

HKBU – May 23, 2017 Distinguished Lecture Series

Adversarial Signal Processing and the Hypothesis Testing Game

Mauro Barni

University of Sienna, Italy

Outline of the talk

- Motivation
- Adversarial signal processing and game theory
- Hypothesis testing game
 - Definition
 - Equilibrium point
 - Security Margin
- Application to Multimedia Forensics
- Conclusion

The digital ecosystem we live inA digital paradise ?Or a battlefield ?

Reputation scores

User-generated contents

identification

CLOUD

Denial of Service

Fake images

Identity theft

Network intrusion

SPAM

Distinguished Lecture Series, HKBU, 23 May 2017

M. Barni, University of Siena, VIPP group

To the rescue

- Researchers with diverse background have started looking for countermeasures
 - Spam filtering
 - Network intrusion detection
 - Secure reputation systems
 - Watermarking fingerprinting
 - Multimedia forensics
 - Secure classification/learning
 - Anti-spoofing biometrics
 - ... and many many others

To a closer look ...

- All these fields face with similar problems ...
- ... but interact each other to a very limited extent

We keep patching techniques thought to work in a digital paradise while we should develop tools explicitly designed for a battlefield

- Solutions are less effective than possible
- Basic concepts are misunderstood
 - Security vs Robustness

Binary decision: most recurrent problem

- Was a given image taken by a given camera?
- Was this image resized/compressed twice ... ?
- Is this image a stego or a cover ?
- Does an image contain a certain watermark?
- Is this e-mail spam or not ?
- Is traffic level indicating the presence of an anomaly/intrusion ?
- Does this face/fingerprint/iris belong to Mr X ?
- Is X a malevolent or fair user ?
 - Recommender systems, reputation handling
 - Cognitive radio

Attacks are also similar

- Images taken by camera X
- SPAM e-mails
- Biometric template

- Anomalous network traffic
- Malevolent users in reputation systems
 - Exit (or enter) R₀ under a distortion constraint
 - Exit (or enter) R₀ with the minimum distortion
 - If R₀ is known, then look for optimal solution
 - If R₀ is not known: oracle attacks are possible
 - Gradient descent

The cat and mouse loop

An example from Multimedia Forensics

Was a certain image contrast-enhanced ?

Avoid entering a cat and mouse loop Was a certain image contrast-enhanced ?

Look at histogram gaps !!!

Was a certain image gamma-enhanced ?

Look at histogram gaps !!!

Add noise so to fill the gaps

Distinguished Lecture Series, HKBU, 23 May 2017

M. Barni, University of Siena, VIPP group

Was a certain image gamma-enhanced ?

Look at histogram gaps !!!

Look at image noi

Was a certain image gamma-enhanced ?

Look at his e gaps Look at loc image

Was a certain image gamma-enhanced?

Look at histogram gaps !!!

Add noise so to fill the gaps

Look at local gradient

Smooth the image

Develop a tool to detect filtered images

Distinguished Lecture Series, HKBU, 23 May 2017

M. Barni, University of Siena, VIPP group

Adversarial Signal Processing

It is advisable to

- Avoid entering this never ending loop
- Catch the real essence of the problems
- Understand who's going to win this race of arms, at least under certain (reasonable) assumptions

Where do we start from ?

Adv-SP and Game-Theory: a perfect fit

Vast amount of results to rely on

Clear definition of **rational** players

Clear definition of goals

Modelling social interactions

Optimality criteria (equilibrium notion)

Definition of possible moves

Several game structures are possible

Two-player game

University of Siena

$$\begin{split} G(S_1,S_2,u_1,u_2) \\ S_1 &= \left\{ s_{1,1},s_{1,2}\dots s_{1,n1} \right\} & \text{Set of strategies available to first player} \\ S_2 &= \left\{ s_{2,1},s_{2,2}\dots s_{n2} \right\} & \text{Set of strategies available to second player} \\ u_1(s_{1,i},s_{2,j}) & \text{Payoff of first player for a given profile} \\ u_2(s_{1,i},s_{2,j}) & \text{Payoff of second player for a given profile} \end{split}$$

