the attacker). It is also worth noticing that,

in contrast to the previous case, RPS is also effective for large values of ∆ts.

These results seem to suggest that it is easier to inject a backdoor into a 3D

CNN architecture than in a LSTM architecture.

In the absence of the backdoor attack, the accuracy of the rebroadcast

detector Fθ on Dts is 0.99. When β = 0.3, the backdoored models F̃θ gener-

ated via RPS, RPS-GFS, OPS and OPS-GFS achieve an accuracy equal to,

respectively, 0.972, 0.977, 0.945, and 0.942, on Dts. When β = 0.4, instead,

the values of accuracy are equal to 0.980, 0.980, 0.932, and 0.939. In sum-

mary, the reduction of performance of the backdoor detector F̃θ on benign

inputs remains always below 0.05 for β ≤ 0.4.

Table 7.3: ASR for RPS, RPS-GFS, OPS and OPS-GFS for different strength

∆ts and poisoning ratio β ∈ {0.3, 0.4} for the case of InceptionI3D rebroadcast

detector (∆tr = 0.07).

RPS RPS-GFS OPS OPS-GFS

∆ts β = 0.3 β = 0.4 β = 0.3 β = 0.4 β = 0.3 β = 0.4 β = 0.3 β = 0.4

0.07 0.144 0.206 0.183 0.254 0.921 0.962 0.942 0.985

0.1 0.311 0.426 0.379 0.500 0.982 0.990 0.996 0.993

0.2 0.790 0.778 0.744 0.834 1.000 0.990 0.998 0.998

0.3 0.916 0.908 0.873 0.934 1.000 0.992 0.999 1.000

The performance achieved by the attack when the rebroadcast detector

is trained on the MSU-MFSD dataset of alive/rebroadcast videos is shown

in Table 7.4. The attack is less effective than before, however, the results

follow the same pattern we observed before, with the outlier detection strategy

improving significantly the performance compared to RFS. Specifically, when

∆ts is larger than 0.2, the ASR is above 0.8. We also observe that there is no

significant difference between OPS and OPS-GFS, with the former achieving

better results when β = 0.3, and the latter when β = 0.4.

With regard to the accuracy of the rebroadcast detectors, for the benign

model Fθ we got ACC = 0.969, while for the backdoored detector F̃θ we

5We remind that the surrogate model is based on AlexNet-LSTM.
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got the following: when β = 0.3, the model achieves accuracies 0.931, 0.957,

0.943, and 0.930 for RPS, RPS-GFS, OPS, and OPS-GFS, respectively, while

for β = 0.4, the accuracies are 0.950, 0.961, 0.962, and 0.962.

Table 7.4: ASR for RPS, RPS-GFS, OPS and OPS-GFS for different strength

∆ts and poisoning ratio β ∈ {0.3, 0.4} when the MSU-MFSD dataset is used

to train the rebroadcast detector (∆tr = 0.07).

RPS RPS-GFS OPS OPS-GFS

∆ts β = 0.3 β = 0.4 β = 0.3 β = 0.4 β = 0.3 β = 0.4 β = 0.3 β = 0.4

0.07 0.173 0.265 0.168 0.274 0.405 0.527 0.298 0.626

0.1 0.250 0.392 0.283 0.400 0.588 0.702 0.464 0.788

0.2 0.487 0.703 0.503 0.680 0.823 0.847 0.713 0.951

0.3 0.597 0.813 0.584 0.812 0.875 0.870 0.787 0.982

7.7 Summary

In this chapter, we have described a new stealthy clean-label backdoor at-

tack against video rebroadcast detectors in face authentication systems. The

method exploits the peculiarity of the Human Visual System to design a tem-

poral chrominance trigger with reduced visibility. To make the attack effective

in the clean-label scenario, we have also introduced a new strategy, based on

outlier analysis, according to which the attacker chooses the video samples

that are most suitable for the attack, to force the network to rely on the trig-

gering signal to make its decision. No knowledge of the rebroadcast model

is required by OPS. Moreover, the use of a different trigger strength during

training (for backdoor embedding) and testing (for backdoor activation), with

a larger strength applied during testing, permits to employ a weaker triggering

signal for the poisoning of the training samples, thus making the attack more

stealthy. The effectiveness of the proposed attack is proven experimentally by

considering different architectures and datasets.

Although we considered the problem of video face authentication, the pro-

posed method is a general one and can be applied to other video classification

scenarios. Moreover, the proposed temporal triggering signal makes the at-

tack suitable to be implemented in the physical domain, e.g., by applying an
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ad-hoc physical alteration of the lighting conditions to inject the backdoor.

In a real-world situation, the attacker needs to know more information, like

whether the camera has an anti-flicker filter, the frame rate of the camera,

and so on, which makes the physical implementation more challenging.
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Abstract

In this part, we present a universal defence against backdoor attacks in

the image classification domain, operating at training-dataset-level. The

proposed defence can ‘universally’ defend against both corrupted- and

clean-label attacks, regardless of the type of trigger used by the attacker

to activate the malicious behaviour inside the network. The method is

effective also when a very small portion of the data is poisoned by the

attacker. The parameters of the defence are set on benign data, without

making any assumption on the behaviour of the attacker. An extensive

experimental campaign carried out considering handwritten digits, traffic

signs and fashion clothes classification tasks proves the effectiveness and

the universal property of our algorithm.





Chapter 8

A Universal Defence based on Clustering
and Centroids Analysis

“Invincibility lies in the defence; the possibility of victory in the attack.”

Sun Tzu

I
n this chapter, we describe the proposed universal defence method, named

Clustering and Centroids Analysis Universal Defence (CCA-UD), which

reveals whether a trained model is poisoned or not through inspection of the

training dataset.

CCA-UD overcomes the limitations of existing defences, which either work

only when certain conditions on the fraction of poisoned samples are met or are

effective only against some types of backdoor attacks. CCA-UD can defend

against both corrupted- and clean-label backdoor attacks, without making

specific assumptions about the shape, size, and visibility of the triggering sig-

nal. Moreover, the method can work with any percentage of poisoned data.

The universality of CCA-UD stems from i) the use of a well-performing clus-

tering algorithm, namely the DBSCAN algorithm, which is able to separate

the poisoned samples from the benign ones regardless of the percentage of

poisoned data; and ii) the exploitation of a sophisticated strategy to decide

whether a cluster includes poisoned samples or not. The basic idea behind

CCA-UD is to exploits a general misclassification behaviour that can be in-

duced in the feature space when the cluster contains poisoned samples.

In the rest of the chapter, we first provide the background knowledge in

Section 8.1, specifically including two state-of-the-art defences and a cluster-

ing algorithm exploited by CCA-UD. Then, we formalise the specific defence

model in Section 8.2, and describe the CCA-UD algorithm in Section 8.3.

Moreover, we introduce our experimental methodology in Section 8.4 and
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then report and discuss the results of the experiments we carried out in Sec-

tion 8.5. Finally, we analyse the generalisation of CCA-UD by evaluating it

against the backdoor attacks in more complex tasks, like CIFAR10 and face

recognition.

8.1 Background knowledge

As we mentioned in Section 2.2, defences against backdoor attacks can be

categorised into three different classes based on the knowledge available to

the defender and the level at which he operates: data-level, model-level, and

training-dataset-level. In the data and model-level defences, the defender is

assumed to have no control or knowledge on the training phase, which is under

the control of the attacker, and she may or may not have white-box access

to the released model at test time. In contrast, defences working on training-

dataset-level assume that the defender is the trainer of the model or anyhow

can access and inspect the training dataset to look for suspicious (poisoned)

samples.

This section provides the background knowledge necessary to understand

the universal training-dataset-level defence algorithm we have developed. Par-

ticularly, Section 8.1.1 describes two baseline training-dataset-level defences

[52] and [114], highlighting their strengths and limitations. Section 8.1.2 de-

scribes the density-based clustering algorithm utilised by the proposed de-

fence.

