
Privacy Preserving Protocol for Iris Recognition

Based on Somewhat Homomorphic Encryption

Giulia Droandi, Riccardo Lazzeretti, Mauro Barni, Luca
Chiantini

Departement of Information Engineering and Mathematics,
University of Siena, ITALY

March 17, 2014



Introduction

Fully and Somewhat Homomorphic Encryption
DGHV Cryptosystem
New Cryptosystem

Iris Recognition Protocol

Validation



Motivation

Biometric signals often used in access control systems



Motivation

Biometric signals often used in access control systems

Need of privacy protection of both the biometric gallery and the
probe



Motivation

Biometric signals often used in access control systems

Need of privacy protection of both the biometric gallery and the
probe
Our solution: Somewhat Homomorphic encryption



What is Homomorphic encryption?

It allows to perform operations on plain texts while they are
encrypted.



What is Homomorphic encryption?

It allows to perform operations on plain texts while they are
encrypted.

1

0

1

1

0



What is Homomorphic encryption?

It allows to perform operations on plain texts while they are
encrypted.

1

0

1

1

0

1

0

1

1

0

encrypt



What is Homomorphic encryption?

It allows to perform operations on plain texts while they are
encrypted.

1

0

1

1

0

1

0

1

1

0

+

+

+

+



What is Homomorphic encryption?

It allows to perform operations on plain texts while they are
encrypted.

1

0

1

1

0

1

0

1

1

0

+

+

+

+

1



What is Homomorphic encryption?

It allows to perform operations on plain texts while they are
encrypted.

1

0

1

1

0

1

0

1

1

0

+

+

+

+

1 1decrypt



Somewhat and Fully Homomorphic

Somewhat Homomorphic: can perform a limited number of
operations.

Fully Homomorphic: can perform a virtually infinite number of
operation.



Somewhat DGHV

We extend the Somewhat homomorphic scheme of Van Dick et
al.1 usualy called DGHV

In DGHV scheme the message is encrypted by hiding it in the
additional noise of a multiple of an odd integer p.

1Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010) Fully
homomorphic encryption over the integers. Advances in Cryptology -
EUROCRYPT 2010, 24-43.



Somewhat DGHV

We extend the Somewhat homomorphic scheme of Van Dick et
al.1 usualy called DGHV

In DGHV scheme the message is encrypted by hiding it in the
additional noise of a multiple of an odd integer p.

c = p · q + 2r +m

1Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010) Fully
homomorphic encryption over the integers. Advances in Cryptology -
EUROCRYPT 2010, 24-43.



Somewhat DGHV

We extend the Somewhat homomorphic scheme of Van Dick et
al.1 usualy called DGHV

In DGHV scheme the message is encrypted by hiding it in the
additional noise of a multiple of an odd integer p.

c = p · q + 2r +m

Until c mod p < p/2 the message can be recovered easily.

1Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan, V. (2010) Fully
homomorphic encryption over the integers. Advances in Cryptology -
EUROCRYPT 2010, 24-43.



Details

The previous symmetrical scheme can be modified into an
asymmetric one.
Let:

λ be an integer referred to as the security parameter;

η be the bit length of the secret key p;

τ be the number of elements composing the public key,
each of which has bit length γ;

ρ and ρ′ be respectively the bit lengths of the noise in the
public key and in a fresh ciphertext.



Details continue

Keys :

Secret Key : a η-bit random odd integer p.



Details continue

Keys :

Secret Key : a η-bit random odd integer p.
Public Key : τ integers xi such that xi = p · qi + ri .

for i = 0, . . . τ . x0 is the largest, it is
odd and [x0]p is even.



Details continue

Keys :

Secret Key : a η-bit random odd integer p.
Public Key : τ integers xi such that xi = p · qi + ri .

for i = 0, . . . τ . x0 is the largest, it is
odd and [x0]p is even.

encryption : given m ∈ {0, 1}

c = m + 2r + 2
∑

S⊂{1,...τ}

xi mod x0



Details continue

Keys :

Secret Key : a η-bit random odd integer p.
Public Key : τ integers xi such that xi = p · qi + ri .

for i = 0, . . . τ . x0 is the largest, it is
odd and [x0]p is even.

encryption : given m ∈ {0, 1}

c = m + 2r + 2
∑

S⊂{1,...τ}

xi mod x0

decryption :[c mod p]2



Details continue

Keys :

Secret Key : a η-bit random odd integer p.
Public Key : τ integers xi such that xi = p · qi + ri .

for i = 0, . . . τ . x0 is the largest, it is
odd and [x0]p is even.

encryption : given m ∈ {0, 1}

c = m + 2r + 2
∑

S⊂{1,...τ}

xi mod x0

decryption :[c mod p]2
evaluate : Given C (x1, . . . xt)and t ciphertexts ci , apply the

addition and multiplication gates of C to the
ciphertexts and return the resulting ciphertext.



Our Cryptosystem

* The schemes proposed thus far work on the integer
ring Z2.

* We propose to work in the ring Zb (b ∈ Z)

* We choose an integer b = 2k (k > 0),

* We modify the original scheme so that it can encrypt
and decrypt integer numbers in the interval [0, b).



