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Introduction
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Introduction: the problem I

• SIFT (Scale Invariant Feature Transform) features have
become extremely popular in a wide variety of fields

• In some of these applications the security of SIFT is an
important matter
○ image search engines (Content Based Image Retrieval)
○ copyright infringement detectors
○ image forensics detectors

It has become crucial to understand to what extent
one can entrust SIFT with such delicate tasks
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Introduction: the problem II

• This endeavor is carried out by devising methods (i.e.
attacks) to force SIFT to fail its task

• Not a divertissement, exposing weaknesses is becoming as
important as exploiting strengths
○ see the growing interest on counter–forensic

• So, what has been found so far? Is SIFT secure?

• Some weaknesses have been found. However, attacks are
definitely not simple [1, 2, 3, 4, 5]
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Introduction: our contribution I

• Literature so far devised a fair number of attacks
assuming equal properties for all features (i.e. keypoints)

• On the contrary, we suppose they are not equal
○ some features react better than others to certain attacks

• Our contribution is twofold
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Introduction: our contribution I

• Literature so far devised a fair number of attacks
assuming equal properties for all features (i.e. keypoints)

• On the contrary, we suppose they are not equal
○ some features react better than others to certain attacks

• Our contribution is twofold

We propose a classification criterion based on first or-
der statistics (histogram)

We build an iterative algorithm that removes SIFT
features with class-tailored attack
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Introduction: our contribution II

• Two common assumptions in literature
○ gray scale images (SIFT ignores colors)
○ first scale keypoints

� majority
� most stable thus difficult to remove
� significant yet not excessive amount

• Achievements
○ outperforming existing attacks applied blindly to all keypoints
○ robust against different SIFT implementations
○ successfully disabling a SIFT-based copy-move forgery detector
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Introduction: our contribution III
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SIFT
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SIFT [6]: what

sift objective

A set of features invariant to scaling, rotation, cropping,
change of point of view, change of lighting

• A feature x = (x , y , σ,Θ) is called keypoint
○ (x , y) are the spatial coordinates
○ σ is the scale (related to Gaussian smoothing)
○ Θ is the orientation

• Given two similar images, features are matched by
comparing an unique fingerprint (descriptor) assigned to
each of them
○ no choice on SIFT steps up to the descriptor
○ complete freedom for the matching step
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SIFT: Step 1 – building scale space

• Steps 1–2 achieve scale and affine transform invariance

Image I is repeatedly convolved with Gaussians to obtain the
smoothed image L; Adjacent smoothed images are subtracted
to obtain DoG (Difference of Gaussians)

L(x , y , σ) = G(x , y , σ)⊗ I (x , y)

D(x , y , σ) = L(x , y , k1σ) − L(x , y , k2σ)

• G(x , y , σ) is down-sampled by a factor 2, then the
process repeated
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SIFT: Step 1 – building scale space

• Steps 1–2 achieve scale and affine transform invariance
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SIFT: Step 2 – detecting extrema of DoG

• Steps 1–2 achieve scale and affine transform invariance

Extrema are detected
by comparing a pixel
(marked with X) to
its 26 neighbors in
3 × 3 regions at the
current and adjacent
scales (marked with
circles)

• These are the candidate keypoints. Their positions can be
refined by sub-pixel approximation. They are too many
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SIFT: Step 3 – reducing the population

• Step 3.1: eliminating low contrast keypoints

If the magnitude of the DoG at the current keypoint is less
than a certain value, the keypoint is rejected

• Step 3.2: eliminating edge keypoints

Calculate 2 perpendicular gradients at the keypoint:

○ Both gradients small: flat region

○ One big gradient: edge

○ Two big gradients (≥ Threshold): corner

Corners make great keypoints, rest is rejected
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SIFT: Step 4 – achieving rotation invariance

• Step 4.1 Compute gradient magnitudes and orientations

Let L(u, v , σ) be the blurred image; for each pixel (u, v) in
the neighborhood of keypoint:

m(u, v) =
√

(L(u + 1, v) − L(u − 1, v))2
+ (L(u, v + 1) − L(u, v − 1))2

θ(u, v) = tan−1
((L(u, v+1)−L(u, v−1))/(L(u+1, v)−L(u−1, v)))
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SIFT: Step 4 – achieving rotation invariance