8.1.1 Defences based on Activation Clustering and Cluster

Impurity

An extensive overview of the defence methods working at training-dataset-

level has been provided in Section 4.3. In this section, we give the details of

the two methods in [52] and [114], already mentioned in Section 4.3, based

on Activation Clustering (AC) and Cluster Impurity (CI). To the best of our

knowledge, these defences are the most general ones among those proposed

so far. As discussed in Section 4.3, in fact, most of the other methods assume

that the defender has more, often unrealistic, knowledge about the backdoor

attack.
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Activation Clustering (AC)

For every class i of the training dataset, AC [52] analyses the feature rep-

resentation of the class. It first performs dimensionality reduction, from d

(dimension of the feature representation) to a dimension d′ = 2 via Principal

Component Analysis (PCA) [165], then it groups the samples of the class into

two clusters C1
i and C2

i via the K-means algorithm (with K = 2). The de-

tection of poisoned samples relies on the calculation of the relative class size

ratio, defined by:

ri =
min{|C1

i |, |C2
i |}

|C1
i |+ |C2

i |
. (8.1)

The range of possible values for ri is [0, 0.5]. When C1
i and C2

i have similar

sizes, class i is considered as ‘benign’, ‘poisoned’ otherwise. The rationale

behind this method is the following. When class i is benign, all its samples

tend to form one cluster in the latent space, so that K-means will split the

samples into two similar-size clusters. In the case of a poisoned class the

samples will form two clusters with significantly different sizes. Specifically,

given a threshold τ , a class i is judged as ‘benign’ if ri ≥ τ . Finally, for the

classes detected as poisoned, AC labels as poisoned the samples belonging to

the smallest cluster. In the case of perfect clustering, then, when i = t, we

have rt = β.

As a consequence of the assumption made on the cluster size, the AC

method does not work when β ≥ 0.5. In addition, the performance of AC

drop significantly when the number of poisoned samples is significantly lower

than the number of benign samples in a given class. This limitation is due to

the use of the K-means clustering algorithm, which does not work well when

there is a significant imbalance between the clusters [166].

Cluster Impurity (CI)

As we said in Section 4.3, in [114], given a class i, the GMM [116] is used

to directly analyse the samples’ representations and obtain clusters Ck
i (k =

1, ...,K), where K is automatically determined by using the Bayesian Infor-

mation Criterion (BIC) [117]. For each cluster Ck
i , the samples are aver-

aged filtered, by replacing each pixel value with the mean computed on the

neighbouring pixels, and the probability of a prediction disagreement between
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filtered and non-filtered samples is computed as indicated in the following

equation:

pki =

∑
xj∈Ck

i
1{F̃θ(µ(xj)) ̸= F̃θ(xj)}

|Ck
i |

, (8.2)

where 1{·} is the indicator function, that outputs 1 when the internal condi-

tion is satisfied, and µ(·) denotes the average filter. The rationale behind this

method is that the average filter can remove/mitigate the effect of the trigger-

ing signal, so that if Ck
i includes poisoned samples, after the average filter, all

these samples tend (with probability pki ) to be classified back to their ground-

truth classes. Then, to determine whether Ck
i is poisoned or not, CI measures

the KL divergence [167] between [1 − pki , p
k
i ] and [1, 0], corresponding to the

case of a benign class (where there is always a prediction agreement between

original samples and their filtered versions), that is, it computes the quantity

KL([1, 0]||[1 − pki , p
k
i ]) = − log(1 − pki ). Given a threshold τ , if KL ≥ τ , the

cluster is considered as ‘poisoned’; otherwise, as ‘benign’.

CI works with any value of the poisoned ratio β. However, it only works

under the assumption that the average filter can remove the triggering sig-

nal from the poisoned sample x̃j , with the prediction of a filtered poisoned

sample being different from the prediction of the non-filtered one, that is

F̃θ(µ(x̃j)) ̸= F̃θ(x̃j). Therefore, the effectiveness of CI is limited to specific

kinds of triggering signal, that is, triggers with high frequency components,

that can be removed by low pass filtering., e.g., the square 3-by-3 pixel [17]

and sinusoidal [76] pattern in Figure 8.1, whose strength is greatly reduced by

a 5-by-5 average filter. However, many triggering patterns can be robust to

the average filtering operation. This is for instance the case of the ramp pat-

tern proposed in [76] and shown in the bottom part of Figure 8.1, where the

ramp pattern is still present in the filtered image. Whenever the average filter

fails to remove the trigger, CI fails. Moreover, the above assumption makes

CI suitable only for the corrupted-label scenario as in the clean-label setting

the prediction made by the network for the filtered image would remain the

same.
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Sinusoidal Ramp3-by-3 pixel

Poisoned image Image after 5-by-5 average filter

Sinusoidal Ramp3-by-3 pixel

Figure 8.1: Example of trigger removal via 5-by-5 average filtering. The

average filter can eliminate the 3-by-3 pixel and sinusoidal pattern but can

not remove the ramp pattern from the poisoned samples.

8.1.2 Density-based Spatial Clustering of Application with

Noise

We describe the Density-based Spatial Clustering of Application with Noise

(DBSCAN) [168] algorithm, which is at the basis of the defence algorithm

we have developed. DBSCAN is a data clustering algorithm, which splits a

set of points into K clusters and possibly few outliers (not belonging to any

cluster), whereK is automatically determined by counting the areas with high

sample density. Specifically, given a point ‘A’ from the set, DBSCAN counts

the number of neighbours (including ‘A’ itself) within a distance ϵ from ‘A’.

If the number is larger than or equal to a threshold minPts, ‘A’ is defined

as a core point and all points in this ϵ-neighbourhood are said to be directly

reachable from ‘A’. If any of these points, say ‘B’ in this reachable set is again

a core point, the points in its ϵ-neighbours (of points directly reachable from

‘B’) are also reachable from ‘A’. The reachable non-core points are considered

as border points, while the points which are not reachable from any core point

are considered as outliers. By definition, only core points can reach non-core

points. A non-core point may be reachable, but no sample can be reached

from it.

To define a cluster, DBSCAN introduces another notion, that is the con-

cept of density-connectedness. We say that two points ‘A’ and ‘B’ are density-

connected if there is a point ‘C’ such that ‘A’ and ‘B’ are both reachable from

‘C’, that then must be a core point. A cluster, then, satisfies two properties:

i) the points within the cluster are mutually density-connected; ii) any point

directly-reachable from some point of the cluster, is part of the cluster. Then,
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the core points and all their reachable points compose a dense region which

constitutes a cluster. The intuition behind DBSCAN is to find out the dense

regions separated by border points. The final number of dense regions K

indicates the number of clusters.

With the above definitions in mind, the clustering process of DBSCAN can

be summarised as follows: 1) for each point judge whether it is a core point

or not; 2) then randomly choose one core point and search for all reachable

points from it. The core and reachable points are considered as one cluster;

3) Finally, repeat step 2 by selecting another core point, which has not been

chosen or reached yet. The algorithm stops when all core points are chosen

or reached. The cluster number K is equal to the number of times step 2. is

iterated. The points which are neither core nor reachable are considered to

be outliers.

The performance of DBSCAN is strongly affected by the choice of the

parameters involved in the definitions above, that is minPts and especially

ϵ, whose setting depends on the problem at hand.

As a strength, the density-based clustering algorithms, such as DBSCAN

[168] and the other variants (OPTICS [169] and HDBSCAN [170]), is able to

work well also in the presence of imbalanced clusters [171].

8.2 Defence model

The threat model considered by CCA-UD is the partial control scenario (see

Section 2.2.2). The attacker, called Eve, interferes with the data collection

process, by poisoning part of the training dataset, possibly modifying the la-

bels of the poisoned samples (corrupted-label modality). The trainer Alice

defines the model architecture, the learning algorithm, and the model hyper-

parameters, and trains the model using the possibly poisoned dataset. We

assume that Alice also plays the role of the defender, who inspects the training

dataset and the deployed model to detect the possible presence of poisoned

samples in the training set.

We observe that this is the same threat model considered by the AC and

CI methods in [52] and [114]. In the case of CI, however, the label corruption

by Eve is not optional, as the defence works only in corrupted-label modality.
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The defender’s goal, knowledge and capability are detailed in the following.

Defence goal: Alice aims at revealing the presence of poisoned samples

in the training dataset Dβ
tr, if any, and identify them.