Competitive (zero-sum) game

 $u_1(\cdot, \cdot) = -u_2(\cdot, \cdot)$

Sequential vs strategic vs multiple moves games

Equilibrium

Optimal choices

In game theory we are interested in the optimal choices of rationale players

(stricly) Dominant strategy

The best strategy regardless of the other player's move $u_1(s_1^*, s_2) > u_1(s_1, s_2)$ $\forall s_1 \in S_1$ $\forall s_2 \in S_2$

... then equilibrium is

 (s_1^*, s_2^*) with s_2^* such that $u_2(s_1^*, s_2^*) \ge u_2(s_1^*, s_2) \quad \forall s_2 \in S_2$

Equilibrium

Nash equilibrium

No player gets an advantage by changing his strategy assuming the other does not change his own

$$u_1(s_1^*, s_2^*) \ge u_1(s_1, s_2^*)$$
 ∀ $s_1 ∈ S_1$
 $u_2(s_1^*, s_2^*) \ge u_2(s_1^*, s_2)$ ∀ $s_2 ∈ S_2$

... and many others

- worst case assumption
- rationalizable equilibrium

^{- ...}

The cat & mouse loop and Adv-SP

Paper 1: The defender chooses a strategy according to a certain optimality criteria

Paper 1: D chooses a strategy

Paper 2: A derives the optimum attack

Paper 1: D chooses a strategy

Paper 2: A derives the optimum attack

Paper 3: D derives the optimum countermeasure (forgetting the initial optimality criteria)

The equilibrium of the game represents the *optimum* choice for both players

It determines the security of the system

AdvSP at work The Source Identification Game

A motivating example (1)

The SI Game with known sources*

First step: structure of the game

- Two DM sources X and Y with known pmf's P_X and P_Y
- Task of Defender (D): decide whether a sequence has been drawn from X
- Task of Attacker (A): modify a sequence drawn from Y so that it looks as if it were drawn from X subject to a distortion constraint

* M. Barni, B, Tondi, "The Source Identification Game: an Information-Theoretic Perspective", *IEEE Trans. Inform. Forensics and Security*, March 2013

Second step: explore S_D and S_A

For the defender

- All possible acceptance regions ...
- ... subject to a constraint of false I-type error probability
- ... including possible limitations on the kind of analysis the defender can carry out
- Asymptotic analysis

For the attacker

• All modifications subject to a constraint on the maximum distortion introduced by the attack

Second step: explore S_D and S_A

$$S_D = \left\{ \Lambda_0 : P_{fp} \le 2^{-\lambda n} \right\}$$

 Λ_0 is defined by relying on first order statistics only

$$S_A = \left\{ f(y^n) : d(y^n, f(y^n)) \le nD \right\}$$

D = maximum average per letter distortion

Third step: define the payoff

Neyman-Pearson set up

- Zero sum game
- · Payoff linked to II-type error probability

$$u_A(\Lambda_0, f) = -u_D(\Lambda_0, f) = P_{fn}$$
$$P_{fn} = \sum_{\mathbf{x}: f(\mathbf{x}) \in \Lambda_0} P_Y(\mathbf{x})$$

Fourth step: study the equilibrium

Lemma: dominant strategy for D

$$\Lambda_0^* = \left\{ x^n : D(\hat{P}_{x^n} \parallel P_X) < \lambda - |\chi| \frac{\log(n+1)}{n} \right\} \quad regardless \ of \ P_Y$$

is a dominant strategy for the defender.

Remark

The optimum strategy of D depends neither on P_{Y} nor on A's strategy (semi-universal and dominant strategy).

Fourth step: study the equilibrium

Having fixed the strategy of the Defender, the optimum strategy of the attacker is easy to derive

Theorem: dominance-based equilibrium

$$\Lambda_{0}^{*} = \left\{ x^{n} : D(\hat{P}_{x^{n}} \parallel P_{X}) < \lambda - |\chi| \frac{\log(n+1)}{n} \right\}$$
$$f^{*}(y^{n}) = \underset{z^{n}:d(z^{n},y^{n}) \le nD}{\operatorname{argmin}} D(\hat{P}_{z^{n}} \parallel P_{X})$$

Fifth step: who wins ?

