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Abstract

The use of machine-learning for multimedia forensics is gaining more and

more consensus, especially due to the amazing possibilities offered by

modern machine learning techniques. By exploiting deep learning tools, new

approaches have been proposed whose performance remarkably exceed those

achieved by state-of-the-art methods based on standard machine-learning and

model-based techniques. However, the inherent vulnerability and fragility of

machine learning architectures pose new serious security threats, hindering

the use of these tools in security-oriented applications, and, among them,

multimedia forensics. The analysis of the security of machine learning-based

techniques in the presence of an adversary attempting to impede the forensic

analysis, and the development of new solutions capable to improve the security

of such techniques is then of primary importance, and, recently, has marked

the birth of a new discipline, named Adversarial Machine Learning.

By focusing on Image Forensics and image manipulation detection in par-

ticular, this thesis contributes to the above mission by developing novel tech-

niques for enhancing the security of binary manipulation detectors based on

machine learning in several adversarial scenarios. The validity of the pro-

posed solutions has been assessed by considering several manipulation tasks,

ranging from the detection of double compression and contrast adjustment, to

the detection of geometric transformations and filtering operations.





Chapter 1

Introduction

”All objects in the universe are unique. No two things that happen by chance

ever happen in exactly the same way. No two things are ever constructed or

manufactured in exactly the same way. No two things wear in exactly the

same way. No two things ever break in exactly the same way.”

Joe Nickell

”We can all see, but can you observe?”

A.D. Garrett, Everyone Lies

N
owadays, everybody has the possibility of editing the content of digital

images and creating fake contents with relative easiness. While in many

cases these are innocent operations, many other times image editing has mali-

cious purpose. The diffusion of counterfeited image is a serious problem that

impacts on judicial systems, global economy, financial health and homeland

security [9, 10]. Multimedia Forensics was born as a new discipline aiming a

gathering information on the history of a multimedia document, on its origin

and authenticity, on the processing it underwent, etc... The use of Machine

Learning (ML) for Multimedia Forensics, and Image Forensics, in particular,

is gaining more and more consensus due to the powerfulness of ML tools and

the possibilities offered by modern techniques based on deep learning archi-

tectures.

Disabling forensic analysis, however, turns out to be an easy task, given

the weakness of the traces forensic techniques rely on. This is even more the

case with ML-based methods relying on deep learning, due to the fragility of

these algorithms and their inherent vulnerability to attacks. This makes it

hard to exploit these tools in the a multimedia forensic scenario and more in

general for security-oriented applications, where the possible presence of an

adversary can not be ignored [11–14].
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To address the security threats in Machine Learning, many researchers

have started working on techniques for protecting learning systems, marking

the birth of a new discipline, named Adversarial Machine Learning (Adv-

ML). The concerns about the security of machine learning is exacerbated by

the widespread of Deep Learning (DL) techniques. Deep Learning, in fact,

suffers from a number of shortcomings hindering its application to security-

oriented disciplines, and among them, Multimedia Forensics. The develop-

ment of solutions capable to overcome the security limits of such technology

in the presence of an adversary applying counter-forensics methods to impede

the analysis, has therefore become a necessity in Multimedia Forensics.

This thesis contributes to the above mission with the development of machine

learning techniques for Image Forensics in adversarial setting by focusing on

image manipulation detection. In particular, we developed novel methods for

increasing the security of binary manipulation detectors based on machine

learning, including deep learning, in several adversarial scenarios.

The technical content of the thesis can be split in two parts, where two

different approaches are considered for improving the security of forensic de-

tectors. We first propose to secure standard ML-based forensic detectors by

means of adversarial training, that is, by re-training the detector considering

also ‘properly crafted’ attacked samples, in addition to the normal samples.

The method is applied to the detection of double JPEG compression, which

is one of the most studied problem in forensics. In this thesis, JPEG com-

pression is regarded as a laundering-type attack, and JPEG-aware training

is considered to design more robust detectors, by focusing on both Support

Vector Machine (SVM) and Convolutional Neural Networks (CNN) classi-

fiers. In the second part, a more general approach for designing an intrisically

more secure classifier is adopted by working both on the architecture of the

classifier and on the randomization of the feature set. In the case of feature

selection randomization, we extended to CNNs an approach already consid-

ered in the forensic literature, and successfully applied to standard machine

learning (SVM) classifiers [15].
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1.1 Overview and Contribution

The thesis is organized as follows. Chapter 2 provides an introduction to

Image Forensics and image manipulation detection, with a brief overview on

the methodologies for forensic analysis. Then, we drive our focus on ma-

chine learning techniques developed for image forensic applications. Some

basic concepts of Machine Learning (ML), necessary to understand the rest

of the thesis, are also provided. A reader who is already familiar with the

concepts of Image Forensics and ML tools can skip this chapter. In Chapter

3, we consider on adversarial setting and introduce the reader to Adversarial

Multimedia Forensics by adopting the general view and terminology intro-

duced in the field of Adversarial Machine Learning (AdvML). Specifically,

in Chapter 3, the problem of Counter-Forensics (CF) is introduced and the

related prior art is presented. Moreover, by adopting the perspective of the

analyst, a classification of ML techniques that take into account the presence

of the adversary is provided. The core of the thesis starts in Chapter 4. In

this chapter, we design a general adversary-aware detector for the common

problem of double JPEG detection, which is capable of detecting the double

compression even in the presence of heterogeneous processing and CF attacks.

Then, in Chapter 5, JPEG compression is regarded to as a laundering attack.