Upon detection of poisoned samples, Alice might remove the poisoned

samples from the training set and use the clean dataset to train a sanitised

model

Formally, the defence algorithm, call it Det(), is defined as follows. For

every subset Dβ
tr,i of the training dataset Dβ

tr, Det(Dβ
tr,i) = (Pi, Bi), where Pi,

(res. Bi) is the set of predicted poisoned (res. benign) samples xj , in class i.

Then,

Det(Dβ
tr) = {(Pi, Bi), i = 1, ..., l}. (8.3)

Obviously, for a non-poisoned dataset, we should have Pi = ∅ ∀i.
Defence knowledge and capability: Alice can inspect the training

dataset Dβ
tr, and has white-box access to the trained model F̃θ. Moreover,

Alice can rely on a small benign validation dataset Dbe, that is, a small set of

non-poisoned samples.

8.3 Proposed universal defence: CCA-UD

The workflow of CCA-UD is illustrated in Figure 8.2. Given a class subsetDβ
tr,i

from the training dataset Dβ
tr, we first extract the features of the samples from

the latent space of the trained classifier and then we cluster the samples of the

class in the feature space. Specifically, the method resorts to the DBSCAN

algorithm to split the samples into multiple clusters Ck
i (k = 1, ...,Ki) and,

possibly, few outliers, not belonging to any cluster, where Ki is automatically

determined by the DBSCAN algorithm. The clusters are further processed

by a poisoned cluster detection module that, for each cluster Ck
i , computes

a cluster representative point, namely the centroid. Then, it computes the

deviation of this point from the centroid obtained on a benign cluster from

the same class and checks whether such deviation contains a (strong) feature

component capable to induce a misclassification to the i-th class, with a high

probability (larger than a prescribed threshold), when added to the features

of benign samples from the other classes. If this happens, all the samples

in Ck
i are considered to be poisoned; otherwise, they are considered benign.
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The outliers determined by the DBSCAN algorithm, instead, are directly

considered to be poisoned. Below, we describe in detail the functionality of

the two main blocks: feature clustering and poisoned cluster detection, shown

in Figure 8.2.

8.3.1 Feature clustering

Inspired by the idea in [52], that the poisoned and benign samples in one

class tend to group into separate clusters at the feature representation level,

the proposed method consists of three steps: i) for every class i, we get the

feature representations of all samples in Dβ
tr,i, that is, {Φ̃θ(xj), xj ∈ Dβ

tr,i},
where we remind that Φ̃θ indicates the part of F̃θ that maps input sample

into the latent space (the classification part of F̃θ, being indicated with Ψ̃θ).

We also assume that Φ̃θ includes a final ReLu layer so that its output is a

non-negative vector Φ̃θ(xj) with dimensionality d; ii) we reduce the dimension

of the feature space from d to d′ via Uniform Manifold Approximation and

Projection (UMAP) [172]; iii) we exploit DBSCAN to split the representation

set with reduced dimensionality into multiple clusters Ck
i (k = 1, ...,Ki). As

we mentioned, in addition to clusters, DBSCAN (may) also return a number

of outliers, not belonging to any cluster. Since the outlier ratio is very small

(< 0.01) for the choice of the hyperparameters made in our scheme (see Table

8.1), the samples corresponding to these outliers, forming the set Oi, are in

the poisoned set Pi.

Regarding step ii), we found the use of dimensionality reduction, and

UMAP in particular, to be beneficial for our scheme. It reduces the time

complexity of the algorithm, and makes it independent of the original dimen-

sionality d. Moreover, we avoid the problem of data sparsity, which tends

to affect feature representations in large dimensions, and often leads to very

large distances between all feature points, causing the failure of the cluster-

ing algorithm (‘curse of dimensionality’ problem [173]). The reduction of the

dimensionality is only exploited to run the clustering algorithm.

The exact setting of the parameters of DBSCAN that we have used in our

experiments, as well as the exact value of d′, are discussed in Section 8.5.1.
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8.3.2 Poisoned clusters detection (PCD)

To determine if a cluster Ck
i is poisoned or not, we first compute an aver-

age representation of the samples in Ck
i , i.e., the cluster’s centroid, then we

check whether this point contains a feature component that causes a mis-

classification in favour of class i when added to the features of benign sam-

ples of the other classes. More specifically, we first calculate the centroid

as r̄ki = E[Φ̃θ(xj)|xj ∈ Ck
i ], where E[·] denotes the averaging operator, that

performs the component-wise average on all vector positions. Vector r̄ki is a

d-dim vector1. Then, Alice computes the following

ρki = r̄ki − E[Φ̃θ(xj)|xj ∈ Dbe,i] (8.4)

where Dbe,i is the i-th class of the benign set Dbe, and E[Φ̃θ(xj)|xj ∈ Dbe,i]

is the average feature representation of the i-th class, say the class centroid.

Therefore, ρki measures the centroids’ deviation.

Finally, Alice checks if ρki can cause a misclassification error in favour of

class i by adding ρki to the feature representation of the benign samples in Dbe

belonging to any class but the i-th one. The misclassification ratio induced

by the centroids deviation of cluster Ck
i is computed as follows

MRk
i =

∑
xj∈Dbe\Dbe,i

1
{
Ψ̃θ

(
δ(Φ̃θ(xj) + ρki )

)
≡ i
}

|Dbe\Dbe,i|
, (8.5)

where Dbe\Dbe,i represents the validation dataset excluding the samples from

class i, that is, excluding Dbe,i, and δ is the ReLu operation to ensure the

Φ̃θ(xj) + ρki is a valid point in the latent space2.

For a given threshold τ , if MRk
i ≥ 1− τ , the corresponding Ck

i is judged

poisoned and its elements are added to Pi. Otherwise, the cluster is considered

benign and its elements are added to Bi. Given that MRk
i takes values in

[0, 1], the threshold τ is also chosen in this range.

An intuition of the idea behind CCA-UD, and the reason why the detec-

tion of poisoned samples works with both corrupted and non-corrupted label

1We remind that, although for simplicity clustering is applied in the reduced-dimension

space, the subsequent analysis of the clusters is performed in the full features space.
2As we mentioned in Section 8.3.1, any sample from the latent space should be a positive

vector
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attacks, is given in the following. Let us focus first on the clean-label attack

scenario. If cluster Ck
i is poisoned, the centroid r̄ki contains features of the

trigger in addition to the feature of class i. Then, arguably, the deviation of

this centroid from the average representation for class i is a significant one.

Ideally, subtracting to r̄ki the average feature representation of i-th class, ob-

taining ρki , isolates the trigger features. The basic idea behind CCA-UD is

that the trigger features in ρki will cause a misclassification in favour of class

i, when added to the features of benign samples of the other classes.

On the contrary, if cluster Ck
i is benign, the centroid r̄ki approximates

the average feature representation of the i-th class and then ρki has a very

small magnitude. In this case, ρki accounts for normal intra-class fluctuation

of the features and its addition to benign samples is not expected to induce

a misclassification.

Similar arguments, with some noticeable differences, hold in the case of

corrupted-label attacks. As before, for a benign cluster Ck
i , r̄

k
i approximates

the average feature representation of the i-th class and then ρki corresponds to

minor intra-class variations. In the case of a poisoned cluster Ck
i , the cluster

now includes samples from other classes (different from i) containing the trig-

gering signal. In this way, the cluster representative contains features of the

original class in addition to the features of the triggering signal. Two cases

are possible here. In the first case, the clustering algorithm clusters all the

poisoned samples in the same cluster. In this case, the features of the orig-

inal class will tend to cancel out while the features of the triggering pattern

will be reinforced by the averaging operator. As a consequence, the deviation

vector ρki will be dominated by the triggering features thus producing a be-

haviour similar to that we have described for the clean label attacks. In the

second case, poisoned samples originating from different classes are clustered

separately. In this case, the deviation vector will contain the the features of

the triggering signal and the features related to the difference between the

original class i and the target class t. The network, however, has been trained

to recognise the triggering signal as a distinguishing feature of class t, hence,

once again, the addition of the deviation vector to benign samples is likely to

cause a misclassification in favour of class t.

