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Chapter 1

Introduction

Steganography is the art of invisible communication. The term invisible is not
linked to the meaning of the communication, as in cryptography in which the goal
is to secure communications from an eavesdropper, on the contrary it refers to hid-

ing the existence of the communication channel itself. The general idea of hiding
messages in common digital contents, interests a wider class of applications that
go beyond steganography. The techniques involved in such applications are collec-
tively referred to as information hiding [1]. For example, while it is possible to add
metadata about an image in special tags (exif in JPEG standard) or file headers, this
information will be lost when the image is printed, because metadata inserted in tags
on headers are tied to the image only as long as the image exists in digital form and
are lost as soon as the image is printed. By using information hiding techniques, it
is possible to fuse the digital content within the image signal regardless of the file
format and the status of the image (digital or analog).

In this thesis we will refer to cover Work or equivalently to cover image, or
simply cover to indicate the images that do not yet contain a secret message, while
we will refer to stego Work, or stego images, or stego object to indicate an image

with an embedded secret message. Moreover, we will refer to the secret message as
stego-message or hidden message.

Depending on the meaning and goal of the embedded metadata, several infor-
mation hiding fields can be defined, even though in literature the term ‘information
hiding’ is often used as a synonym for steganography. In digital watermarking, for
instance, the information is used for copy prevention, copy control, and copyright
protection. In this case the embedded data should be robust to malicious attacks in
order to preserve its goal.
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Covert
communication

Steganography

Watermarking

Information
hiding

Figure 1.1: Relationship between steganography and related fields.

The key difference between steganography and watermarking is the absence (in
steganography) of an active adversary mainly because usually no value is associated
with the act of removing the information hidden in the host content. Nevertheless,
steganography may need to be robust against accidental or common distortion like
compressions or color adjustment (in this case we will talk about active steganogra-
phy).

On the other side, steganography wish to communicate in a completely unde-
tectable manner which does not need to be required in watermarking. For this reason
we can consider steganography also as part of cover communication science. Figure
1.1 graphically shows connections between steganography and related fields. The
intersection between steganography and watermarking comprises active steganogra-
phy and some kinds of watermarking for authentication applications.

From an Information Theory perspective, we can introduce steganography by
adopting a slightly different point of view [2]. In [3] Shannon was the first that con-
sidered secrecy systems from the viewpoint of information theory. Shannon identi-
fied three types of secret communications which he described as

1. ‘concealment systems, including such methods as invisible ink, concealing a

message in an innocent text, or in a fake covering cryptogram, or other meth-

ods in which the existence of the message is concealed from the enemy’,

2. privacy systems,
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3. cryptographic systems.

With regards to concealment systems, i.e. steganography, Shannon stated that such
‘systems are primarily a psychological problem’ and did not consider them further.

Afterwards the concept of steganography was recovered by Simmons [4] in his
famous explanation of steganography described by mean of the prisoners’ problem.
According to the prisoners’ scenario two accomplices in a crime have been arrested
and are about to be locked in widely separated cells. Their only means of com-
munication after they are locked up is by way of messages conveyed for them by
trustees - who are known to be agents of the warden. The warden is willing to allow
the prisoners to exchange messages. However, since he has every reason to suspect
that the prisoners want to coordinate an escape plan, the warden will only permit
the exchanges to occur if the information contained in the messages is completely
open to him and presumably innocuous. The prisoners, on the other hand, are will-
ing to accept some risk of deception in order to be able to communicate at all, since

they need to coordinate their plans. To do this they have to deceive the warden by
finding a way of communicating secretely in the exchanges, i.e., of establishing an
hidden channel between them in full view of the warden, even though the message
themselves contain no secret (to the warden) information.

Today steganography is also seen as a way of ensuring freedom of speech in
military dictatorship countries or connected to homeland security. Steganography
has also been supposed to be used by terrorists to design terroristic attacks. Example
about the terrorism are the technical jihad manual [5] that is part of a terrorist manual
and the color of the Osama Bin Laden’s beard in its clips: military investigators think
that secret messages are associated each color of the beard to coordinate terrorist
cells.

Another topical target of steganography is computer warfare. New worms and
spywares stole a lot of information about users and then they have to find a way to
carry out this data by preventing any suspicion of transmission existence by antivirus,
firewall or data stream analysis.

From a different viewpoint, we sometimes know that there are some forbidden
transmissions [6] and we want to know who is sending secret information, for ex-
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ample, to the press. Apparently, during the 1980’s, British Prime Minister Margaret
Thatcher became so irritated at press leaks of cabinet documents that she had the
word processors programmed to encode the identity of secretaries in the word spac-
ing of documents, so that disloyal ministers could be traced. Later, steganography
has being used by some HP and Xerox printers [7] which embed small yellow dots
during the printing phase, by writing a coded message in which the serial number
of the printer and the print time is embedded. This security has been initially forced

onto printer manufacturers by the Federal Government because American dollar bills
were easily forged with such printers (one of the weakest currency at the time).

During the last few years image steganography research has raised an increas-
ingly interest. A variety of techniques have been proposed especially for a given
image file format like gif, jpeg or images represented in the pixel domain. In fact,
the main idea behind steganography undetectability is: less embedding changes to
the cover Work means a less detectable stego object. Even though this statement is
not completely true (as it shown in [8]), it represents a good starting point to develop
and to improve initial steganographic techniques proposed in the literature. More-
over, new channel coding techniques have been proposed to reduce the embedding

changes as the introduction of matrix embedding [9, 10] and Wet Paper Coding [11].
Other techniques [12, 13], specially in JPEG domain, use a subset of support to adjust
in some way image statistics that are changed by the message embedding. Recently
in [14] authors try to estimate the payload upperbound for a perfect undetectability
by using common JPEG steganalysis.

The dual goal of steganography pertains to steganalysis whose goal is to dis-
cover the presence of secret communication channels (secret messages) established
by steganography. For each steganographic method, several techniques (i.e. target

steganalysis) [15, 16, 17, 18, 19] have been proposed, however the current state of

art is moving to blind steganalysis [20, 21, 22, 15], i.e. techniques that are designed
to detect the widest possible range of steganography.

Modern steganalyzers summarize the image by a set of features which are able
to reveal the presence or the absence of a secret message embedded within the Work,
then these features are used to train a classifier like a Linear Discriminant classifier
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or a Support Vector Machine. After the training phase, the whole system based on
a feature extraction and a classification step is ready to use. This feature summa-
rization is highly dependent on the image itself, so it depends on image source and
hence pre-embedding processing and experimental settings of a technique should be
carefully described. The high dependence between steganalysis and images used in
experimental results can be explained by the follow considerations. Some stegan-
alyzers which work on high order statistics are highly dependent on high support

frequencies, but these frequencies change a lot depending on image source (cam-
era CCD, or scanner CCD) and the presence of lossy compression, i.e. a low pass
filtering, that can be applied to the image before the potential steganography [23].

The detectability of a hidden message highly depends on the payload, i.e. the
ratio between the length of the secret message and the size of the cover in which
it is embedded. In a real case we should consider that no a priori information is
given about the message length that could be embedded within the analyzed Work.
Moreover, in [24, 25], authors show that the detectability of a stego image is linked
to square root ratio between the payload and the image size.

When a new steganalyzer is proposed, all the above issues should be take into ac-
count. Moreover, authors should share all their experimental settings, including the
image database used for the test, to permit to validate and to make their work repro-
ducible. Unfortunately, steganographic literature usually lacks good comparisons
and reproducible research, so in this thesis we tried to adopt a fully reproducible
methodology applied both to steganography and steganalysis. In the next section, a
detailed description of the main contributions of the thesis is given.

1.1 Contributions of the thesis

The contribution of this thesis is threefold. From a steganalysis point of view
we introduce a new steganalysis method called ALE1 which outperforms previously
proposed pixel domain method. As a second contribution we introduce a compar-
ative methodology for the comparison of different steganalyzers and we apply it

1Amplitude of Local Extrema
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to compare ALE with the state-of-art steganalyzers. The third contribution of the
thesis regards steganography, since we introduce a new embedding domain and a
corresponding method, called MPSteg-color, which outperforms, in terms of unde-
tectability, classical embedding methods. Next, we briefly describe each contribu-
tion.

1.1.1 ALE

Recently Zhang et al. [26] have introduced an algorithm for the detection of ±1
LSB steganography in the pixel domain based on the statistics of the amplitudes of
local extrema in the grey-level histogram. Experimental results demonstrated perfor-
mance comparable or superior to other state-of-the-art algorithms. In this thesis, we
describe improvements to Zhang’s algorithm (i) to reduce the noise associated with
border effects in the histogram, and (ii) to extend the analysis to amplitude of local
extrema in the 2D adjacency histogram.

Experimental results on a composite database of 7125 images, averaged over
a 20-fold cross validation, with classification based on Fisher linear discriminants,
demonstrated that the improved algorithm exhibits significantly better performance
for the given dataset. The new algorithm, called ALE, uses 10 features derived in a
very efficient way from the 1D and 2D histograms, so it is also executable in a real
scenario in which the steganalysis results have to be given in realtime.

1.1.2 Comparative Methodology in Steganalysis

As a second contribution we discuss a variety of issues associated with compar-
ison of different steganalyzers and highlight some of these issues with a case study
comparing four steganalysis algorithms designed to detect ±1 embedding. In par-
ticular, we discuss issues related to the creation of the training and testing sets. We
emphasize that for steganalysis, it is very unlikely that the assumptions used to cre-
ate the training set will match conditions used during deployment. Consequently,
it is imperative that testing also investigates how performance degrades as the test
set deviates from the training data. The subsequent empirical evaluation of four al-
gorithms on four different test sets revealed that algorithm performance is highly
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variable, and strongly dependent on the training and test imagery. Experimental re-
sults clearly demonstrate that the performance is strongly image-dependent, and that
further work is needed to establish more comprehensive databases. It is also common
to assume that the embedding rate is known during testing and training, but this is
unlikely to be the case in practice. Once again, significant performance degradation
is observed. Experimental results also suggest that the common practice of training
at a low embedding rate in order to deal with a wide range of embedding rates during

testing is not as effective as training with a mixture of embedding rates.

1.1.3 MPSteg-color

The third contribution regards steganography for color images. Specifically, we
propose a new steganographic method that tries to use the fail-safe of steganalyzers
to improve the undetectability of the stego-message. In fact, although steganalyzers
do not know the hidden message, they rely on a statistical analysis to understand
whether a given signal contains hidden data or not. However this analysis disregards
the semantic content of the cover signal. We argue that, from a steganographic point
of view it is preferable to embed the secret message at higher semantic levels of the
image, e.g. by modifying structural elements of the cover image like lines, edges or
flat areas.

By the above consideration, we propose a new steganographic method, called
MPSteg-color, that hides the stego-message into some selected coefficients obtained
through a high redundant basis decomposition of the color image. The decompo-
sition is efficiently obtained by using a Matching Pursuit (MP) algorithm. In this
way the hidden message is embedded at a higher semantic level and hence it is more
difficult for a steganalyzer to detect it.

1.2 Thesis organization

This thesis is organized in two parts regarding steganalysis and steganography in
the pixel domain. The first part deals with steganalysis by introducing it as classi-
fication problem in Chapter 2 and by showing the state-of-art of steganalysis in the
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pixel domain in Chapter 3. Moreover, in Chapter 3 we describe a simple steganogra-
phy benchmark called ±1 embedding. In Chapter 4 we propose a new steganalyzer,
called ALE, which improves the±1 embedding detection especially for images with
high frequency noise in the histogram. Chapter 5 investigates experimental issue
in steganalysis by proposing a methodology to fully compare steganalyzer perfor-
mances. In the same chapter, we also compare the ALE steganalyzer with other
three state-of-art steganalyzers. Some considerations and future works are drawn in

Chapter 6.
In Part II we develop a new steganography which is less detectable than ±1

steganography. To do so we embed the message at a higher semantic level with
respect to the pixel domain by using the high redundant basis domain described
in Chapter 7. Due to the impossibility to use the MP algorithm as it is used in
image compression, we define an MP suitable approach for steganalysis in Chapter
8 and we fully describe the proposed technique, MPSteg-color, in Chapter 10. The
undetectability of MPSteg-color is investigated in Chapter 11 both against target and
general purpose steganalyzers. Chapter 12 presents some conclusions and future
works on MPSteg-color.



Part I

±1 embedding steganalysis





Chapter 2
Steganalysis: a classification problem

In this part of the thesis we will consider the steganalysis of±1 embedding tech-
nique by introducing some steganalysis concepts and by describing the steganalyzers
that are available in literature. Moreover we propose a new steganalyzer and we com-
pare it with the state-of-art steganalyzers in the pixel domain. While performing this
comparison we also describe a full benchmark methodology.

A steganalysis algorithm receives a Work and must decide whether it is a cover
or stego Work. Some steganalysis algorithms go further, attempting to estimate the
size of the embedded message and even the content of the message. In this thesis,
we are only concerned with the first decision step, and as such, we view steganalysis
as a binary classification problem, i.e. the Work is, or is not a stego Work.

Classification has a long history and we assume that the reader is familiar with
the basics of classification. It is not our intention to provide a detailed tutorial on the
subject of classification and the reader is directed to [27] for further information.

Blind steganalysis refers to algorithms that do not assume knowledge of the un-
derlying steganographic algorithm [28]. As such, these algorithms are intended to
detect the presence of a hidden message embedded with a wide variety of algorithms,
perhaps including unknown algorithms. Conversely, targeted steganalysis assumes
knowledge of the underlying steganographic algorithm, and as such, is intended for

the detection of a specific steganographic algorithm [28]. In this thesis, we are con-
cerned with targeted steganalysis, specifically the detection of ±1 embedding.

As said, steganalysis is a classification problem, hence, building a steganalyzer
can be viewed as a three step procedure:

1. For each image in a training set containing both cover and stego Works, extract
a feature vector,
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2. With the available training feature vectors, train a binary classifier for the clas-
sification of stego and non-stego Works,

3. Vary the decision parameters of the classifier, e.g. a threshold, to obtain the
receiver operating characteristic (ROC) curve for the training data and set the

value of this parameter to achieve the desired performance in terms of false
positive or true positives.

Most steganalysis algorithms can be described by (i) their feature set, and (ii) the
associated classification algorithm. The feature set is often handcrafted, and may be
derived from an analysis of one or more steganographic algorithms. In this Chapter,
we assume that the feature set is given and focus our attention on general issues
related to classification, while the problem of define a significant set of features will
be addressed in the next chapter. We do not consider the relative merits of various
classification algorithms, e.g. k-nearest neighbors (k-NN), Fisher linear discriminant
(FLD) analysis, support vector machines (SVM), etc. Instead, we consider generic
issues that are applicable to all classification algorithms. Specifically, we consider
two phases in the design of a classification system, namely the training phase and
the test phase. We now consider each in turn.

2.1 Training

During the training phase, the classification algorithm is presented with a set of
labeled data, i.e. images that are known to be either stego Works or cover Works.
The classification algorithm uses this information to adjust its associated parameters
in order to minimize the number of false positives and false negatives it classifies.

In steganalysis, a false positive corresponds to classifying a cover Work as a stego
Work. Similarly, a false negative corresponds to classifying a stego Work as a cover
Work. Both errors are important, but the relative cost of each error may depend on the
application. For example, if steganalysis is applied to the detection of covert terrorist
communication, a false negative may be more costly than a false positive. Such an
application may therefore accept a higher false positive rate, in order to ensure a
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lower false negative rate. Of course, resources must then be available to analyze the
data classified as stego Works, and more resources will be needed because of the
higher level of false positive. If resources are severely constrained, as for example
may be the case for police surveillance of hidden child pornography1, then a different
compromise may be sought that seeks to reduce the number of false positives, even
though this will be at the expense of increasing the number of false negatives, i.e.
failing to detect actual cases.

