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Goals

* Motivate the need for calibration

* Define a sound theoretical framework

* QOverview baseline solutions

* Present open problems for Semafor

* Propose a roadmap for Semafor research

MMMMMMMMMMMMMMMMM



Working assumptions

* Hypothesis testing / two-class classifiers / binary
detectors

@)

@)

@)

Hy = consistency check verified

H, = inconsistency found — something bad
detected
Analytic outputs a score y such that:

The larger y
the more evidence s found that

Hy holds (Hy is rejected)
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Notation

 Letf be an analytic, in the following | let:

x = put data
y =1y = f(x) = f1(z) evidence in favor of Hq
t € {0,1} ground truth

« Often (e.g. with CNNSs) /" outputs two values
(o, y1) 2 Yo=1—-y1=1—y

* | also let: P(Hy) =Fy,, P(H)) =P
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What

« By calibration we refer to a procedure whereby
the output of the analytic is given a

precise probabilistic meaning
« Often we require that
Pr(Hi|f(z) =y) =y — Pr(Holf(x)=y) =1y =1y

* Other prob. quantities can be obtained from y
lr =log(y) — log(1 — y) + log(Po) — log(F1)
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Why calibration

 To make decisions based on error probabilities
 Minimum error probability obtained by

Reject Hy if y > 0.5

« Maximum likelihood decision

Reject Hy if (1_ ) > > 1

« Compute Prand P,
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Why calibration

« To let different analytics speak the same
language
. Ease fusion

* It can help to handle the variability of analytics

It can help to cope with dataset (or domain)
variability

« By adapting the calibration dataset to the
conditions at hand
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Why calibration

« EXpress uncertainty

- Distinguish between certain and uncertain
decisions

- Handle out of distribution data (e.g. by
designing sound opt-out strategies)

- Contrast DNN tendency to always output
close-to-one values
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On calibration datasets

By its very definition, calibration requires the
availability of either

Probability models
or

Representative calibration datasets

Calibration of P(H,|y) requires the availability
of datasets generated both under H, and H,

‘‘‘‘‘‘‘‘

MMMMMMMMMMMMMMMMM



On calibration datasets

Calibrating /Ir values also requires that datasets
representative of both H, and H, are available

The same applies to the calibration of both P,
and P,

Building representative datasets under A, may

be difficult. In these cases calibration may be
limited to P,
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How

Assuming that a good calibration dataset is
available covering both H, and H,, several
baseline approaches exist for calibration:

« Direct construction of calibrated analytics
- Regularization during training
- Bayesian networks

O

* Post-hoc regularization
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Reliability diagrams

How should the output of a calibrated analytic look like?

Reliability Diagram

: In its simplest form, post-

82 hoc calibration consists in
0.7 applying a calibration

0.6 function g() to the network
8:2 output y so that for z = g(y)
0,3 we have:

0,2

g Pr(Hilg(y) = 2) = 2

0 0,10,20,30,40,50,60,70,80,9 1
—e— Overconfident —e— Underconfident

—e— Calibrated - o -Perfect
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Parametric calibration

We assume a certain probability distribution (e.g.
logistic) and optimize its parameter(s)

Simplest example: temperature scaling

Better seen on logits (&)

egl/T

© = egl/T —+ 6§O/T

T'is chosen so to maximize the likelihood of the
observations under the pdf defined by z’s
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Platt scaling (logistic regression)

We assume the output probabilities are logistic
functions of the scores

B 1
1 4 eaytbd

z=g(y)

Where a and b are determined by maximizing the
likelihood or by fitting the logistic to the score
obtained on the calibration set after binning
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Platt scaling and /ir

With logistic probabilities we have

P(H1|2) P(Hp)
1 + elay+bd)

[lr = log

= log + log P(Hy) — log P(H1)

1 + e—(ay+b)

which is a shifted linear function in y hence
allowing direct linear regression on /ir

Note: the a-priori probabilities here correspond to the relative frequencies of
the samples of the two classes in the calibration dataset
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Other parametric calibration

Many other possibilities exist, for instance:

« Vector and matrix scaling: Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q
Weinberger. On calibration of modern neural networks. In ICML, 2017
(vector and matrix scaling)

« Histogram binning: Ananya Kumar, Percy S Liang, and Tengyu Ma.
Verified uncertainty calibration. In NIPS, 2019

 Beta calibration: Meelis Kull, Telmo M Silva Filho, and Peter Flach.