The situation is pictorially illustrated in Figure 8.3 for a 3 dimension
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case, in the case of a clean-label attack (a similar picture can be drawn in

the corrupted-label case). Class ‘3’ corresponds to the poisoned class. Due

to the presence of the backdoor, the poisoned samples are characterised by a

non-null feature component along the z direction. Due to the presence of such

component, the backdoored network classifies those samples in class ‘3’. On

the contrary, benign samples lie in the x-y plane. When it is applied to the

samples labeled as class-3 sample, DBSCAN identifies two clusters, namely

C1
3 and C2

3 , where the former is a benign cluster and the latter is a poisoned

cluster containing a non-null z-component. When the PCD module is applied

to C1
3 (left part in the figure), the deviation from the set of benign samples

of class i (ρ13) has a small amplitude and lies in the x-y plane, hence when

ρ13 is added to the other clusters it does not cause a misclassification error.

Instead, when the PCD module is applied to C2
3 (right part in the figure),

the deviation vector (ρ23) contains a significant component in the z direction,

causing a misclassification when added to the benign samples in Dbe,1 and

Dbe,2.

It is worth stressing that the idea behind CCA-UD indirectly exploits

a known behaviour induced by backdoor attacks, that is, the fact that the

presence of the triggering signal creates a kind of ‘shortcut’ to the target

class [36]. Since this is a general property of backdoor attacks, common to

both corrupted-label and clean-label attack methods, the proposed method is

a general one and can work under various settings.

8.3.3 Discussion

We observe that the universality of CCA-UD essentially derives from the gen-

erality of the proposed strategy for PCD and from the use of DBSCAN, that

has the following main strengths. First, differently from K-means, DBSCAN

can handle class unbalancing. Then, CCA-UD also works when the poisoning

ratio β small. Moreover, CCA-UD also works when the number of poisoning

samples is larger than the number of benign samples. Secondly, CCA-UD

also works when the class samples have large intra-variance (high variability

in the feature representations). In this scenario, DBSCAN groups the benign

data from the class into multiple clusters (a large Ki, Ki > 2, is estimated by

DBSCAN), that are then detected as benign clusters. In this setting, methods
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Figure 8.3: Pictorial and simplified illustration of the proposed cluster poi-

soning detection method. For class ‘3’, corresponding to the poisoned class,

two clusters have been identified by DBSCAN, namely C1
3 and C2

3 , where the

former is a benign cluster and the latter is a poisoned cluster. The upper and

lower figures illustrate the behaviour when our method is applied to C1
3 and

C2
3 , respectively.
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assuming that there are only two clusters, a benign cluster and a poisoned

one, do not work.

Finally, we observe that, thanks to the fact thatKi is directly estimated by

DBSCAN, in principle, our method can also work in the presence of multiple

triggering signals [174, 175]. In this case, the samples poisoned via different

triggers would cluster in separate clusters, that would be both detected as

poisoned by our method.

8.4 Methodology

This section is devoted to a description of the methodology we followed in

our experimental campaign. The specific metrics we used to measure the

performance are defined in Section 8.4.1. The experimental setting, namely,

the classification tasks and the attack setting is described in Section 8.4.2.

Finally, the setting of the parameters of the CCA-UD is discussed in Section

8.4.3.

8.4.1 Evaluation metrics

The performance of the backdoor attacks is evaluated by providing the accu-

racy ACC of the backdoored model F̃θ on benign data, and also the attack

success rate ASR when F̃θ is tested with poisoned data. A backdoor attack

is considered successful when both ACC and ASR of the backdoored model

F̃θ are greater than 90%.

To assess the performance of the defence algorithm, we measured the

TPR and FPR. Actually, when i corresponds to a benign class, there are no

poisoned samples in Dβ
tr,i and only the FPR is computed. More formally, let

GPi (res. GBi) define the set of ground-truth poisoned (res. benign) samples

in Dβ
tr,i. We define TPR and FPR on Dβ

tr,i as follows:

TPRi = TPR(Dβ
tr,i) =

|Pi ∩GPi|
|GPi|

, FPRi = FPR(Dβ
tr,i) = 1− |Bi ∩GBi|

|GBi|
,

(8.6)

Given that benign classes may exist for both poisoned and benign datasets3,

3The backdoor attack does not need to target all classes in the input domain
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we need to distinguish between these two cases. Hence, we introduce the

following definitions:

• Benign Class of Benign dataset (BCB): a class of a clean dataset. In

this case β = 0 and Dβ
tr,i only includes benign samples.

• Benign Class of Poisoned dataset (BCP ): a benign class of a poisoned

dataset, that is, a class in a poisoned dataset different from the target

class. Also in this case, Dβ
tr,i includes only benign data.

The difference between BCB and BCP is that in the former case F̃θ is a clean

model, while the latter is backdoored. In the following, we use FPRi(BCB)

and FPRi(BCP ) to distinguish the FPR in the two cases.

Similarly, the case of a target class t of a poisoned dataset is referred to as

Poisoned Class (PC) of a poisoned dataset. In this case, Dβ
tr,i=t includes both

poisoned and benign samples, then we compute and report TPRt(PC) and

FPRt(PC). TPR and FPR depend on the choice of the threshold τ . Every

choice of the threshold defines a different operating point of the detector.

In order to get a global view of the performance of the tested systems, we

provide the AUCt value ranging in the [0, 1] interval. The higher the AUCt

the better the capability of the system to distinguish poisoned and benign

samples. When AUCt = 1 we have a perfect detector, while AUCt = 0.5

corresponds to a random detector. In our experiments, we report the AUCt

of the PC case only, because in the BCB and BCP cases the true positive

rate cannot be measured.

According to the definitions in Equation (8.6), the false positive and true

positive rates are computed for each class. For sake of simplicity, we will often

report average values. For the case of benign class of a benign dataset, the

average value denoted by FPR(BCB), is calculated by averaging over all the

classes of the benign training dataset. To compute the average metrics in the

case of BCP and PC, we repeat the experiments several times by poisoning

different target classes with various poisoning ratios β in the range (0, 0.55] for

every target class, and by using the poisoned datasets to train the backdoored

models4. Then, the quantity FPR(BCP ) is computed by averaging the per-

4Only successful backdoor attacks are considered to measure the performance in the

various cases.
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formance achieved on non-target classes from all poisoned training datasets.

For the PC case, the average metrics FPR(PC), TPR(PC) and AUC are

computed by averaging the values measured on the target classes of the poi-

soned training datasets. We also measured the average performance achieved

for a fixed poisoned ratio β, by varying only the target class t. When we want

to stress the dependency of a metric on the poisoning ratio β, we respec-

tively add a subscript to the metrics as follows: FPRβ(BCP ), FPRβ(PC),

TPRβ(PC), AUCβ.

The tests run to set the detection threshold τ are carried out on the

validation dataset, consisting only of benign samples. Therefore, for each

class Dbe,i, we can only calculate the FPR(Dbe,i), and its average counterpart

is denoted as FPR(Dbe) =
∑

i FPR(Dbe,i)/C.

8.4.2 Network tasks and attacks

We consider three different classification tasks, namely MNIST, traffic sign,

and fashion clothes classification.

MNIST

In this set of experiments we trained a model to classify the digits in the

MNIST dataset [43], which includes n = 10 digits (classes) with 6000 binary

images per class. The size of the images is 28 × 28. The architecture used

for the task is a 4-layer network [176]. The feature representation of dimen-

sionality 128 is obtained from the input of the final Fully-connected (FC)

layer.

Regarding the attack setting, three different backdoor attacks have been

considered, as detailed below. For each setting, the training dataset is poi-

soned by considering 16 poisoning ratios β chosen in (0, 0.55]. For each β, 10

different poisoned training datasets are generated by choosing different classes

as the target class.

• Corrupted-label attack, with 3-by-3-pixel trigger (abbrev. 3-by-3 cor-

rupted): the backdoor is injected by adding a 3-by-3 pixel pattern to the

corrupted samples, as shown in Figure 8.1, and modifying the sample

labels into that of the target class.
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• Corrupted-label attack, with ramp trigger (abbrev. ramp corrupted):

Eve performs a corrupted-label backdoor attack using a ramp pattern [76]

as the trigger, as shown in Figure 8.1. The ramp triggering signal is de-

fined as υ(i, j) = j∆/W , 1 ≤ i ≤ H, 1 ≤ j ≤ W , where H × W is

the size of the image and ∆ is a parameter controlling the slope (the

strength) of the ramp. We set ∆ = 40.