Labeled examples of both cover images and stego images are needed. Cover
images are in abundance. They are available from cameras, the Internet and stan-
dardized databases. However, in order for experimental results to be reproducible,
the dataset must be publicly available. And for the experimental results to be com-

parable, it is necessary to use the same database for various algorithms, otherwise
variations in performance may be attributable to variations in the database rather than
in the algorithm. The steganalysis community has recognized this and a number of
databases have become de facto standards for experimentation. These databases are
described in Chapter 5.

The type of imagery contained in these databases varies considerably. It is de-
rived from a variety of sources, i.e. cameras, outdoor scenes, indoor scenes, etc,
and is stored in a variety of different formats, i.e. images may have never been
compressed or have been compressed using a number of lossy compression algo-
rithms that introduce a variety of statistical artifacts. The effect of these variations
has not been discussed in detail. However, experimental results described in Chap-
ter 5 clearly indicate that the performance of a single algorithm can vary greatly,
depending on the database.

Since performance is so affected by the database, it is imperative to (i) charac-
terize each database and understand what characteristics affect performance, (ii) test
on multiple standardized databases in order to quantify the variation in performance
due to the dataset, and (iii) develop new databases that contain a wider variety of
training imagery.

1Note that while child pornography is often cited as an application for steganalysis, we are unaware
of any documented case of this. To the best of our knowledge, the closest case is the “twirl face”
pedophile in Thailand [29] which is a long shot away from any kind of steganography.
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For targeted steganalysis, the labeled stego images are usually generated from the
cover images by applying the known steganographic algorithm to the cover images.
For blind steganalysis, a set of known steganographic algorithms can be used to
generate a labeled training set. In this case, the hope is that the resulting classifier
will at least learn to classify stego Works generated by this set of algorithms. And
perhaps will even generalize to previously unseen algorithms. Alternatively, one can
try to devise a model of cover content and detect whenever the content under test

deviates from this model [30].

Even in the case of target steganalysis, generation of the labeled set is not straight-
forward. In particular, every steganographic algorithm will have a variety of param-
eter setting. What values should be used to generate the stego images? There is no

definitive answer to this question. Rather, it depends on the particular application
scenario. In an ideal situation, the steganalyst would have information about the pa-
rameter settings used by the adversary. However, such a scenario is very unlikely. In
the absence of this knowledge, it is necessary to deal with all possibilities.

Let us consider the embedding rate, which is a parameter common to all stegano-

graphic algorithms. The embedding rate, also referred to as the relative message
length, is the ratio of the covert message length (in bits) to the number of samples
in the cover Work. It is well-known that the lower the embedding rate, the more
difficult it is to reliably detect a stego Work. Despite the fact that the embedding rate
is unknown and also likely to vary, it is common to train using a single embedding
rate (and to test with the same). Clearly this represents a best-case scenario that is
unlikely to be achieved in practice. However, if sufficient resources are available,
then it may be possible to run multiple steganalysis algorithms, each trained for a
specific set of parameter settings. If the number of parameters is small, this may be
practical. If not, then it is necessary to train (and test) using a range of parameter
settings2.

2This issue is examined further in Chapter 5.
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2.2 Testing

Once the training phase is complete, the classification system must be tested.
Clearly, the test data must be different from the training data. After all, when the
steganalysis system is deployed, it will be analyzing previously unseen data. We
therefore need to be confident that the system does not suffer from over-learning.
Testing on the training set does not provide us with this confidence (surprisingly,
a number of papers on steganalysis do not follow this rule and classification rates
sometimes are only reported on the training data).

2.2.1 Cross validation

A database of images must be divided into both a training and a test set. Ide-
ally, this partitioning should be made by randomly assigning images to one or other

of the two sets, in order to avoid any bias. The size of the two sets does not need
to be equal. To simulate real world conditions, it may be desirable to have a much
smaller training set to account for the fact that there is much more content available
worldwide than any database being used in a lab. Of course, this may introduce
strong performance variations depending on the content selected for training. To ad-
dress this problem, it is a common practice to repeat the training and testing multiple
times. This is referred to as k-fold cross validation. One can then assess the stability
of the steganalysis system by analyzing the detection performances statistics.

2.2.2 Performance measures

There are a number of performance measures that are of interest in steganalysis.
The most common measures are the false positive and false negative rates. Since
these two measures are intimately coupled, it is also common to depict these rates
in the form of a receiver operating characteristic (ROC) curve. A limitation of such
measures is that they do not provide a single numerical figure of merit. To address
this, the area under the ROC curve is occasionally used as such.
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Table 2.1: Binary classification outcomes.
True Class

p n

Hypothesized p true positives (TP ) false positives (FP )

Class n false negatives (FN ) true negatives (TN )

Column totals: P N

False positives and negatives

The steganalysis problem is a binary classification problem - is or isn’t the test
instance (image) a stego image? As such, there are four possible outcomes, which
are illustrated in Table 2.1. These are:

1. True positives, i.e. test instances that are correctly labeled as stego Works;

2. True negatives, i.e. test instances that are correctly labeled as non-stego Works;

3. False negatives, i.e. test instances that are incorrectly labeled as non-stego
Works;

4. False positives, i.e. test instances that are incorrectly labeled as stego Works.

If P and N denote the real number of positive and negative instances, and TP and
FP denote the predicted number of true positives and false positives, respectively,
then the true positive rate, tp is defined as

tp =
TP

P
, (2.1)

and the false positive rate, fp as:

fp =
FP

N
. (2.2)
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Common performance metrics which can be derived from these include preci-
sion, recall, accuracy and F-measure:

Precision =
TP

TP + FP
, (2.3)

Recall =
TP

P
, (2.4)

Accuracy =
TP + TN

P + N
, (2.5)

F−measure =
2

1/precision + 1/recall
. (2.6)

Receiver Operating Characteristic

The four classification outcomes, true and false positives, and true and false neg-
atives, are coupled. For example, it is trivial to achieve a true positive rate of 100%
by labeling all test instances as positive. Of course, this is at the cost of a 100% false
positive rate. To better understand this coupled relationship, the receiver operating
characteristic (ROC) curve plots the true positive rate against false positive rate. A
typical ROC curve is illustrated in Figure 2.1.

A detailed discussion of the receiver operating characteristic can be found in
[31]. A brief summary of some key points are now provided.

In a real scenario, a given classifier produces a single point on a ROC curve.
However, all classifiers have some form of implicit or explicit decision threshold,

and by varying this threshold it is possible to generate a full ROC curve. Random
guessing will produce points along the diagonal line. A curve below the diagonal
implies that simply inverting the binary decision would give a better classifier.

When k-fold cross validation is performed, we essentially have k such ROC
curves, which we must merge in some way. There are a number of ways in which
this can be done.

The most straightforward way is to merge the results for the k-trials into one
single “trial” and plot the associated ROC curve as before. A limitation of this pro-
cedure is that it does not provide an associated variance measure for each point.

Given the k-trials, we have k corresponding ROC curves. If we consider the
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Figure 2.1: Example Receiver Operating Characteristic (ROC) curve.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
po

si
tiv

es

Figure 2.2: k = 5 individual ROC curves.
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Figure 2.3: Vertical averaging.
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Figure 2.4: Threshold averaging.
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x-axis, i.e. the false positive rate, as an independent parameter that is under our
control, then for a given fixed false positive rate, we can average the true positive
rates, as depicted in Figure 2.3. The vertical lines at each point depict the uncertainty
associated with the average. The length of the line can represent a percentile range,
or the minimum and maximum values of the true positive rate for the given false
positive rate. In this thesis, we show minimum and maximum values.

In practice, the false positive rate is not directly under our control, but rather
is a function of a threshold, t, that controls both the true and false positive rates.
Thus, for a fixed threshold, t, we can determine both the true and false positive rates
for each of the k ROC curves and average these together, as depicted in Figure 2.4.
Now the uncertainty associated with each point is two-dimensional, reflecting the
variation in both the true and false positive rates for each of the k curves.

Area under the ROC curve

It is sometimes desirable to have a single scalar value to describe the perfor-
mance of an algorithm. One method for doing so is to calculate the area under the
ROC curve, (AUC). The AUC has a value form 0 to 1, but since the diagonal line,
reflecting random performance, has an area of 0.5, the AUC typically ranges from
0.5 to 1. Fawcett [31] points out that (i) the AUC measures “the probability that
the classifier will rank a randomly chosen positive instance higher than a randomly

chosen negative instance”, and (ii) it is closely related to the Gini coefficient [32].

2.3 Fisher Linear Discriminant Analysis

In this thesis we focus the attention on steganalyzer features, instead of taking
into account the classifier. For this reason we decided to use a linear classifier. Even
though we can obtain better results with Support Vector Machines (SVM) or other

classifiers (which have a lot of settings), we prefer to give to the reader a fully repro-
ducible approach.

Fisher Linear Discriminant (FLD) analysis seeks directions that are efficient for
discrimination. The goal is to find an orientation u for which the samples in the
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dataset, once projected onto it, are well separated. Let us assume that a dataset D is
made of N d-dimensional samples x1, . . . ,xN , N1 being in a subsetD1 correspond-
ing to one class and N2 being in a subset D2 corresponding to the other class. The
first step of FLD analysis consists in computing the d-dimensional sample mean of
each class:

mi =
1
Ni

∑

x∈Di

x. (2.7)

Next, the scatter matrix SW = S1 + S2 is computed using the following definitions:

Si =
∑

x∈Di

(x−mi)(x−mi)t. (2.8)

Finally, the direction of projection u is given by:

u = S−1
W (m1 −m2). (2.9)

This vector u defines a linear function y = utx which yields the maximum ratio
of between-class scatter to within-class scatter. The interested reader is redirected
to [27] for further details (pp. 117–121).





Chapter 3
±1 embedding: state of art

In this chapter we describe the scenario this thesis is working on. Mainly we
introduce a common steganographic algorithm known as±1 embedding, also called
LSB matching, which is a common used technique to embed messages in the pixel
domain. Due to its simplicity, its efficiency, and its undetectability,±1 embedding is
often used as a benchmark for steganalysis and steganography. This simple evolution

from classical LSB is highly undetectable specially when the length of the embedded
message is smaller than the length of the embedding support.

We also introduce two state of art steganalyzers, by describing their feature ex-
traction method. The first one is a blind method, while the second steganalyzer is a
simple feature steganalyzer developed by analyzing artifacts specific to ±1 embed-
ding.

3.1 ±1 embedding steganography

The simplest technique used in steganography is the Least Significative Bit (LSB)
also called LSB replacement. To illustrate LSB replacement, let us consider grayscale
images with pixels values in the range 0 . . . 255 as cover Works. LSB steganography
replaces the least significant bit of each pixel value in the image with the correspond-
ing bit of the message to be hidden. When LSB flipping is used, an even-valued pixel
will either retain its value or be incremented by one. However, it will never be decre-
mented. The converse is true for odd-valued pixels. This asymmetry introduces
a statistical anomaly into the intensity histogram – pairs of intensity values, specifi-
cally 0-1, 2-3 etc., will, on average, exhibit the same frequency if the image is a stego
Work. This can be exploited for steganalysis purposes, as described in [33, 34, 35].
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LSB matching, also known as ±1 embedding is a slightly more sophisticated
version of least significant bit (LSB) embedding. Rather than simply replacing the
LSB with the desired message bit, the corresponding pixel value is randomly in-
cremented or decremented whenever the LSB value needs to be changed1. By so
doing, the asymmetry present in LSB flipping is almost eliminated2. Luckily for
the steganalyzer, other statistical anomalies are created that still permit discrimina-
tion between cover and stego Works. However, these anomalies are more subtle and

discrimination accuracy is significantly lower than for LSB embedding.
In formulas, ±1 embedding can be described as follows:

ps =





pc + 1, if b 6= LSB(pc) and
(
κ > 0 or pc = 0

)

pc − 1, if b 6= LSB(pc) and
(
κ < 0 or pc = 255

)

pc, if b = LSB(pc)

(3.1)

where κ is an i.i.d. random variable with uniform distribution in {−1, +1}, and pc

and ps are respectively the pixel value of the cover and the pixel value of the stego
image. This process can be applied to all the pixels in the image or only for a pseudo-
randomly chosen image portion, when the embedding rate, ρ, is less than one, i.e.
the length of the hidden message is less than the number of pixels in the image.

3.2 ±1 embedding steganalyzers

The next sections describe a blind and a target steganalyzer which are the state
of art of steganalysis in the pixel domain.

3.2.1 High Order Statistics of the Stego Noise (WAM)

Since ±1 embedding is simply a matter of adding or subtracting 1 to a subset
of pixel values, it can be modeled as the addition of high frequency noise. In [10],

1Note that this strategy may affect bit-planes other than the LSB plane. For example, if the secret
bit is a “0”, and the original 8-bit pixel value is 01111111, then incrementing this value results in
10000000.

2The ±1 embedding has asymmetries only for 0 and 255 pixel values in which no random choice
can be applied due the lowerbound and upperbound borders.
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Goljan et al. suggested estimating the stego noise and characterizing it with some
central absolute moments. While their algorithm is a blind steganalysis algorithm,
i.e. it is not designed to specifically detect ±1 embedding, it seems well suited to do
so.

The algorithm starts by computing the first level wavelet decomposition of the
input image with the 8-tap Daubechies filter. The resulting three frequency subbands
(vertical v, horizontal h, and diagonal d) are then denoised with a Wiener filter, as
follows:

bden(i, j) =
σ̂2
b(i, j)

σ̂2
b(i, j) + σ2

0

b(i, j), (i, j) ∈ I (3.2)

where b is one of the three subbands, I is a bidimensional index set used to run
through the whole subband, and σ2

0 = 0.5. The local variance, σ̂2
b(i, j), at position

(i, j) in the subband b is estimated by:

σ̂2
b(i, j) = min

N∈{3,5,7,9}
max


0,

1
N2

∑

(i,j)∈NN
i,j

b2(i, j)− σ2
0


 , (3.3)

where NN
i,j is the square N ×N neighborhood centered at pixel location (i, j). The

noise residual, rb = b − bden, is then computed, together with its first p absolute
central moments. Specifically,

mp
b =

1
|I|

∑

(i,j)∈I
|rb(i, j)− r̄b|p , (3.4)

where r̄b is the mean value of the estimated stego noise in subband b. The first 9
central moments, i.e. p = 1 · · · 9, for each of the three subbands are calculated to
obtain a 27-dimensional feature vector, fWAM, that is used for steganalysis:

fWAM =
{
mp

b | b ∈ {v,h,d}, p ∈ [1, 9]
}
. (3.5)

Due to its construction, this system is referred to as Wavelet Absolute Moment
(WAM) steganalysis. Further details can be found in [10]. It should be noted that
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this method is not specific to ±1 steganography and can therefore be used to detect
other steganographic techniques. Authors shows in [10] that by using a 0.5bpp of
payload, WAM produces only 1.77% false positives at 50% of detection rate, and the
AUC value is above 0.95.

Even though WAM algorithm provides a rather good classification accuracy, it
has main three weaknesses. The first one is that it looks for a fingerprint of the
steganography in the noisy region of the image. For a good detection, the ratio be-
tween the steganography fingerprint and the image noise should be high. The second
one is that the feature vector has 27 elements, but for a given scenario (i.e. by ana-
lyzing images that come from a specific source and by using the same steganography

with a fixed payload) only a subset of these are useful to detect stego image. More-
over, by changing the scenario, it changes the feature subset too. This behavior is not
good when the steganalyzer works in a real scenario in which there is no knowledge
about the images under analysis. The last one is the computational complexity for
the feature extraction, i.e. a wavelet full frame decomposition and the calculation
of several high order statistics on an huge amount of wavelet coefficients. When a
steganalysis system have to work with a big image database or an Internet image
streaming, it is onerous to apply a real time analysis by using WAM.

