AN INTRODUCTION TO GAME THEORY

B.Tondi Dept. of Information Engineering, University of Siena

Contents

- An overview:
 - What is Game Theory?
 - Classification
- Non-cooperative games
 - Strategic games (with perfect information)
 - Definition
 - Examples of games in strategic form
 - Solution concepts:
 - Dominant Strategy equilibrium
 - Nash equilibrium
 - Refinements of the Nash equilibrium
 - Strategic games (with imperfect information) : Bayesian games

AN OVERVIEW

What is Game Theory?

Goals

It aims to help us understand situations in which *decision-makers* (*players*) interact: **Interactive Decision Theory**

Origins

'Theory of Games and Economic Behavior ' by von Neumann and Morgensten (1944)

Application Areas

Economics, political science, psychology, computer science

Assumption: the players are rational (have a clear relation of preferences over the outcomes¹) and intelligent (are able to act in a rational way)

Classification

Non-Cooperative and Cooperative Game

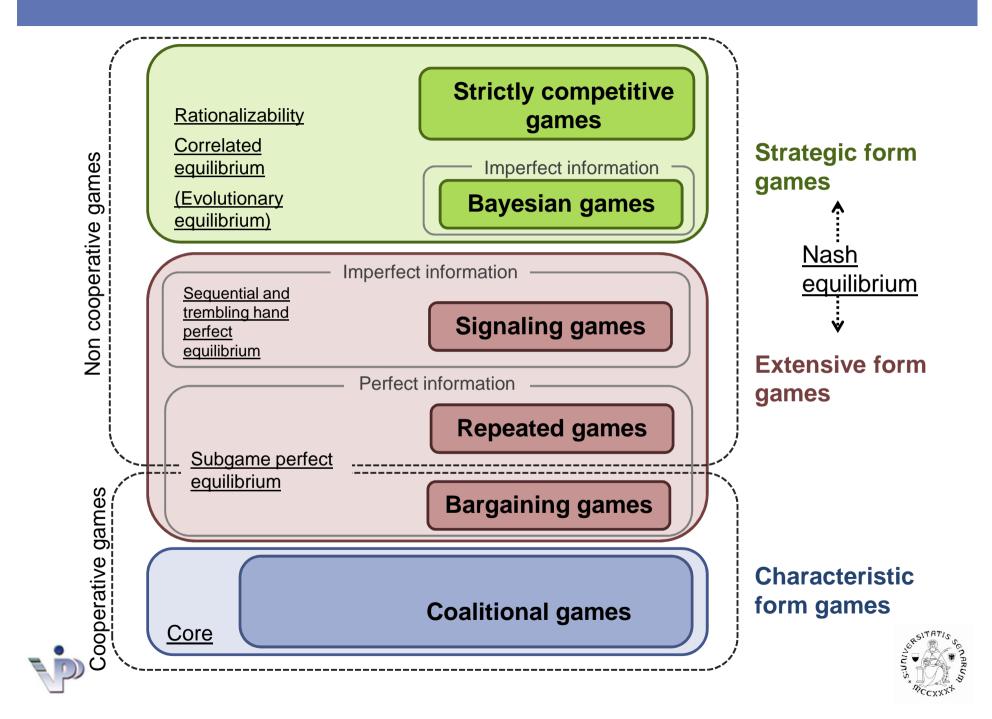
- > Non Cooperative: binding agreements are not allowed
- Cooperative: binding agreement are allowed

Games with Perfect and Imperfect Information

- Games with Perfect Information: the players are fully informed about the possible moves of the others players
- Games with Imperfect Information: the players have only partial information about the possible moves of the others players

• Games in Extensive, Strategic and Characteristic form

- > *Extensive form*: detailed description of the game (before 1944)
- > Strategic form: game in normal form; Von Neumann-Morgenstern (1944)
- > Characteristic form: for cooperative games only