By focusing on the detection of contrast enhancement, robustness to JPEG is

achieved by building a JPEG-aware detector. We do so by considering both

SVM and CNN architectures. The CNN architecture is proven to work un-

der a wide variety of unseen tonal adjustments and when different software

packages are used for compressing the images. In Chapter 6, we propose the

use of an intrinsically more secure architecture based on multiple classifiers to

improve the security of forensic SVM-based binary classification. The perfor-

mance of the system are assessed, both in terms of robustness and security,

for several image manipulation detection tasks and compared to traditional

two-class classification architectures. Then, in Chapter 7, we analyze the se-

curity of the most recent CNN-based techniques developed for image forensics,

by assessing the degree of transferability of the so-called adversarial examples

under various settings, depending on the amount of knowledge available to

the attacker about the target system. Then, In Chapter 8 we investigate on

random feature selection approach which is proposed in [16] to improve the
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robustness of forensic detectors against targeted attacks, can be extended to

detectors based on DL features. Finally, we conclude the thesis in Chapter 9,

summarizing the lessons learned and outlining some ideas for future research

in this direction.

1.2 Activity Within Research Projects

The US Department of Defense (DoD) would like to be able to extract knowl-

edge from and understand this imagery and its provenance. Many images and

videos are modified and/or manipulated prior to publication. The goal of this

research is to develop a set of forensics tools to determine the integrity, se-

mantic consistency and evolutionary history of images and videos. Moreover,

the project gave me the opportunity to establish contacts with outstanding

technical experts from seven universities, with complementary skills and back-

ground in computer vision and biometrics, machine learning, digital forensics,

as well as signal processing and information theory1.

The activity of this thesis has been partially supported by Defense Ad-

vanced Research Projects Agency (DARPA)2 and Air Force Research labora-

tory (AFRL) under the research grant number FA8750-16-2-0173. The United

States Government is certified to reproduce and distribute reprints for Gov-

ernmental objectives notwithstanding any copyright notation thereon. The

views and conclusions consist of herein are those of the authors and should

not be explained as necessarily representing the official policies or authoriza-

tion, either expressed or implied, DARPA and AFRL U.S. Government.

1.3 List of Publications

The research activity I carried out during my Ph.D. studies resulted in the

following publications3:

1https://engineering.purdue.edu/MEDIFOR/
2https://www.darpa.mil/program/media-forensics
3∗The list of authors is provided in alphabetic order.
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Chapter 4

M. Barni, ∗E. Nowroozi, and B. Tondi, ”Higher-Order, Adversary-Aware,

Double JPEG-Detection via Selected Training on Attacked Samples”, In 25th

European Signal Processing Conference (EUSIPCO), Kos, Greece, August

2017.

Chapter 5

M. Barni, ∗E. Nowroozi, and B. Tondi, ”Detection of Adaptive Histogram

Equalization Robust Against JPEG Compression”, In International Work-

shop on Biometrics and Forensics (IWBF), Sassari, Italy, June 2018.

M. Barni, A. Costanzo, E. Nowroozi, and B. Tondi, ”CNN-based detection of

generic contrast adjustment with JPEG post-processing”, In 25th IEEE In-

ternational Conference on Image Processing (ICIP), Athens, Greece, October

2018.

Chapter 6

M. Barni, ∗E. Nowroozi, and B. Tondi, ”Improving the security of Image Ma-

nipulation Detection through One-and-a-half-class Multiple Classification”,

In Multimedia Tools and Applications, ISSN. 1573-7721, doi. 10.1007/s11042-

019-08425-z, Springer, November 2019.

Chapter 7

M. Barni, K. Kallas, ∗E. Nowroozi, and B. Tondi, ”On the Transferability

of Adversarial Examples Against CNN-Based Image Forensics”, In Multime-

dia Tools and Applications, In IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Brighton, United Kingdom, May

2019.

Chapter 8

M. Barni, ∗E. Nowroozi, B. Tondi, B. Zhang ” Effectiveness of random deep

feature selection for securing image manipulation detectors against adversarial

examples”, Accepted paper in IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Barcelona, Spain, arXiv:1910.12392,

4-8 May 2020.
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1.4 List of Presentations
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Double JPEG-Detection via Selected Training on Attacked Samples”, In 25th

European Signal Processing Conference (EUSIPCO), Kos, Greece, August

2017.

M. Barni, ∗E. Nowroozi, and B. Tondi, ”Detection of Adaptive Histogram

Equalization Robust Against JPEG Compression”, In International Work-

shop on Biometrics and Forensics (IWBF), Sassari, Italy, June 2018.

M. Barni, A. Costanzo, ∗E. Nowroozi, and B. Tondi, ”CNN-based detection

of generic contrast adjustment with JPEG post-processing”, In 25th IEEE

International Conference on Image Processing (ICIP), Athens, Greece, Octo-

ber 2018.



Chapter 2

Background on Image Forensics and Machine
Learning

”What one man can invent, another can discover.”

Sherlock Holmes

O
ver the past decades, digital photography is receiving a rapid and ever

growing diffusion; it allows anyone to captures high-quality digital im-

ages, quickly and without cost, to easily store them on a large number of

digital supports, and moreover share them on the Internet. At the same time,

with the wide availability of image editing tools (e.g., Photoshop, Gimp,...),

modifying on digital images has becomes extremely easy. Photo editing is

frequently innocently used in entertainment, for instance, for improving the

quality of images (see Figure 2.1). However, in many cases, photo editing is

used malicious innocent intentions, as for instance in journalism (fake news),

to modify the message conveyed by an image, or to conceal a subpart of it (see

the examples in Figure 2.2). Tampering may also be used to falsify evidence

in a court law.

Digital Image Forensics is a research field aiming at gathering information

on the history of digital images in such a way that this trustability can be

assessed [17,18]. One of the strengths of Digital Image Forensics relies on its

blind nature, which means that there is no access to the images before their

diffusion: on active solutions alike Digital Watermarking [19] not viable, since

they are based on concealing a message inside the image at creation time.

In the rest of this chapter, we first briefly introduce Image Forensics and

present the main methods for forensic analysis. Then, we introduced some

basic notions of Machine Learning and the most important techniques that

have been exploited for forensic analysis, namely Support Vector Machines
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(a) (b)

(c) (d)

Figure 2.1: Examples of image tampering before (left image) and after (right

image) editing [1].