3.2.2 Center of Mass of the Histogram Characteristic Function (2D-
HCFC)

In [36], Harmsen and Pearlman noted that±1 embedding steganography induces
a low-pass filtering of the intensity/color histogram h1 of the image3. They showed
that, when looking at the intensity histogram,±1 steganography reduces to a filtering
operation with the kernel:

ρ
4 1− ρ

2
ρ
4

where ρ is the embedding rate. This means that the histogram of a stego Work
contains less high-frequency power than the histogram of the corresponding cover

3In this thesis, all histograms will be considered to be implicitly normalized by the total number of
samples.
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image. In other words, the Fourier transform H1 of the intensity histogram, also re-
ferred to as the Histogram Characteristic Function (HCF), is likely to be significantly
affected by ±1 embedding steganography. In fact, its center of mass, defined as

c1(H1) =
∑127

k=0 k‖H1(k)‖∑127
k=0 ‖H1(k)‖ (3.6)

will be shifted toward the origin. In eq.(3.6) summations are from k = 0 to 127
to avoid the symmetric parts of the Fourier transform. This approach can be ex-
tended to multidimensional signals, e.g. RGB images, by using a multidimensional
Fourier transform and computing a multidimensional center of mass. Experimental
results [23] have shown that the HCF strategy performs better with RGB images than
with grayscale images.

Ker [23] suggested that this difference in performance is due to a lack of sparsity
in the histogram of grayscale images. To address this issue, Ker proposed using
a two-dimensional adjacency histogram, h2(k, l), which tabulates how often each
pixel intensity is observed next to another:

h2(k, l) =
∣∣∣
{
(i, j) ∈ I | p(i, j) = k, p(i, j + 1) = l

}∣∣∣ (3.7)

where p(i, j) is the pixel value at location (i, j) in the input image, and I is a bi-
dimensional index set which runs through all pixel locations in the image. Since
adjacent pixels have in general close intensity values, this histogram is sparse off the
diagonal. ±1 embedding steganography reduces to low-pass filtering the adjacency
histogram with the following kernel:

(ρ
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As a result, in the same way as in the 1D case, the center of mass of the 2-D histogram
characteristic function, H2, obtained with a 2-D Fourier transform, is shifted toward
the origin. However, to obtain a scalar feature, Ker suggested to use the center of
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mass of the 2D-HCF projected onto the first diagonal:

c2(H2) =
∑127

k=0

∑127
l=0(k + l)‖H2(k, l)‖∑127

k=0

∑127
l=0 ‖H2(k, l)‖ . (3.8)

This alternative feature has been reported to significantly outperform the center of
mass calculated from a one-dimensional HCF [23], by decreasing from 34.8% to
7.8% the false positives at 50% of detection rate, by using a 0.5 bpp of payload.

Finally, to reduce the variability of this feature across images, Ker recommended
applying a calibration procedure, so that the final feature vector, f2D−HCFC is given
by:

f2D−HCFC =
c2(H2)
c2(H′

2)
, (3.9)

where H′
2 is the 2-D histogram characteristic function of a downsampled version of

the image. The image is downsampled by a factor of 2 using a straightforward 2× 2
averaging filter. Experimental results have demonstrated that this ratio is close to 1
for original cover Works and lower than 1 for stego Works, hence permitting efficient
steganalysis. In contrast with the previous method, this steganalyzer, referred to as
2D-HCFC, is targeted for±1 steganography. Nothing suggests that it could be useful
to detect other steganographic techniques.

The 2D-HCFC feature itself, in comparison with 27 features by WAM, is able
to be used for a good stego-cover classification. Unfortunately, the big weakness is
that it mainly works well on images which are compressed before the embedding
phase. In this case, images have poor high frequency contents and the presence of
the steganography fingerprint - an additional low pass filtering - can be discriminated
easier then using never-compressed images.

By analyzing the above steganalysis, specially 2D-HCFC, and the±1 embedding
artefacts, we developed a new target steganalyzer with a low complexity feature
extraction algorithm. The proposed steganalyzer, based on the Amplitude of Local

Extrema (ALE) is fully described in the next chapter. Moreover, in Chapter 5 we
will compare the above steganalysis with the new one that we are proposing.



Chapter 4
Amplitude of Local Extrema

In this chapter, we describe a new steganalysis algorithm that significantly im-
proves upon previous results. It is based on work by Zhang et al. and it works on
the statistical properties of the amplitudes of local extrema (ALE). The extension
to the algorithm presented in [26] is described in Section 4.1. Specifically, we first
describe a modification to the algorithm that reduces noise associated with border ef-
fects, i.e. pixel values with intensities of either 0 or 255. Section 4.2 then describes
the extension of the amplitudes of local extrema to 2D adjacency histograms. These
enhancements result in a collection of 10 features whose classification performances

are evaluated in Section 4.3 through experimental validation. The results clearly
demonstrate significantly improved classification compared to the original stegana-
lyzer by Zhang et al. [26]. Moreover in Section 4.4 we design a Hybrid steganalyzer
that takes into account state-of-art and ALE steganalyzers. At the end of the chapter,
in Section 4.5, some consideration are drawn.

4.1 Improving previous work on histogram domain

In [36], the authors noted that ±1 embedding steganography induces a low-pass
filtering of the intensity/colour histogram h1 of the image. Indeed, it is easy to show
that, when looking at the intensity histogram, ±1 steganography is equivalent to a
filtering operation with the kernel:

ρ
4 1− ρ

2
ρ
4

where ρ is the embedding rate. This implies that the histogram of a stego Work
contains less high-frequency power than the histogram of the corresponding cover
image.



30 4. Amplitude of Local Extrema

Based on this idea, Zhang et al. [26] proposed to observe what happens in the
surrounding of local extrema of the histogram [26]. Since ±1 embedding is equiv-
alent to low pass filtering the intensity histogram, then the filtering operation will
reduce the amplitude of local extrema (ALE). This motivated the introduction of a
new feature, which is basically the sum of the amplitudes of local extrema in the
intensity histogram, as defined below:

A1(h1) =
∑

n∈E1

∣∣2h1(k)− h1(k − 1)− h1(k + 1)
∣∣ (4.1)

where E1 ⊂ [1, 254] is the set of local extrema in the histogram given by:

k ∈ E1 ⇔
(
h1(k)− h1(k − 1)

)(
h1(k)− h1(k + 1)

)
> 0. (4.2)

Experimental results reported in [26] confirmed that the feature A1 is statistically
larger for original cover Works than for stego Works. Moreover, using this feature in
conjunction with a classifier based on Fisher linear discriminant (FLD) [27] analysis,
resulted in much better classification results compared with other state-of-the-art
steganalyzers, such as WAM [10] or HCF-COM [36, 23].

4.1.1 Removing Interferences at the Histogram Borders

Embedding based on Equation (3.1) introduces a minor asymmetry: 0-valued
pixels will always be changed to 1 if their LSB needs to be modified. Similarly,
255-valued pixels will always be changed to 254. This asymmetry in the histogram
can cause interferences with the extracted feature in eq. (4.1). To avoid this problem,
Equation (4.1) is modified, as follows:

A1(h1) =
∑

n∈E ′1

∣∣2h1(k)− h1(k − 1)− h1(k + 1)
∣∣ (4.3)

where the set of local extrema E ′1 is now reduced to be within [3, 252]. In other
words, the positions {1, 2, 253, 254} are not considered as potential local extrema.
Nevertheless, to account the bound values of the histogram, the following additional
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feature is defined:

d1(h1) =
∑

k∈E∗1

∣∣2h1(k)− h1(k − 1)− h1(k + 1)
∣∣ (4.4)

where E∗1 ⊂ {1, 2, 253, 254} is a set of local extrema as defined by Equation (4.2).

4.2 Considering 2D Adjacency Histograms

Inspired by [23], the analysis of local extrema has been extended to 2D adjacency
histograms [37], h2(k, l), which tabulates how often each pixel intensity is observed
next to another in the horizontal direction h2(k, l), as defined in Equation (3.7).
Since adjacent pixels have, in general, close intensity values, this histogram is sparse
off the diagonal. It should be noted that the histogram defined by Equation (3.7)
can be slightly modified to obtain 3 other adjacency histograms for other directions
(vertical, main diagonal, and minor diagonal). For clarity we will use the apex h,
v, D, d, respectively for horizontal, vertical, main diagonal, minor diagonal, to the
adjacency function h2(k, l) in order to specify, if necessary, the kind of adjacency,
otherwise h2(k, l) is referred to a generic kind of adjacency matrix. In particular, we

define again the four kinds of adjacency matrix:

hh
2(k, l) =

∣∣∣
{
(i, j) ∈ I | p(i, j) = k, p(i, j + 1) = l

}∣∣∣ (4.5)

hv
2(k, l) =

∣∣∣
{
(i, j) ∈ I | p(i, j) = k, p(i + 1, j) = l

}∣∣∣ (4.6)

hD
2 (k, l) =

∣∣∣
{
(i, j) ∈ I | p(i, j) = k, p(i + 1, j + 1) = l

}∣∣∣ (4.7)

hd
2(k, l) =

∣∣∣
{
(i, j) ∈ I | p(i, j) = k, p(i + 1, j − 1) = l

}∣∣∣ (4.8)

where p(i, j) is the pixel value at location (i, j) in the input image, and I is a bi-
dimensional index set which runs through all pixel locations in the image.

Moreover, we can extend previous considerations about the ±1 embedding arte-
facts on the histogram domain by using the adjacency matrix. In this case, by using
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±1 embedding with payload ρ, we obtain a 2-D low pass filtering with the following
kernel:
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Consequently, it should also be possible to distinguish between cover and stego
Works by examining local amplitude extrema in the 2D adjacency histogram. The
set of local extrema in an adjacency histogram E2 ⊂ [0, 255]2 is defined as:

p = (k, l) ∈ E2 ⇔
{
∃ε ∈ {−1, 1}, ∀n ∈ N+

sign
(
h2(p)− h2(p + n)

)
= ε

(4.9)

whereN+ = {(−1, 0), (1, 0), (0,−1), (0, 1)} is used to define a cross-shaped neigh-
borhood and h2(·) is the generical adjacency matrix. However, many of these ex-
trema have a small amplitude and are thus highly sensitive to changes of the cover
Work. To achieve higher stability, this set is further reduced to:

p = (k, l) ∈ E ′2 ⇔ (k, l) ∈ E2 and (l, k) ∈ E2 (4.10)

In other words, only pairs of extrema symmetrical with respect to the main diagonal
are retained. Empirical observations have revealed that such extrema have signifi-
cantly higher amplitude and are thus more stable. The resulting generical feature is
defined by,

A2(h2) =
∑

p∈E ′2

∣∣∣4h2(p)−
∑

n∈N+

h2(p + n)
∣∣∣ (4.11)

which is the sum of the amplitude of extrema located at positions in E ′2.

In addition to eq. 4.11 feature, empirical experiments have demonstrated that
the sum of all the elements on the diagonal of a 2D adjacency histogram, defined as
follows:

d2(h2) =
255∑

k=0

h2(k, k) (4.12)
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1 A1(h1)
2 d1(h1)
3 A2(hh

2) (horizontal direction)
4 A2(hv

2) (vertical direction)
5 A2(hD

2 ) (main diagonal direction)
6 A2(hd

2) (minor diagonal direction)
7 d2(hh

2) (horizontal direction)
8 d2(hv

2) (vertical direction)
9 d2(hD

2 ) (main diagonal direction)
10 d2(hd

2) (minor diagonal direction)

Table 4.1: Table of ALE features

could also be exploited to improve classification results. Indeed, ±1 steganography
decreases the value of this feature and its variations can be used in the decision
process.

Altogether, the above observations result in a collection of 10 features features
which are listed in Table 4.1.

4.3 Performances of ALE

In this Section we describe a number of experiments that we carried out to inves-
tigate the impact of the various features on classification performance.

4.3.1 Setup

The experiments were run on a database composed of images originating from
three different sources. Specifically:

• 2,375 images from the NRCS Photo Gallery [38].The photos are of natural
scenery, e.g. landscape, cornfields, etc. There is no indication of how these
photos were acquired. This database has been previously used in [23].

• 2,375 images captured using 24 different digital cameras (Canon, Kodak, Nikon,
Olympus and Sony) previously used in [10]. They include photographs of nat-
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ural landscapes, buildings and object details. All images have been stored in a
raw format i.e. the images have never undergone lossy compression.

• 2,375 images from the Corel database [39]. They include images of natural
landscapes, people, animals, instruments, buildings, artwork, etc. Although
there is no indication of how these images have been acquired, they are very
likely to have been scanned from a variety of photos and slides. This database
has been previously used in [26].

The above image sets result in a composite database of 7125 images. Where nec-

essary, all images have been converted to grayscale. Moreover, a central cropping
operation of size 512×512 was applied to all images to obtain images of the same di-
mension across all three source databases. Cropping was preferred over resampling
with interpolation, in order to avoid any interference with the source signal.

The motivation for using more than one source database is to account for the
variability in steganalyzers’ performances across different databases [40, 41]. In the
next chapter we fully investigate this variability across image sources. It is hoped that
this set of databases will become a reference for subsequent works in steganalysis
research.

Given the composite database, the stego images are built by using±1 embedding
at 0.5 bpp of payload, thus obtaining the stego database. Then, for every image ALE
features are extracted and we randomly separated the cover-features database DALE

and stego features database D∗ALE into a training set (20% of the database size),
and a test set (the remaining 80% of the database) and we built a ROC curve by
using Fisher Discriminant classifier on a training set and by projecting all the test
feature vectors onto the trained projection vector u. To apply a cross validation
on the obtained results, we repeat 20 times the above procedure with a different

randomization of the train and test datasets. At the end we joined the 20 ROCs by
the vertical averaging scheme described in Chapter 2 .

The overall performance of the steganalyzer is then measured by computing the
area under the ROC curve (AUC).



4.3. Performances of ALE 35

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives

T
ru

e 
po

si
tiv

es

 

 

Zhang      0.57
ALE 1      0.58
ALE 1−2  0.59

Figure 4.1: Analysis of the impact of the border effect described in Subsection 4.1.1
on classification results.

4.3.2 Results

Since similar results were observed for various embedding rates, we only report
classification results for ρ = 0.5.

Figure 4.1 shows the improvements in classification resulting from elimination
of border effects. The original algorithm of Zhang et al. is compared with a system
based on feature 1 of Table 4.1 (ALE 1), and features 1 and 2 (ALE 1-2). The error
bars on each plot indicate the minimum and maximum values observed during the
20 cross-validation runs. First of all, we note the unexpectedly poor performances of
all three algorithms, i.e. the ROC curves are very close to the diagonal. This is due

to the wide variety of images present in of composite database.

Despite the poor performance of all three algorithms, the two algorithms based
on new ALE features (ALE 1 and ALE 1-2) exhibit a slight improvement in clas-
sification performances. The system using the first two ALE features (ALE 1-2)
achieves the highest performances based on area under the ROC curve (AUC), with
a score of 0.59, and is therefore used as a reference in the next experiment.
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Figure 4.2: Analysis of the impact of ALE features selection on classification results.

Figure 4.2 reports the classification performances achieved when using ALE fea-
tures computed from the 2D adjacency histogram. Four sets of ALE features are
investigated:

• ALE 3-6 i.e. the amplitude of the local extrema in the adjacency histograms,

• ALE 7-10 i.e. the amplitude of the diagonal in the adjacency histograms,

• ALE 3-10 i.e. all features from the adjacency histograms,

• ALE 1-10 i.e. all features from the intensity histogram and the adjacency
histograms.