NON-COOPERATIVE GAMES

Strategic Games

Definition of Strategic Game

«A model of interaction among *decision makers*. Each player chooses his 'plane of action' *once and for all* and the choices are made simultaneously.». $S = \times_{i \in \mathbb{N}} S_i \quad (\gtrsim_i)$

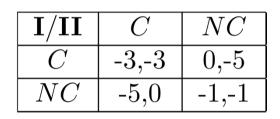
- a finite set N (players)
- for each player $i \in N$
 - a nonempty set $S_i = \{s_i^1, s_i^2,\}$ (set of *strategies* available to i)
 - a preference relation (\gtrsim_i) on $S=\times_{j\in N}S_j$ (set of *outcomes* or *profiles*)
 - a profile s is a N-pla of strategies $s = (s_j^{k(j)})_{j \in N}$

a preference relation \gtrsim_i is a function $u_i : S \to \mathbb{R}$ (payoff) $s_1 \gtrsim_i s_2 \Leftrightarrow u_i(s_1) \ge u_i(s_2)$

 $A_{i} \in N_{S}$

Games in strategic form: examples

Prisoner's Dilemma



Battle of sexes

him/her	football	opera
football	2,1	0,0
opera	0,0	1,2

Head and Tail

Pure Coordination

\mathbf{I}/\mathbf{II}	Н	T
H	-1,1	1,-1
T	1,-1	-1,1

I/II	football	rugby
football	$1,\!1$	$0,\!0$
rugby	0,0	$1,\!1$

Non-cooperative strategic games:

- one-shot games
- repeated games (the strategic model is appropriate only if there
- are no strategic ties among the repetitions)

Some notation and definitions

Some notation

> If $s = (s_i)_{i \in N}$ is a strategy profile, then $s_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_N)$ > $(s_i, s_{-i}) = s$

<u>Definitions</u>

- > s_i is a **best response** to s_{-i} if $u_i(s_i, s_{-i}) \ge u_i(s'_i, s_{-i})$ for every strategy s'_i available to i
- > s_i is a unique best response to s_{-i} if $u_i(s_i, s_{-i}) > u_i(s'_i, s_{-i})$ for every $s'_i \neq s_i$

STRATEGIC GAMES

Solution Concepts

Solution concepts

 In Game Theory (multiple agents or players) the a 'best strategy' for a player depends on others' choices.

Solution concepts = 'subsets of outcomes (profiles) which are in some sense preferable'.

• Some solution concepts (*non-cooperative strategic games*):

- Pareto optimality
- Dominant Strategy equilibrium
- Nash equilibrium
- Iterated elimination of Strictly Dominated Actions (Rationalizablility)
- Mixed strategies Nash equilibrium
- Correlated equilibrium

non deterministic player's strategies

Pareto optimality

• The strategy profile s pareto dominates a strategy profile s' if

 \succ no agent gets a worse payoff with s than with js'

i.e. $u_i(s) \ge u_i(s')$ for all *i*

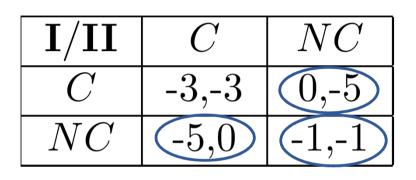
> at least one agent gets a better payoff with s than with s' i.e. $u_i(s) > u_i(s')$ for at least one i

- A strategy profile s is **Pareto optimal** or **strongly Pareto efficient** if there is no strategy s' that Pareto dominates s
 - > every game has at least one Pareto optimal profile
 - there is always at least one Pareto optimal profile in which the strategies are pure

Example

The Prisoner's Dilemma

- (NC,NC) is Pareto optimal
 - > no profile gives both players a higher payoff
- (NC,C) is Pareto optimal
 - no profile gives player I a higher payoff (or at least equal)
- (C,NC) is Pareto optimal
- (C,C) is Pareto dominated by (NC,NC)