Beyond sigmoids: How to obtain well-calibrated probabilities from binary
classifiers with beta calibration. Electronic Journal of Statistics, 2017 .

« CCAC (confidence calibration with auxiliary class): Shao, Z., Yang, J., &
Ren, S. (2020). Calibrating Deep Neural Network Classifiers on Out-of-
Distribution Datasets. arXiv preprint arXiv:2006.08914

g
9
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Non-parametric calibration

Isotonic regression is the baseline for non parametric
calibration (assuming calibration set is large enough)

After binning a piecewise linear non-decreasing function is
fit to the calibration data

e o Data .

When population is | — tsotonic Fi Pa—a—

- Linear Fit °

Increasing isotonic
regression connects
nearby points,
otherwise it takes a
constant value

MMMMMMMMMMMMMMMMM



Centered isotonic regression

Flat regions typical of isotonic regression are not desirable

« Often probabilities (and confidence) should be strictly

Increasing

 Inversion of calibrated outputs is impossible, making it

difficult to set a decision threshold

Q

With centred isotonic calibration
confidence values are strictly °
Increasing g

Oron, A. P., & Flournoy, N. (2017). Centered
isotonic regression: point and interval o
estimation for dose—-response studies. Stafistics
in Biopharmaceutical Research, 9(3), 258-267.

o

0.
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Evaluating calibration

Expected Calibration Error

Nbin

ECE =

o | B;|

t=1|; = number of samples in B; for whicht =1

Maximum Calibration Error
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Evaluating calibration (proper metrics)

Brier score

Brier score = % 27],\;1('2% — tz‘)Q

Log-loss (cross-entropy, KL)

N

1

N E t;log z; + (1 —t;) log(1 — z;)
i=1
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Operational metric

Difference between the performance achieved by
setting the decision threshold based on the
calibrated analytic and the best achievable
performance obtained by setting the threshold on
test data
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From probabilities to lir

Passing from a calibrated output to a calibrated /Ir is easy

Passing to Illr permits to remove the dependency on prior
probabilities

o Z | P(Ho)
llr—logl_z . lOgP(Hl)

Where P(H,)) and P(H,) are estimated based on the relative
frequencies of the samples of the two classes in the
calibration dataset

........
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One-class calibration

If building a representative (calibration) dataset under H, is
not possible we cannot calibrate /[r and P(H,,|y), however
we can still calibrate the probabilities under H,

Threshold calibration: choose T in such a way that
! I(y; >T)=P
N i=1 o -

Likelihood calibration: choose z = g(y) in such a way that




The BIGG problem

When the operative conditions can not be
represented by one single dataset, single
calibration procedures do not work

Two cases are possible
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New analytic needed

Train / calibration dataset
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Different domain dataset
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The features learnt during training are not effective in

the new domain

Retraining (or fine tuning) needed
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New calibration needed

Train / calibration dataset

. Different domain dataset
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The features learnt during training are still
discriminative (AUC close to 1)

Recalibration is needed
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Several possibilities

Define several domains/applications and calibrate (or
train, if needed) a classifier for each domain

1. ldentify domain and select calibration based on
context information and/or metadata

2. ldentify domain and select calibration based on
the characteristics of input sample

3. Train e metaclassifier to identify domain

4. Include a rejection (opt-out option)
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Roadmap

 Identify domains of interest (for different threats
landscapes)

e Build calibration datasets

- It is desirable that common calibration datasets
are built

« Define single-dataset calibration procedures
« Baselines + ad-hoc methods
« Define calibration metrics
« Baseline + ad-hoc metrics
« Develop domain adaptive calibration procedures

MMMMMMMMMMMMMMMMM



Hope this presentation will
help triggering further

discussion and guide work
ahead
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