Theorem 2: distinguishability region

Given P_X λ and D, we can define a region Γ_{fn}^{∞} such that

By letting $\lambda \rightarrow 0$ we obtain the ultimate distinguishability region for a certain distortion level D.

👔 University of Siena

Fifth step: who wins ? Security margin*

Let D_{max} = maximum value of D for which P_X and P_Y are distinguishable, we can say that P_X and P_Y are distinguishable up to an attack of power D_{max} SM = D_{max} is said the *security margin between* P_X *and* P_Y

* M. Barni, B. Tondi, "Source Distinguishability under Distortion-Limited Attack: an Optimal Transport Perspective", *IEEE Trans. Information Forensics and Security*, vol. 11, no. 10, Oct. 2016,

SM and optimal transport theory

- We can compute SM by resorting to optimal transport theory
- Let us interpret P_{Y} and P_{X} as two different ways of piling up a certain amount of soil
- Let c(i,j) be the cost of moving a unitary amount of earth from the i-th to the j-th bin
- The Earth Mover Distance (EMD) is the minimum cost necessary to transform P_Y into P_X
- We have: $SM(P_Y, P_X) = EMD(P_Y, P_X)$ which can be computed numerically

From theory to practice

- Histogram-based detection of contrast enhancement or gamma correction
- Thanks to theory

- We avoid cat and mouse game
- Universal attack: the attack is optimum against any detector based on first order statistics

•

From theory to practice:

an example in histogram-based image forensics*

- Processes the image
- Searches the DB for the nearest untouched histogram
- Computes a transformation map from one histogram to the another
- Applies the transformation, minimizing perceptual distortion

 M. Barni, M. Fontani, B. Tondi, "A Universal Technique to Hide Traces of Histogram-Based Image Manipulations", Proceedings of MMSEC 2012, Coventry (UK), Sept. 2012.

Example

Original Image

Example

Processed image (gamma-correction)

Prior to Counter-Forensics

Distinguished Lecture Series, HKBU, 23 May 2017

M. Barni, University of Siena, VIPP group

University of Siena

Another example

Distinguished Lecture Series, HKBU, 23 May 2017

M. Barni, University of Siena, VIPP group

Experimental results: gamma correction

ROC curves for Contrast Enhancement (γ–correction) detection before (solid line) and after (marked lines) CF attack.

A practical meaning of the SM

The minimum SM between the histogram of Y and those of the images in the database gives the minimum effort required to the attacker to make Y indistinguishable from the images in C_0

Conclusions

Extensions

- Source identification with training date
- Source identification with multiple observations
- Source identification with corrupted training
- Fully active adversary

Future research: there's a lot to work on

- Non-asymptotic analysis
- Go beyond binary HT
- Machine learning
- Coalition games
- Computational aspects

References

- 1. M. Barni, F. Perez-Gonzalez, "Coping with the enemy: advances in adversary-aware signal processing", *Proc. of ICASSP 2013, IEEE International Conference on Acoustic Speech and Signal Processing*, 26-31 May 2013, Vancouver Canada.
- M. Barni, B. Tondi, "The Source Identification Game: an Information-Theoretic Perspective", *IEEE Transactions on Information Forensics and Security*, vol. 8, no. 3, pp. 450-463, March 2013
- 3. M. Barni, B. Tondi, "Binary Hypothesis Testing Game with Training data", *IEEE Transactions on Information Theory*, vol. 60. no. 8, August 2014, pp. 4848-4866
- 4. M. Barni, B. Tondi, "Source Distinguishability under Distortion-Limited Attack: an Optimal Transport Perspective", *IEEE Transactions on Information Forensics and Security*, vol. 11, no. 10, pp. 2145-2159, Oct. 2016
- 5. M. Barni, B. Tondi, "Adversarial Source Identification Game with Corrupted Training", submitted to *IEEE Trans. on Information Theory* (available on arXiv)

Thank you for your attention