• Clean-label attack, with 3-by-3-pixel trigger (abbrev. 3-by-3 clean): the

attack utilises the 3-by-3 pixel trigger pattern to perform a clean-label

attack.

Traffic signs

For the traffic sign classification task, we selected 16 different classes from the

GTSRB dataset [49], including 6 speed-limit, 3 prohibition, 3 danger, and 4

mandatory signs. Each class consists of 1200 colour images with size 28 ×
28 × 3. The model architecture used for training is based on ResNet18 [30].

The feature representation is extracted from the 17-th layer, that is, before

the FC layer, after an average pooling layer and ReLu activation.

With regard to the attack, we considered the corrupted-label scenario.

As triggering signal, we considered a horizontal sinusoidal pattern, defined as

υ(i, j) = ∆ sin(2πj/TW ), 1 ≤ i ≤ H, 1 ≤ j ≤ W , where H ×W is the size

of input image. The parameters ∆ and T are used to control the strength

and period of the trigger. In our experiment, we set ∆ = 20 and T = 1/6.

As before, for a given β, the network is trained on 16 poisoned datasets, each

time considering a different target class.

Fashion clothes

Fashion-MNIST dataset [177] includes 10 classes of grey-level cloth images,

each class consisting of 6000 images of size 28×28. The model architecture

used for classification is based on AlexNet [164]. The representation used by

the backdoor detector is extracted from the 5-th layer, at the output of the

ReLu activation layer before the first FC layer.

With regard to the attack, the poisoned samples are generated by per-

forming the attack in a clean-label setting. A ramp signal with ∆ = 256 is
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used as the triggering signal. Once again, for each choice of β, the backdoor

attack is repeated 10 times, each time considering a different target class.

For all the classification tasks, the benign validation dataset Dbe is ob-

tained by randomly selecting 100 samples from all the classes in the dataset.

8.4.3 Setting of defence parameters

To implement the CCA-UD method, we have to set the following parameters:

i) the reduced dimension d′ used for the clustering, ii) the parameters of the

DBSCAN algorithm, namely minPts and ϵ, and finally iii) the threshold τ

used by the clustering poisoning detection module. In our experiments, we set

d′ = 2, minPts = 20 and ϵ = 0.8. This is the setting that, according to our

experiments, achieves the best performance with the minimum complexity for

the clustering algorithm (being d′ = 2). The effect of these parameters on the

clustering result and the detection performance is evaluated by the ablation

study reported in Section 8.5.1.

With regard to τ , as mentioned before, AC, CI and CCA-UD all involve

the setting of a threshold for poisoning detection. For a fair comparison, we

set the threshold in the same way for all the methods. In particular, we set

τ by fixing the false positive rate. In general a value of τ results in different

FPR rates for different classes. To avoid setting a different threshold for

each class, then, we fixed it by setting the average FPR. In fact, setting the

average FPR exactly may not be feasible, so we chose the threshold in such

a way to minimise the distance from the target rate. Formally, by setting

the target false positive rate to 0.05, the threshold τ∗ for each method is

determined as:

τ∗ = argmin
τ

∣∣0.05− FPR(Dbe)
∣∣. (8.7)

8.5 Results

In this section we report the results of the experiments we have carried out

to evaluate the effectiveness of CCA-UD.
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8.5.1 Ablation study

We start the experimental analysis with an ablation study investigating the

effect of the three main hyperparameters CCA-UD, namely d′ (regarding

UMAP), minPts and ϵ (for DBSCAN) on the effectiveness of the method.

Based on this analysis, in all subsequent experiments, we set d′ = 2, minPts =

20 and ϵ = 0.8.

The influence of each parameter on the clustering result and the detection

performance can be assessed by looking at Table 8.1. The results refer to the

case of MNIST classification, with backdoor poisoning performed by using a

3-by-3 pixel trigger pattern and label corruption. Similar considerations can

be drawn in the other settings. The results in the table have been obtained

by letting τ = τ⋆ as stated in Equation (8.7). To start with, we observe that

when utilising τ∗ in BCB, BCP cases, the FPR value is close to 0.05 for all

the settings, while in the PC case FPR is close to or less than 0.05 for all

settings except for S9 and S16, when benign and poisoned samples collapse

into a single cluster. In addition to TPR and FPR, the table shows the

average number of clusters K and the average outlier ratio ζ identified by

DBSCAN.

From the first group of rows (S1-S4), we see that for a given setting of

minPts and ϵ, increasing d′ leads to a larger average number of clusters and

a larger fraction of outliers, as the DBSCAN algorithm results in a higher

number of densely-connected regions. A similar behaviour is observed by

increasing minPts or decreasing ϵ for a given d′ (second and third group of

rows in the table). Expectedly, when ϵ is too large, e.g. 10, DBSCAN always

results in one cluster thus failing to identify the poisoned samples. Based on

the results in Table 8.1, the setting S7 (d′ = 2, minPts = 20, ϵ = 0.8) and

S15 (d′ = 10, minPts = 20, ϵ = 3) yield the best performance, the former

having lower computational complexity, because of the lower dimension used

to cluster the samples in the features space (d′ = 2 instead of 10).

8.5.2 Threshold setting

The thresholds τ∗ obtained following the approach detailed in Section 8.4.3

for AC and CI and CCA-UD, are reported in Table 8.2 for the three different

classification tasks considered in our experiments. Given that the threshold is
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Table 8.2: Values of τ∗ obtained for the various classification tasks.

Method Handwritten digits Traffic signs Fashion clothes

AC 0.335 0.404 0.301

CI 3.018 1.673 4.738

CCA-UD 0.950 0.950 0.950

set by relying on the validation dataset, it is necessary to verify that the target

false positive rate (0.05 in our case) is also obtained on the test dataset. An

excerpt of such results is shown in Table 8.4 (a similar behaviour is observed

for the other classification tasks).

Our experiments reveal that, for AC and CI, the threshold determined via

Equation (8.7) does not lead to a good operating point. In particular, while

for CCA-UD, the threshold τ∗ set on the validation dataset yields a similar

FPR (around 0.05) in the BCB, BCP and PC cases, this is not true for AC

and CI, for which FPR(BCB), FPR(BCP ) and FPR(PC) are often smaller

than 0.05, reaching 0 in many cases. This leads to a poor TPR(PC). In

particular, with the AC method, when β > τ∗, both clusters are classified

as benign, and then TPRβ(PC) = FPRβ(PC) = 0, even when the method

would, in principle, be able to provide a perfect discrimination (AUCβ ≈ 1).

The difficulty in setting the threshold for the AC and CI method is also

evident from the plots in Figure 8.4-8.6, that report the FPR and TPR

values averaged also on β, for different values of the threshold τ . From these

plots, we immediately see that a threshold that works in all the cases can

never be found for AC and CI.

Due to the difficulties encountered to set the detection threshold for AC

and CI5 the results at τ∗ for these method are not reported in the other cases,

that is, for traffic sign and fashion clothes, for which we report only the AUCβ

scores. Note that the possibility to set a unique threshold is very important

for the practical applicability of a defence. Based on our results, CCA-UD

has this remarkable property.

5Note that the problem of threshold setting is not addressed in the original papers, since

different thresholds are used in the various cases.
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Table 8.3: AUC scores of three methods in the three different attacks

Method 3-by-3 corrupted Ramp corrupted 3-by-3 clean

AC 0.728 0.733 0.785

CI 0.964 0.178 0.488

CCA-UD 0.994 0.996 0.981

8.5.3 Results on MNIST

In this section, we evaluate the performance of CCA-UD against the three

types of backdoor attacks, namely, 3-by-3 corrupted, ramp corrupted, and 3-

by-3 clean. Such performance as compared to those obtained by AC and CI. In

Figure 8.4-8.6, in each row, the three figures report the average performance

of AC, CI and CCA-UD. The values of FPR(BCB), FPR(BCP ), TPR(PC)

and FPR(PC) are reported for each method, as a function of the detection

threshold τ . The behaviour of FPR(Dbe), which is utilised to determine the

threshold τ∗ (at 0.05 of FPR(Dbe)), is also reported. The position of τ∗ is

indicated by a vertical dotted line.