Dominant strategy

Definition

Let $S_i = \{s_i^1, s_i^2, \dots\}$ the set of all the strategies available to agent *i*

• The strategy s_i^k strongly dominates s_i^h for player *i* if

 $u_i(s_i^k, s_{-i}) > u_i(s_i^h, s_{-i}) \quad \forall s_{-i}$

• The strategy s_i^k weakly dominates s_i^h $u_i(s_i^k, s_{-i}) \ge u_i(s_i^h, s_{-i}) \quad \forall s_{-i}$ $u_i(s_i^k, s_{-i}) > u_i(s_i^h, s_{-i}) \quad \text{for some } s_{-i}$

player i never does worse with s_i^k than s_i^h and there is at least one case in which he does better

player i always

does better with

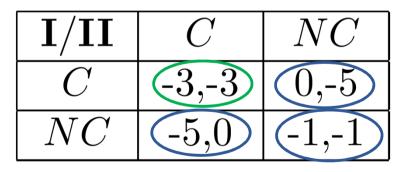
- s_i^k is a (strongly,weakly) dominant strategy if (strongly, weakly) dominates every $s_i^h \in S_i$

Dominant strategy equilibrium

- A dominant strategy equilibrium is a profile $S = (s_1, ..., s_N)$ such that s_i is *dominant* for the player *i*
- Each player *i* do best by using S_i rather than a different strategy. regardless of what strategy the other playes use.

Example (The Prisoner's Dilemma)

- there is one dominant strategy equilibrium: (C,C)
 - both player defect
 - ➢ it is not Pareto optimal



It is a stronger concept than the Nash equilibrium

Nash equilibrium

The most important solution concept for non-cooperative games

<u>Definition</u> (pure strategy Nash equilibrium)

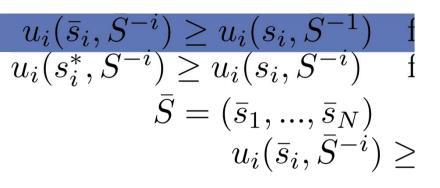
A strategy profile $s^{\ast} = (s_{1}^{\ast},...,s_{N}^{\ast})$ is a Nash equilibrium if for every player i if

$$u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$$
 for every $s_i \in S_i$

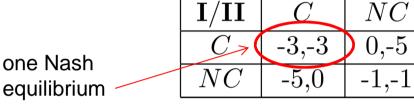
i.e. for every player $i \ s_i^*$ is the best response to s_{-i}^* / no player can yield an higher payoff by *unilaterally* changing his strategy.

- Interpretation: *steady state*
- Dominant Strategy equilibrium

Examples (N =2)



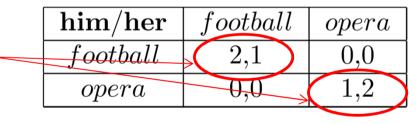
Prisoner's Dilemma



OSS: A Nash equilibrium is <u>inefficient</u> when is not <u>pareto</u> optimal.

Battle of sexes

two Nash _ equilibria



Head and Tail

no Nash equilibrium

\mathbf{I}/\mathbf{II}	Н	T
H	$^{-1,1}$	1,-1
T	1,-1	-1,1

Generalization and Refinements

- Generalization: *Mixed strategies Nash equilibrium*
- A further generalization of the Nash equilibrium concept is the rationalizability

Oddities in the Nash equilibrium:

- inefficiency (Prisoner's dilemma)
- non-uniqueness (Battle of sexes, Pure coordination)
- non-existence (Head and Tail)
- In order to avoid the non-existence and multiple Nash equilibria:

I. Correlated equilibrium

- *II.* Perfect subgame equilibrium
- *III.* Trembling hand perfect equilibrium

All failed w.r.t. uniqueness and *efficiency* —> need to account for <u>cooperation</u> (Cooperative games)