• Step 4.2: Compute orientation histograms

Histogram (36 bins) of θ(u, v) weighted with m(u, v). The
peak is the keypoint’s dominant orientation Θ. Orientations
θ̂i ≥ 0.80 ⋅Θ generate new keypoints x̂i = (x , y , σ, θ̂i)
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SIFT: Step 5 – computing descriptor

• Achieving uniqueness, lighting, point of view invariance

○ A grid centered on keypoint, with orientation from
previous step and spacing depending on scale

○ Compute local gradients directions and gather them in
a 8–bins histogram

October 2, 2012, Siena, Italy VIPP Group, University of Siena, ITALY



SIFT: Step 5 – computing descriptor

• Achieving uniqueness, lighting, point of view invariance

○ A grid centered on keypoint, with orientation from
previous step and spacing depending on scale

○ Compute local gradients directions and gather them in
a 8–bins histogram

October 2, 2012, Siena, Italy VIPP Group, University of Siena, ITALY



SIFT: Step 5 – computing descriptor

• Achieving uniqueness, lighting, point of view invariance

○ A grid centered on keypoint, with orientation from
previous step and spacing depending on scale

○ Compute local gradients directions and gather them in
a 8–bins histogram

October 2, 2012, Siena, Italy VIPP Group, University of Siena, ITALY



SIFT: Step 6 – matching descriptors

• Descriptors of features coming from two similar images
can be mutually matched

○ Minimize the Euclidean distance between the
descriptors represented as 128-dimensional vectors

○ Accept ratio between the distances to the nearest and
the next nearest points ≤ 0.8

• Several improvements have been proposed
○ increasing accuracy, speed
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SIFT: example of detection I

• Spatial locations of SIFT keypoints
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SIFT: example of detection II

• Spatial locations of SIFT keypoints with dominant
orientations (left) and descriptors (right) – detail
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SIFT: example of matching
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SIFT: example of matching
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SIFT-based copy-move detection
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Copy-move: what is that? [7]

• Common forgery whereby a portion of an image is copied
and pasted once (or more) elsewhere into the same image
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Copy-move: SIFT-based detection I

• Older techniques based on pairing of duplicate blocks
○ hardly robust against rotation, scaling and shearing operations

• Problem solved by techniques based on SIFT matching
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Copy-move: SIFT-based detection I

• Older techniques based on pairing of duplicate blocks
○ hardly robust against rotation, scaling and shearing operations

• Problem solved by techniques based on SIFT matching

downscale upscale rotate

crop distort original
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Copy-move: SIFT-based detection II

, Region tampered if number of matches ≥ Threshold

/ Attacks to detector aim to reduce matches < Threshold

, Few matches to find copy-move (e.g. T ≥ 3)

/ No need to delete all keypoints / matches
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Copy-move: the chosen detector [8] I

• I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and G. Serra, A SIFT-based forensic method for copy
move attack detection and transformation recovery, Information Forensics and Security, IEEE Transactions
on, 6(3):1099–1110, Sept. 2011
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Copy-move: the chosen detector II

Keypoints are extracted from the input image
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Copy-move: the chosen detector II

Keypoints are extracted from the input image

For each keypoint the Euclidean distance between its de-
scriptor and those of the rest of keypoints is computed.
If distance ≥ Threshold two keypoints are matched
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Copy-move: the chosen detector II

Keypoints are extracted from the input image

For each keypoint the Euclidean distance between its de-
scriptor and those of the rest of keypoints is computed.
If distance ≥ Threshold two keypoints are matched

Draft idea of cloned areas, that are refined by means of
agglomerative hierarchical clustering
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Copy-move: the chosen detector II

Keypoints are extracted from the input image

For each keypoint the Euclidean distance between its de-
scriptor and those of the rest of keypoints is computed.
If distance ≥ Threshold two keypoints are matched

Draft idea of cloned areas, that are refined by means of
agglomerative hierarchical clustering

If two (or more) clusters with at least 4 pairs of matched
points linking them, then the image is tampered
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Copy-move: the chosen detector III
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Classification of SIFT keypoints
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Classification: rationale I

• Distinction based on the gray scale histogram of a small
region surrounding the keypoint