By observing the figure, we see that CCA-UD outperforms by far the

other two methods in all settings. In the first setting, we achieve TPR(PC)

and FPR(PC) equal to 0.983 and 0.051 at the optimal threshold τ∗, with

FPR(BCB) = 0.051 and FPR(BCP ) = 0.050. Instead, the performance

achieved by AC and CI at their optimal threshold is very poor. Similar

results are achieved for the second and third settings. In particular, in the

second attack, CCA-UD achieves TPR(PC) and FPR(PC) equal to (0.978,

0.050) at τ∗, and (0.966, 0.063) for the third one.

For a poisoned dataset, the AUC values in the three settings are provided

in Table 8.3. From these results, we argue that CI provides good discrimina-

tion performance (with an AUC only slightly lower than CCA-UD) against

the first attack, but fails to defend against the other two attacks. This is

an expected behaviour since CI does not work when the triggering signal is

robust against the average filter, as in the case of the ramp signal considered

in the second attack, or with clean-label attacks, as in last setting.

Table 8.4 shows the results obtained for different values of the poisoning

ratio β for the three different attacks against handwritten digits classification.
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(a) AC

(b) CI

(c) CCA-UD

Figure 8.4: Average performance of AC and CI, and CCA-UD for different

values of the threshold against the 3-by-3 corrupted backdoor attacks for

handwritten digits classification. The position of τ∗ is indicated by a vertical

dotted line.
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(a) AC

(b) CI

(c) CCA-UD

Figure 8.5: Average performance of AC and CI, and CCA-UD for differ-

ent values of the threshold against the ramp corrupted backdoor attacks for

handwritten digits classification. The position of τ∗ is indicated by a vertical

dotted line.
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(a) AC

(b) CI

(c) CCA-UD

Figure 8.6: Average performance of AC and CI, and CCA-UD for different

values of the threshold against the 3-by-3 clean backdoor attacks for handwrit-

ten digits classification. The position of τ∗ is indicated by a vertical dotted

line.
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The values of FPR and TPR have been obtained by letting τ = τ∗.

For the clean-label case, due to the difficulty of developing a successful

attack [76,85,178], the backdoor can be successfully injected in the model only

when β is large enough and, in any case, a successful attack could not always

be obtained in 10 repetitions. For this reason, in the third table, we report the

number of successfully attacked classes (cnt) with different poisoning ratios.

Upon inspection of Table 8.4, we observe that:

• With regard to AC, the behaviour is similar under the three attack sce-

narios. Good results are achieved for intermediate values of β, e.g. in

the range [0.2, 0.3]. When β < 0.134, instead, AUCβ of AC is smaller

than 0.786 and close to 0.5 for small β. In particular, AC cannot handle

the backdoor attack when the poisoning ratio is smaller than 0.1. More-

over, when β > 0.5, AUCβ goes to zero, as benign samples are classified

as poisoned and vice-versa. Finally, by comparing the AUCβ values in

Table 8.4a and Table 8.4c, we see that AC achieves better performance

against the corrupted-label attack than in the clean-label case.

• With regard to CI, the detection performance achieved in the first attack

scenario (3-by-3 corrupted) is good for all the values of β, with AUCβ

larger than 0.96 in most of the cases (with the exception of the case with

very small β, namely, β = 0.025, in which case AUCβ = 0.876), showing

that the CI method can effectively defend against the backdoor attack

in this setting, for every attack poisoning ratio. However, as expected,

CI fails in the other settings, with a AUCβ lower than 0.5 in all the

cases, confirming the limitations mentioned in Section 8.1.1.

• Regarding CCA-UD, good results are achieved in all the cases and for

every β value, with a perfect or nearly perfect AUCβ in most of the

cases. Moreover, by letting τ = τ∗, a very good TPRβ(PC) is obtained,

larger than 0.95 in most of the cases, with FPRβ(BCP ) and FPRβ(PC)

around 0.05. Overall, the tables prove the universality of CCA-UD that

works very well regardless of the specific attack setting and regardless

of the value of β. We observe that, since CCA-UD achieves a larger

AUCβ than AC and CI, CCA-UD outperforms AC and CI not only

when τ = τ∗ but also when τ is set adaptively.
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Finally, these results show that CCA-UD can effectively defend against

both corrupted- and clean-label attacks, thus confirming that the strategy

used to detect poisoning clusters exploits a general misclassification behaviour

presenting in both the corrupted- and clean-label attacks.

8.5.4 Results on traffic signs

Figure 8.7 shows the average performance of AC, CI, and CCA-UD on the traf-

fic signs task. Similar considerations to the MNIST case can be made. CCA-

UD achieves very good average performance at the operating point given by

τ∗, where TPR(PC) and FPR(PC) are (0.954, 0.085) (with FPR(BCB) =

FPR(BCB) ≈ 0.08), while, for the AC and CI, a threshold that works on

average can not be found. In the case of the poisoned dataset, the average

AUC of the detection AUC is equal to 0.897, 0.958, 0.993 for AC, CI, and

CCA-UD, respectively.

We observe that CI also got a good AUC. In fact, in this case, given

that the size of the input image is 28×28, the triggering signal, namely the

sinusoidal signal can be effectively removed by the 5× 5 average filter.

The results obtained for various β are reported in Table 8.5. As it can

be seen, CCA-UD gets very good performance in terms of TPRβ(PC) and

FPRβ (PC) measured at τ = τ∗ in all the cases. The AUCβ is also larger

than that achieved by AC and CI for all values of β. As observed before, while

CI is relatively insensitive to β, the performance of AC drop when β < 0.1 or

β > 0.5.

8.5.5 Results on fashion clothes

Figure 8.8 reports the results obtained by AC, CI, and CCA-UD on the fashion

clothes task. Once again, the performance achieved by CCA-UD is greatly

superior with respect to those achieved by AC and CI. In particular, by looking

at Figure 8.8, CCA-UD achieves TPR(PC) and FPR(PC) equal to (1.000,

0.050), with a FPR(BCB) = FPR(BCP ) ≈ 0.05. Regarding the AUC scores,

AUC of AC, CI, and CCA-UD are 0.900, 0.106, and 0.997, respectively. Since

the attack is carried out in a clean-label manner, the poor performance of CI

were expected. The results for various β reported in Table 8.6 confirm the
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(a) AC

(b) CI

(c) CCA-UD

Figure 8.7: Average performance of AC, CI, and CCA-UD for different values

of τ for the traffic signs task. The vertical dotted line indicates the position

of τ∗ for the various methods.
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Table 8.5: Performance of AC, CI, and CCA-UD for various poisoning ratios

for the traffic sign task. The FPR and TPR values are computed at τ = τ∗.

For AC and CI, due to the difficulties in threshold setting (see Section 8.5.2),

we only report AUC.

AC CI CCA-UD

β cnt AUCβ AUCβ AUCβ FPRβ(BCP ) TPRβ(PC) FPRβ(PC)

0.050 9 0.793 0.923 0.983 0.073 0.946 0.061

0.096 9 0.850 0.928 0.991 0.058 0.998 0.059

0.134 9 0.949 0.959 0.992 0.057 0.998 0.057

0.186 10 0.958 0.965 0.993 0.064 0.999 0.056

0.359 13 0.946 0.965 0.996 0.086 0.985 0.054

0.450 14 0.917 0.965 0.994 0.070 0.980 0.055

0.550 15 0.869 0.996 0.999 0.059 0.999 0.051

Table 8.6: Performance of AC, CI, and CCA-UD for various poisoning ratios

for the fashion clothes task. The FPR and TPR values are computed at

τ = τ∗. For AC and CI, due to the difficulties in threshold setting (see

Section 8.5.2), we only report AUC.