(SVMs) and Convolutional Neural Networks (CNNs). Finally, an overview of

forensic techniques based on Machine Learning is provided.

2.1 What Is Image Forensics About?

The history of a digital image begins when the image is captured by the

automatic application of some in-device processing. Other processing steps

may follow such as the improvement of the perceptual quality of the image

through enhancement operators, or altering the semantic content by including

or removing objects. Several versions of the same image may be created, for
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(a)

(b)

Figure 2.2: Examples of tampered images in journalism [2] (fake news).

instance by resizing it, or by applying compression, then modifying the file

format. Image Forensics is about investigating the past history of the image,

without knowing anything but the image itself.

Some of the main investigations, or forensic tasks, that have received great

attention are reported in the following:

� source classification: whose objective is to determine whether the source

image comes from a camera, a scanner, a cell phone, and so on.

� source identification: whose goal is to recognize the exact device which

was used to capture the images.
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� Reverse engineering of processing operators: which aims at detecting a

chain of processing operators. Sometimes processing can be regarded to

as a manipulation, then, this task is referred as manipulation detection.

This is the category of forensic tasks considered in this thesis.

All the above investigations can be used for Authenticity verification, whose

goal is to understand whether the image is original or has been manipulated

a for malicious purposes.

2.2 Methods for Forensic Analysis

The basic observation Image Forensics relies on is the following: any process-

ing carried out during any stage of an image’s life cycle leaves specific subtle

traces, namely footprints, that can be exploited by a forensic analyst to ex-

pose the corresponding processing or manipulation. The presence of these

footprints can hence be investigated in order to gather information about the

”digital history” of the image.

The footprints that can be analyzed with forensics techniques are divided

into three main categories [20]: acquisition, coding, and processing based foot-

prints. Some examples of each category are discussed in the following without

going into the details, a comprehensive overview of forensic techniques being

not the object of this thesis.

2.2.1 Acquisition-based footprints

Every step of the acquisition process leaves some peculiar traces the within

image. The captured image brings traces for instance of the particular Color

Filter Array (CFA) pattern and the type of filter used for color interpolation

[21]. As a result, the digital image brings evidence for both the employed CFA

pattern and the interpolation filter [22–24]. Furthermore, a camera sensor,

by default, leaves a particular noise in each captured image, which is known

as Photo Response Non-Uniformity (PRNU). Such noise is unique for that

specific sensor; hence, any of two different cameras leave the different patterns.

The analysis of the traces described above permits to also detect other kinds

of sources of digital images such as scanners and computer graphics [25,26].
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2.2.2 Coding-based footprints

Nowadays, most of the digital cameras use the JPEG standard compression

format for efficient storage and transmission. Due to the widespread diffu-

sion of the format, and since in many cases it turns out to be a useful asset

for assessing the processing history of an image, a significant effort has been

dedicated by the research community to the study of the compression history

of an image [27–29]. Since different imaging softwares generally consider dif-

ferent compression parameters and uses different quantisation tables [27], the

analysis of inconsistencies in quantization matrices can also be used for source

and forgery detection [30]. Even more, by the analysis of coding-based (or

compression-based) footprints, it is also possible to understand whether an

image has been compressed multiple times. When an image is recompressed,

the new 8× 8 JPEG grid is superimposed to the already existing one, either

aligned or misaligned. In [31], the authors showed that, when the grid is

aligned, double quantization entailed by DJPEG compression leaves peculiar

artifacts in the histograms of DCT coefficients, especially at low and medium

frequencies. When the second compression is weaker than the first one, the

matrix with the first quantization steps can also be derived via statistical anal-

ysis, by exploiting the properties of integers numbers when they are quantized

and rounded multiple times [32]. In [21], the authors derive a method based

on a unified statistical model characterizing the DCT coefficients of the pri-

mary compression in the presence of both aligned and non-aligned DJPEG

compression.

2.2.3 Editing-based footprints

These kinds of footprints are left within an image during image manipulation.

Editing images is easy today thanks to the availability of powerful editing

software (e.g., Photoshop, GIMP), but many subtle traces are left into the

image during the manipulation.

In general, an editing tool can be used in a legitimate way, e.g., to enhance

the quality and appearance of an image, or in an malicious way to alter the

semantic content of the image. The above distinction is not always clear, as

an harmless processing can be used with malicious intents; then, an editing

operation can reveal or be telltale of a manipulation carried out for malicious
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purposes. For instance, filtering or resampling can hide traces of a previous

tampering, or color adjustments can help to convey a different message with

respect to that of the authentic image, thus changing the semantics of an

image. For example, an image can be darkened to convey a sensation of

menace or sadness.

The application of a geometric transformation, like a rotation or a resizing,

requires interpolation of pixel values, that leaves detectable traces in the image

[20,33]. To provide an example, by applying a geometric transformation such

as resizing and rotation, we are forcing the software to interpolate pixel values

thus leaving detectable traces within the digital image [34]. Furthermore, by

pasting a patch of pixels in a subpart of the image we introduce inconsistencies

in terms of blurriness, contrast, and saturation of various areas of the same

picture [35,36].

Contrast enhancement is a common manipulation aiming of increasing

the perceived quality of images. Usually, such enhancement is carried out by

means of histogram equalisation, whereby the intensity values of pixels in the

input image are remapped in such a way that the output image has a uniform

distribution of intensities. Global contrast enhancement can be detected as

explained in [37], that exploits the presence of artefacts (peaks and gaps) in

the image histogram caused by an alteration of the contrast is exploited.

Median filtering has many applications in image processing including de-

noising and smoothing, and it can also be used to conceal traces of previous

processing. Three main model-based algorithms detecting median filtering

based on the following statistical properties have been proposed: the probabil-

ity of two adjacent pixels being equal is larger for median filtered images [38];

the difference between two adjacent pixels is often zero [39]; the block-wise

approach used by median filtering introduces correlation between blocks [40].

