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Summary
• Introduction and motivation
• Distributed detection in adversarial setting
• Asymptotic Information-theoretic analysis
• Decision fusion with byzantine nodes

– Optimum decision fusion: a game-theoretic approach
– A simplified approach based on message passing

• Conclusions and directions for future research
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Distributed detection setup

Observed
system

Fusion center

- FC performs a Binary Hypothesis Test on system state.
- The test often aims at detecting when the system exits a safe state S0

Observation vector 
available to i-th node

Report sent to FC by i-th
node
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Nn

xi = (xi,1, xi,2 . . . xi,m)
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A wide variety of applications

– Wireless sensor networks
– Spectrum sensing for cognitive radio
– Intrusion detection
– Network monitoring
– Anomaly detection
– Smart grid
– Social networks
– Reputation systems
– Multi-clue decision making
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Distributed detection in adversarial setting

Observed
system
S0/S1

Fusion center

• An attacker may corrupt 
part of the system to 
induce a decision error

• Different versions:

Corrupted
observations
Corrupted nodes
Corrupted reports
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N3

Nn
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Asymptotic 
Information-theoretic 

analysis



University of Siena

NUAA – Nanjing, 27 October 2017

Basic assumptions
• System state does not change over time
• Number of observations for each node goes to infinity 

(m → ∞)
• Game-theoretic approach
• Similarity with SI game [1], solution provided in [2]

[1] M.Barni, B.Tondi, The Source Identification Game: an Information-Theoretic 
Perspective, IEEE Trans. on Information Forensics and Security, vol. 8, no. 3, pp. 
450 –463, March 2013.

[2] M. Barni, B. Tondi, “Multiple-Observation Hypothesis Testing under Adversarial 
Conditions”, Proc. of WIFS 2013, IEEE Int. Workshop on Information Forensics 
and Security, Ghuanzhou, China, 18-21 November 2013, pp. 91-96. 
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Game Theory in a nutshell
Two-player game
G(S1,S2,u1,u2 )
S1 = s1,1, s1,2... s1,n1{ }     Set of strategies available to first player

S2 = s2,1, s2,2... sn2{ }     Set of strategies available to second player
u1(s1,i, s2, j )                  Payoff of first player for a given profile
u2 (s1,i, s2, j )                  Payoff of second player for a given profile

Competitive (zero-sum) game
u1(⋅,⋅)=-u2(⋅,⋅)

Sequential vs strategic vs multiple moves games
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Equilibrium
Optimal choices
In game theory we are interested in the optimal choices of rational 
players

(stricly) Dominant strategy
The best strategy regardless of the other player’s move

u1(s1
*, s2 )> u1(s1 , s2 ) ∀s1 ∈ S1 ∀s2 ∈ S2

... then equilibrium is

(s1
*, s2

* ) with s2
*  such that

u2 (s1
*, s2

* ) ≥ u2 (s1
*, s2 ) ∀s2 ∈ S2



University of Siena

NUAA – Nanjing, 27 October 2017

Equilibrium
Nash equilibrium
No player gets an advantage by changing his strategy 
assuming the other does not change his own

u1(s1
*, s2

* ) ≥ u1(s1 , s2
* ) ∀s1 ∈ S1

u2 (s1
*, s2

* ) ≥ u2(s1
*, s2 ) ∀s2 ∈ S2

... and many others
- worst case assumption
- rationalizable equilibrium
- ...
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The SI game (with multiple observations)
Payoff and structure of the game: Neyman-Pearson

– D aims at minimizing the false negative error probability 
Pfn under the constraint that Pfp stays below a threshold. 

– Omniscient A. He/she acts only under S1, his aim being 
the maximization of Pfn

Ø Zero-sum game: uA = -uD = Pfn

Space of D’s strategies
– All detection regions based on on first order (possibly 

joint) statistics;
– Asymptotic version of the problem: constraint on 

asymptotic decay rate of Pfp (Pfp < 2-λm)
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Several versions of the game

• D has full knowledge of system statistics and bases the 
decision on all the available information still relying on 
first order statistics

x

m
l

x

m
l

• D still has full knowledge of system statistics but 
observes only the marginals

x

m
l

P
x

m
l

• D has full knowledge of system statistics but 
decides by fusing local decisions

x

m
l
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• The game theoretic formulation of the problem is dominance solvable
• Optimum fusion strategy checks if the joint empirical pmf of the 

observations is in accordance with the expected one. For the full 
statistics case we have

• The optimum fusion strategy does NOT pass from the identification of 
malevolent nodes

• Under certain assumptions, reliable decision is possible even in the 
presence of only one uncorrupted node

[2] M. Barni, B. Tondi, “Multiple-Observation Hypothesis Testing under Adversarial 
Conditions”, Proc. of WIFS 2013, IEEE Int. Workshop on Information Forensics and 
Security, Ghuanzhou, China, 18-21 November 2013, pp. 91-96. 