All 4 systems perform at least as well as the reference classification system consid-
ered above (ALE 1-2). ALE 3-6 features perform significantly better than ALE 7-10
features. Nevertheless, when these two sets of features are combined (ALE 3-10),
the resulting steganalyzer outperforms the systems that rely on a single set of features
computed from adjacency histograms. However, the best classification performance
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is achieved when all ALE features are combined (ALE 1-10). Compared to the orig-
inal steganalyzer [26], the area under the ROC curve (AUC) value increases from
0.57 to 0.77, which is a significant improvement.

4.4 Hybrid Algorithm

Experimental issues in steganalysis usually reveal that when the experimental
setup is not ideally built in the lab, i.e. no information about payload, image sources
and image preprocessing are known, no algorithm has a superior performance over
all scenarios. Consequently, we also implemented a hybrid steganalysis system that
combines the features from all three previously described algorithms.

Let us assume that there are S different steganalyzers {S1, . . . , SS} available to
perform ±1 embedding steganalysis. Each steganalyzer Si relies on some feature
vector fi, which may have different dimensionality depending on the consider ste-
ganalyzer. A commonly used strategy to combine this collection of systems consists
in merging all information available, e.g. by concatenating all feature vectors in a
single meta feature vector f as follows:

f = f1|f2| . . . |fS (4.13)

where | denotes the concatenation operation.

Then applying a classifier on this meta feature vector is expected to increase
classification performances. For instance, combining WAM (Chapter 3.2.1), 2D-
HCFC (Chapter 3.2.2) and the above ALE results in a 38-dimensional feature vector
f .

4.5 Discussion

Now it could be interesting to evaluate the performance of ALE in a wider sce-
nario. Unfortunately in steganalysis no evaluation benchmark has ever been designed
to this aim as, for example, Stirmark benchmark [42] makes for watermarking appli-
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cations. However, every proposed steganalyzer1 should be fully evaluated especially
on a real case scenario, by using comparisons with the current state-of-art stegan-
alyzers and the advanced steganography. Unfortunately common comparisons are
made between old techniques or specific lab tests in which the image database and
the a priori steganalyzer knowledge as used payload or used dataset is really far away
from the practical case in which nothing is known. Usually, it could be that a stegan-
alyzer seems to be the best because it obtains good accuracy classification scores in

the proposed experimental settings, but at the same time it could be the worst if we
use different comparison settings. These considerations are obviously true even for
our steganalyzer.

Even though ALE seems to behave very well, an appropriate comparison pro-
cedure should be designed to compare ALE behavior against state-of-art classifiers.
Specifically, we should investigate how ALE performance vary by changing the ex-
perimental conditions by changing both the image database and the payload. Due
to the importance of experimental settings and comparison with other steganalyzers
like WAM and 2D-HCFC, we will investigate the ALE performance and comparison
in the next chapter.

The performance variation across databases, or more in general, a full analysis
about ALE and its comparison with the state-of-art steganalysis is shown in Chapter
5. Moreover, the next Chapter describes a new methodology approach for steganal-
ysis comparisons which should be take into account in further steganalysis works.

1Similar considerations should be done for steganographic methods.



Chapter 5
Experimental comparison among ±1 embedding

steganalysis

In this chapter we fully investigate ALE performances in comparison with WAM
and 2D-HCFC (see Chapter 3). To do so, we define a new benchmark methodology

which takes into account the widest possible experimental setting. In this way the
obtained results should be as close as possible to a real work steganalysis scenario.

Detection of ±1 embedding is known to be much more difficult than detecting
LSB replacement. Nevertheless, a number of algorithms have been developed for
this purpose. Unfortunately, in literature experimental issues did not receive enough

attention and often authors do not consider the real constraints set by scenarios that
are completely different from those applying to steganalysis or steganography work-
ing on a predefined image set or with a predefined payload. An additional problem is
that sometimes such a highly controlled scenario may not be reproducible specially
when the image database is not shared or it is not carefully described. In these biased
situations results are not significant and no comparison between techniques can be
made.

In this chapter we would like to propose a comparative steganalysis methodology
by showing how results change when the experimental setup changes. To do so we
use a FLD classifier and we test ALE, WAM, 2D-HCFC and Hybrid steganalyzers.

5.1 Databases

In our study we used three different databases that have been previously used
in the context of steganography and watermarking. The three databases not only
contain different images, but, more importantly, the image sources are significantly
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different, as discussed shortly. The motivation for using more than one database was
to determine any variability in performance across databases. A fourth database was
created as the concatenation of these three primary databases. It is hoped that this set
of databases will become a reference for subsequent works in steganalysis research1.

The four image databases are:

1. NRCS Photo Gallery: This image database is provided by the United States
Department of Agriculture [38]. It contains 2,375 photos related to natural
resources and conservation from across the USA, e.g. landscape, cornfields,
etc. Typically, the image formats are in 32-bit CMYK space color and in high
resolution, i.e. 1500×2100. Unfortunately, there is no indication of how these
photos were acquired. This image database has first been used in [23].

2. Camera Images: This image database is a collection of 3,164 images cap-
tured using 24 different digital cameras (Canon, Kodak, Nikon, Olympus and
Sony). It includes photographs of natural landscapes, buildings and object de-
tails. All images have been stored in a raw format i.e. the images have not

undergone lossy compression. A subset of these images was previously used
in [10].

3. Corel database: The Corel image database consists of a large collection of
uncompressed images [39]. They include natural landscape, people, animals,
instruments, buildings, artwork, etc. Although there is no indication of how
these images have been acquired, they are very likely to have been scanned
from a variety of photos and slides. Moreover, a close inspection of the
grayscale histogram of several pictures tend to suggest that the images have
been submitted to some kind of histogram equalization technique. This pro-
cess introduced significant artifacts in the histogram which, as a by-product,
significantly boost the performances of the ALE steganalyzer as will be de-

tailed late. A subset of 8,185 images has been extracted from the database
with dimension 512× 768.

1To encourage the use of this database, it is accessible on the website [43].
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4. Combined database: A fourth database was created by concatenating 2,375
randomly selected images from each of the three databases.

Where necessary, all images have been converted to 8-bit depth grayscale. More-
over, a central cropping operation of size 512 × 512 was applied to all images to
obtain images of the same dimension across all three databases. Cropping was pre-
ferred over resampling with interpolation, in order to avoid introducing artifacts due
to signal processing.

5.2 Experimental Procedure

For each one of the four databases (NRCS, Camera, Corel, Combined), the fol-
lowing procedure was performed for every steganalyzer under study (WAM, 2D-
HCFC, ALE, Hybrid):

1. Apply LSB embedding with embedding rate ρ to all images in the database D
to obtain the database of stego images D∗;

2. Separate both databases into a training set, {D(U),D∗(U)}, and a test set,
{D(Uc),D∗(Uc)}, where U is a subset of the image indexes and Uc is its com-
plement. The size of the training set was set to be equal to 20% of the database
size;

3. For the steganalyzer under test, compute the associated feature vector for all
images in the training set and perform FLD analysis to obtain the trained pro-
jection vector u;

4. For the steganalyzer under test, compute the associated feature vector for all
images in the test set, and project the feature vector onto u;

5. Compare the resulting scalar values to a threshold τ and record the probabil-
ities of false positives and true positives for different values of the threshold
in order to obtain the Receiver Operating Characteristic (ROC) curve of the
system.
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Steps 2 to 5 were repeated 20 times for cross-validation [27] and the ROC curves
vertically averaged. That is, for a fixed false positive value, the corresponding true
positive rates for each curve were averaged. The confidence level at each false posi-
tive point depicted in the resulting curves indicates the minimum and maximum true
positive rates form the set of ROC curves.

Thresholding averaging of the ROC curves is also possible, as previously dis-
cussed. For example, for the ALE algorithm and a given threshold, we obtain k = 20
points corresponding to the true and false positive rates for the k-trials, and these
points lie in reasonably close proximity to one another. However, for the WAM al-
gorithm, and consequently the hybrid algorithm as well, these k = 20 points are

dispersed across the ROC curve, i.e. the variances are very large.

Although we have not considered them in our study, alternative performances
metrics have been suggested in the literature e.g. the detection reliability which is
simply derived from the AUC [44], the false positive rate at 50% (80%) detection

rate [10], and others.

5.3 Experimental Results

In an attempt to obtain a better understanding of the different steganalyzers under
study, we first examine the impact of the source of imagery used during training and
testing, and in particular the consequences of using mismatching imagery. Next, we
investigate the influence of the embedding rate depending on the testing conditions.
Based on this analysis, we then further detail the performances of the individual
steganalyzers depending on whether or not some prior about the source of imagery is
available before the steganalyzer is run. Such a priori information could for instance
be obtained thanks to forensic tools.

5.3.1 Impact of the source of imagery

In the first batch of experiments, the embedding rate is fixed and set equal to
ρ=0.5 bit per pixel (bpp), both during training and testing. Similar behavior was
observed for other embedding rates but data is omitted for brevity and clarity. Each
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Figure 5.1: Impact of the source of imagery on classification performances. The
embedding rate has been fixed both during the training and testing phase and set
equal to 0.5 bpp. The label of the rows indicates the database used for training while
the label of the columns represents the dataset used during the testing phase.

individual steganalyzer has been successively trained using images from one of the
four databases considered in this study (NRCS, Camera, Corel, Combined). Subse-
quently, each trained steganalyzer is benchmarked with each individual database. It
results in 4× 4 = 16 possible combinations for training and testing conditions. For
each scenario, the average ROC curve of each steganalyzer has been computed as
described in Section 5.2 and the results are reported in Figure 5.12. The label of the

2In order to remove as much redundant information as possible and therefore facilitate the reading
of the plots, all axis labels and ticks have been removed in these plots and the following ones. All plots
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rows indicates the database used for training and the label of the columns the one
used for testing. As a result, plots on the diagonal have matching training and testing
conditions. They have been framed to clearly highlight them.

Let us first focus on the 3 × 3 block of figures in the top left corner. According
to expectation, the best performances are achieved when the training and testing
conditions match (plots on the diagonal). However, even in these conditions, it is
clear that the absolute performance of the four algorithms varies considerably across
the three primary image databases. Additionally, the relative performance is also
seen to vary. For the NRCS and Camera testsets, the WAM algorithm exhibits best
performance. However, even across these two testsets, the absolute performance
varies significantly. For example, we observe that for a false positive rate of 10%,
the WAM algorithm has a true positive rate of 30% and 60% for NRCS and Camera
respectively. There are similar variations for the other two algorithms. For the Corel

testset, the ALE algorithm performs much better. Also, interestingly, we observe
a very strange behavior from the 2D-HCFC algorithm, where the true positive rate
remains almost constant as the false positive rate increases from 20% to 70%. As
might be expected, the hybrid algorithm exhibits the best performance for each of
the three individual databases.

As soon as we deviate from the diagonal, i.e. when training and testing con-

ditions no longer match, we observe drastic performance degradation for all four
algorithms and significant increase in variability. This indicates that each individ-
ual database is specific and is not representative of the other two databases. As a
result, it illustrates the importance of training with a dataset that is representative
of the classes of images that will be observed in real life. If this is not done, then
the performance of algorithms is likely to be worse than expected. For instance, if
the Hybrid algorithm is trained with NRCS images whereas it will only encounter
Camera images, then its performances is significantly reduced compared to if it has
been trained with Camera images, with an AUC score reducing from 0.89 to 0.58.
As a matter of fact, it no longer the best performing algorithm, but is in fact the

share the same axis, i.e. false positive vs. true positive with all axis running from 0 to 1 with a linear
scale.
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worse performer. This may sound rather counter-intuitive at first. Indeed, one would
expect that the hybrid system performs at least as well as the others e.g. by taking
the projection vector used for the best performing steganalyzer and padding it with
zeros. And this is true! However, the projection vector used for classification is given
by the FLD analysis described in Chapter 2.3. During this process, two parameters
are optimized at the same time: the within-class scatter (SW ) and the between-class
scatter (SB). In other words, the optimization process for the within-class scatter

may come into the way of maximizing the separability between the two classes,
hence resulting in degraded classification performances. This is clearly a limitation
of FLD analysis which has motivated the use of Support Vector Machines (SVM) in
recent steganalysis systems.

Additionally, the increased variability of the ROC curve observed during cross-
validation clearly indicates that there is no guaranteed performances with such mis-
matching training strategies. As a result, a straightforward rule of thumb is ‘if you
know the source of imagery (whatever this means) that you will encounter in your
application, you should train with it’.

Now, let us assume that the steganalyzers have been trained with a single source
of imagery but that they actually have to deal with a variety of images in practice (3

first rows of the last column). Since there is still a significant mismatch between the
training and testing conditions, we observe a significant reduction of performances
and a huge increase of variability. As a result, this calls for training the classifiers
with a variety of images (last row). Such strategy usually slightly hampers perfor-
mances when testing on individual databases compared to the classification results
achieved with matching training and testing conditions. This seems to be particu-
larly true for the NRCS database where, for instance, the WAM steganalyzer sees its
AUC value drop from 70% to 49%, i.e. nearly random guessing. Still, the variability
of the ROC curves during cross-validation is now significantly reduced compared to
the situation where the training and testing databases do not match. This low vari-
ability is crucial in order to be able to guarantee performances. Moreover, the figure
in the bottom right corner clearly shows that training steganalyzers on the Combined
database achieves superior performances, for all steganalyzers, when the system ac-
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tually encounters varied sources of imagery in practice.

In summary, the previous observations clearly indicate that, if the steganalyst has
some a priori information about the source of imagery that the system will encounter
in practice, the steganalyzer should be trained with that specific source of imagery.
For instance, one could imagine that a forensics module could be placed at the be-
ginning of the system to accurately switch to the most appropriate steganalyzer for
each input test image. On the other hand, if the steganalyst has no a priori knowl-
edge, then the system should be trained with the most varied sources of imagery as
possible in order to maintain performances.

5.3.2 Impact of the embedding rate

The previous results refer to the case where both training and testing were con-
ducted for a known, fixed embedding rate of ρ=0.5 bpp. In practice, the steganalyst is
unlikely to have knowledge of the embedding rate used by the steganographer. Thus,
it is necessary to design a steganalysis algorithm that performs well for a variety of
embedding rates.

In the second round of experiments, both training and testing have been con-
ducted by using the Combined database, since the previous observations strongly

hinted that it was the most relevant training strategy. Each individual steganalyzer
has been successively trained using stego content obtained with an embedding rate ρ

equal to 0.2, 0.5, 1 bpp3 or a uniform mix of these embedding rates. Subsequently,
each trained steganalyzer is benchmarked with stego content obtained, again, with
an embedding rate equal to 0.2, 0.5, 1 bpp or uniform mix of these embedding rates.
It results in 4 × 4 = 16 possible combinations for training and testing conditions.
For each scenario, the average ROC curve of each steganalyzer has been computed
as described in Section 5.2 and the results are reported in Figure 5.2. The label of
the rows indicates the embedding rate used for training and the label of the columns
the one used for testing. As a result, plots on the diagonal have matching training
and testing conditions. They have been framed to clearly highlight them.

3More exhaustive tests were conducted over a wider range of embedding rates. However, the be-
havior is the same.
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Figure 5.2: Impact of the embedding rate on classification performances. The source
of imagery during both the training and testing phase is the Combined dataset. The
label of the rows indicates the embedding rate used for training while the label of the
columns represents the embedding rate used during the testing phase.