As stated in the Introduction of the thesis, our contribution is focused

on authenticity verification, and more specifically on manipulation detec-

tion. Then, the main categories of footprints the developed tools rely on

are compression-based and processing-based footprints.
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2.3 Some Basic Machine Learning Concepts

In this section, we introduce the basic concepts of Machine Learning (ML),

which are necessary to understand the techniques developed in this thesis.

Machine Learning is about learning distributions from input data. Ma-

chine Learning algorithms are mainly divided into two classes: supervised and

unsupervised learning methods. Supervised learning is the most popular type

of algorithms in practical applications, e.g. in pattern recognition, classifi-

cation and image processing, due to its superior performance. Supervised

learning algorithms build a model based on input ’labeled’ data, that is, data

for which the true class is known, sampled from the input distribution of data.

The set of labeled data is referred to as training data.

When using ML to get a statistical model (for a classification task under

analysis) from input data, there are many aspects that require attention.

In particular, overfitting and underfitting are the deficiencies that a model’s

performance might suffer from.

� Overfitting : it occurs when a model has been over-trained on the input

data. This may happen when too many features are considered for the

input data space or because not enough data has been supplied. The

models that have been overfitted on the training data do not generalise

well to new examples, that is, they are not good at predicting unseen

data.

� Underfitting : it is when the model has not learned enough from the

training data, that is, it has not captured the underlying structure of

the data, resulting in low generalization and unreliable predictions.

During the procedure of learning models and assessing their performance, the

set of available data is divided into a training set, used for model training,

and a test set, used for performance measuring. Training data is usually split

into a training set and a validation set to assess the behavior with respect to

unseen data and then optimize the choice of the internal parameters of the

algorithm.

In the following, we describe two of the most relevant supervised ML

algorithms, that have been adopted for the work of this thesis: Support Vector

Machines (SVM) and Convolutional Neural Networks (CNNs).
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2.3.1 Support vector machines

Support Vector Machines (SVMs) are supervised Machine Learning algo-

rithms, that are widely used for classification tasks. Although they are

designed for binary classification, multi-class classification also can be per-

formed [41]. The objective of the support vector machine algorithm is to find

a hyperplane in an N -dimensional space (N is the number of features) that

distinctly classifies the data points. To separate two classes of data points,

many possible hyperplanes can be chosen. The goal is to find a hyperplane

that has the maximum margin, i.e. a maximum distance between data from

different classes. Actually, the maximum distance plays an important role in

SVM, which provides a guarantee that future data points will be correctly

classified with high confidence. The optimal hyperplane is depicted in 2.3

for a two-class case in two dimensions. In this figure, the data point (red

and blue data points) falling on the two different sides of the hyperplanes

are attributed to different classes. Moreover, the input data points that are

near to the hyperplane, known as support vectors (SV), can impact on the

position of the hyperplane. Hence, SVMs can maximize the margin of the clas-

sifier [15]. SVMs efficiently perform also non-linear classification by means of

kernel trick, which works by mapping the input data into a higher-dimensional

feature spaces, where the classification boundary is a hyperplane. Some popu-

lar kernels include the polynomial kernel, the Gaussian Radial Basis Function

(RBF), the hyperbolic tangent.

The effectiveness of SVM depends on the selection of kernel, the kernel’s

parameters, and a soft margin parameter C. The parameter C rules the trade-

off between the margin of the separating hyperplane in the higher dimensional

space (the transformation of the input x into the higher-dimensional space de-

fines the kernel [42]) and the misclassification of the training points. The most

common choice of the kernel is the Gaussian RBF, which has a single param-

eter γ, which determines the width of the kernel and then determines how far

the influence of a training sample reaches. The best combination of C and

γ is often selected by a grid search with exponentially growing sequences of

C and γ. Typically, each combination of parameter choices is checked using

cross internal validation, and the parameters with best cross internal valida-

tion accuracy are picked (more details on this procedure are given in Chapter
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6.

(a) (b)

Figure 2.3: Illustration of the possible separating hyperplanes (a) and the

SVM optimum hyperplane (b) in two dimensions (N=2).

2.3.2 Convolutional neural networks

Neural networks are a biologically-inspired programming model that allows a

computer to learn from observational data. Deep learning networks are distin-

guished from standard single-hidden layers neural networks by their depth.

Convolutional Neural Networks (CNNs) is a class of deep neural networks

(DNNs) that can efficiently address several tasks in image and pattern recog-

nition, image processing, and other close areas [43], with amazingly good

performance. CNN is a complex computational model that consists of a large

number of interconnected neurons. A weight parameter and a bias is associ-

ated to every neuron.

The set of operations in a CNN typically comprises convolution, non-linear

activation and thresholding, and local pooling. By minimizing a cost function

at the output of the last layer, the network parameters are tuned so that

they are able to capture patterns in the input data and automatically extract

distinctive features. In this way, the networks are able to learn complex

functions of the input. In image processing applications, the CNN is directly
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Figure 2.4: A simple CNN architecture [3].

fed with the input image. Therefore, in a CNN, the feature extraction process

is completely driven by data, whereas in the traditional ML approaches, the

process is driven by human intuition, through the selection of handcrafted

features.

The main steps to build a CNN for image classification are: i) definition of

the architecture, that is, the layers, the shape of the filters, etc; ii) definition

of the loss function which is minimized during the training; iii) definition of

a large dataset for training and testing with specific labels.

Figure 2.4 shows a simple example of CNN architecture. A CNN consists

of two main parts: a convolutional part (hidden convolutional layers) and

a fully connected part. The convolutional part performs feature extraction,

while the fully connected part is used for classification. some of the most

common layers are the following:

� Convolution layer : each convolution layer consists of a group of filters.