• More specifically, on the number of modes M
○ they provide valuable informations about the local content

• Three different classes, three different contents

○ unimodal (M = 1): uniform flat regions with low variance (e.g.
sky, sea, grass)

○ bimodal (M = 2): edges and geometric shapes (e.g. buildings)

○ multimodal (M > 2): regions with high variance resembling
some sort of noise (e.g. foliage)
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Classification: rationale II

sea building foliage

unimodal bimodal multimodal
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Classification: algorithm I [9]

• Originally designed for image segmentation based on
histogram thresholding

• Image histogram H modeled as a mixture of Gaussians

f (k) =
n+1

∑
i=1

Pi
√

2πσi
e
− 1

2
( k−mi

σi
)

2

○ n + 1 histogram segments
○ (Pi , mi , σ

2
i ) weight, mean and variance of i-th Gaussian

• The classifier estimates the model parameters and
minimizes ∣f −H ∣
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Classification: algorithm II

• Simplified workflow of the classification algorithm
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Classification: adapting the algorithm

• We want the number of modes M , not thresholds for H

• Cannot rely directly on the number of Gaussians, since [9]
over-segments and generates too many contributions

• Adjustments are required:
○ initialize M = n + 1 contributes of the mixture
○ determine the largest weight Pmax

○ suppress Pi , 1 ≤ i ≤ n + 1 such that Pi ≤ 0.2 ⋅ Pmax

• Keypoint’s neighborhood experimentally set to 32 × 32
○ large enough to respect the hypothesis of Gaussianity
○ small enough to include only local statistics
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Classification: example
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The proposed attack
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SIFT countering: finding weak spots I

• A candidate keypoint must pass 3 checks
○ Distance from other candidate(s) ≥ Threshold 1

○ Contrast ≥ Threshold 2

○ Distance from edges ≥ Threshold 3

• The idea behind SIFT countermeasures is to work on such
checks
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SIFT countering: finding weak spots II

• Common objectives of SIFT countering

To alter the keypoint’s neighborhood in such a way that
at least one of the check fails

To alter two matching descriptors in such a way that
they do not match anymore

Each manipulation comes at a rather high price in terms
of quality. Visual degradation needs to be the lowest
possible
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SIFT countering: finding weak spots III

• Failing checks
○ DoG distance: introduce a fake candidate too close to the real

candidate
○ contrast: locally modify the contrast until it drops below the

threshold
○ “cornerness”: can’t move edges around!

• Failing the matching
○ modify the gradient orientations so that the descriptor is

altered
○ attacking the matching algorithm (not related to SIFT)
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The proposed attack: tools I – Gaussian Smoothing

• Blurs the image by convolving it with a Gaussian kernel

• Experimental results [3]: low variance (σ) can help
reducing keypoints
○ could also add keypoints!

• Attenuates high frequencies, flattens values of a given
region, reduces contrast which eventually drops below
SIFT’s threshold

• Parameters: window size h = 3, σ = 0.70
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The proposed attack: tools II – Collage [1]

• Original patch replaced with the most similar
“keypoint–free” patch of same size from a database

• Similarity metric: histogram intersection distance dint

dint(Horig ,Hdb) =
∑

L
j=1 min(Horig(j),Hdb(j) )

∑
L
j=1 Hdb(j)

Horig , Hdb histograms of the original patch and of a patch
stored in the database; j histogram bin; L = 255

dmin = arg min
n

[dint(Horig ,Hdb(n))]
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The proposed attack: tools II – Collage [1]
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The proposed attack: tools III – RMD [3]

• Removal with Minimum Distortion

• Calculates a small patch ε that added to the
neighborhood of a keypoint allows its removal

• The coefficients of ε are chosen in such a way to:
○ reduce the contrast around the keypoint at the DoG level
○ invalidate the SIFT contrast check
○ locally introduce the minimum visual distortion

• In math: let x = (x , y , σ) be a keypoint and let D(x) be
the DoG in x:

ε = arg minε∶D′(x)=D(x)+δ ( ∣∣ε∣∣2 )
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The proposed attack: tools III – RMD

• δ controls the strength of the attack

○ ∣D(x)∣ reduced by ∣δ∣ until it drops below contrast threshold

• The size of ε depends on the strength of the keypoint (in
terms of spatial support)

○ the larger the support, the stronger (hence more visible) the
attack

○ altered DoG is D(x + u, y + v , σ)

� (u, v) ∈ [−6
√

2hσ,6
√

2hσ]

� h = 2
1
3
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The proposed attack: tayloring the right attack

• Smoothing is effective on all the classes but . . .