Again, let us first focus on the 3×3 top left figures. Intuitively, one would expect
that a steganalyzer trained to spot steganography at some embedding rate should be
able to better detect, to some extent, steganography at higher embedding rates. And,
conversely, a steganalyzer trained at some embedding rate should miss more stego
contents if they are produced with a lower embedding rate. This intuitive rule seems
to hold generally i.e. classification performance increase when going to the right
of the the diagonal and decreases when going to the left. However, it is not always
the case for the WAM algorithm, and by inheritance for the Hybrid algorithm. For
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instance, when training is done at 0.2 bpp (first row), the classification performance
for WAM first slightly raises from an AUC value of 63% when testing on ρ=0.2 bpp,
the same embedding rate as for training, to an AUC value of 64% when testing on
ρ=0.5 bpp; however, it then collapses down to an AUC value of 55% when testing on
ρ=1 bpp. Similarly, still for the WAM algorithm, when trained at 0.5 bpp, the AUC
value reduces from 68% for the 0.5 bpp testset to 63% for the 1 bpp testset. This
peculiar behavior seems to suggest that the WAM algorithm, and also the Hybrid

algorithm to some extent, learn different features for different embedding rates and
is therefore unable to cope with stego contents obtained with embedding rates not
considered during training.

The above phenomena could be annoying when the embedding rate used by the
steganographer is unknown (last column), which is actually the most likely case in a
realistic scenario. For instance, the WAM algorithm, when trained at 0.2 bpp is the
only steganalyzer whose classification performance is worse with a testset contain-
ing mixed embedding rates rather than a single embedding rate ρ=0.2 bpp, i.e. the
same as during training. As a result, it is no longer straightforward to state “train
your steganalyzer with a low embedding rate and as a by-product it will also be able
to detect all other payloads”. As a matter of fact, the behavior of the other algorithms
tends to suggest that steganalyzers trained at 0.5 bpp achieve slightly better perfor-
mances. This should not be reduced to a universal rule: this optimal embedding rate
for training, if there is any, is most likely to be dependent on the distribution of the

embedding rates used by the steganographer, which may be difficult to figure out or
estimate. In our case, since a uniform distribution over the embedding rates has been
assumed, training at 0.5 bpp might be the best since stego contents are then closer in
average to the training embedding rate compared to 0.2 or 1 bpp.

Now, let us assume that the steganalyst is able to figure out the distribution of em-
bedding rates used by steganographers across the world and that he uses this knowl-
edge to train the different classifiers with the same distribution (last row). In this
setup, we observe that we achieve classification performances very similar to the
one obtained while training at 0.5 bpp, i.e. the best performances so far. This sug-
gests that, should the distribution of embedding rates used by steganographers be
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known, it should be exploited during the training of the steganalysis algorithms.

5.3.3 Performances of the steganalyzers with prior information about
the source of imagery

Although the experimental results of the previous section clearly suggest that

training should be performed with the same distribution of embedding rates as the
one encountered during testing, it is still not clear how a steganalysis algorithm
should be trained in general. Should we use a single source of imagery or a combina-
tion of all known sources? As already mentioned, the answer it heavily depends on
whether or not, during the testing phase, we have some additional tools, e.g. multi-
media forensics techniques, which gives some a priori information about the source
of imagery of the tested content. In such a case, the steganalyst can switch to the
relevantly trained classifier accordingly. In this section, we will assume that we do
have access to such a priori information and will review the detailed performances
of the different algorithms under study.

Each steganalyzer is trained on each of the three available databases (NRCS,
Camera and Corel). The stego contents used for training are obtained using em-
bedding rates uniformly distributed across 0.2, 0.5 and 1 bpp as suggested by prior
findings. Since we do assume to have prior information, we then test each classifier
with contents taken from the same database as the one using during training. Still,
to get a better understanding of their classification performances, the steganalyzers
are successively tested with stego contents obtained with an embedding rate equal
to 0.2, 0.5, 1 bpp or a uniform mix of these. It results in 3 × 4 training and testing
scenarios and, for each one of them, the average ROC curve of all steganalyzers has
been computed as described in Section 5.2. All the plots have been gathered in Fig-
ure 5.3. The label of the rows indicates the database used both during training and
testing and the label of the columns the embedding rate used for testing.

Intuitively, one could expect that, for some training conditions i.e. for a given
row, stego contents obtained with large embedding rates should be detected more
easily than those with smaller ones. This rule seems to hold in most cases except,
again, for the WAM algorithm on the Camera database. For this particular dataset,
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Figure 5.3: Classification performances when prior information about the source of
imagery is available. Training is done with stego contents obtained with embedding
rates uniformly distributed across 0.2, 0.5 and 1 bpp. The label of the rows indicates
the source of imagery used both during training and testing. On the other hand, the
label of the columns represents the embedding rate used during the testing phase.

the AUC value indeed raises from 73% for 0.2 bpp to 86% for 0.5 bpp before de-
creasing down to 80% for 1 bpp. The fact that this behavior is only observed for the
Camera databases may be due to the fact that this dataset is actually composed of
images taken with different cameras i.e. different sources of imagery strictly speak-
ing. In any case, it does highlight the extreme sensitivity of the WAM algorithm.
The plots for mixed payload give some kind of average of the ROC curves along
the rows. However, these plots completely mask specific behaviors for different em-
bedding rates. For instance with the NRCS database, efforts should be focused on
detecting low embedding rates since performances are really bad in that case. It
might indeed be easier to raise the AUC of really poor ROC curves than further en-
hance not so bad ROC curves. This calls for reporting more than only the average
curve (mix) to get a better understanding of the system.



5.3. Experimental Results 51

Also worth mention, classification performances appear to be heavily dependent
on the source of imagery. In average for instance, the AUC value of the best per-
forming algorithm is equal to 75% for NRCS, 85% for Camera and 93% for Corel,
hence clearly that some type of images might be more difficult to tackle than others.
Additionally, setting apart the Hybrid algorithm, the best performing steganalysis al-
gorithm seems to change from one dataset to the other. ALE definitely outperforms
the others on the Corel database, being matched by 2D-HCFC only for high embed-

ding rates. With the Camera dataset, the situation is more contrasted: WAM is better
for low embedding rates but is being outmatched by ALE for high embedding rates.
Finally, WAM and ALE are side by side for the NRCS database. Still, even in that
case, combining the feature sets of both algorithms succeeds to significantly improve
performances hence demonstrating the complementarity of these two systems.

5.3.4 Performances of the steganalyzers without prior information about
the source of imagery

In contrast with the previous subsection, we now assume that the steganalyst is
unable to figure out the source of the content which is to be tested. In other words,
he can no longer switch pertinently between several specifically trained classifiers.
This scenario is significantly more realistic in practice since one can hardly tell how
many sources of imagery should be considered to be close to the real world. As a
result, we conducted a final batch of experiments to address this specific situation.

In this scenario, the steganalyst trains the different steganalysis systems with the
Combined database and stego contents obtained with an embedding rate uniformly
distributed across 0.2, 0.5 and 1 bpp. Still, the obtained classifiers are benchmarked
for individual databases (NRCS, Camera, Corel, combined) and individual embed-
ding rates (0.2, 0.5, 1 bpp and mixed payloads). It results in 4× 4 testing scenarios.
For each of them, the average ROC curve of all steganalyzers has been computed as
detailed in Section 5.2 and the resulting plots are depicted in Figure 5.4. The label
of the rows indicates the dataset used for testing and the label of the columns the

embedding rate.

Again, classification performances improve when the embedding rate increases.
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Figure 5.4: Classification performances when no prior information about the source
of imagery is available. Training is done with the Combined database and stego
contents obtained with embedding rates uniformly distributed across 0.2, 0.5 and
1 bpp. The label of the rows indicates the source of imagery used during testing,
while the label of the columns represents the embedding rate used also during the
testing phase.

Even the peculiar behavior previously observed for the WAM algorithm on the Cam-
era database is significantly attenuated. On the other hand, we can observe than in
average performances are significantly hampered compared to the previous situation
where training was performed for specific sources of imagery. For instance, on the
NRCS and Camera data sets, the AUC values of the ROC curves can be decreased
by up to 10%. The only exception is of course the 2D-HCFC algorithm since it does
not involve any kind of training (1D feature space) and therefore is not affected by
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this change of training setup. Additionally, we can observe a mild increase in the
variability of the ROC curves, thus indicated increased instability for the different
steganalysis systems. This drop of performances suggests that it might be utopian to
train a single classifier to address all situations and that it might be more relevant to
pertinently switch between specifically trained classifiers.

One could argue that the only relevant plot is the one in the bottom right corner
as it reports the performances of the different steganalysis system in conditions close
to the real world. In that case, one would realize that classifications performances
are average at best. One could also be surprised by the suggested ranking of the
different classifier, the well-known WAM being the worst (most likely due to its loss
of stability) and the underrated 2D-HCFC scoring not so badly. However, focusing
on this single plot kind of hide the most important information: where should efforts
be targeted to further improve these performances. It is clear for instance that very
little improvement is likely to be achieved on the Corel dataset. On the other hand,
the NRCS dataset offers huge room for further improvement even at high embedding
rate.

5.4 Conclusions

We compared four steganalysis algorithms applied to the detection of ±1 em-
bedding.

We stressed out that during training, it is necessary to provide a labeled set of
cover and stego Works. The stego Works are usually derived from the application of
known steganographic algorithms. However, even for the case of targeted steganal-
ysis there are a range of free parameters available to the steganographer, but usually
unknown to the steganalyst. The most common such parameter is the embedding
rate. It is quite usual to report results assuming exact knowledge of the embedding
rate, i.e. training and testing are for a fixed embedding rate. Even though there are
some works that try to estimate the message length [45, 46, 47, 48], in practice, no-
body will know the embedding payload. If training and testing are conducted over
a range of embedding rates, we can expect performance to degrade. Our study also
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revealed this. It is common to train with a low embedding rate in order to cope with
a wide range of embedding rates used during testing. However, experimental results
suggest that this is less effective than training with a mixture of embedding rates.

In summary, our experiments revealed that (i) the performance of all algorithms
varied significantly depending on the database, (ii) no one algorithm was superior
across all databases. In particular, we have seen that training in real world conditions,
e.g. mixed embedding rates (and combined database), may have a significant impact

on performances compared to tightly controlled situation.



Chapter 6
Steganalysis: remarks and future works

In the first part of the thesis we have discussed steganalysis in the pixel domain

by proposing the steganalyzer ALE and a methodology to experimentally evaluate
the performance of a steganalysis algorithms.

With regard to ALE, we modified the algorithm by Zhang et al. to deal with
(i) border effects associated with the 1D intensity histogram, and (ii) extended it to
include statistics associated to the amplitude of local extrema in the 2D adjacency
histogram.

Experimental results demonstrated the positive impact of eliminating the border
effects and showed substantial improvements in classification accuracy when fea-

tures derived from the 2D adjacency histogram were included. Moreover, the pro-
posed steganalysis system proved to outperform other state-of-the-art steganalyzers
such as WAM [10] and 2D-HCFC [23].

As future works, we could improve further the performances of ALE by using a
calibrated version of the features as suggested by Ker in [23].

We have also discussed a number of issues in training and testing steganalysis
algorithms and illustrated these issues by comparing four algorithms for the detection

of ±1 embedding.

While the community recognizes the importance of standardized training and
test sets, it is clear that current databases are inadequate. In particular, we observed
very significant variations in performance across the four databases used in the test
for all the algorithms under evaluation. This indicates that no one database is cur-
rently sufficiently representative of the variety of imagery that may be encountered
in the real world. More research is needed to (i) understand how various databases
differ from one another, and (ii) develop more comprehensive databases that better
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represent the variation in real world imagery.
Performance results are usually reported in the form of a receiver operating char-

acteristic curve, and we have followed this convention. Cross-fold validation gener-
ates a family of ROC curves which must be merged. Vertical averaging and threshold
averaging are two approaches for doing so. Both have the advantage of providing a
measure of the uncertainty associated with the ROC values. In our analysis, we ob-
served an extreme range of uncertainty when attempting to apply threshold averaging

to the WAM (and hybrid) algorithms. Consequently, we chose to perform vertical
averaging. Probably this uncertainty is due directly to the cardinality of features. A
steganalysis open question regards about the best feature strategy: is a big amount of
features [49, 50, 51] preferred to few features [52, 53, 54] in a real scenario?

Future works should investigate this more closely and it would be beneficial if
the community agreed to standardize on one or other approach.

In many situations, it is useful to summarize the performance of an algorithm
with a single scalar value. One such value is the area under the ROC curve (AUC).
While this is a common measure for summarizing ROC performance, further discus-
sion is needed to decide whether the AUC is adequate and/or sufficient for comparing
steganalysis algorithms.



Part II

MPSteg-color: a new
steganographic technique





Chapter 7
Steganography at higher semantic level

Common steganalyzers like those described in Chapter 3 and Chapter 4 rely on a
statistical analysis to understand whether a given signal contains hidden data or not,
however, this analysis disregards the semantic content of the cover signal. For this
reason it may be argued that, from a steganographic point of view, it is preferable to
embed the stego-messages at the highest possible semantic level, e.g. by modifying
structural elements of the host signal like lines, edges or flat areas in the case of still
images.

Following a similar need arising from image compression applications1 [55, 56],
a new class of image representation methods has been recently developed that relies
on redundant bases decomposition. In practice, a dictionary with a large number
of elementary signals (called atoms) is built, trying to ensure that, for each image
(or image block), a subset of few atoms exists that permits to represent the image
efficiently. The main problems with redundant basis decomposition of images are
the construction of the dictionary and, more importantly, the definition of an effi-

cient procedure to select the best subset of atoms for each image. The most common
approach to solve the latter problem, consists to resort to Matching Pursuit (MP)
techniques, that use a greedy algorithm to select a subset of atoms capable of repre-
senting the to-be-decomposed image efficiently [57].

As a main result MP schemes permit to decompose images efficiently by de-
scribing the main features of picture’s semantic.

Similar ideas about the usage of a semantic layer as message support are widely
investigated in watermarking field [58, 59, 60] in which the robustness and the invis-

1As a matter of fact, the goal of any compression algorithm is to describe the main semantic features
of the image without considering noise-like details.
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ibility of the watermark is required.

We propose a new steganographic method, called MPSteg-color, that hides the
stego-message into some selected coefficients of the MP representation of the cover
color image. In this way the hidden message is embedded at a higher semantic level
and hence it should be more difficult for a steganalyzer to detect it. To actually build
a steganographic technique based on MP decomposition several problems need to
be solved including: i) the choice of a suitable dictionary, ii) the setting up of MP
rules which permit to correctly embed and extract the message in the MP domain,
iii) the implementation of security aspects in order to prevent the detectability of the
proposed technique.

In the sequel we show how we investigates and solved all the above problems.

7.1 Introduction to MP image decomposition

Given a vector space V , a high redundant basis is a set of elements of V whose
number greatly exceeds the dimension of V . The main idea behind the use of redun-
dant basis for signal representation is that for any given signal it is likely that we can
find a small subset of elements within the basis which are enough to represent the
signal up to a certain accuracy level. Indeed, the more elements are contained in the
basis the more likely the representing set will be small. Of course, since the number

of signals in the basis exceeds the size of the space the host signal belongs to, the
elements of the basis will no longer be orthogonal as in standard signal decomposi-
tion. At the same time, the availability of many degrees of freedom in the design of
the redundant basis permits to include signals with specific semantic meaning.