Given an input, the output of each filter is obtained by applying a linear

convolution with kernel size k × k, with stride S, and is called feature

map (see Figure 2.5). The strides defines the number of pixels shifts

over the input matrix. For instance, when S is two, then we move the

filters two pixels at a time. Hence, the output of a convolutional layer

consists of feature maps that are obtained by convolving the input with

different filters.
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(a) (b)

Figure 2.5: Example of typical-looking filters on the first convolutional layer

(a) and second convolutional layer (b) of a trained AlexNet [4].

� Pooling layer : this layer performs down-sampling of the input. A pool-

ing layer is usually added after a convolutional layer and is used to re-

duce the dimensionality of the feature maps. Several pooling operations

(like a filter) can be applied with a given size (usually 2× 2) to feature

maps. The two most common functions used are: average pooling (or

avg-pooling), that calculate the average value of the feature map over

the pooling window; maximum pooling (or max-pooling), that consider

the maximum value. The two pooling methods summarize the average

presence of a feature (avg-pooling) and the strongest (most activated)

presence of a feature (max-pooling). An example of the average pooling

layer is provided in Figure 2.6.

� RELU : this layer performs element-wise nonlinear activation by apply-

ing to the input x the rectification function max(0, x), i.e., truncating

the negative values to zero, thus causing a nonlinear behavior. Other

activation functions can be considered, such as sigmoids and hyperbolic

tangents.
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Figure 2.6: Example of average-pooling layer, with size 2 × 2, and stride

S = 2 [5].

� Fully-Connected layer : this layer, also called inner-product layer, per-

forms dot product between the input feature vector and a weight matrix.

� Softmax layer : this layer normalizes an input feature vector to a vector

with the same number of elements summing to one. Often applied in the

last layer of the network to transform the output soft values y (logits)

in probability values p (softmax scores) which is expressed by,

S(yi) =
eyi∑
j
eyj

, (2.1)

During training, the weights of the convolutional and the fully-connected

layers are learned. CNN models are trained by resorting to backpropagation

[44], by means of optimization methods like gradient descent [45]. A loss

functions is defined between the predicted and the expected output. The

first layers of the networks typically learn low-level visual objects such as

edges, simple shapes and color contrast, whereas deeper layers combine such

information from previous layers to identify more complex visual patterns.

In the last layer, the data are combined based on the cost function so that

the loss is minimized. The set of training samples is usually split into small

batches, sometimes called mini-batches, that is a small number of samples

from all the classes (a small portion of the entire training set) [46]. For each

batch the predictions for each sample are first computed (forward pass), then

the gradients with respect to the loss function are averaged to update the

filters’ weights (backward pass). This forth and back process on a batch is
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called iteration. Furthermore, each time a different mini-batch is considered.

When the entire training dataset is visited based on mini-batches, an epoch

ends.

As we said before for general ML, training data are split into a training

set and a validation set. In the case of CNNs, the training set is used to

drive the gradient descent method to update the filters’s weights by means of

backpropagation, while the validation set is used to compute the loss over a

set of samples unknown to the training process, so to estimate the behavior

on unseen data.

2.4 Prior Art on ML-Based Image Forensics

As we have seen in Section 2.2, dedicated features have been developed in

forensic literature to reveal the presence of many kinds of footprints in im-

ages. However, especially when more complex forensic tasks are addressed, a

statistical characterization and modeling for the studied problems is often not

available. In these cases, forensic researchers have resorted to ML techniques

to address forensic tasks. ML tools are in fact capable to learn complicated

patterns from a set of hand-crafted features, which cannot be revealed by stan-

dard model-based tools for statistical analysis. These patterns can then be

used for the classification (looking for their presence or absence). With more

complex ML and modern Deep Learning (DL) techniques, it is also possible

to extract discriminative features directly from the input image. In this case,

then, the features are totally self-learned (or automatically learned) from the

input data.

In the following, we provide an overview of ML-based approaches devel-

oped for forensic tasks.

2.4.1 SVM-based image forensics

Many state-of-the-art Machine Learning-based Image Forensic methods rely

on SVM classification, due to its simplicity and the good accuracy results that

can be achieved for many classification tasks. In most of the early forensic

methods, the features were hand-crafted, extracted from the image based on

some heuristics, and very specific for the problem at hand. This is the case,
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for instance, of forensic methods developed for Double JPEG (DJPEG) com-

pression or re-compression detection, which is one of the most widely studied

problems in Image Forensics. Inspired by [31], the most popular approach for

detecting double aligned JPEG (A-DJPEG) compression consists in analyzing

the histogram of block-DCT coefficients. In [47], the authors proposed a de-

tector based on SVM classifiers with feature vectors formed by histograms of

low-frequency DCT coefficients. Other methods based on features extracted

from the histograms of DCT coefficients and SVM are proposed in [48, 49].

In another work [50], a set of features designed to enhance DJPEG artifacts

are considered to distinguish between double and single JPEG images, and

used to feed an SVM-based classifier. Blocking artifacts in the pixel domain

are investigated in [51], and their periodic property is measured by devising

proper sets of features fed to a SVM; this method can work for non-aligned

double JPEG (NA-DJPEG) detection. The authors in [29] considered the

traces left by DJPEG in the mean, variance and entropy of the image, by

training the SVM classifier based on all these statistical features together.

More recently in [52], the first significant digits (FSD) of the DCT coeffi-

cients, namely, a statistic derived from the DCT histograms, have been used

to tell apart single compressed images from double compressed ones. By ex-

ploiting the fact that the distribution of the FSDs of the DCT coefficients in

single compressed images follows a generalized Benford’s law, a model-based

approach was first adopted in [53] for this purpose. Later, such features have

been used in conjunction with SVM classification to distinguish between sin-

gle from multiple compressed images and estimate the number of compression

stages [52]. In [48], localization of spliced regions is achieved by using FSD

features of block-DCT coefficients and employing a SVM classifier.