Mixed strategies

- Attempt: to generalize the Nash equilibrium concept (pure strategy)
- Probabilistic approach: we each player choose a probability distribution over his set of strategies (independently) insead of choosing a single deterministic strategy

<u>Definition</u> (Mixed strategy)

A **mixed strategy** α_i for player *i* is a probability distribution over his set of strategies (actions)

- $m \xrightarrow{Survey}{} S_i = \{s_i^1, s_i^2, ..., s_i^m\} \quad \alpha_i \in \Delta(S_i)$ Pure strategy profile :
 - Mixed strategy profile: $s = (s_1, s_2, ..., s_N)$ $\alpha = (\alpha_i)_{i \in N}$ $\alpha \in \Delta(S)$
 - Given α (p.d. over deterministic outcomes), the **expected payoff** of player i is a function $U_i : \times_{j \in N} \Delta(A_j) \to \mathbb{R}$ defined as

$$U_i(\alpha) = \sum_{s \in S} (\prod_{j \in N} \alpha_j(s_j)) u_i(s)$$

i.e. the expected value of $u_i: \times_{j \in N} S_j \to \mathbb{R}$ induced by α

Mixed strategy game

Definition

Given α (p.d. over deterministic outcomes), the **expected payoff** of player i is a function $U_i : \times_{j \in N} \Delta(A_j) \to \mathbb{R}$ defined as

$$U_i(\alpha) = \sum_{s \in S} (\prod_{j \in N} \alpha_j(s_j)) u_i(s)$$

i.e. the expected value of $u_i : \times_{j \in N} S_j \to \mathbb{R}$ induced by α

• The strategic game $\langle N, (\Delta(S_i)), (U_i) \rangle$ is the **mixed extension** of the strategic game $\langle N, (S_i), (u_i) \rangle$

A mixed strategies Nash equilibrium of a strategic game is a Nash equilibrium of the mixed extension

m

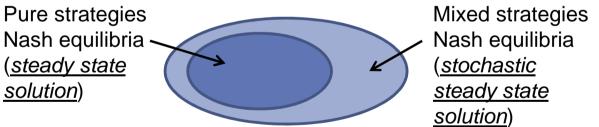
Mixed strategy Nash equilibrium

<u>Definition</u> (Mixed strategies equilibrium) A mixed strategy profile is a **mixed strategy Nash equilibrium** if

 $U_i(\alpha^*) \ge U_i(\alpha_i, \alpha^*_{-i}) \quad \forall \alpha_i, \forall i \in N \qquad (\alpha^*_i \in B_i(\alpha^*_{-i}) \quad \forall i \in N)$

Properties

 The set of pure strategy equilibria is a subset of the set of the mixed strategy equilibria



 Every finite strategic game has a mixed strategy Nash equilibrium (it solves the non-existence problem)

Example (Haid and Tail)

- No Nash equilibrium (in pure strategies)
- Unique mixed strategy Nash equilibrium: ((1/2,1/2),(1/2,1/2))

$$\alpha = (\alpha_1, \alpha_2) = ((p, 1-p), (q, 1-q))$$

Player 1's best expected payoff (best responce): $U_1(\alpha/Head) = q \cdot 1 + (1-q) \cdot (-1) = 2q - 1$ $U_1(\alpha/Tail) = q \cdot (-1) + (1-q) \cdot 1 = 1 - 2q$ $q < 1/2 \rightarrow U_1((0,1),\alpha_2) \ge U_1(\alpha_1,\alpha_2) \quad \forall \alpha_1$

 $q > 1/2 \quad \to \quad U_1((1,0),\alpha_2) \ge U_1(\alpha_1,\alpha_2) \quad \forall \alpha_1 \quad \longleftrightarrow$ $q = 1/2 \quad \to \quad U_1(\alpha_1,\alpha_2) \text{ costante con } \alpha_1$

Player 2's best expected payoff (best responce):

$$B_1(\alpha_2) = \begin{cases} (0,1) & q < 1/2\\ (p,1-p) & q > 1/2\\ (1,0) & q > 1/2 \end{cases}$$