Some noticeable results proven in [2]

⇤⇤
0 =

⇢
P̂ 2 Pm : D(P̂ ||P

x

) < �� |X |k log(m+ 1)

m
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Decision fusion with 
Byzantines
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Decision fusion with Byzantines

Observed
system

Fusion center

Local test

Honest

• Now system state 
changes over time

• The fusion center 
makes its choice 
based on the results of  
the local decisions 
made at the nodes

• Global decision on m 
states

• Corrupted nodes 
(called Byzantines [3]) 
may submit wrong 
reports

[3] A. Vempaty, L. Tong, P. Varshney, “Distributed Inference with Byzantine Data”, Signal Processing 
Magazine, vol. 30, no. 5, September 2013

xn

rn = un

x1
x2

r1

Local test

Attack
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Local test

Attack
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Possible approaches
• Byzantines isolation

– A. S. Rawat, P. Anand, H. Chen, and P. K. Varshney, “Collaborative 
spectrum sensing in the presence of Byzantine attacks in cognitive radio 
networks,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 774–786, Feb. 
2011.

– A. Abrardo, M. Barni, K. Kallas, and B. Tondi, “Decision fusion with corrupted 
reports in multi-sensor networks: A game-theoretic approach,” in Proc. IEEE 
Conf. Decision Control (CDC), Los Angeles, CA, USA, Dec. 2014, pp. 505–
510.

• Byzantine-tolerant schemes
– M. Gagrani, P.  Sharma, S. Iyengar, V. Nadendla, A. Vempaty, H. Chen, and 

P.  Varshney, “On noise-enhanced distributed inference in the presence of 
Byzan-tines,”  in  Proc.  49th  Annu.  Allerton  Conf.  Communications  
Control  Comput-ing, Sept. 2011, pp. 1222–1229.

• Optimum fusion
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System and attack model
• Equiprobable independent system states

• Constant and independent local decisions errors
• Symmetric local decision errors

𝑃"# 0 = 𝑃"# 1 = 0.5

𝜀 = Pr	(𝑈/ ,1 ≠ 𝑆1 )

• Byzantines flip local decision with probability Pmal

Pr	(𝑈/,1 ≠ 𝑅/,1 | node is Byzantine) = 𝑃567

• Byzantines flip decisions independently of each other (non 
cooperative malicious nodes) and on subsequent states

• Nodes status and Byzantines’ strategy do not change over time
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Optimum fusion rule
If all the parameters of the system are known the optimum decision rule 
at the FC can be derived as follows

MAP estimate

ML estimate

sm = sequence of system 
states

an = vector with states of 
nodes
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Optimum fusion rule

Prob that FC receives a wrong report

Number of times for which the report of node i is equal to the state

To go on it is necessary to make some assumptions on the distribution of 
byzantine nodes across the network: P(an)
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Byzantines distribution
1. Unconstrained maximum entropy distribution

Letting Pmal = 1 forces the mutual information between S
and R to zero making any meaningful decision impossible

2. Constrained maximum entropy distribution, fixed E[NB]
Entropy is maximized by assuming i.i.d. node states with

The complexity of the optimum fusion rule is linear in n and 
exponential in m

↵ = Pr(Ai = 1) = E[NB ]

argmax

sm

nY

i=1

h
(1� ↵)(1� ")meq(i)"m�meq(i)

+ ↵(1� �)meq(i)�m�meq(i)
i
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distribution

3. Constrained maximum entropy distribution, NB < n/2
Equiprobable an (only those for which NB < n/2)

4. Constrained maximum entropy distribution, fixed NB

Complexity of optimum fusion rule is exponential in m and 
quadratic in n (dynamic programming [3])

[4] A. Abrardo, M. Barni, K. Kallas, B. Tondi, “A Game-Theoretic Framework for Optimum 
Decision Fusion in the Presence of Byzantines”, IEEE Trans. Information Forensics and 
Security, vol.11, no. 6, 2016

Byzantines distribution
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A game theoretic perspective
• Application of the optimum fusion rule requires that the FC 

knows Pmal

• Large values of Pmal are more effective in inducing a 
decision error

• If byzantine nodes are identified Pmal = 1 does not make any 
harm

• With Pmal = 0.5 we have I(S,R) = 0

• Which value of Pmal should the Byzantines choose?
• How can the FC know the vale of Pmal ?

• We adopt a game-theoretic perspective
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Decision fusion with Byzantines game
Two-player game (Byzantines collectively playing as a 
single player)

Payoff equal to error probability at the fusion center

Strategic game
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Computation of the equilibrium point
• Run simulations by quantizing the set of strategies
𝑃567 = {0.5, 0.6, 0.7, 0.8,0.9, 1.0}

• Length of observation window m plays a major role
• We run simulations with small and medium values of m
• Show results for n = 20, ε = 0.1

– m = 4
– m = 10
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Small m, independent node states

α = 0.4, n = 20
m = 4
Pe x 102

α = 0.45, n = 20
m = 4
Pe x 102
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Small m, fixed number of Byzantines
NB = 6, n = 20
m = 4
Pe x 104