Other examples can be made for other forensic tasks. For instance, for the

detection of global contrast enhancement, we mention the work in [54], where

the authors considered statistics derived from the distribution of block vari-

ance and AC-DCT coefficients to feed an SVM classifier. The authors in [55]

proposed a method for splicing and copy-move detection that exploits SVM

classification of Local Binary Patterns (LBP) descriptors extracted from the

block DCT of chroma channels. SVMs have been often adopted also for cam-

era model identification, to perform multi-class classification based on high
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order features extracted from the images [56], ad-hoc features obtained from

aberration measurements [57], or features extracted from the Photo Response

Non Uniformity (PRNU) noise residual [58].

2.4.1.1 Rich feature models and SVM classification

In early forensic methods based on statistical analysis, dedicated hand-crafted

features were first determined, capable to reveal the presence of particular

footprints and then expose the manipulation the forensic analysis is looking

for, eventually resorting to data-driven or ML tools (e.g. SVMs) for classifi-

cation.

In the last decade, there was a trend toward the use of general high-

dimensional feature sets, that can provide rich image representations, so called

rich feature models: the Spatial Rich Models (SRM) [59], and the Color Spatial

Rich Models (CRM) [60], extending the previous set to the case of color

images. The concept of rich features was introduced for steganalysis, then

the use of rich feature sets has been extended to forensic tasks. Through the

use of this set of features, based on co-occurrences of various noise residual

images (obtained by applying high-pass linear and non-linear filters), various

types of relationships among neighboring samples can be captured. In many

cases, the adoption of rich feature sets permitted to boost the performance of

state-of-the-art forensic classifiers based on ad-hoc features.

Rich features sets have been recently used for camera model identifica-

tion [61–63], for the detection and localization of tampering [64], contrast-

enhancement detection [65], median filtering detection [38], and, more in gen-

eral, for the detection of several types of image processing operations [66].

Given the large dimensionality of the feature sets, these techniques often re-

quire to resort to more complex Machine Learning techniques, e.g. Random

Forest or Ensamble classifiers. In many cases, a subset of these rich features

is identified and used, e.g. in [61, 63], or the initial set of features is reduced

(e.g. via Principal Component Analysis), as in [62], so that it is possible to

resort again to SVM classification. Another commonly adopted strategy to

achieve this purpose is to reduce the feature dimensionality of the original rich

model by considering a smaller value for the truncation of the quantized image

residuals and low order co-occurrences, as done in [66], where an SVM is used
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to classify several image processing operations based on rich features. Rich

feature models borrowed from steganalysis coupled with SVMs have been also

used for splicing detection [67] and forgery detection [68].

2.4.1.2 A brief Introduction to Rich Image Representations and the SPAM

feature set

We focus on the description of the rich feature sets in the pixel (spatial)

domain, which are the most used especially in forensics (see Section 2.4.1.1).

These features are based on co-occurrence matrices computed on the

thresholded prediction-error image, also called ’residual image’. The underly-

ing idea is the following: modeling the residuals rather than the pixel values is

often better for steganalysis and forensic applications, since the image content

does not help detecting local alterations and should be suppressed altogether.

As a further advantage, the residual image has a much narrower dynamic

range than the original one, allowing for a compact and robust statistical

description by means of co-occurrences. The analysis outlined above can be

summarized in the following steps:

� computation of high-pass residuals;

� truncation and quantization;

� feature extraction based on co-occurrence matrices (of a given order);

Considering different high-pass filters, different image residuals can be ob-

tained and then different feature sets. In [59], a large number of models have

been obtained by considering many different high-pass filters, both linear and

nonlinear, with various supports, different quantization and truncation fac-

tors for the residues. Specifically, 39 different high pass filters are proposed

which work on the grayscale version of the original image I. The simpler one

is the first order (horizontal) linear filter (from left to right), which produces

the residues rij = Ii,j+1 − Ii,j . The residual noises in all the directions (hori-

zontal, vertical, diagonal) and orientations (left to right and right to left, up

to down and down to up) are computed {←,→, ↑, ↓,↖,↘,↙,↗} and then

combined by exploiting the symmetry of natural images. Figure 2.7 shows

the effect of applying this filter to an image.
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(a) (b)

Figure 2.7: An image (a), and the corresponding residual image (b).

Residuals are real-valued and, although typically small, they span wide

range. To enable meaningful characterization in terms of co-occurrence they

must be quantized and truncated. The truncated residual is then obtained as

rij = truncT (round(rij/q)) (2.2)

where q is the quantization step and T the truncation value. Each quantized

residual can then take 2T + 1 values. Then, d-order co-occurrences are com-

puted, thus obtaining (2T +1)d entries, which can be significantly reduced by

exploiting symmetries. Several T and q values, and several orders d for the co-

occurrences are considered in [59] to build the SRM set, consisting of 34.671

features in total. The SRMQ1 set, with reduced complexity, is obtained by

fixing q = 1, and consists of 12.753 features.

The Subtractive Pixel Adjacency Matrix (SPAM) model [69] was the first

residual feature set proposed. SPAM features are extracted as described

above, by considering only the first order linear residual (difference array)

in all the directions (horizontal, vertical, diagonal), then truncating the val-

ues at T = 3 (default) and finally computing the second-order co-occurrences

(d = 2), for a final number of 686 features.
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The SPAM set is the simplest set of rich features, rich enough to work

well for a wide variety of tasks, and successfully used in the literature first in

steganalysis and then in forensic applications [64, 66]. In this thesis we make

extensive use of this feature set. Another advantage of the SPAM set is its re-

duced dimensionality, that allows standard training of SVMs without needing

to resort to more complicated architectures and ensamble classification.

2.4.2 CNN-based image forensics

In the last decade, DL techniques and CNNs in particular have been suc-

cessfully used for various image recognition and classification tasks [43]. In

recent years, they have also been used extensively for applications of ste-

ganalysis [70–72], and many researchers have started exploring their use for

multimedia forensic applications. In most cases, the performance of the new

CNN-based techniques greatly exceed those of classical model-based and stan-

dard ML-based methods.