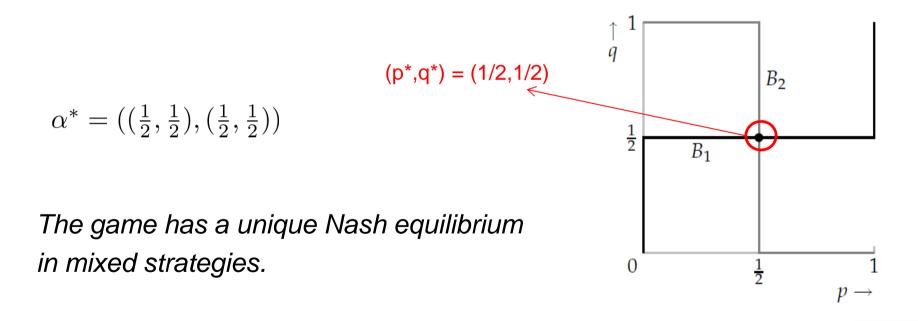
1

$$B_2(\alpha_1) = \begin{cases} (1,0) & p < 1/2\\ (q,1-q) & p = 1/2\\ (0,1) & p > 1/2 \end{cases}$$

Example (Haid and Tail)

The set of mixed strategy Nash equilibria of the game corresponds to the set of *intersections of the best responce function*,

i.e. the points α^* *such that* $\alpha^* = (B_1(\alpha_2^*), B_2(\alpha_1^*))$



Example (BoS)

Two Nash equilibria (in pure strategies)

Tree Nash equilibria in mixed strategies

$$\alpha = (\alpha_1, \alpha_2) = ((p, 1-p), (q, 1-q))$$

	q	1- q
$\mathbf{him}/\mathbf{her}$	football	opera
football	$2,\!1$	0,0
opera	0,0	1,2
	football	football 2,1

Player 1's best responce function:

 $U_1(\alpha/football) = 2 \cdot q + 0 \cdot (1-q) = 2q$ $U_1(\alpha/opera) = 0 \cdot q + 1 \cdot (1-q) = 1-q$

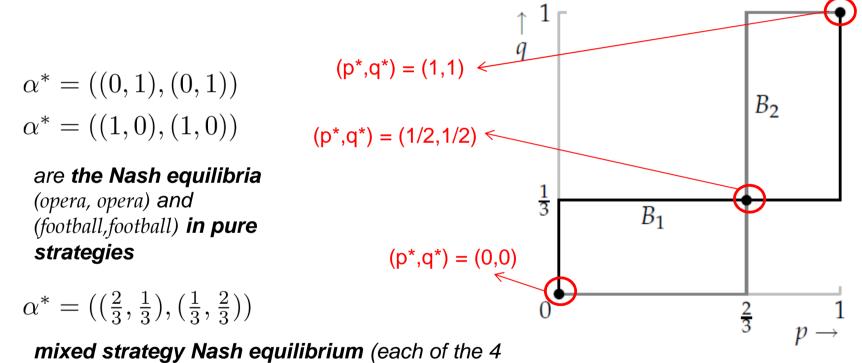
Player 2's best responce function:

$$B_1(\alpha_2) = \begin{cases} (0,1) & q < 1/3\\ (p,1-p) & q = 1/3\\ (1,0) & q > 1/3 \end{cases}$$

$$B_2(\alpha_1) = \begin{cases} (0,1) & p < 2/3\\ (q,1-q) & p = 2/3\\ (1,0) & p > 2/3 \end{cases}$$

Example (BoS)

There are tree intersection points of the players' best responce functions.