In the following, the elements of the redundant basis will be called atoms, and
the redundant basis the dictionary. The dictionary is usually indicated as D:

D = {gk}k∈1,...,N , (7.1)

where gk is the k-th atom. If I is a generic signal (hereafter an image), we can
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describe it as the sum of a subset of elements of D:

I =
N∑

k=1

ckgk, (7.2)

where ck is the specific weight of the k-th atom, and where as many ck as possible
are zero. There are no particular requirements concerning the dictionary: in fact,
the main advantage of this approach is the complete freedom in designing D which
can then be efficiently tailored to closely match signal structures. Due to the non-
orthogonality of the atoms, the decomposition in equation (7.2) is not unique, hence

one could ask which is the best possible way of decomposing I. Several meanings
can be given to the term best decomposition. In compression applications, for in-
stance, it is necessary that a suitable approximation in terms of human perceptible
distortion of the image I is obtained. In this case, it is convenient to restate the de-
composition problem as follows. Let γ = {γ1, γ2 . . . γN} be a decomposition path,
with γk indicating the index of the k-th atom of the decomposition. Let us also de-
fine the residual signal Rn as the difference between the original image I and the
approximation obtained by considering only n atoms of the dictionary. We have:

In =
n∑

k=1

ckgγk
, (7.3)

Rn = I − In, (7.4)

where γk ties the atom identifier to the k-th position of the decomposition sum.

Given the above definitions, the best approximation problem can be restated as
follows:

min
γ,ck:‖Rn‖2≤ε

n (7.5)

where ε is suitable approximation error. Unfortunately, the above minimization is
an NP-hard problem, due to the non-orthogonality of the dictionary [61]. Matching
Pursuit is a greedy method that, by looking for a suboptimal solution, permits to
overtake the above NP problem with a polynomial complexity algorithm [61], by
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looking for a step by step minimization of the current residual Rk. While MP finds
the best solution at each step, it generally does not find the global optimum.

In the following, we find convenient to rephrase MP as a two-step algorithm.
The first step is defined through a selection function that, given the residual Rk−1,
selects the appropriate element of D and its weight:

[ck, gγk
] = S(Rk−1,D), (7.6)

where S(·) is a particular selection operator. At the second step, the residual is
updated

Rk = U(Rk−1, ck, gγk
). (7.7)

As it can be seen, for a complete definition of the MP framework several specifi-
cations must be given including the definition of the dictionary, the selection and the
update rules. To do so, we must first investigate the requirements set by the particular
framework in which we will apply the MP algorithm, i.e. image steganography.

7.2 Embedding a message in the MP domain

Given the representation formula

I =
n∑

k=1

ck · gγk
+Rn, (7.8)

there are different ways of embedding a message within I. In [62], for instance, the
stego-messages is hidden in the particular decomposition path used to represent the
image, whereas in [57] and [8], the message is hidden by modifying the decomposi-
tion coefficients ck. In this thesis, we adopt the latter approach, due to the difficulties
of applying the former strategy in a blind detection framework (indeed the scheme
described in [62] requires non-blind detection). However, this strategy requires sev-
eral problems to be addressed.

First of all, it is necessary that the transition from the pixel domain to the MP
domain and then back to the pixel domain does not introduce approximation errors
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that could prevent the correct decoding of the stego-messages. The easiest way of
achieving this result consists in requiring that all the operations are performed in
integer arithmetic with no need to quantize the stego image when the transformation
from the MP to the pixel domain is performed.

The second requirement stems from the very goal of all our work, that is to
embed the stego-message at as high semantic level as possible, hence the dictionary
should be as semantically meaningful as possible.

The third and the most fundamental requirement, regards the stability of the MP
decomposition. MP instability has two different facets:

• Decomposition path instability: this source of instability is due to the fact
that the insertion of the message may change the order in which the atoms are
chosen by the MP algorithm. As a matter of fact, if this is the case, the decoder
will fail to read the hidden message correctly (note that in image compression,
where the image is reconstructed from a list of weighed atoms, the fact that a
successive decomposition generates a different list of atoms is not a problem).

• Coefficient instability: the second source of instability derives from the non-
orthogonality of the dictionary: if we modify one single coefficient ck∗ , re-
construct the modified image and apply the MP algorithm again, even if we
do not change the order in which the atoms are selected, it may well be the
case that all the coefficients will have different values. Even worse, there is no

guarantee that the coefficient of the k∗-th atom will be equal to the value we
set it to. It is easy to show that this is the case, for example, if the selection
and update rules are based on the classical projection operator.

As a last observation, we note that, even though MP decreases the decomposi-
tion problem to polynomial complexity, the computational burden may still be pro-
hibitive, especially if MP is applied to large image blocks. For this reason we decided
to apply MP to small non-overlapping blocks rather than to consider the whole im-
age. Note, however, that in principle, the subsequent discussion can be indifferently
applied to the whole host image or to subparts of it.

In the next two chapters we describe how the above constraints are satisfied by
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MPSteg color. We first describe the dictionary, then we introduce new selection and
update rules explicitly designed to avoid coefficient instability.



Chapter 8
An MP tailored for steganographic application

In this chapter we introduce the MP domain in which we will embed the message.
To do so we introduce the used dictionary, and we define proper selection and update
rules. The designed domain is then analyzed from the embedding point of view -
by defining constraints which permit to correctly extract the embedded message -
and the semantic point of view describing performances to validate the theoretical

semantic approach.

8.1 Dictionary

There are several ways of building the dictionary. Discrete- or real-valued atoms
can be used and atoms can be generated manually or by means of a generating func-
tion. In classical MP techniques, applied to still images [55], the dictionary is built
by starting from a small set of generating functions that generate real-valued atoms.
A problem with real-valued atoms is that when the modified coefficients are used to
reconstruct the image in the pixel domain, non-integer values may be produced, thus
resulting in a quantization error when the grey levels are expressed in the standard
8-bit format. This is a problem in steganographic applications where the hidden mes-
sage is so weak that the quantization error may prevent its correct decoding. For this
reason, and to prevent instability problems, we decided to work with binary-valued

atoms for which only the 0 and 1 values are allowed.

The most important property of the dictionary is that it should be able to describe
each type of image with a linear combination of few atoms. To simplify the construc-
tion of the dictionary and to keep the computational burden of the MP decomposition
low, we decided to work on a block by block basis, applying the MP algorithm to
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Figure 8.1: A subset of the atoms the dictionary consists of.

4 × 4 blocks. At this level, each block may be seen as the composition of few

fundamental geometric structures like flat regions, lines, edges and corners. Specif-
ically, we designed the dictionary by considering elements which describe uniform
areas, contours, lines, edges, C-junctions, H-junctions, L-junctions, T-junctions and
X-junctions. In Figure 8.1 the basic (non-shifted) atoms forming the dictionary are
shown. The complete dictionary is built by considering the atoms reported in Figure
8.1 and their cropped 4 × 4 version when the center of the zero-padding atom - at
coordinate (2,2) - is shifted around the 4 × 4 crop window. The whole dictionary is
formed by 324 distinct atoms.

8.2 MP selection and update rules

In order to avoid that quantization errors prevent the correct decoding of the
hidden message, let us observe that the stego-messages will be embedded in the MP
domain by modifying the coefficients ck in equation (7.3), however, after embedding,
the modified image must be brought back into the pixel domain. If we want to avoid
the introduction of quantization errors it is necessary that the reconstructed image
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belongs to the Image class. The Image class is defined by the following property:

Property 1. Let I be a generic gray image1 in the pixel domain and let n ×m be

its size. Let I(x, y) be the value of the image I at x-row and y-column. We say that

I belongs to the Image class if:

∀x ∈ 1, . . . , n,∀y ∈ 1, . . . , m

0 ≤ I(x, y) ≤ 255 and I(x, y) ∈ N,

the value 255 is used by considering an 8 bit color depth for each color band.

The necessity of ensuring that at each step the approximated image and the resid-
ual belong to the Image class already suggested us to consider binary-valued atoms,
now we also impose that atom coefficients take non-negative integer values. In this

way, we ensure that the reconstructed image belongs to the Image class2

Coefficient instability is more difficult to deal with, especially when coupled
with the requirement that the decomposition path includes atoms matching the struc-
tural content of the image. MPSteg-color achieves the above result by defining the
selection rule as follows. At each decomposition step k let

S(Rk−1,D) = [c∗k, gγ∗k ] (8.1)

with

γ∗k = arg min
γk∈{1,2,...,|D|}

∑

i,j

‖Rk
γk

(i, j)‖2 (8.2)

and

Rk
γk

= Rk−1 − c∗kgγk
, (8.3)

1It is possible to extend this definition to RGB images by considering each color band as a gray
image.

2Actually we must also ensure that no underflow or overflow errors occur. We will consider this
problem later on in Chapter 10.
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Figure 8.2: The Selection Rule.

where the notation Rk
γk

(i, j) makes explicit the dependence of the residual at the
k-th step on the selected atom, and where c∗k is computed as follows:

c∗k = max{c ≥ 0 : Rk−1 − cgγk
≥ 0 for every pixel}. (8.4)

An illustration of the behavior of the selection rule is given in Figure 8.2, where the
choice of ck is shown in the one-dimensional case. By starting from the residual
Rk−1 (solid line) and the selected atom gγk

(dashed), the weight ck is calculated as
the maximum integer for which ckgγk

is lower than or equal to Rk−1 (the dotted line
in the figure). Note that given that the atoms take only 0 or 1 values, at each step
the inclusion of a new non-null term in the MP decomposition permits to set to zero

at least one pixel of the residual. Note also that the partial residual Rk continues to
stay in the Image class.

We must now determine whether the selection rule described above is able to
avoid the instability of MP coefficients. This is indeed the case, if we assume that
the decomposition path is fixed and that only non-zero coefficients are selected for
embedding, as it is shown by the following theorem.
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Theorem 1. Let I = R0 be an image and let ~gγ = (gγ1 , . . . , gγn) be a decompo-

sition path. We suppose that the atoms are binary valued, i.e. they take only values

0 or 1. Assume that the MP decomposition coefficients are computed iteratively by

means of the following operations:

ck = max{c ≥ 0 : Rk−1 − cgγk
≥ 0

for every pixel} (8.5)

Rk = Rk−1 − ckgγk
, (8.6)

and let ~c = (c1, c2, . . . , cn) be the coefficient vector built after n iterations. Let ck

be an element of ~c with ck 6= 0, and let ~c ′ be a modified version of ~c where ck has

been replaced by c′k. If we apply the MP decomposition to the modified image

I ′ =
n∑

i=1,i 6=k

ci · gγi + c′kgγk
+Rn (8.7)

by using the decomposition path ~gγ , we re-obtain exactly the same vector ~c ′ and the

same residual Rn.

Proof. To prove the theorem we introduce some notations. We indicate by S(gγk
)

the support of the atom (γk)3. This notation, and the fact that

gγk
(x, y) ∈ {0, 1} ∀(x, y),

permits us to rewrite the rule for the computation of ck as follows:

ck = min
(x,y)∈S(gγk

)
Rk−1(x, y). (8.8)

We indicate by jk the coordinates for which the above minimum is reached, i.e.:

jk = arg min
(x,y)∈S(gγk

)
Rk−1(x, y). (8.9)

3The support of an atom is defined as the set of coordinates (x, y) for which gγk (x, y) 6= 0
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Note that after the update we will always have Rk(jk) = 0. We also find it useful
to define the set Jk =

⋃k
i=1 ji, with J0 = ∅. In the following we will indicate

with R the residuals computed by applying the decomposition path ~gγ to I, while
we will indicate with R′ the residuals obtained by applying the same decomposition
path to I ′. A similar notation applies to the other symbols we have defined. Let
now ck be a non-zero element of ~c. We surely have S(gγk

) ∩ Jk−1 = ∅ since
otherwise we would have ck = 0. Let us show first that by applying the MP to I ′ the

coefficients of the atoms gγh
with h < k do not change. Without loss of generality

let h be the first element for which ch may have changed. Two cases are possible:
S(gγk

) ∩ S(gγh
) = ∅ or S(gγk

) ∩ S(gγh
) 6= ∅. In the first case it is evident that the

weight ch can not change, since a modification of the weight assigned to gγk
cannot

have any impact on (8.8) given that the minimization is performed on S(gγh
).

When the intersection between S(gγh
) and S(gγk

) is non-empty the proof is split
in two parts, the former considers the case c′k > ck, the latter the case c′k < ck. When
c′k > ck some of the values in R′h−1 are increased, however R′h−1(jh) does not
change since S(gγk

)∩Jk−1 = ∅, hence leaving the choice of jh and the computation
of the weight ch unchanged.

If c′k < ck, some values in R′h−1 are decreased while leaving R′h−1(jh) un-
changed. However, ∀(x, y) ∈ S(gγk

) ∩ S(gγh
) we have Rk−1(x, y) ≤ Rh(x, y)

since due to the particular update rule we adopted, at each iteration the values in the
residual cannot increase. For this reason at the h-th selection step, the modification of
the k-th coefficient cannot decrease the residual by more thanRh−1− ch (remember

that ch = Rh−1(jh)). In other words, R′h−1(x, y) computed on the modified image
I ′ will satisfy the relation R′h−1(x, y) ≥ R′h−1(jh) hence ensuring that c′h = ch.

We must now show that the components h ≥ k of the vector ~c do not change
as well. Let us start with the case h = k. Since no coefficient has changed until
position k, when the MP is applied to the image I ′ we have

c′′k = min
(x,y)∈S(gγk

)

[
Rk−1(x, y) + (c′k − ck)gγk

(x, y)
]
. (8.10)
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From equation (8.10) it is evident that

c′′k = c′k = min
(x,y)∈S(gγk

)
Rk−1(x, y), (8.11)

since the term (c′k − ck)gγk
introduces a constant bias on all the points of S(gγk

).
As to the case h > k it is trivial to show that c′h = ch given that the residual after

the k-th step will be the same for I and I ′.

Theorem 1 can be applied recursively to deal with the case in which more than
one coefficient in ~c is changed. In the following we show how the stability result
stated in Theorem 1 can be used to build the MPSteg-color algorithm.





Chapter 9
A closer look at the new MP domain

One may wonder whether the particular dictionary, selection and update rules we
used, which are the result of the requirements set in the previous chapter, maintain
the compaction properties of high-redundant basis. This is indeed the case as it is
witnessed by Figure 9.1 and exemplified in Figures 9.2, 9.3, and 9.4. Specifically,
in Figure 9.1 the reconstruction error is plotted (in log scale) as a function of the
number of basis elements considered for the reconstruction (the results have been
obtained by averaging the plots relative to 25 images), as it can be seen when very
few coefficients are used the DCT decomposition performs better. This is due to the

decision we made to design the update rule in such a way that the residual image is
always positive (while the DCT coefficients are chosen in such a way to minimize
the error energy). However, when the number of basis elements increases the MP
capacity of fully describing the image with a lower number of elements is evident.
Indeed in the DCT case all the 16 coefficients of the orthogonal basis are needed
to bring the reconstruction error to zero, while in the MP case only 9.63 atoms are
needed (on the average).

From a different perspective, the higher semantic level MP operates at is exem-
plified in Figures 9.2, 9.3, and 9.4. The original image (Figure 9.2) is first decom-
posed by applying a 4 × 4 DCT and reconstructed by using only the DC and the
first AC coefficient, yielding the result depicted in Figure 9.3. The same approach is
applied in Figure 9.4 where the image is generated by using only the first 2 atoms of
the MP decomposition. Though the reconstruction error is larger in the MP case (in
accordance with the plot of Figure 9.1), the perceived quality of the image obtained
through MP decomposition is better than that obtained with DCT, since the selected
atoms permit to better represent the geometric structures contained in the image.
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Figure 9.1: Comparison between the compaction property of the DCT and MP do-
mains.

Figure 9.2: Original gray-scale image.
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Figure 9.3: Reconstructed image by using the first 2 DCT coefficients in a zig-zag
ordering for each 4× 4 block.