In most of the CNN models, the feature extraction process is carried out

in a fully automatic way, and then the features are self-learned by the network

from the input image. In some cases, the forensic designer can work on the

architecture by properly designing the first layers in order to force some pre-

processing steps that facilitate the learning of discriminative features.

One of the first works using CNNs for Image Forensics is the median

filtering detector proposed in [73]. In [8], the authors proposed both a binary

and a multi-class CNN, effective for the detection of several manipulation

operations, that is, blurring, noise addition, resizing and median filtering

(the work has recently been extended in [74]). CNN architectures for camera

model identification have been proposed in [75] and [76]. The above mentioned

architectures are rather shallow, consisting of only three or four convolutional

layers. Moreover, a pre-processing filtering step (constrained first layer) is

applied to the images to force the network to look for the artifacts in the

residual domain high-pass image, thus facilitating its job (expectedly, the

traces are better exposed in the residual image).

Recently, in [77], the authors proposed a novel method for aligned DJPEG

detection and forgery localization that relies on a one-dimensional CNN, de-

signed to automatically learn discriminant features from the histograms of
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DCT coefficients. The approach outperforms those based on standard SVMs

and hand-crafted features (e.g. the one in [48]), especially on small sized re-

gions (up to 64 × 64). A more general approach for DJPEG detection based

on CNNs, that works for both aligned and non-aligned DJPEG, that can then

be exploited for forgery localization (due to the capability to work on small

patches, i.e., 64 × 64 pixels), has been recently proposed in [78], where the

capability of CNNs to capture DJPEG artifacts directly from the image pixels

have also been explored. A method for the estimation of the DCT coefficients

of the primary quantization matrix based on CNNs been proposed in [79].

The method can significantly outperforms state-of-the-art methods based on

statistical analysis (e.g. in [32]), being capable to work on small window sizes

and under very general operative conditions (under both aligned and non-

aligned DJPEG, when the primary quantization is either stronger or weaker

than the second one).

Recently, the trend in the Machine Learning community towards the adop-

tion of very deep models has started been followed in multimedia foren-

sics [79–83]. In many cases, the approach of considering completely self-

learned features, without constraining the initial layers has proven to be ben-

eficial, as long as enough training data is available.

2.4.3 Datasets

As we said, data-driven methods require that large scale datasets are used

for training and testing. Below, we present two of the most common publicly

available datasets used for ML applications in forensics.

RAISE dataset [84]. A dataset of camera-native uncompressed images in raw

format. The entire dataset consists of 8156 images in total (RAISE-

8K dataset). Three different devices (a Nikon D40, a Nikon D90, and

a Nikon D7000) are employed, and the images are taken at very high

resolution (3008×2000, 4288×2848, and 4928×3264 pixels) and saved in

an uncompressed format as natively provided by the employed cameras.

All the images have been collected over a period of 3 years, in over 80

places in Europe and are representative of a large number of categories

(outdoor, landscape, nature, people, buildings, indoor and objects). The

RAISE-2K dataset is a subset that contains a selection of 2000 (out of
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8156) images. The majority of these images comes from Nikon D90 and

have size 4288× 2848.

VISION dataset [85]. This dataset consists of 34,427 images in total, both

in the native format and in their social version (Facebook, YouTube,

and WhatsApp are considered). The native images (11,732) have been

acquired by smartphones and tablets belonging to several brands (35 dif-

ferent mobile devices are considered). The images from VISION dataset

are in JPEG format compressed with the defaults qualities of the ac-

quisition devices. Several image resolutions are considered, depending

on the mobile device, and ranging from 2560Ö1920 (lowest resolution

device) to 5248Ö3936 (highest resolution device).

2.4.4 Discussion

The very good performance that can be achieved through the use of ML tech-

niques comes with a number of drawbacks. ML, and in particular DL, suffers

from a number of shortcomings hindering the application in the multimedia

forensic scenarios: among them, the most relevant are the need for a large

amount of (huge in DL) representative data and the general lack of security.

Gathering large datasets which are representative of the variety of situations

that can be encountered at test time is in fact a very difficult task for multime-

dia forensics applications. Moreover, the easiness with which it is possible to

disable ML tools and in particular DL tools, as stressed by recent research in

the field [14], makes it very hard to exploit these tools in a multimedia foren-

sic scenario and more in general for security-oriented applications, where the

possible presence of an adversary can not be ignored. This calls for the study

and the development of a new class of ML-based forensic tools that can over-

come the above problems, while still leveraging on the superior capabilities of

modern ML technologies, which is the mission this thesis contributes to.



Chapter 3

Introduction to Adversarial Image Forensics

”Everything is a self-portrait. A diary. Your whole drug history’s in a

strand of your hair. Your fingernails. The forensic details. The lining of

your stomach is a document. The calluses on your hand tell all your secrets.

Your teeth give you away. Your accent. The wrinkles around your mouth

and eyes. Everything you do shows your hand.”

Chuck Palahniuk

T
ogether with the development of forensic tools for retrieving informa-

tion and detecting possible tampering, in recent years, a large number

of counter-forensics (CF) tools have also been developed to prevent a correct

analysis. Such tools are often effective due to the fragility of forensic tools,

which most of the times are not thought to work under adversarial conditions.

However, in real-world applications, the presence of an adversary aiming at

impeding the analysis cannot be neglected, therefore, developing forensics

techniques capable to work in adversarial environment has become a neces-

sity. This turns out to be a difficult task due to the weakness of the traces

the forensic analysis relies on. The task of developing effective forensics tech-

niques in adversarial setting is even more challenging when ML-based, and in

particular DL-based, forensic tools are adopted for the analysis, due to the

inherent vulnerability of these tools, and the reduced performance obtained

when they are tested under different, or mismatched, conditions, with respect

to those used for the training. This calls for the development of more se-

cure ML-based forensic tools, namely, a new class of tools that can effectively

counter CF attacks, at the same time keeping the benefits of modern machine

learning techniques. The problem of the security of machine learning sys-

tems in adversarial environment is common to many other security-sensitive
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applications [86]; then, reasonably, the use of similar solutions should be in-

vestigated to secure image forensic techniques.