, reduces the keypoints without a significant loss of quality
/ not effective against “harder” keypoints, more powerful

countermeasures required

• Collage is effective on uniform or noise-like regions which
do not have many noticeable visual details (unimodal,
multimodal)

• RMD is effective on patches containing geometric edges
(bimodal)
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The proposed attack: reducing the impact

• Visible artifacts along the borders of the patches masked
with a linear combination:

patchatk =W8 ⋅ patchorig + (1-W8) ⋅ patch{Smoothing/RMD/Collage}

W8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
1.0 0.8 0.7 0.7 0.7 0.7 0.8 1.0
1.0 0.7 0.5 0.3 0.3 0.5 0.7 1.0
1.0 0.7 0.3 0.1 0.1 0.3 0.7 1.0
1.0 0.7 0.3 0.1 0.1 0.3 0.7 1.0
1.0 0.7 0.5 0.3 0.3 0.5 0.5 1.0
1.0 0.8 0.7 0.7 0.7 0.7 0.8 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠
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The proposed attack: framework

New keypoints introduced at iteration j are classified and attacked again at the

following iteration j + 1
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The proposed attack: pseudocode

1: procedure Attack SIFT(image, max iter)
2: j ← 1
3: while (j ≤ max iter or nkeypoints > 0) do
4: keypoints = calculate SIFT( image )
5: kp classes = classify SIFT( keypoints )
6: if j ≤ max iter/2 then
7: smoothing attack(kp classes)
8: else
9: collage attack(unimodal ,multimodal)

10: RMD attack(bimodal)
11: end if
12: j ← j + 1
13: end while
14: end procedure
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The proposed attack: example – odd iterations
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The proposed attack: example – iterations 0,15,30
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The proposed attack: example – iterations 0,30
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Experimental results
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TO DO: three experiments
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Experimental setup: image data set I

• We gathered 60 natural images

○ size ranging from 400 × 400 to 600 × 800 pixels

• We divided them into 3 subsets: landscape, animal, faces

• Posing an increasing difficulty to the system

○ “Easy” – landscape: many keypoints, easier removal due to
high variance of the content (e.g. trees, houses)

○ “Hard” – faces: close shots, less keypoints but placed in
critical locations (e.g. eyes, nose, mouth)

○ “Medium” – animals: midway between the two “extrema”
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Experimental setup: image data set II

face1.jpg face2.jpg face3.jpg face4.jpg face5.jpg

animal1.jpg animal2.jpg animal3.jpg animal4.jpg animal5.jpg

landscape1.jpg landscape2.jpg landscape3.jpg landscape4.jpg landscape5.jpg
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Experimental setup: collage database

• 60 images (20 for each content group) to build the
“keypoint-free” collage database
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Advantages of classification: procedure

Does the classification bring any advantages at all?

• Fixing some parameters:
○ 15 images
○ decreasing removal rate ∈ [95%,90%,85%,80%]

○ maximum number of iterations (max iter = 50)

• Iterating separately: Classification-based, RMD, Collage,
Smoothing attacks until last iteration or desired removal
○ reaching removal = success = ,

• Averaging results only on successful images
○ effective removal rate at halting
○ average patch PSNR (local quality)
○ average number of iterations
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Advantages of classification: results I

Attack
Successful images
(success rate)

Average effective
removal rate

Average patch
PSNR (dB)