AC CI CCA-UD

β cnt AUCβ AUCβ AUCβ FPRβ(BCP ) TPRβ(PC) FPRβ(PC)

0.069 3 0.618 0.056 0.998 0.053 1.000 0.052

0.096 3 0.513 0.341 0.995 0.054 1.000 0.056

0.134 3 0.940 0.087 0.998 0.059 1.000 0.053

0.186 4 1.000 0.037 0.998 0.054 1.000 0.055

0.258 5 1.000 0.083 0.996 0.055 1.000 0.057

0.359 5 1.000 0.015 0.998 0.056 1.000 0.052

0.450 5 1.000 0.174 1.000 0.055 1.000 0.050

same behaviour, with CCA-UD getting very good performance in all the cases

always overcoming the other two methods.

8.6 Generalisation Analysis

In order to investigate the generality of our defence, we evaluated the per-

formance of CCA-UD against two additional tasks (CIFAR10 classification
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(a) AC

(b) CI

(c) CCA-UD

Figure 8.8: Average performance of AC, CI, and CCA-UD for different values

of τ for the fashion clothes task. The vertical dotted line indicates the position

of τ∗.
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and face recognition) involving more complex architectures and more realis-

tic datasets. Moreover, for each task, we implement two types of backdoor

attacks.

8.6.1 CIFAR10 classification

CIFAR10 dataset [50] consists of 60000 images belonging to 10 classes (6000

images per class). The dataset is split into two parts: 50000 images for train-

ing and 10000 for testing. The image size is 32× 32. The model architecture

is based on VGG19 [31], and the feature representation is extracted from the

final convolutional (16th) layer after the pooling layer and the flatten opera-

tion. We considered two types of backdoor attack against this network:

• Sample-specific attack: we adopted the warping-based trigger [55] shown

in Figure 8.9, performing an all-to-one corrupted-label attack, that is,

warping images that do not belong to the target class and mislabeling

them as belonging to the target class. Moreover, the attacker also injects

into the training dataset noise samples, which are warped randomly and

labeled correctly. The number of noise samples is twice the number of

poisoned samples.

• Source-specific attack: using the 3×3 pixel pattern shown in Figure 8.1,

the attacker chooses and poisons the samples from a specific source

class. Poisoning is carried out in a corrupted-label setting. Then, at

test time, only samples from the source class with the trigger lead to a

misclassification.

For the two types of backdoor attacks, we set five different poisoned ratios

ranging from 0.096 to 0.45, and evaluated the capability of CCA-UD and

the existing to detect the poisoned samples is a contaminated class. The

corresponding AUC for the two types of attack are shown in Figure 8.10a

and Figure 8.10b, respectively.

With regard to the sample-specific attack, we can observe: i) CCA-UD

achieves the best performance with AUC ≈ 1; ii) AC achieves good results

when β is large, but its performance drop when β is small. This is expected

since AC is limited to deal with imbalanced clusters (when β = 0.096); iii)

CI provides the worst performance, since the average filter cannot remove the
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Figure 8.9: From left to right, the original image, the warped poisoned image,

and the difference (trigger) between the warped and original images. For

visualisation, the difference is scaled to span the [0, 1] range.

warping trigger. With regard to the source-specific case, all three methods

work well with β ≥ 0.186, while the performance of AC decrease more rapidly

than for the other two when β ≤ 0.134.

Finally, by adopting the threshold estimation procedure described in Sec-

tion 8.4.3, we can still find a universal threshold θ∗ for this task. With it we

can calculate the average TPRβ(PC) and FPRβ(PC) that result to be equal

to 0.996 and 0.002, with an average FPRβ(BCP ) ≈ 0 over different values of

β.

8.6.2 Face recognition task

For the face recognition task, we selected 12 classes from YoutubeFace dataset

[46]. Each class contains more than 2600 images, and the whole dataset is

split for training and testing with ratio 9:1. The image size is 315 × 315.

The attacked architecture is based on the Inception-Resnet-v1 [32], and the

representations are extracted from the layer before the first FC layer (last

2nd layer). The intra-class variability of this dataset is pretty large, as it

can be seen by the feature distribution (after UMAP dimension reduction) of

class ‘Peter Goldenmark’ shown in Figure 8.11. In this figure, the representa-

tions of facial image of ‘Peter Goldenmark’ make up four clusters, and their

misclassification ratios are close to zero so that they are classified as benign

clusters.

We considered two types of backdoor attacks for this task:

• 30 × 30 corrupted: The triggering signal is based the same pattern
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(a) Sample-specific

(b) Source-specific

Figure 8.10: Performance against two types of backdoor attacks in CIFAR10,

we show the AUC of AC, CI, and CCA-UD, which detect the poisoned samples

from one contaminated class with poisoned ratio β from 0.096 to 0.45.

shown in Figure 8.1. However, due to the big input size, the pattern is

enlarged 10 times with a final size of 30 × 30. Poisoning is applied in

corrupted-label modality.

• Multi-backdoor: in this case, the attacker injects three backdoors into

the same model. Specifically, the attacker chooses three different tar-

get classes, and associates each one with a specific triggering signal, as

shown in Figure 8.12. At test time, each triggering signal will mislead

the model to a different target class. For each backdoor, the poisoning

setting is the same as the previous case.
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Figure 8.11: Feature distribution of class ’Peter Goldenmark’ of YoutubeFace

dataset after UMAP dimension reduction.

Figure 8.12: Three different backdoors are activated with different triggers

(from left to right, the trigger is located in the right-bottom, right-top, and

left-bottom corner). For each trigger, they mislead the model to different

target classes.

For the 30 × 30 corrupted-label attack (recognition task), we used CCA-

UD and other works to detect the backdoor injected with different β’s ranging

from 0.05 to 0.55, and evaluated the performance on detecting the poisoned

samples from a contaminated class. The AUC values are shown in Figure

8.13. From the table, we can observe that: i) the performance of AC drop

a little bit when β is small, since due its limitation with imbalanced cluster;

ii) CI still works even when the average filter cannot fully remove the trigger

(trigger size is 30 × 30 and average filter kernel is 5 × 5). This means that

the trigger pattern isn’t robust to average filtering; iii) CCA-UD achieve the



192 8. A Universal Defence based on Clustering and Centroids Analysis

Figure 8.13: AUC of CCA-UD and other works on detecting the poisoned

samples from one contaminated class of 30 × 30 corrupted attack on face

recognition task with poisoned ratio β from 0.05 to 0.55.

best performance; iv) AC drops to zero when β = 0.55, due to the use of the

relative size of the clusters to identify the poisoned samples.

For the multi-backdoor attack, the poisoning ratio β is set to 0.45 for all

the three backdoor. We evaluated the three defences for the three backdoors,

and found that all of them achieve an average AUC ≈ 0.99 for the three

target classes.

For CCA-UD, we calculated the universal threshold θ∗ = 0.95 as described

in Section 8.4.3, achieving an average TPRβ(PC) and FPRβ(PC) equal 0.993

and 0, and an average FPRβ(BCP ) ≈ 0 over different β values for both 30×30
corrupted and multi-backdoor attacks.

8.7 Summary

In this chapter, we evaluated the effectiveness of CCA-UD in a wide variety

of classification tasks and backdoor attack settings. The experimental results

confirm that the method can work regardless of the corruption strategy (cor-

rupted and clean label) and the type of trigger used by the attacker (local

or global trigger). Moreover, the method is effective regardless of the poi-

soning ratio used by the attacker, which can be either very small (very few

percentage points) or large. Furthermore, we proved that the performance

achieved by CCA-UD is always superior to those achieved by the existing
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methods, even when these methods are adopted in scenarios that meet their

(restrictive) operating conditions.

As a strength of CCA-UD, for every classification task, a detection thresh-

old can be set on a benign dataset that works against all the backdoor attacks,

that is, regardless of the specific attack setting (poisoning strategy, poisoning

rate). This property is very important for the practical applicability of the

method. We also stress that, although in our experimental campaign we focus

on image classification tasks, the proposed universal defence is a very general

one and can be exploited to defend against backdoor attacks in other fields

and application scenarios fields, besides image classification.





Chapter 9

Conclusion

I
n this chapter, we summarise the main contributions of the thesis and

present some ideas for future work in this field.