Our Cryptosystem

* The schemes proposed thus far work on the integer
ring Z2.

* We propose to work in the ring Zb (b ∈ Z)

* We choose an integer b = 2k (k > 0),

* We modify the original scheme so that it can encrypt
and decrypt integer numbers in the interval [0, b).

*
c = m + p · q + br



Negative Numbers

The scheme we are going to propose can also encode negative
numbers. Given the base b = 2k ⇒ we can encrypt number in the
interval (−b/2, b/2]. The decryption function is performed as:

([c]p mod b)

The result is:

positive if
[

[c]p

]

b
< b/2

negative if
[

[c]p

]

b
> b/2 ⇒

[

[c]p

]

b
− b

In this case the base should be twice the maximum integer that
needs to be computed.



Keys

The Secret Key: is an odd η-bit integers p ∈ Z such that p ≡ 1(
mod b) in other words p = n · b + 1.

Public key: Choose a random set of odd integers qi ∈ Z. For all
1 ≤ i ≤ τ we define xi = qi · p + ri and a noise-free
element x0 = q0 · p with q0 > qi for all i . The public
key is pk = {x0, x1, . . . , xτ}.



Encryption and decryption

Encrypt(pk,m). Given a integer message m ∈ [0, b),
choose a random integer r ∈ (−2ρ

′

, 2ρ
′

) and let S be
a sparse subset of indexes in {1, . . . , τ}.
The ciphertext c is:

c =

[

m + br + b
∑

i∈S

xi

]

x0

(1)

Decrypt(p, c). Given a ciphertext c , the decryption function is:

m = [c]p mod b, (2)



Operations

The integer x0 of the public key is an exact multiple of p
This choice permits the reduction modulo x0 after every operation

Add(c1, c2,pk). To perform addition, given two cipher texts c1, c2:

cs = [c1 + c2]x0 (3)

Mult(c1, c2,pk) To perform multiplication, given two cipher texts
c1, c2:

cm = [c1 · c2]x0 (4)



Parameters

The sets of parameters chosen to test the performance of the
stand-alone scheme

Security level λ ρ η γ τ

Toy 42 27 1026 150000 158

Small 52 41 1558 830000 572

Medium 62 56 2128 4200000 2110

Table : Parameter sets of the proposed scheme as a function of λ.

The sets of parameters used are the same as in Coron et al. paper2

2Coron, J. S., Mandal, A., Naccache, D., and Tibouchi, M. (2011). Fully
homomorphic encryption over the integers with shorter public keys. Advances
in Cryptology - CRYPTO 2011, 487-504.



Number of operations

Since the scheme is somewhat Homomorphic it is important to
know how many operations we can perform.

µ ≤
η − 1

log2 τ + k + ρ+ 2
. (5)



base lambda 42 lambda 52 lambda 62

2 Practical average 25.41 27.29 28.54
theoretical 26.76 28.75 29.94

2048 Practical average 19.00 22.02 24.02
theoretical 22.14 25.05 26.91

4096 Practical average 18.12 21.58 24.02
theoretical 21.22 24.27 26.25

Table : Maximum number of multiplications. We compare theoretical
limit with practical. They are shown in Table 1.



Iris

Among all the iris matching protocols proposed in the past, we rely
on the one described by Daugman3.

D(q, xi) = ‖(q ⊕ xi )‖ < ǫ

The result is a 2048 bit vector

3Daugman, J. (2004). How iris recognition works. Circuits and Systems for
Video Technology, IEEE Transactions on, 14(1), 21 - 30.



Iris

Among all the iris matching protocols proposed in the past, we rely
on the one described by Daugman3.

D(q, xi) = ‖(q ⊕ xi )‖ < ǫ

D(q, xi) < ǫ

⇓

D(q, xi)− ǫ < 0

The result is a 2048 bit vector

3Daugman, J. (2004). How iris recognition works. Circuits and Systems for
Video Technology, IEEE Transactions on, 14(1), 21 - 30.



Protocol

The protocol can be divided into three parts:
We assume client have already provided Pk in a registration phase

One: The client sends to the server

◮ A binary probe (q1 . . . qn)



Protocol

The protocol can be divided into three parts:
We assume client have already provided Pk in a registration phase

One: The client sends to the server

◮ A binary probe (q1 . . . qn)

Two: The server

1. Encrypts all database iris vectors with pk
2. Starts computing
3. Sends back a integer vector



Protocol

The protocol can be divided into three parts:
We assume client have already provided Pk in a registration phase

One: The client sends to the server

◮ A binary probe (q1 . . . qn)

Two: The server

1. Encrypts all database iris vectors with pk
2. Starts computing
3. Sends back a integer vector

Three: The client, received the encrypted vector, decrypts it
by using the secret key and checks if one of the
integers would be negative.



Protocol

The protocol can be divided into three parts:
We assume client have already provided Pk in a registration phase

One: The client sends to the server

◮ A binary probe (q1 . . . qn)

Two: The server

1. Encrypts all database iris vectors with pk
2. Starts computing
3. Sends back a integer vector

Three: The client, received the encrypted vector, decrypts it
by using the secret key and checks if one of the
integers would be negative.

if there exists an index I in {1 . . .N} for which D(q, xI ) < ǫ
the user is enrolled in the database.