Average num-
ber of iterations

9
5

%
re

m
o

va
l

Proposed 14/15 (93%) 98.3% 42.32 27

RMD 15/15 (100%) 96.0% 26.71 16

Collage 3/15 (20%) 96.8% 39.94 18

Smoothing 0/15 (0%) × × ×

9
0

%
re

m
o

va
l

Proposed 15/15 (100%) 92.7% 43.79 22

RMD 15/15 (100%) 91.9% 28.42 10

Collage 10/15 (67%) 90.8% 36.42 10

Smoothing 0/15 (0%) × × ×

8
5

%
re

m
o

va
l

Proposed 15/15 (100%) 85.7% 44.51 19

RMD 15/15 (100%) 87.8% 29.41 9

Collage 12/15 (80%) 86.2% 35.82 8

Smoothing 0/15 (0%) × × ×

8
0

%
re

m
o

va
l

Proposed 15/15 (100%) 82.3% 45.13 17

RMD 15/15 (100%) 82.0% 30.50 7

Collage 15/15 (100%) 82.2% 33.41 9

Smoothing 0/15 (0%) × × ×
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Advantages of classification: results II

• No attack reaches perfect removal (100%) within 50
iterations

• Classification-based Attack outperforms RMD
○ comparable success rate and effective removal
○ significant gain in local visual quality (avg. patch PSNR
+15.6dB)

• Smoothing attack unable to meet even the lowest
requirement (80%)
○ first few iterations reduce keypoints, following ones increase

them back to (or even above) their original value
○ best result: 72.4% with average patch PSNR of 39dB
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Advantages of classification: visual examples

• Visual comparison of the three most effective methods

Original Proposed:
98%, 37.8dB

RMD:
94%, 25.6dB

Collage:
91%, 35.1dB

• Artifacts of RMD (large uniform “dots”) and Collage
more noticeable than those of Classification-based Attack
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TO DO: two experiments
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Test of robustness: SIFT implementations I

• There exist a considerable number of SIFT
implementations (majority is open source)
○ very popular algorithm on many fields
○ the original SIFT is patented (demo only)
○ people use a lot of programming/scripting languages

• Different implementations = different results
○ number and coordinates of keypoints
○ heterogeneous tweakable parameters
○ approaches to tasks (computing DoGs, smoothing . . . )
○ speed of execution
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Test of robustness: SIFT implementations II

What does happen when an image cleaned with a SIFT im-
plementation, is analyzed with a totally different one?

• We tested the attack with 4 versions of SIFT

1 VLFeat [10]: “reference library” for the SIFT-based (counter-)
forensics. Written in C language, Matlab/Python interfaces

2 Matlab/C SIFT [11]: predecessor of VLFeat, thus superseded
but still used (see [5])

3 RobHess [12] library. Written in C on well-established OpenCV
computer vision library

4 JIFT [13] library. Written in C on VXL computer vision library
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Test of robustness: experimental settings

• Keypoints are removed by means of the proposed
Classification-based Attack supported by VLFeat

• Results are analyzed with the 4 detectors

• “Used as they are”, no tuning no cheating!
Octaves Thresholds

Number Initial Intervals Contrast Edge Peak
VLFeat 1 0 3 × 10 4

Matlab/C 1 0 3 0.03 10 4
RobHess 1 0 3 0.04 10 0.8
JIFT 1 0 3 0.03 10 0.8

• max iter = 30 (from previous experiment), 15 images,
work only on first octave
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Test of robustness: results I

• VLFeat-based attack VS MATLAB/C-based and
JIFT-based detection: ,

SIFT: VLFEAT [10] MATLAB/C [11] JIFT (OpenCV) [13]
Image Before After Removal Before After Removal Before After Removal

face 1 90 3 96.7% 167 36 78.4% 50 7 86.0%
face 2 58 2 96.6% 188 41 78.2% 69 3 95.7%
face 3 53 8 81.1% 131 26 80.2% 131 9 93.1%
face 4 159 10 93.7% 267 41 84.6% 99 11 88.9%
face 5 118 2 98.3% 618 152 75.4% 149 13 91.3%
land 1 36 5 86.1% 213 32 85.0% 42 11 73.8%
land 2 183 11 94.0% 397 82 79.4% 154 5 96.8%
land 3 386 41 89.4% 478 143 70.1% 968 96 90.1%
land 4 432 36 91.7% 454 121 73.3% 1069 156 85.4%
land 5 192 12 93.8% 711 186 73.8% 166 6 96.4%
anim 1 417 19 95.4% 439 156 71.1% 207 48 76.8%
anim 2 95 2 97.9% 332 95 71.4% 26 8 69.2%
anim 3 104 3 97.1% 709 246 65.3% 35 6 82.9%
anim 4 443 30 93.2% 536 148 72.4% 319 20 93.7%
anim 5 112 9 92.0% 435 190 56.3% 69 7 89.9%