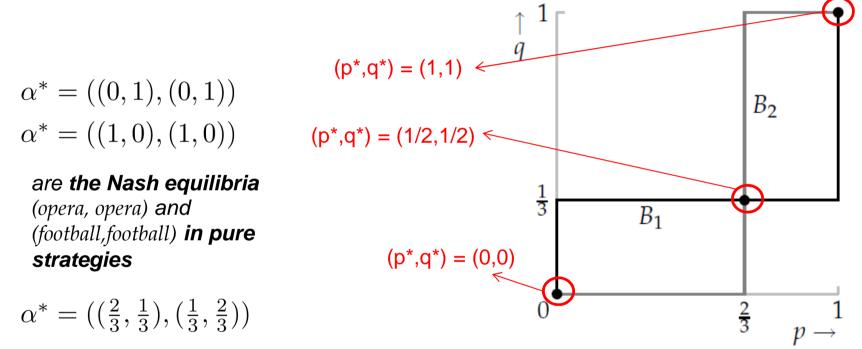


deterministic outcomes occurs with positive probability)

OSS: The mixed Nash equilibrium is *pareto dominated* by the two pure Nash equilibria.

Example (BoS)

There are tree intersection points of the players' best responce functions.



mixed strategy Nash equilibrium (each of the 4 deterministic outcomes occurs with positive probability)

Rationalizability

- □Assumption: each player *knows* that the other players are *intelligent* and *rational*
- A strategy s is a **rationalizable equilibrium** if an infinite sequence of reasoning (consistent beliefs) results in the players playing s
- How to find *rationalizable strategies*?

to look for *non-rationalizable actions* and eliminate them

<u>Def</u>: an action of player i is a **never-best responce** if it is not a best responce to any belief of player i

Never-best responce \rightarrow non rationalizable (see the Prisoner's dilemma)

<u>Def</u>: the strategy $s_i \in S_i$ of player i is **strictly dominated** if there exists a mixed strategy $\alpha_i \in \Delta(S_i)$ of player i that strictly dominates, i.e.

 S_i : never best response \iff strictly dominated

 $U_i(\alpha_i, s_{-i}) > u_i(s_i, s_{-i}) \quad \forall s_{-i} \in S_{-i} \qquad s_{-i} \in S_{-i}$

→ A strictly dominated strategy is a never best responce

Iterated elimination of Strictly Dominated Actions

- 1. Eliminate strictly dominated actions from the game because no rational player plays such actions;
- 2. Even more actions can be strictly dominated within the remaining game; so eliminate them;
- 3. Further actions can be eliminated since each player is rational, believes that thge other players are rational, and belives that the other players believe that the other players are rational.....
- 4. For a finite game, the process of successive eliminations stop at some point;obtaining the set of **all rationalizable strategies.**

Oss: the rationalizability concept looks at the game from the point of view of a single player

Examples

No elimination is possible; all the pure strategies in this game are rationalizable

- *The same happens in any *coordination game* (players choose corresponding $u_i(\bar{s}$ strategies).
 - Es: Pure coordination game

\mathbf{I}/\mathbf{II}	football	rugby
football	$1,\!1$	$0,\!0$
rugby	0,0	$1,\!1$

I/II

H

T

 $\frac{u_i(\bar{s}_i, \bar{S}^{-i}) \ge u_i(s_i, \bar{S}^{-1})}{u_i(s_i^*, S^{-i}) \ge u_i(s_i, S^{-i})} \quad \text{f} \\ \bar{S} = (\bar{s}_1, ..., \bar{s}_N^{t_i})^{\bar{s}_i, t_i}$

H

-1.1

1.-1

T

1,-1

-1.1

Prisoner's dilemma I/IIRationalizable M equilibrium $_{0,0}$ Typical example 1/2CRL- 0 1 -TRationalizable 4.0O G1.1 equilibrium M534

B

2.0

1, 1

10

 $S^{\text{-}}$

Games with communication

- To solve «inefficiency» and «non-uniqueness» of the Nash equilibrium ;communication among players
- Communication -> Cooperation
- The introduction of communication among players can lead to a Selfenforcing equilibrium (without binding agreement)

