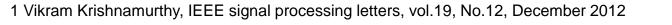
AFRIAT'S TEST FOR DETECTING MALICIOUS AGENT¹

B.Tondi

Dept. of Information Engineering and Mathematical Sciences, University of Siena



Contents

The problem addressed:

Detecting the *presence* of malicious agents in networks

Formalization of the problem:

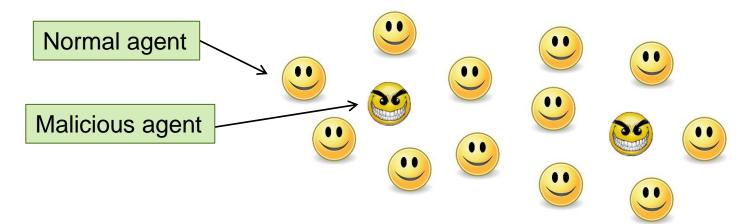
How malicious agents behave?

Possible way to solve the problem:

Afriat's theorem (economic literature)

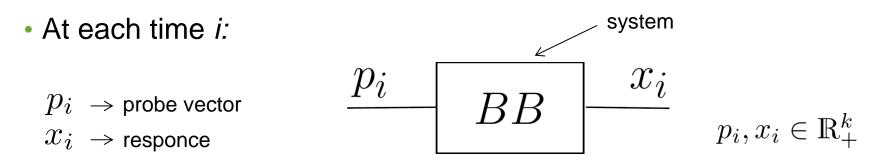
An overview of the problem

- Why we are interested in detecing if an agent is malicious?
 - *Only* if a malicious agent is detected the system moves to an alert state and some countermisures are adoped (*resource saving*).
 - The system should be able to distinguish malicious agents from normal agents so to be able to reveal the presence of attackers



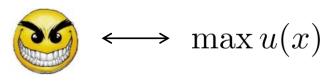
This is not possible by means of TdG.

Schematization of the problem



- There exists an *utility function* that the black box is *maximizing* to generate its response x_i to probe input p_i ? (decision test)
- In many practical scenarios:

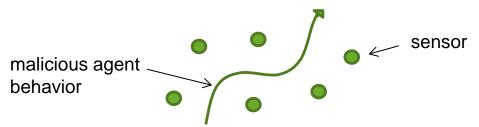
Malicious agent are utility maximizer



Malicious agents: examples (1/2)

• Sensor networks (detecting intruders in a sensor field)

- System goal: to detect if an agent is avoiding being detected by the sensors
- Malicious agents behavior: seek to evade detection by maximizing its associated distance to each sensor (based on the relative importance of the sensors)



• Probe and responce model: (p_i, x_i) $\underline{p_i}$ BB $\underline{x_i}$

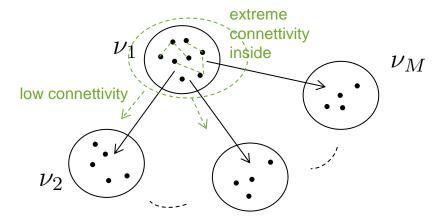
 $p_i = \text{importance parameter vector}$

 x_i = distance between the agent and each sensor

Malicious agents: examples (2/2)

• **Social networks** (detecting tightly connected subgraphs)

• *Malicious agents behavior (e.g. hijackers):* maximize the connettivity to other nodes in their subgraph (*social group*) and minimize the connettivity to nodes outside.



 \mathcal{V}_i = social group

BB

 p_i

 x_i

- Probe and responce model: (p_i, x_i)
 - $p_i = \text{QoS}$ of the links between a node in ν_1 and a node in ν_k , k = 1, ..., M and viceversa
 - x_i = average amount of communication resources consumed by the nodes in ν_i

Then.....

- There are many real scenarios in which malicious agents behave as utility maximizer
- Given a system (BB)

"Detecting the presence of malicious agents corresponds to determine if there exists an utility fuction that BB is maximizing"

Challenging goal:

 (p_i, x_i) at each time $i \longrightarrow BB$ is an "utility maximizer" ?

Afriat's test

Some terminology

$$\frac{p_i}{S} \quad x_i \quad p_i, x_i \in \mathbb{R}^k_+$$

A system S is an *utility maximizer* if for every probe p_i , the chosen response x_i satisfies:

$$x_i = x^*(p_i) \in \underset{\substack{p'_i x \le 1}}{\operatorname{arg\,max}} u(x)$$

where u(x) is a *nonsatiated* utility function.

Nonsatiated formally means that:

$$\forall \eta > 0, \exists x \quad \text{with} \quad ||x - x_i||_2 < \eta \quad s.t. \quad u(x) > u(x_i)$$

 \clubsuit We say that $\ u(\cdot)$ $\it rationalizes$ the observed responses if and only if

$$u(x_i) = \max\{u(x) : p'_i x \le 1\} \quad \forall i$$

Afriat's test (the original problem)

- Afriat's test² (1967) is a remarkable result in *Consumer Theory* concearned with 'how a rational consumer would make consumption decisions' (a widely studed topic in economic literature).
- Consumer problem (CP)

$$\max_{x \in \mathbb{R}^k_+} u(x)$$

 $p \rightarrow \text{price vector}$ $x \rightarrow \text{purchased quantity vector}$ $w \rightarrow \text{total consumer's wealth}$

s.t. $p \cdot x \leq w \ll$ budget constraint

• Afriat answers the question of "when a sequence of purchase decisions (p_i, x_i) is consistent with the purchaser maximizing a concave utility function $u(\cdot)$ ".