Average: 93% 75% 87.3%
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Test of robustness: results II

• VLFeat-based attack VS RobHess-based detection:/

SIFT: VLFEAT [10] ROBHESS [12]
Image Before After Removal Before After Removal

face 1 90 3 96.7% 47 45 4.3%
face 2 58 2 96.6% 20 16 20.0%
face 3 53 8 81.1% 26 30 0%
face 4 159 10 93.7% 61 57 6.6%
face 5 118 2 98.3% 80 66 17.5%
land 1 36 5 86.1% 30 30 0%
land 2 183 11 94.0% 65 66 0%
land 3 386 41 89.4% 118 100 15.3%
land 4 432 36 91.7% 148 149 0%
land 5 192 12 93.8% 78 83 0%
anim 1 417 19 95.4% 137 147 0%
anim 2 95 2 97.9% 46 44 4.3%
anim 3 104 3 97.1% 57 55 3.5%
anim 4 443 30 93.2% 125 125 0%
anim 5 112 9 92.0% 58 60 0%

Average: 93% 2.5%

• Why? Because RobHess finds a lot of different keypoints
on which the attack was clearly not carried out
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Test of robustness: new results I

• Fixing the problem: combine VLFeat and RobHess during
the classification-based attack

SIFT: VLFEAT [10] MATLAB/C [11] JIFT (OpenCV) [13]
Image Before After Removal Before After Removal Before After Removal

face 1 90 3 96.7% 167 39 76.6% 50 9 82.0%
face 2 58 1 98.3% 188 41 78.2% 69 3 95.7%
face 3 53 1 98.1% 131 26 80.2% 131 9 93.1%
face 4 159 12 92.5% 267 37 86.2% 99 8 92.0%
face 5 118 6 95.0% 618 161 74.0% 149 13 92.3%
land 1 36 6 83.3% 213 40 81.2% 42 11 73.8%
land 2 183 4 97.8% 397 81 79.6% 154 3 98.0%
land 3 386 52 86.5% 478 151 68.4% 968 96 90.1%
land 4 432 44 89.8% 454 107 76.4% 1069 156 95.9%
land 5 192 10 94.8% 711 194 72.7% 166 6 96.4%
anim 1 417 18 95.7% 439 162 69.9% 207 48 76.8%
anim 2 95 4 95.8% 332 104 68.7% 26 8 69.2%
anim 3 104 7 93.3% 709 255 64.0% 35 6 82.9%
anim 4 443 35 92.1% 536 145 73.0% 319 20 93.8%
anim 5 112 8 92.9% 435 187 57.0% 69 7 89.9%

Average: 93.5% 74% 87.4%

• No significant changes for the detectors above ,
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Test of robustness: new results II

• VLFeat+RobHess-based attack VS RobHess-based
detection: ,

SIFT: VLFEAT [10] ROBHESS [12]
Image Before After Removal Before After Removal

face 1 90 3 96.7% 47 7 85.1%
face 2 58 1 98.3% 20 5 75.0%
face 3 53 1 98.1% 26 4 84.6%
face 4 159 12 92.5% 61 5 91.8%
face 5 118 6 95.0% 80 10 87.5%
land 1 36 6 83.3% 30 12 60.0%
land 2 183 4 97.8% 65 11 83.1%
land 3 386 52 86.5% 118 29 75.4%
land 4 432 44 89.8% 148 43 70.1%
land 5 192 10 94.8% 78 16 79.5%
anim 1 417 18 95.7% 137 34 75.2%
anim 2 95 4 95.8% 46 8 82.6%
anim 3 104 7 93.3% 57 11 80.7%
anim 4 443 35 92.1% 125 33 73.6%
anim 5 112 8 92.9% 58 11 81.0%

Average: 93.5% 79%

• Dramatically more effective: 79% vs 2.5%!