Figure 9.4: Reconstructed image by using 2 atoms for each 4× 4 block.





Chapter 10
MPSteg-color

In this chapter we give a detailed description of the MPSteg-color algorithm.
We first introduce the main structure of the algorithm, then we describe how we
can achieve security against targeted steganalyzers and increase the stego-message
payload.

Theorem 1 ensures that by using the selection rule described in equations (8.1)
through (8.4), it is possible to correctly write and read a message hidden in the MP
coefficients if the decomposition path ~gγ is known. In order to cope with decom-
position path instability, we exploit the availability of three color bands. To explain
how, let us introduce the following notation:

I =



Ir

Ig

Ib




where Ir, Ig and Ib are the RGB bands of a traditional color image.

MPSteg-color works on a non-overlapping, 4 × 4 block-wise partition of the
original image, however, for simplicity we continue to refer to image decomposition
instead of block decomposition, the use of blocks, in fact, is only an implementation
detail, not a conceptual strategy.

The main idea behind MPSteg-color is to use the correlation of the three color
bands to stabilize the decomposition path. Specifically the decomposition path is
calculated on a color band and then used to decompose the other two bands (the
validity of such an argument will be tested in Section 11.2.1). Due to the high cor-
relation between color bands, we argue that the structural elements found in a band
will also be present in the other two. Suppose, for instance, that the decomposition
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path is computed on the Ir band, we decompose the original image as follows

I =




n∑

k=1

cr,k · gγr,k
+Rn

r

n∑

k=1

cg,k · gγr,k
+Rn

g

n∑

k=1

cb,k · gγr,k
+Rn

b




(10.1)

where gγr,k
are the atoms selected on the red band, cr,k,cg,k and cb,k are the atom

weights of each band and Rn
r ,Rn

g and Rn
b are the partial residuals. By using eq.

(10.1) we do not obtain the optimum decomposition of I for the green and blue
bands, but this decomposition has a good property: if the red band is not modified

then the decoder may apply the selection function S(·) to the red band and use it
to retrieve the decomposition path used by the embedder to hide the message in the
other two bands.

In Section 10.2 we cope with the security aspect by adding for each block a
random choice between the reference and embeddable bands.

By assuming, for instance, that the decomposition path is computed on the red
band, then MPSteg-color can embed the stego-message by operating on the vector
with the decomposition weights of the green and blue bands, i.e. the vector

~cgb = (cg,1, cb,1, . . . , cg,n, cb,n). (10.2)

According to Theorem 1, we know that the stego-messages can be correctly embed-
ded by changing the coefficients of the MP decomposition vector ~cgb, however, for
this result to hold it is necessary that only non-zero coefficients are modified. In fact,
given that the decomposition path is computed on one band and the message embed-
ded in the other two, it may be the case that the coefficients of some atoms of the
decomposition path are zero, i.e. the vector ~cgb may contain some null coefficients.
This issue will be considered in the next section, where the embedding rule used by
MPSteg-color is described.
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10.1 Embedding Rule

We now describe the embedding rule used to embed the stego-message within
~cgb. Given that the coefficients of ~cgb are non-negative integers, we can apply any
method that is usually applied to embed a message in the pixel domain. However, we
must consider that the embedder cannot modify zero coefficients (due to Theorem
1 assumptions), but in principle it could set to zero some non-zero coefficients. If
this is the case a de-synchronization would be introduced between the embedder
and the decoder since the decoder will not know which coefficients have been used
to convey the stego-message. In the steganographic literature this is known as the
channel selection problem, for which an elegant solution exists, namely the Wet
Paper Code strategy introduced by Fridrich et al. in [11]. However, our aim was to

analyze the capability of the MP domain as a cover domain, hence will not consider
any procedure to redirect the embedding changes of the basic MPSteg algorithm1.
In fact, the same procedures could be applied to pixel domain methods, and are not
related to the particular domain in which the message is embedded.

For this reason, we adopted the standard ±1 embedding, that is described in
Chapter 3.1, to embed the message in the non-null weights.

In order to avoid the channel selection problem, we add 2 to all the coefficients
for which the ±1 embedding rule yields a null value. By indicating with

~cw
gb = (cw

g,1, c
w
b,1, . . . , c

w
g,n, cw

b,n)

the marked coefficient vector, then we build the stego image Is:

Is =




n∑

k=1

cr,k · gγr,k
+Rn

r

n∑

k=1

cs
g,k · gγr,k

+Rn
g

n∑

k=1

cs
b,k · gγr,k

+Rn
b




. (10.3)

1Similarly we will not consider matrix embedding [10], since it can be used to boost the perfor-
mance of any steganographic scheme, regardless of the embedding domain.
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While the application of ±1 embedding rule to MP coefficients guarantees that the
modified coefficients lie in the [0,255] interval, it is possible that some pixels of the
reconstructed image exceed the 255 limit. If this happens, the coefficients larger than
2 are decreased by 2 until the overflow error disappears. In this way the embedding
distortion is slightly augmented, however, such an effect is completely negligible
since overflow errors are extremely rare.

10.2 Improving undetectability

While the undetectability of the above scheme against general purpose stegana-
lyzers can be easily proved [8], undetectability against targeted steganalysis may be
a problem. First of all, if the dictionary is assumed to be known, a steganalyzer may
look for specific artifacts introduced by MPSteg-color directly in the MP domain.
Secondarily, even if the dictionary is kept secret, the particular nature of atoms and
the application of the MP algorithm at a block level, may introduce blocking arti-
facts that could be used by a targeted steganalyzer to detect the presence of a stego-
message. As it will be shown in section 11.3 this is indeed the case, hence some
countermeasures need to be taken.

First of all we decided to avoid using the first decomposition coefficient as sup-
port of the secret message. Usually such a coefficient is able to describe most of the
image energy compared to the remaining atoms. For this reason, any modification to
the first atom is likely to introduce significant blocking artifacts, hence we decide to
keep such an atom unchanged.

The second and more important countermeasure we took, is randomization of

the embedding process. Randomization is applied at two different levels. At the first
level randomization affects the image decomposition into blocks. By following an
approach similar to that proposed by Solanki et al. in [63], the image is partitioned
into disjoint and contiguous windows of size 5 × 5 or 6 × 6, and MP decomposi-
tion is applied to 4 × 4 blocks randomly chosen within the larger 5 × 5 (or 6 × 6)
windows2. By doing so, we reduce and randomize the blocking artifacts introduced

2Randomization is achieved by changing the offset of the 4x4 window within the larger 5x5 or 6x6
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by MPSteg-color that will be more difficult to detect. In addition, even by know-
ing the MP dictionary, the MP domain used by a possible adversary will be spatially
de-synchronized with respect to the one used by the embedder, thus making steganal-
ysis in the MP domain more difficult. Of course a compromise between payload and
undetectability must be found here, given that the larger the window size the better
the undetectability at the expense of payload (given that the number of pixels not
touched by MPSteg-color will increase).

The second randomization level regards the choice of the reference color band

that is used to calculate the MP decomposition path. Specifically, a secret key is used
as a seed for a random number generator that decides on a block by block basis which
color band is used to calculate the decomposition path. The MP decomposition is
applied to the chosen band, while the secret message is embedded within the other
bands.

As it will be seen in Chapter 11, through randomization, especially block posi-
tion randomization, it is possible to resist to attacks brought by targeted steganalysis.

10.3 Increasing the payload

An undesirable effect of block position randomization is that the payload is
(slightly) decreased, all the more that the capacity3 of MP domain is intrinsically
lower than that of the spatial domain (see [57, 8]). A possible way to improve
(slightly) the payload of messages hidden by MPSteg-color stems from the obser-
vation that though the color bands are highly correlated, the decomposition path
calculated on one of them in general is not able to lead to a zero residual on the
other two bands. For some of the atoms selected in the reference band, in fact, a
null coefficient is obtained in the other bands, thus diminishing the number of coef-
ficients available for embedding. For this reason, after that the decomposition path
computed on the reference band is applied to the other two bands, the residual of
one of the these two bands is further decomposed to provide an additional list of

window.
3We are using the term capacity in a loose sense, without any reference to the corresponding infor-

mation theoretic concept.
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atoms that are used on the remaining band to provide additional coefficients to em-
bed some more bits. In the sequel we will refer to this second decomposition step
as the decomposition refinement step. The actual payload increase obtained thanks
to the decomposition refinement step will be evaluated experimentally in the next
chapter.



Chapter 11

MPSteg-color: experimental results

In this chapter we report experimental results that demonstrate the undetectabil-
ity of the new MPSteg-color algorithm and validate the main assumptions behind it.
First of all in Section 11.1 the image database used for the experiments is described.
Afterwards, in Section 11.2 we take a closer look at the MP domain to support the
hypothesis that the decomposition path calculated in one color band can be used with
little loss for the other bands. We also evaluate the gain in terms of payload that is
brought by the decomposition refinement step.

After that, in Section 11.3, we carefully analyze the undetectability of the pro-
posed technique, with particular attention to the effectiveness of partition randomiza-
tion as a countermeasure to targeted steganalysis. For this reason the undetectability
of the stego-message is tested first again two targeted steganalyzers explicitly devel-
oped to detect MPSteg-color messages, then against general purpose steganalyzers.

11.1 Image Database

For the experimental validation we used a database of 2564 raw color images of
512 × 512 size, which is a color version subset of the camera database described in
5.1.

Images are the cropped version of the original ones which are taken in a RAW
format from several kinds of common cameras. The images in the database show
a wide range of scenarios including countryside, houses, people, faces, man-made
objects, etc.
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11.2 Effectiveness of the proposed MP decomposition

We first validate the conjecture that, due to the correlation between RGB color
bands, computing the decomposition path on one band and using it on the other
two does not impair the capability of the MP algorithm to extract the most important
features of image blocks. Moreover we give a measure of the payload allowed by the
MP domain and the payload gain allowed by the decomposition refinement step. On
one side this is a good result showing a high degree of correlation, on the other side
it shows that the decomposition path calculated on one band is not capable of fully
describe the content of the other bands, thus justifying the resort to a decomposition
refinement step.

11.2.1 Interband correlation of decomposition path

MPSteg-color relies on the assumption that the color bands are highly corre-
lated. To experimentally validate the above conjecture, we decomposed a random
color band until a null residual is obtained, then with the same decomposition path
we decomposed one of the remaining bands. After this second decomposition, we

usually obtain a non-null residual that will be null only if the decomposition path
calculated on the first band fits the content of the second band. At this point we ap-
plied a matching pursuit decomposition to the non-null residual and we measured its
length. By averaging the results obtained on all the images of the test database, we
found that about 3.7 additional atoms are needed to decompose the second and the
third band residuals whose energy is about 40,80dB (while about 9.63 atoms were
necessary for the reference band).

11.2.2 Effectiveness of the decomposition refinement step

The goal of the decomposition refinement step is to decompose the residuals of
the two remaining bands after that the decomposition path computed on the reference
band is applied to them. In this way some extra non-zero coefficients are obtained
thus contributing to increase the payload of MPSteg-color. Specifically, we found
that the number of available coefficients for embedding is increased by 12.29% on
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average. In terms of payload this means that if we embed one bit per non-null co-
efficient then we are able to increase the size of the secret message by a 12.29%
factor.

11.3 Undetectability analysis

The most important requirement for any steganographic technique is undetectabil-
ity. In this section, we report the results that we obtained by applying four state-of-
the-art steganalyzers to detect±1 embedding applied in the MP domain and the pixel
domains. Before doing that, however, we test the effectiveness of block partition ran-
domization to combat targeted steganalyzers. In the following, we briefly describe
the steganalyzers we used by grouping them into two main sets.

The first set comprises target steganalyzers. It will be used to show the weak-
ness of MPSteg-color without the block-windows randomization. The second set of
steganalyzers is composed by steganalyzers proposed until now.

All the steganalyzers are used as feature extractors, however, we decide to always
use a simple linear classifier, namely the Fisher Linear Discriminant (FLD) that is
described in Chapter 2.3, to compare the goodness of each tool even though in the
original version some of them are associated with an SVM classifier. We chose
to compare all the steganographic algorithms by using a FLD classifier in order to
highlight the capability of the various types of features to detect the presence of a
hidden MPSteg message.

11.3.1 Targeted steganalyzers

The first targeted steganalyzer we used is built on the simple blocking artifacts
detector (BD) described in [64]. This technique was originally developed for detect-
ing JPEG block artifacts, however, we adapted it to detect the artifacts introduced by
MPSteg-color and use them as a feature to detect the presence of a stego-message.
The algorithm is very simple: we split the image into blocks whose size should be
matched to that used by the MP algorithm. Regardless of the block partition strategy
the steganalyzer assumes that blocks are located on a grid aligned with the top-left
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Figure 11.1: For each block the numbers Z ′ = |A + D − B − C| and Z ′′ = |E +
H − F −G| are computed.

corner of the image. For each block we calculate Z and Z ′ as follows:

Z ′ = |A + D −B − C|
Z ′′ = |E + H − F −G|

where A, B, C, D, E , F , G and H are taken as shown in Figure 11.1 in the case
of 4 × 4 blocks, the extension to larger blocks being trivial. Next the normalized
histograms vectors h′(n) and h′′(n) are computed respectively for Z ′ and Z ′′ and
the following feature is calculated:

fBD =
255∑

n=0

|h′(n)− h′′(n)|.

The above procedure is repeated for the three color bands producing a three-dimensional
feature vector that is given as input to the FLD classifier.

The second steganalyzer we developed relies on the knowledge of the histogram
of MP coefficients. For this to be possible, we assume that the steganalyzer knows
the MP dictionary but it does not know the reference band that is used to calculate the
decomposition path (hence a random band is used as a reference by the steganalyzer).
Figure 11.2 shows a typical histogram of a cover image and a stego MPSteg-color
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Figure 11.2: Comparison between coefficients histogram of a cover image (dashed
line) and a stego MPSteg-color image (solid line).

image. Due to the embedding asymmetry applied to coefficients having value equal
to 1 - that are either left unchanged or incremented by one - a flat step appears in the
leftmost part of the histogram, while this effect does not appear in the cover image.
By considering this effect, we propose to use the following feature:

fMPHA = h(2)− h(1) + h(3)
2

(11.1)

where h is the histogram function. In the sequel we will refer to this technique as
MPHA.

11.3.2 State-of-art steganalyzers

The first steganalyzer of the second group is ALE based on the artifacts intro-
duced by ±1 embedding in the image histogram and described in Chapter 4.

The second algorithm we used in this set is WAM steganalyzer [10] that we
described in Chapter 3.2.1. It works in the wavelet domain and the extracted features
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are central moments that are calculated in the three detail bands of first order wavelet
decomposition. This steganalyzer is a blind steganalyzer because it is not explicitly
developed to detect any particular kind of messages.

The third steganalyzer is 2D-HCFC algorithm introduced by Ker in [23] and
described in Chapter 3.2.2. It builds on some considerations made in [36] about
artifacts generated in the histogram domain by ±1 embedding. In particular we
used the concatenated features from the histogram analysis and the adjacency matrix
analysis.

Starting from the initial gray scale steganalyzers, we implemented a color version
by joining the 3 RGB band feature vectors in a unique vector with triple components.
In this way we worked with 30 features for ALE, three features for 2D-HCFC and

81 features for WAM.

11.3.3 Steganalysis Results

For our experiments we embedded in each image a random message by using a
secret unique key.

For MPSteg-color we used three window sizes in the experimental tests: 4 × 4,
5 × 5 and 6 × 6. The comparison between different methods was always made by
using the maximum payload allowed by the techniques involved in the comparison,
for instance when comparing MPSteg-color versions with different window sizes the
payload imposed by the largest window is used 1.