NB = 9, n = 20
m = 4
Pe x 102
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Small m, fixed number of Byzantines
NB = 8, n = 20
m = 4
Pe x 104

Nash equilibrium exists only in mixed strategies
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Medium m, independent node states

α = 0.4, n = 20
m = 10
Pe x 102

α = 0.45, n = 20
m = 10
Pe x 102
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Medium m, fixed number of Byzantines
NB = 6, n = 20
m = 10
Pe x 104

For NB = 8 and NB = 9, a Nash equilibrium exists only in mixed 
strategies

NB = 9, n = 20
m = 10
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Performance at the equilibrium
ε = 0.1
n = 20
m = 4

[Maj] Majority rule

[HardIS] A. S. Rawat, P. Anand, H. Chen, and P. K. Varshney, “Collaborative spectrum sensing in the 
presence of Byzantine attacks in cognitive radio networks,” IEEE Trans. Signal Process., vol. 59, no. 2, 
pp. 774–786, Feb. 2011.

[SoftIS] A. Abrardo, M. Barni, K. Kallas, and B. Tondi, “Decision fusion with corrupted reports in multi-
sensor networks: A game-theoretic approach,” in Proc. IEEE Conf. Decision Control (CDC), Los Angeles, 
CA, USA, Dec. 2014, pp. 505–510.
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Nearly-optimum decision fusion

• Complexity prevents the use of optimum decision 
fusion for large m

• Use of message passing (MP) to develop a fast nearly 
optimum detector at the FC

• MP is a nearly optimum iterative optimization 
procedure based computation on graphs theory

• The MP-based algorithm allows to extend our results 
to cases with large observation windows [5]

[5] A. Abrardo, M. Barni, K. Kallas, B. Tondi, “A Message Passing Approach for Decision Fusion in 
Adversarial Multi-Sensor Networks”, Information Fusion, vol. 40, March 2018, pp. 101-111
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Results (small m)

We can now evaluate the performance also when m is large 
and for markovian sources

ε = 0.15
n = 20
m = 10
Pmal = 1
ρ = 0.5

α

0 0.1 0.2 0.3 0.4 0.5

lo
g(

P e)

10-4

10-3

10-2

10-1

100
Majority
Hard Isolation Scheme
Soft Isolation Scheme
Message Passing
Optimal
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Results

For large m the optimum detector can not be applied. The 
performance of MP-fusion remain very good

ε = 0.15
n = 20
m = 30
Pmal = 1
ρ = 0.95

α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

lo
g(

P e)

10-5

10-4

10-3

10-2

10-1

100
Majority
Hard Isolation Scheme
Soft Isolation Scheme
Message Passing
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Results: optimum attack strategy

The tendency of passing from Pmal = 1 to Pmal = 0.5 for large 
values of m is confirmed (for nearly optimum decision fusion)

ε = 0.15
n = 20
α = 0.45
ρ = 0.5

m
5 10 15 20

lo
g(

P e)

10-5

10-4

10-3

10-2

10-1

100

Hard Isolation Pmal=0.5
Hard Isolation Pmal=1.0
Soft Isolation Pmal=0.5
Soft Isolation Pmal=1.0
Message Passing Pmal=0.5
Message Passing Pmal=1.0
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Synchronized attack
• Using a synchronized attack may increase significantly the 

effectiveness of the attack
• We assume that the Byzantines share the values assumed by a 

local source of randomness q = (q1, q2 … qm)
• The optimum fusion rule can be easily derived by incorporating the 

value assumed by the local randomness into the maximization

• Which can be implemented again by exploiting the sum product MP 
algorithm [6]

[6] A. Abrardo, M. Barni, K. Kallas, B. Tondi, “A Message Passing Approach for Decision Fusion of 
Hidden-Markov Observations in the presence of Synchronized Attacks”, Proc. of MMEDIA17, 9-th Int. 
Conf. on Advances in Multimedia, April 23-27, 2017, Venice, Italy.

s⇤i = arg max

si2{0.1}

X

{sqa}\si

Y

i,j

p(rij |si, qi, aj)
Y

h

p(sh|sh�1)

Y

k

p(qk|qk�1)

Y

l

p(al)
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Results

The synchronized attack is by far more powerful than the 
asynchronous one. Game-theoretic analysis still on-going.

ε = 0.15
n = 20
m = 10
ρ = {0.5, 0.95}
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Conclusions and future research
• The case studied here is only an oversimplified example
• Many interesting extensions are possible:

– Time varying attacks
– Allow communication among Byzantines
– Non-binary reports
– Coalition games
– …

• Distributed detection
– K. Kallas, B. Tondi, M. Barni, “Consensus Algorithm with Censored Data for Distributed 

Detection with Corrupted Measurements: A Game-Theoretic Approach”, Proc. of GameSec
2016, Conference on Decision and Game Theory for Security, November 2-4, 2016, New 
York, NY, USA
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Conclusions and future research
• Application to real cases

– Network monitoring
– Wireless sensor networks

• Surveillance
• Drone detection
• …

– Social networks
• Crowdcomputing

• Implementation in testbed
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