<u>Definition</u> (Generalized strategy)

A correlated strategy or jointly randomized strategy for a set of players $C \subseteq N$ is any probability distribution α over the set of possible combinations of pure strategies these players can choose, i.e. $\alpha \in \Delta(S_c) = \Delta(\times_{i \in C}(S_i))$

Correlated strategy profile vs Mixed strategy profile

 $\alpha \in \Delta(\times(S_i))$

In a correlated strategy the mixed strategies can be correlated

Correlated strategies and equilibrium

A *correlated strategy* α can be implemented by the players through a *mediator* which recommends randomly a profile of pure strategies according to α

Correlated equilibrium (Aumnann, 1974)

«Any correlated strategies for the players which could be selfenforcingly implemented with the help of a mediator who makes non binding recommendations to each player»

- Refinement of the mixed Nash equilibrium
- Includes communication among players (public signal/ recommended strategy)

Correlated equilibrium

Definition

The **expected payoff** to player *i* when a correlated strategy $\alpha \in \Delta(S)$ is implemented is $U_i(\alpha) = \sum_{s \in S} \alpha(s) u_i(s)$

Mediator suggestion: $\alpha^* \in \Delta(S)$

• $\delta_i: S_i \to S_i$, for each player i ($\delta_i(s_i) = s_i$ means that player i obeys the mediator)

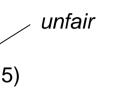
<u>Definition</u> (Correlated equilibrium)

The correlated strategy α^* induce an **equilibrium** for all players to obey the mediator recommendation if and only if

$$U_{i}(\alpha) = \sum_{s \in S} \alpha(s_{i}, s_{-i}) u_{i}(s_{i}, s_{-i}) \ge \sum_{s \in S} \alpha(s_{i}, s_{-i}) u_{i}(\delta_{i}(s_{i}), s_{-i})$$

 $\forall i \in N, \forall \delta_i : S_i \to S_i$

An example



Payoff allocation of pure Nash equilibria: (5,1), (1,5) mixed Nash equilibrium (2.5,2.5) *inefficient*

1/2	x_2	y_2
x_1	$5,\!1$	0,0
y_1	$4,\!4$	$1,\!5$

Drawback: 'non-uniqueness' and 'inefficiency'

A better outcome than (2.5, 2.5) can be obtained through correlated strategies

• es:
$$\alpha(x_1, x_2) = \alpha(y_1, y_2) = \frac{1}{2}; \quad \alpha(x_1, y_2) = \alpha(y_1, x_2) = 0$$

is a self-enforcing plan with expected payoff (3,3)

• es:
$$\alpha(x_1, x_2) = \alpha(y_1, x_2) = \alpha(y_1, y_2) = \frac{1}{3}; \quad \alpha(x_1, y_2) = 0$$

is a self-enforcing plan with expected payoff (3 + 1/3, 3 + 1/3)

Properties of Correlated equilibria

 The set of correlated equilibria contains the set of mixed strategies Nash equilibria
 Mixed strategies



- The set of correlated equilibria includes outcomes which are Pareto efficient (not Pareto dominated by the pure Nash equilibria)
- Finding correlated equilibria is *computationally less expensive* than searching for Nash equilibria (*LP problem*)

Linear programming problem (LPP)

- The set of correlated equilibria is a *compact* and *convex* set
- Finding the correlated equilibrium that maximize the sum of the player's expected payoff is equivalent to solve the following LPP

$$\max_{i \in N} \sum_{i \in N} U_i(\alpha)$$

$$\sum_{s_{-i} \in S_{-i}} \alpha(s) [u_i(s_i, s_{-i}) - u_i(s'_i, s_{-i})] \ge 0 \quad \forall i \in N, \forall s_i \in S_i, \forall s'_i \in S_i$$

$$\alpha(s) \ge 0 \quad \forall s \in S$$

$$\sum_{s \in S} \alpha(s) = 1.$$

By solving the linear problem in the previous example, among all the correlated equilibria $\alpha = (\frac{1}{3}, 0, \frac{1}{3}, \frac{1}{3})$ is the 'best' one.