Afriat's theorem

- Given a dataset $D = \{(p_i, x_i) : i \in N = \{1, 2, ..., n\}\}$ with $p_i, x_i \in \mathbb{R}^k_+$, the following statements are equivalent:
 - i. There exists a non-satiated utility function that rationalizes the data;
 - ii. The data satisfies *GARP* (*Generalized Axiom of Revealed Preference*), namely

 $p_j \cdot x_{j+1} \le p_j \cdot x_j, \quad \forall j \le n-1 \quad \Rightarrow p_n \cdot x_1 \ge p_n \cdot x_n$

iii. There exist numbers $U_1, ..., U_n$ and $\lambda_1, ..., \lambda_n$ satisfying the Afriat's inequalities

$$U_j - U_i - \lambda_i p_i (x_j - x_i) \le 0$$
, for all $i, j \in N$

iv. There exists a non-satiated, concave, monotonic, continuous utility function that rationalizes the data.

Remarkable consequence

Afriat's theorem gives *necessary* and *sufficient* conditions for a system to be a utility maximizer based only on the *input-output* response

- The remarkable feature of Afriat's Theorem is that the utility function $u(\cdot)$ does not need to be known.
- Afriat's test is viewed as a <u>blind test</u>: it detect utility maximizing behavior without knowledge of the utility function.
- This result is particularly useful in **detecting malicious agents** since the precise nature of the utility function that is being maximized is not known to the system (BB).

Testing utility maximization

- The price vectors p_i and the observed quantity vectors x_i can be checked for consistency with maximization of a non-satiated utility function $u(\cdot)$ in several ways ((ii.) or (iii.)) :
 - 1. checking whether or not the data satisfy GARP;
 - 2. using *linear programming methods* to check for the existence of a solution to Afriat's inequality, e.g.³

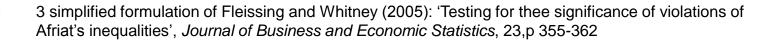
$$\min S_T \qquad \qquad S_T = \text{largest violation of} \\ \text{the Afriat inequalities} \end{cases}$$

subject to

$$U_j - U_i - \lambda_i p_i (x_j - x_i) \le S_T \quad \text{for all } i, j \in N$$

$$\lambda_j > 0, \quad \text{for all } j \in N$$

$$S_T \ge 0$$

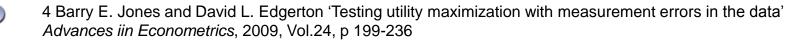


Afriat's Test in practical settings

• The responces x_i are measured via noisy observations y_i :

$$y_i = x_i + w_i, \quad x_i \in \mathbb{R}^k_+, \quad w_i \text{ i.i.d. noise vector}$$
 Hp) additive \swarrow noise model

- Given a dataset $D_{noisy} = \{(p_i, y_i) : i \in N\}$ the question is: 'how can Afriat's Theorem be generalized to detect a utility maximizer?'
- Jones and Edgerton⁴ give a *decision test* to detect a utility maximizer using the noisy dataset D_{noisy} (statistical N-P test):
 - The test has a guaranteed upper bound on *Type-I errors* in detecting malicious agents



Statistical test for 'malicious' behavior (1/2)

- The noisy dataset: $D_{noisy} = \{(p_i, y_i) : i \in N\}$
- Based on Afriat's Theorem, we want to solve the hypothesis test: H0: the clean dataset D satisfies utility maximization; H1: the clean dataset D does not satisfy utility maximization; <u>Errors</u>: Type I → accept H1 when H0 holds (Type II → accept H0 when H1 holds);
- Jones And Edgerton (2009) consider the statistical test

where: $M \equiv \max_{i,j} [p_i(w_i - w_j)]$ and $\Phi^*(y)$ is the solution of the constrained optimization problem:

 $\begin{array}{ll} \min & \Phi \\ s.t. & U_j - U_i - \lambda_i p_i (x_j - x_i) - \lambda_i \Phi \leq 0 \\ & \lambda_i > 0, U_i > 0, \Phi > 0 \quad \text{for } i, j \in \{1, 2, ..., n\} \end{array}$

Statistical test for 'malicious' behavior (2/2)

• Jones And Edgerton (2009) prove the following theorem:

Theorem (Statistical test for agent that seek to maximize utility) 'Given the noisy dataset D_{noisy} , the probability that the statistical test (1) yields a Type-I error (reject H0 when true) is less than α '.

 The theorem guarantees that the Type-I error probability is less than α for the decision test (1). Through the optimization of the probe signal p_i it is possible to reduce (minimize) the Type-II error probability.