Server Computing

D(q, xi) = ‖(q ⊕ xi)‖

⊕ is XOR between binary vectors
⊕ is addition modulus b, in our case.
So the result could be either 0, 1, 2

dataBase (D) 1 0 1 1 1 0 0
probe (P) 0 1 1 0 1 0 0



Server Computing

D(q, xi) = ‖(q ⊕ xi)‖

⊕ is XOR between binary vectors
⊕ is addition modulus b, in our case.
So the result could be either 0, 1, 2

dataBase (D) 1 0 1 1 1 0 0
probe (P) 0 1 1 0 1 0 0

D + P = A 1 1 2 1 2 0 0



Server Computing

D(q, xi) = ‖(q ⊕ xi)‖

In order to transform 2’s in zeros, we after perform (q · xi )
where · stands for multiplication.

dataBase (D) 1 0 1 1 1 0 0
probe (P) 0 1 1 0 1 0 0

D + P = A 1 1 2 1 2 0 0

D · P = B 0 0 1 0 1 0 0



Server Computing

D(q, xi) = ‖(q ⊕ xi)‖

In order to transform 2’s in zeros, we after perform (q · xi )
where · stands for multiplication.

dataBase (D) 1 0 1 1 1 0 0
probe (P) 0 1 1 0 1 0 0

D + P = A 1 1 2 1 2 0 0

D · P = B 0 0 1 0 1 0 0

2 · B 0 0 2 0 2 0 0



Server Computing

D(q, xi) = ‖(q ⊕ xi)‖

Finally we compute

D(q, xi) = ‖(q + xi )− 2 · (q · xi )‖ = ‖q · (1− 2xi ) + xi‖ .

dataBase (D) 1 0 1 1 1 0 0
probe (P) 0 1 1 0 1 0 0

D + P = A 1 1 2 1 2 0 0

D · P = B 0 0 1 0 1 0 0

2 · B 0 0 2 0 2 0 0

A − 2 · B 1 1 0 1 0 0 0



Server Computing

So in the end we compute

D(q, xi) = ‖(q + xi )− 2 · (q · xi )‖ = ‖q · (1− 2xi ) + xi‖ .

Epk[D(q, xi )] = ‖Epk[q] · Epk[1− 2xi ] + Epk[xi ]‖



Server Computing Continue

Epk [D(q, xi )− ǫ] = Epk [D(q, xi )] + Epk [−ǫ] = Epk [di ].



Server Computing Continue

Epk [D(q, xi )− ǫ] = Epk [D(q, xi )] + Epk [−ǫ] = Epk [di ].

The number Epk [di ] is multiplied by a random number in (0, 2k−1]



Server Computing Continue

Epk [D(q, xi )− ǫ] = Epk [D(q, xi )] + Epk [−ǫ] = Epk [di ].

The number Epk [di ] is multiplied by a random number in (0, 2k−1]
The resulting vector is randomly permutated



Communication Complexity - Cipher size.

λ Secret Key (KB) Public Key (MB) Ciphertext (KB)

42.00 0.13 2.83 18.31
52.00 0.19 56.60 101.32
62.00 0.26 1056.43 512.70

Table : Size of the cipthertext and of the public and secret keys.

◮ PK varies from 3MB to 1GB. We assume Client already
provided it.

◮ Each Ciphertext varies from 18KB to 513KB

◮ Each query sent to server needs 6.59 MB, 202.44MB and 1GB

◮ The sever sends back a ciphertext of the same size for each
element of the data base.



Validation - Crypto System

Base λ Cif Dec PubKey PrivKey Add Mult

2 42 0.37 0.75 133.73 154.44 0.00 88.75

52 6.43 4.05 665.94 3662.76 0.25 2653.98

62 97.77 2.40 1883.80 65784.24 0.50 68518.53

2048 42 0.12 0.75 134.82 139.87 0.12 85.18

52 5.28 3.70 564.36 33192.42 0.18 2588.43

62 94.37 28.56 1856.56 83778.98 0.88 66570.42

4096 42 0.50 0.37 141.94 104.17 0.06 86.48

52 5.88 4.29 580.28 4204.64 0.06 2575.74

62 90.46 27.54 1828.22 62273.04 0.62 67112.76

Table : Average execution time (ms) of the proposed scheme as a
function of the base b and of the system parameters.



Validation - Protocol

lambda Client(s) part 1 Server (s) part 2 Client (s) part 3

42.00 0.062 22.288 0.00042

52.00 0.377 68.422 0.00260

62.00 2.317 17034.959 0.02263

Table : Average time (s) of execution for each part of the proposed
protocol. Times in parts 2 and 3 are relative to a single iris template in
the database.



Future Works

◮ Security demonstration

◮ Parallelize server computing

◮ Change of bases


	Introduction
	Fully and Somewhat Homomorphic Encryption
	DGHV Cryptosystem
	New Cryptosystem

	Iris Recognition Protocol
	Validation