The cover and stego images produced as described above were used to build a
training and a test set, both containing 50% cover and 50% stego images. The size
of the training set was equal to 20% of the 2564 images, the remaining 80% forming
the test set. The training and the test sets were built randomly, however, to avoid any

dependence of the results upon the specific training and test sets, the experiments
were repeated 20 times, each time with a different training and test set. In this way
we obtained 20 ROC curves that were vertically averaged to produce the final plots
shown in the following. In the plots the minimum and maximum bound of the beam
of ROC curves is shown.

1The payload is expressed in bit per pixel, by considering 512× 512× 3 the number of the pixels.
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(a) BD - MPSteg-color payload: 0.3159 bpp
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Figure 11.3: Comparison between BD (a) and MPHA (b) steganalyzers: the first
window size reported in the figure indicates the window size used by the stegana-
lyzer, the second one the size of the blocks used by the embedder to partition the
image. The payload is 0.3159 bpp.
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Table 11.1: PSNR values (dB) for different payload and settings.

Payload MPSteg-color ±1 embedding

6× 6 window 5× 5 window 4× 4 window

0.14 bpp 55.20 55.25 55.30 59.70

0.20 bpp - 53.62 53.69 58.12

0.32 bpp - - 51.64 56.14

Figure 11.3 shows the performance of the two target steganalyzers described in
Section 11.3.1. We considered several scenarios: in a first optimistic (for the ste-
ganalyzer) situation the steganalyzer knows the window size used by the embedder,

though it does not know the particular randomization key used. In this case the
steganalyzer simply picks a random 4x4 block out of the larger window, with a prob-
ability of guessing the right position equal to 1/4 for 5 × 5 windows and 1/9 for
6× 6 windows. In the second case the steganalyzer is tuned on 4× 4 blocks, but the
actual partitioning window used by the embedder is larger.

The results shown in the Figure 11.3 indicate that both BD and MPHA stegana-
lyzers perform better when no block randomization is used (MPSteg-color window

size = 4 × 4) and the steganalyzers are tuned on the a 4 × 4 window size. At the
same time, the undetectability of MPSteg-color increases dramatically when block
position is randomized, even when the steganalyzers are tuned to the exact window
sizes. This is especially true for the BD steganalyzer whose performance are bad
already for a 5 × 5 randomization window and very close to a random guess for
the 6 × 6 case. Since the MPHA performs slightly better, we also investigated its
performance when it does not adopt the correct window size (a case that is closer to
reality since in general the steganalyzer may not know the size of the randomization
window used by the embedder). Specifically part (b) of Figure 11.3 reports the case
of an MPHA steganalyzer tuned on a 5× 5 or 6× 6 window applied to stego-images
containing messages embedded by using a 4 × 4 partition. As it can be seen the
performance of the steganalyzer decreases significantly. Similar results are obtained
when the embedder uses a larger randomization window.
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We now turn the attention to non-targeted steganalysis and to the comparison
between MPSteg-color and ±1 embedding applied in the pixel domain

Before presenting the ROC curves, it is instructive to consider the PSNR obtained
by applying ±1-steg in the pixel and in the MP domains. Such results are given in
Table 11.1 for different MPSteg-color window sizes and different payloads. The
average PSNR is obtained by taking the average on the linear quantities and then
passing to the logarithmic scale. As expected, by considering that the atoms of the
MP decomposition has a support larger than a single pixel, MPSteg-color results in
a lower PSNR, hence suggesting that any advantage in terms of undetectability (if
any) will be due to the better hiding properties of the MP domain.

Despite the lower PSNR, the presence of the stego-messages can not be noticed
perceptually as it is exemplified in Figure 11.4 where the stego-image (right) cannot
be distinguished from the original one (left) even if the largest possible payload is
used (0.3687bpp) for a PSNR of 51.22dB.

Figures 11.5, 11.6, and 11.7 compares the detectability of MPSteg-color with
that of ±1 embedding, for three different window sizes (and different payloads). In
the legend, the Area Under Curve (AUC) value is also given for each steganalyzer as
an overall measure of classification accuracy.

We can see that WAM and ALE are capable to distinguish the stego-images with
a significant level of accuracy. In WAM case, though, the message embedded in the
MP domain is less detectable than the one embedded in the pixel domain, while ALE
works better with MPSteg-color than ±1 embedding.

We can see that WAM is the only steganalyzer capable to distinguish the stego-
images with a significant level of accuracy. Even in this case, though, the message
embedded in the MP domain is less detectable than the one embedded in the pixel
domain.

Slightly better results (from the steganalyzer point of view) are obtained for a 4×
4 window (larger payload), however, the general behavior of the various algorithms
does not change.

In order to evaluate the dependence of MPSteg-color detectability on the size of
the randomization window, the ROC curves obtained for different sizes are plotted
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Table 11.2: Average execution time in seconds of embedding phases for images
512× 512 of size, window 4× 4 and full payload (0.32 bpp).

Decomposition Embedding Reconstruction
13830 14.78 2.5

in Figures 11.8, 11.9, and 11.10. In this case we pay our attention to a specific
steganalyzer, and we use the maximum admissible payload for all the used windows
(i.e. those attainable with the 6×6 windows) that is 0.1391 bpp. The ALE, WAM and
2D-HCFC steganalyzers are respectively shows in Figures 11.8, 11.9, and 11.10. We
see in Figure 11.10 that 2D-HCFC steganalyzer is not able to detect MPSteg-color.
Instead, the performance of ALE and WAM steganalyzers do not depend on the size
of the partitioning window. A possible explanation for this behavior is that for the

6× 6 case we are using the maximum admissible payload, hence approximately half
of the MP coefficients are changed, while this is not the case with the 4× 4 window.
In addition, the additional randomization allowed by the 6 × 6 window is a way to
improve the undetectability against targeted steganalyzers - as it is shown in Figure
11.3 - explicitly designed to detected a message embedded in the MP domain, the
same advantage is not expected for other steganalyzers.

11.3.4 Computational Complexity

Although particular attention has been paid to reduce the execution time, the MP
exhaustive search to define the decomposition path at each step is really onerous and
it is the bottleneck of the whole system. We developed the prototype of our scheme
in MATLAB and we used a c-MEX function in the kernel of exhaustive search in

order to reduce as much as possible the computational time. Table 11.2 shows the
execution time of the embedding phase (decomposition step, message embedding
and image reconstruction) when the MATLAB code is executed on an Intel Xeon at
3GHz.

Even though the source code could be improved and a different language could
be chosen, the decomposition step - that is used to the receiver side too - is the most
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critical part of the proposed steganography.
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(a) Cover image

(b) Stego image

Figure 11.4: Perceptual invisibility of the stego-message. The cover (a) and the stego
(b) images can not be distinguished (payload = 0.3158 bpp, 4×4 partition, 51.40dB).
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Figure 11.5: Comparison between MPSteg-color with window 4× 4 (solid line) and
±1 embedding (dashed line) with 3 different steganalyzers at 0.3159 bpp of payload.
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Figure 11.6: Comparison between MPSteg-color with window 5× 5 (solid line) and
±1 embedding (dashed line) with 3 different steganalyzers at 0.2002 bpp of payload.
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Figure 11.7: Comparison between MPSteg-color with window 6× 6 (solid line) and
±1 embedding (dashed line) with 3 different steganalyzers at 0.1391 bpp of payload.
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Figure 11.8: MPSteg-color detection performance on ALE at fixed embedding rate
(0.1391 bpp).
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Figure 11.9: MPSteg-color detection performance on WAM at fixed embedding rate
(0.1391 bpp).
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Figure 11.10: MPSteg-color detection performance on 2D-HCFC at fixed embed-
ding rate (0.1391 bpp).





Chapter 12
MPSteg-color: remarks and future works

In the second part of the thesis a new algorithm for embedding a stego-message
into color images represented by means of high redundant basis decomposition has
been presented. The problems of previous schemes proposed in this sense have been
solved, with particular attention to undetectability against targeted steganalyzers.

Indeed, we have shown that without proper countermeasures, messages hidden in
the MP domain are easily detectable.

The undetectability of MPSteg-color has been extensively tested against both
targeted and general purpose steganalyzers, showing the validity of the proposed ap-
proach. In particular, the good hiding properties of the MP domain are demonstrated
by comparing the undetectability of a±1 embedding message embedded in the pixel

with that of a ±1 embedding message embedded in the MP domain, with the latter
being less detectable than the former despite a higher embedding distortion.

Further experimental investigations are needed in order to apply the full method-
ology benchmark proposed in the first part of the thesis. Actually, we have not been
able to build a full MPSteg-color dataset with several payloads, due to the computa-
tional complexity of the proposed technique.

Some further studies can consider the role of the dictionary, by analyzing the un-
detectability dependence on the used atoms in order to design a powerful dictionary
which is more able to make MPSteg-color undetectable. By enlarging the cardinality
of the dictionary, we could also study a randomized dictionary, i.e. a subset of a very
big dictionary, which can be unknown to the steganalyzer. In fact, a weakness of
MPSteg-color is that the steganalyzer knows the dictionary in which the message is

embedded and this fact can help in the design of a targeted method.

Another weakness of the proposed approach is that we are loosing one band just
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to correctly recover the decomposition path. In this way we lose about 1/3 of coeffi-
cients which cannot be used as embedding support and the MPSteg-color maximum
payload goes down. As future works it could be possible to develop a new scheme
with a blind decomposition path recovery or by embedding the message within the
atom indexes instead of the atom weights. In this scenario, a great attention should
be given to synchronizing problems.

A few additional improvements of the proposed scheme are possible, either to

augment the payload or diminish the detectability. Specifically, the wet paper coding
approach may be applied to remove the constraint that message embedding cannot
produce zero coefficients, and matrix embedding can be applied to decrease the em-
bedding distortion.



Chapter 13

Final remarks

In this thesis we have taken into account steganography and steganalysis in the
pixel domain. Pixel domain steganography has been deeply investigated by many
research groups the last ten years so we can consider it as a rather mature field.

Several application scenarios could be interested to use either steganographies or
steganalysis techniques for digital images especially thanks to the widest connection
infrastructure: Internet. Even though steganography is usually linked to malevolent
applications such as industrial espionage or coordination between terroristic cells
and steganalysis as a benevolent tool thought to reinforce homeland security, these
are not the unique application scenarios. For example in countries suffering from
military dictatorship, steganography can be seen as the only way of ensuring free-
dom of speech while steganalysis becomes a tool to limit this freedom. We can say
that steganography and steganalysis need each other to avoid the supremacy of the
adversary and for this reason research has lately been directed towards the investiga-
tion of the ultimate limits of these techniques [45].

Today several steganographic and steganalysis methods ensure good results es-
pecially in controlled scenarios with fixed payload, image sources, and image sizes

but they usually do not extend these good performance to practical case. Moreover,
in the literature the performance of steganographic techniques are rarely based on a
test set never analyzed by the classifier. In the last years, to obtain undetectability
the steganographic methods have been mainly concerned with the minimization of
embedding changes, but this methodology is not the unique possible strategy and
researchers should investigate other strategies as well.

In the above framework, the contribution of this thesis is threefold. The first
one is a new ±1 embedding steganalyzer, called ALE, which is able to detect ±1
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embedding artifacts. The second one is the proposal of a comparison methodology to
be applied to fairly benchmark the merits and drawbacks of different steganalyzers.
Finally, the last one is a new steganographic method, called MPSteg-color which
shows how embedding the hidden message at a higher semantic level could result
in a less detectable stego message than a strategy that minimizes the embedding
changes without takes into account the embedding domain.

The first part of the thesis focuses on the importance of reproducible research
in terms of performance validation and weakness analysis. A lot of works describe
steganography and steganalysis tools in a good way, however the reader has always
difficulties to implement again these tools especially because the experimental re-
sults are not obtained by using a standard procedure. We have shown in this thesis
that a proper design of the image database is a crucial path to obtain reproducible
results. Moreover, recent studies [25] show that by fixing the payload, the results
change through a square root law depending on image size and could be interesting

to extend our analysis by taking into account the image size.

Our analysis has also shown that when a steganalyzer does not know the payload,
its performance in terms of AUC are far from those obtained in the best case in which
they are known and this fact constitutes a big weakness of the current state of art. In
practical applications, in fact, a steganalysis system can check the image size, and
by using a forensic tool it can get information about the image sources (camera or
scanner), but it never knows the message length.

Besides, we have shown that concatenating good features in a new steganalyzer,
as hybrid steganalyzers do, it is usually a good way to improve performances, but
if we do not know the practical scenario, i.e. the steganalyzer is trained with a
train set which is very different than the future test set, the concatenation may not
be the best strategy: it just increases the classification uncertainty. The ALE, the
steganalyzer proposed in this thesis, seems to be more stable in terms of overall
AUC performances than WAM, which is the current state of art steganalyzer in the

pixel domain thanks to the low number of features it uses which are about one third
of those used by WAM.

In the second part of this thesis we considered the steganography point of view
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by showing that the weakness of steganalyzers could be used by steganographers to
develop more efficient and secure techniques. Specifically, we have proposed a new
technique based on high redundant basis decomposition that shows how a embed-
ding the message at a higher semantic level could result in a less undetectable stego
message, when the steganalyzer is based on high-order statistics analysis. Of course,
the proposed technique is just a prototype, however it clearly shows that embedding
messages at a more semantic level could be a good way to achieve undetectability.

In the future, we could extend our research by fully analyzing the MP embedding
domain, especially by investigating the relationship between detectability and the
design and cardinality of the dictionary.
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[14] J. Fridrich, T. Pevnỳ, and J. Kodovskỳ, “Statistically undetectable jpeg steganography:
dead ends challenges, and opportunities,” in Proceedings of the 9th workshop on Mul-
timedia & security. ACM New York, NY, USA, 2007, pp. 3–14.

[15] B. Roue and J. Chassery, “Improving LSB steganalysis using marginal and joint prob-
abilistic distributions,” in Proceedings of the 2004 workshop on Multimedia and secu-
rity. ACM New York, NY, USA, 2004, pp. 75–80.

[16] S. Dumitrescu, X. Wu, and Z. Wang, “Detection of LSB steganography via sample
pair analysis,” IEEE transactions on Signal Processing, vol. 51, no. 7, pp. 1995–2007,
2003.

[17] J. Fridrich and M. Long, “Steganalysis of LSB encoding in color images,” in 2000
IEEE International Conference on Multimedia and Expo, 2000. ICME 2000, vol. 3,
2000.

[18] A. Ker, “Quantitative evaluation of pairs and RS steganalysis,” Security, Steganogra-
phy, and Watermarking of Multimedia Contents VI, vol. 5306, pp. 83–97, 2004.

[19] P. Lu, X. Luo, Q. Tang, and L. Shen, “An improved sample pairs method for detection
of LSB embedding,” in Proc. 6th Information Hiding Workshop, vol. 3200. Springer,
2004, pp. 116–127.

[20] S. Lyu and H. Farid, “Steganalysis using higher-order image statistics,” IEEE Transac-
tions on Information Forensics and Security, vol. 1, no. 1, pp. 111–119, 2006.



BIBLIOGRAPHY 107

[21] R. Bohme and A. Westfeld, “Exploiting preserved statistics for steganalysis,” in Sixth
Workshop on Information Hiding, Toronto, Canada (2004, May). Springer, 2004.

[22] J. Fridrich, M. Goljan, D. Hogea, and D. Soukal, “Quantitative steganalysis of digital
images: estimating the secret message length,” Multimedia Systems, vol. 9, no. 3, pp.
288–302, 2003.

[23] A. D. Ker, “Steganalysis of LSB matching in grayscale images,” IEEE Signal Process-
ing Letters, vol. 12, no. 6, pp. 441–444, 2005.
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