October 2, 2012, Siena, Italy VIPP Group, University of Siena, ITALY



Test of robustness: VLFeat only plots

• Number and classes of keypoints for each iteration of the
attack on test image face4.jpg: VLFeat alone
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Test of robustness: VLFeat+RobHess plots

• Number and classes of keypoints for each iteration of the
attack on test image face4.jpg: VLFeat+RobHess
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Test of robustness: visual example

• Quality loss of VLFeat+RobHess barely noticeable with
respect to VLFeat only

○ 40.26 dB vs 42.11 dB PSNR full frame
○ 34.02 dB vs 36.51 dB PSNR patch average

• Example of face4.jpg

Original VLFeat only VLFeat+RobHess
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TO DO: one experiment

October 2, 2012, Siena, Italy VIPP Group, University of Siena, ITALY



Copy-move scenario: introduction I

Can we hide the traces of copy-move forgery and invalidate
a SIFT-based detector?

• Assumption: to work only on two copy-moved regions

○ for the sake of clarity, no loss of generality

• New objective: to work only on source and destination
patches, rather than on whole image
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Copy-move scenario: introduction II

• Copy-move forgery is detected by matching pairs of SIFT
keypoints between similar regions

○ if there are enough matches (usually≥ 3) then tampering
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Copy-move scenario: introduction II

• To destroy a match it is not necessary to delete both
keypoints, one is enough

/ one region is clean and the other has all keypoints
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Copy-move scenario: introduction II

• Evenly spread the attack to reduce the visual impact of
the hiding procedure

, remove 1/2 of the matching keypoints from each region

October 2, 2012, Siena, Italy VIPP Group, University of Siena, ITALY



Copy-move scenario: hiding procedure

• Copy-move detected with the method described in [8]

• The matching regions, R1 and R2 are attacked with the
Classification-based Attack

○ 1/2 of the matches are destroyed by deleting the member of the
match belonging to R1

○ 1/2 by deleting the member belonging to R2

• Minor variants

○ max iter = 40 (before: 30)
○ last 10 iterations of the attack with adaptive parameters

� stronger the keypoint, stronger the parameters of
Collage/RMD
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Copy-move scenario: image data set

• 10 images containing a copy-move manipulation
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Copy-move scenario: results I

• Repeating the attack up to 1000 times to understand
whether perfect removal can be achieved

Smoothing Collage RMD[3] Proposed
image Before Iteration After Iteration After Iteration After Iteration After

image 1 53 1000 14 1000 6 1000 3 183 0
image 2 49 1000 15 1000 8 1000 9 91 0
image 3 12 1000 3 10 0 13 0 23 0
image 4 55 1000 9 1000 2 1000 10 161 0
image 5 50 1000 9 1000 3 1000 2 41 0
image 6 34 1000 2 39 0 39 0 29 0
image 7 43 1000 11 1000 5 29 0 62 0
image 8 19 1000 5 1000 1 53 0 24 0
image 9 109 1000 24 1000 12 1000 2 520 0
image 10 195 1000 56 1000 19 1000 26 338 0

• Outperforming the 3 single attacks, deleting all the
matches in a low number of iterations
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Copy-move scenario: results II

• The curves of Classification-based Attack (star markers)
are below those of the single attacks

image 1 image 8
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Copy-move scenario: visual example

• Detail of image 5 (method VS iterations VS matches)

Smoothing
(iter = 1000,M = 9)

Collage
(iter = 1000,M = 3)

RMD
(iter = 1000,M = 2)

Proposed
(iter = 41,M = 0)
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Computational burden

• Main contribution from cycling through all the keypoints
during each of the iterations of the basic attack

• SIFT detection’s time generally negligible

• On a World War II pc: 2GHz dual, 4GB RAM, 32bit OS

○ VLFeat: 0.5s; Matlab/C: 0.97s; RobHess: 0.68s; JIFT: 9s

• Full attack on a 600 × 450 image (386 keypoints)

○ 94s: 43s for iterations 1-15 (simple Smoothing) and 51s for
iterations 16-30
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The long road ahead

• Integrating all the detectors into the attack procedure

• Turning the attack into an usable tool / demo

• Injecting fake keypoints into the cleaned image

○ no keypoints are suspicious

• Applying injection to copy-move

○ replacing real matchings with false ones

• Applying the attack to a CBIR search engines

○ removal to disable them
○ injection to force false positives
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The long road ahead: towards CBIR scenarios I
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The long road ahead: towards CBIR scenarios II
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