9.1 Summary and final remarks

When we started our research activity, a flurry of methods and solutions had

been published in the field of backdoor attacks, with only few and scattered at-

tempts to systematically categorise them. As a result, newly emerging works

claimed an advantage by comparing themselves with state-of-the-art methods

designed for different application scenarios and working conditions. There-

fore, we found it necessary to clearly define the threat models and propose

a unifying taxonomy to classify the attacks and defences proposed so far, in

order to highlight their suitability to different application scenarios, and more

easily compare them.

Motivated by the above, in the first part of the thesis, we first identified

and defined two different threat models, based on the capability of the at-

tacker: i) full control attacks, where the adversary corresponds to the model’s

trainer, and then is able to control the whole training process; ii) partial con-

trol attacks, where the adversary can only interfere with the data collection

process.

Then, we systematically reviewed the backdoor attacks, specifying the con-

trol scenario under which they can operate and their limitations. Specifically,

the backdoor attacks are grouped into: i) corrupted-label attacks, typically

carried out in the full control scenario, wherein the attacker can tamper with

the labels of the poisoned samples; and ii) clean-label attacks, more suitable for

the partial control scenario, according to which the attacker can not change

or define the labels of the poisoned samples.



196 9. Conclusion

We then reviewed the existing works on backdoor defences, proposing a

new taxonomy to categorise them based on the operating level: data-level,

model-level and training-dataset-level. The defences operating at the first two

levels can be applied in both the full control and partial control scenarios,

while the defences working at last level can only be applied in the partial

control scenario, where the defender has access to the training data.

In the second part of the thesis, we focused on a particular application

scenario, that is biometric face recognition, and proposed two backdoor at-

tacks that are suitable for two different threat models. We first proposed a

so-called MasterFace backdoor attack to inject a backdoor into a face veri-

fication model, which aims to judge whether two face images belong to the

same individual or not. The full control scenario is considered for this attack.

The MasterFace backdoor does not impair the normal face verification task of

the model, and permits the attacker to impersonate any enrolled user when

the network is fed with a key input. This backdoor attack is also exploited

for the design of a black-box watermarking scheme, to protect the intellectual

property of DNN models for face verification. Finally, we proposed a stealthy

clean-label backdoor attack to inject the backdoor into a video rebroadcast

detector. This attack in this case is carried out in the challenging partial con-

trol scenario, that imposes the use of an imperceptible temporal triggering

signal.

In the third part of the thesis, we took the role of the defender and pro-

posed a universal training-dataset-level defence, called CCA-UD against back-

door attacks, that can work in a wide variety of attack settings and classifica-

tion scenarios. The detection is based on a general misclassification behaviour

that is induced by the presence of the backdoor in the feature space, both in

the case of corrupted- and clean-label attacks.

CCA-UD is valid defence against both the corrupted- and clean-label at-

tacks, regardless of the trigger’s shape, size and visibility. Moreover, the

defence is also effective when the attacker poisons a very small fraction of

the training data. The performance achieved by CCA-UD is always superior

to those achieved by the existing methods, in the scenarios that meet their
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operating conditions.

9.2 Open issues

Notwithstanding the number of works published so far and the progresses

made in this thesis, there are several open issues that still remain to be ad-

dressed, the most relevant of which are detailed in the following.

• Improving the robustness of backdoors. The development of strategies to

improve backdoor robustness is an important research line that should

occupy the agenda of researchers. Current approaches can resist, up to

some extent, parameter pruning and fine-tuning of final layers, while

robustness against retraining of all layers and, more in general, transfer

learning, is often not at the reach of current techniques, the method

proposed in this thesis for face verification being an exception. Achiev-

ing such robustness is particularly relevant when backdoors are used for

DNN watermarking. The study of backdoor attacks in the physical do-

main is another interesting, yet rather unexplored, research direction,

calling for the development of backdoor attacks that can survive the

analog to digital conversion involved by physical domain applications.

• Development of an underlying theory. We ambitiously advocate the

need for an underlying theory that can help to solve some of the fun-

damental problems behind the development of backdoor attacks, like,

for instance, the definition of an optimal triggering signal. From the

defender’s side, a theoretical framework can help the development of

more general defences that are effective under a given threat model.

• Design of general defences. Existing defences are often tailored solu-

tions that work well only under very specific assumptions about the

behaviour of the adversary, e.g. on the triggering signal and its size.

In real-life applications, however, these assumptions do not necessarily

hold. Therefore, the development of more general defences, that can

work in a wide variety of attack settings are desirable. In this thesis, we

contributed to the above mission, with a universal defence method for

the case of defences working at training-dataset-level. A similar effort
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needs to be made for defences operating at data- and model-level with

the development of universal solutions, with minimal working assump-

tions on the attacker’s behaviour.



Bibliography

[1] M. Helmstaedter, K. L. Briggman, S. C. Turaga, V. Jain, H. S. Seung, and

W. Denk, “Connectomic reconstruction of the inner plexiform layer in the

mouse retina,” Nature, vol. 500, no. 7461, p. 168, 2013.

[2] H. Y. Xiong, B. Alipanahi, L. J. Lee, H. Bretschneider, D. Merico, R. K.

Yuen, Y. Hua, S. Gueroussov, H. S. Najafabadi, T. R. Hughes, and others,

“The human splicing code reveals new insights into the genetic determinants

of disease,” Science, vol. 347, no. 6218, p. 1254806, 2015.

[3] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural nets

as a method for quantitative structure-activity relationships,” J. Chem. Inf.

Model., vol. 55, no. 2, pp. 263–274, 2015.

[4] T. Ciodaro, D. Deva, J. De Seixas, and D. Damazio, “Online particle detection

with neural networks based on topological calorimetry information,” in Journal

of physics: conference series, vol. 368. IOP Publishing, 2012, p. 012030.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” pp. 1106–1114, 2012.

[6] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for

acoustic modeling in speech recognition: The shared views of four research

groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[7] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with

neural networks,” in Advances in Neural Information Processing Systems 27:

Annual Conference on Neural Information Processing Systems 2014, December

8-13 2014, Montreal, Quebec, Canada, 2014, pp. 3104–3112.



200 BIBLIOGRAPHY

[8] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Srndic, P. Laskov, G. Giac-

into, and F. Roli, “Evasion attacks against machine learning at test time,”

in Machine Learning and Knowledge Discovery in Databases - European Con-

ference, ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013,

Proceedings, Part III, ser. Lecture Notes in Computer Science, H. Blockeel,

K. Kersting, S. Nijssen, and F. Zelezný, Eds., vol. 8190. Springer, 2013, pp.
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[26] L. Muñoz-González, B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee,

E. C. Lupu, and F. Roli, “Towards poisoning of deep learning algorithms with

back-gradient optimization,” in Proceedings of the 10th ACM Workshop on Ar-

tificial Intelligence and Security, AISec@CCS 2017, Dallas, TX, USA, Novem-

ber 3, 2017, B. Thuraisingham, B. Biggio, D. M. Freeman, B. Miller, and

A. Sinha, Eds. ACM, 2017, pp. 27–38.



202 BIBLIOGRAPHY
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Nowadays, due to the huge amount of resources required for network training, 

pre-trained models are commonly exploited in all kinds of deep learning tasks, 

like image classification, natural language processing, etc. These models are 

directly deployed in the real environments, or only fine-tuned on a limited set of 

data that are collected, for instance, from the Internet. However, a natural 

question arises: can we trust pre-trained models or the data downloaded from 

the Internet? The answer is ‘No’. An attacker can easily perform a so-called 

backdoor attack to hide a backdoor into a pre-trained model by poisoning the 

dataset used for training or indirectly releasing some poisoned data on the 

Internet as a bait.  Such an attack is stealthy since the hidden backdoor does 

not affect the behaviour of the network in normal operating conditions, and the 

malicious behaviour being activated only when a triggering signal is presented 

at the network input.  

In this thesis, we present a general framework for backdoor attacks and 

defences, and overview the state-of-the-art backdoor attacks and the 

corresponding defences in the field image classification, by casting them in the 

introduced framework. By focusing on the face recognition domain, two new 

backdoor attacks were proposed, effective under different threat models. 

Finally, we design a universal method to defend against backdoor attacks, 

regardless of the specific attack setting, namely the poisoning strategy and the 

triggering signal. 
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