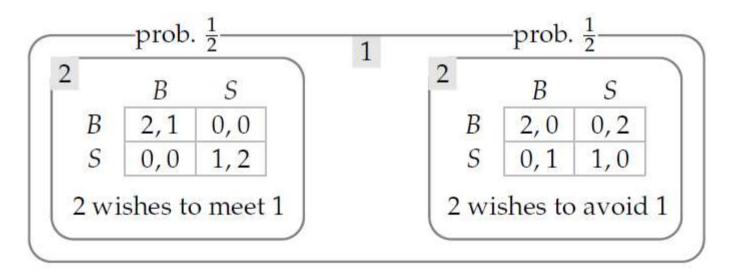
STRATEGIC GAMES

Games with Imperfect Information

Bayesian Games: an example (1)

Bayesian Games = Games with Imperfect Information in strategic form

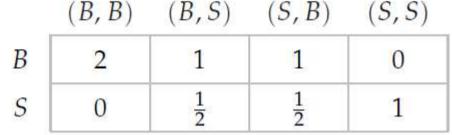
Example (Variant of BoS with imperfect information)



- two states with different Player's preferences;
- from player 1's point of view Player 2 has two types;
- Player 1 has beliefs about the type of Player 2 (coming from experience or updated as the play takes place): ¹/₂ and ¹/₂

Bayesian Games: an example (2)

 Expected payoffs of Player 1 for the possible pairs of strategies of the two types of Player 2



Pure strategy Nash equilibrium = triple of strategies (one for P1 and one for each type of P2) with the property that

- the strategy of P1 is *optimal*, given the actions of the two types of P2 (and P1's belief about the state)
- ✓ the action of each type of P2 is *optimal*, given the action of P1

(B,(B,S)) is a Nash equilibrium

The types must be treated as separate players!

Bayesian Games

A Bayesian game consists of:

- a set of players N
- a set of states $\omega\in\Omega$
- a set of **strategies** S_i for each player *i*
- a finite set T_i of **types** of player i and a function $\tau_i : \Omega \to t_i$ which assigns a type to any state for player *i*
- a probability measure p_i on Ω for each player *i* (the **prior belief** of *i*)
- Bernoulli payoffs $u_i: S \times \Omega \to \mathbb{R}$ for each player i

Definition

A Nash equilibrium of a Bayesian Game is a Nash equilibrium of the strategic game defined as follows

▶ the set of players $(i, t_i), i \in N \ t_i \in T_i$

> the set of strategies $S_{(i,t_i)}$ for each player (i,t_i) , $S = \times S_{(i,t_i)}$

> the Bernoulli payoffs $u_{(i,t_i)}: S \to \mathbb{R}$ for each player (i,t_i) is the expected

payoff of type t_i of player i

Bayesian Games

A Bayesian game consists of:

- a set of players N
- a set of states $\omega\in\Omega$
- a set of **strategies** S_i for each player *i*
- a finite set T_i of **types** of player i and a function $\tau_i : \Omega \to t_i$ which assigns a type to any state for player *i*
- a probability measure p_i on Ω for each player *i* (the **prior belief** of *i*)
- Bernoulli payoffs $u_i: S \times \Omega \to \mathbb{R}$ for each player i

Definition

A Nash equilibrium of a Bayesian Game is a Nash equilibrium of the strategic game defined as follows

▶ the set of players $(i, t_i), i \in N \ t_i \in T_i$

> the set of strategies $S_{(i,t_i)}$ for each player (i,t_i) , $S = \times S_{(i,t_i)}$

> the Bernoulli payoffs $u_{(i,t_i)}: S \to \mathbb{R}$ for each player (i,t_i) is the expected

payoff of type t_i of player i