In this chapter, we first briefly introduce Counter Forensics and Anti-

Counter Forensics, and review the state-of-the-art in the field. A terminology

typical of Adversarial Machine Learning is adopted in our overview to for-

mally define the general attack model and classify the CF methods developed

so far. Then, the solutions proposed so far to combat CF attacks are discussed

adopting the perspective of the analyst, by adopting the classification intro-

duced in [87]. This classification is an interesting and general one, that also

guides the classification of the defence (anti-CF) approaches (to secure the

forensic analysis) proposed in this thesis, and presented in the next chapters.

3.1 Counter-Forensics and Anti Counter-Forensics

Counter-forensics, also referred to as anti-forensics, refers to all the solutions

devised to bypass the forensic analysis.

The origin of Counter-Forensics (CF) traces back to [88] where the concept

of fighting against Image Forensics was first introduced. Early proposed CF

techniques were rather simple, consisting in the application of some basic

processing operators, see for instance [89–91]. In [91], the gaps in the DCT

histograms are reduced by spreading the coefficients by means of additive noise

(dithering), and the blocking artifacts are hidden by means of a smoothing

operation, to hide JPEG compression. Similarly, the method developed in

[90] removes picks and gaps in the pixel histograms through dithering, to

conceal a contrast enhancement operation. In [89], image high frequencies are

perturbed with noise while being resampled, to conceal traces of resampling.

These techniques can be easily circumvented by dedicated methods, as those

described in [92–94].

When the attacker has some information about the forensic algorithm,

more effective CF techniques can be devised. In most of the cases, CF tech-

niques are tailored to attack a specific algorithm. Such techniques are referred

to as targeted attacks, without paying attention to the possible countermea-

sures adopted by the analyst, e.g. by neglecting the fact that the CF attacked

images can be later subject themselves to forensic analysis. CF methods, in
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fact, are not perfect and leave traces on their own, that can be exploited by an

informed analyst. The techniques developed by the analyst to defend against

CF attacks are referred to as Anti-Counter-Forensic techniques (see Section

3.3.).

3.2 An Overview on Counter-Forensic Attacks

We start by introducing some useful terminology, as proposed in [86] and

later in [95], to categorize the attacks in machine-learning, and the necessary

formalism.

According to the taxonomy in [86,95] , the attacks can be classified based

on several properties: the type of influence the attack has on the system

(causative or explorative); the specificity of the attack (targeted or indiscrim-

inate); the kind of security violation the attacker aims at (integrity or avail-

ability). In particular:

� Influence.

– Causative: attacks carried out at training time.

– Explorative: attacks carried out at test time.

� Specificity.

– Targeted: when the attack focuses on the deception of a specific

algorithm (classifier).

– Indiscriminate: when the attack has a more flexible goal, or when

the attack is targeted to a class of algorithms (rather than a specific

algorithm).

� Security violation.

– Integrity: when the attack aims at letting malevolent samples be

classified as normal (false negative error).

– Availability: when the attack aims at causing a classification error

of any type, i.e., both a false negative and a false positive error,

thus causing a denial of service (DoS).



32 3. Introduction to Adversarial Image Forensics

The above taxonomy can be used to define the attack scenarios and to classify

the attacks, as done in [96, 97], for attacks to general machine learning and

pattern recognition systems. Below, we provide some useful notation and

formalism.

Without loss of generality, we focus on the case of binary classification.

Let H0 be the hypothesis that the image under analysis is pristine, and H1

the hypothesis that the image is manipulated, or, more in general, it contains

the trace the forensic analyst is looking for. When a manipulated sample

is erroneously classified as pristine (i.e, the decision is in favor of H0 when

H1 holds), a false negative of missed detection error occurs. When instead a

pristine sample is erroneously classified as manipulated (i.e, the decision is in

favor of H1 when H0 holds), we have a false positive of false alarm error.

In the following we stick to the following formalism. We denote with

φ the forensic algorithm used by the analyst, or, simply, the detector. φ

depends on: i.) the type of algorithm, its structure and parameters li (as

well as the learning algorithm, for data-driven methods), all together denoted

by L = {l1, l2, ..}; ii.) the feature space X ; iii.) the training data D (for

data-driven approaches only). Therefore, φ(L,X ) in the model-based case,

and φ = φ(L,X ;D) for ML-based algorithms. In the sequel, we refer to

φ as φ(L,X ), the dependence on the training data being explicitly stated

only when needed. When useful, the CF method adopted by the attacker is

indicated by A.

3.2.1 Counter-forensic attack model

In this section, we formalize the general adversarial model for CF attacks.

By following [96, 97], an adversarial model is defined by specifying the as-

sumptions about adversary’s goal, knowledge of the system, and capability to

modify the data and corrupt the system.

Attacker’s goal: the attacker’s goal specifies the kind of security violation,

hence the kind of error the attacker aims at. CF attacks are usually integrity

violation attacks or evasion attacks: the attacker wants to modify the ma-

nipulated images (H1 class) so that they are misclassified by the detector,

hence deemed as pristine ones (H0). In doing so, he normally wants to inject
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a small distortion into the image (ideally, the minimum distortion allowing

him to cross the decision boundary of the classifier), so to keep the visual

distortion low. The adversary’s goal determines the loss function that the

adversary seeks to maximize.

Attacker’s knowledge: by following the terminology in [98], the attack can

be Perfect Knowledge (PK) or Limited Knowledge (LK). In the PK scenario,

the attacker has complete information about the forensic algorithm. This is

the most favorable case for the attacker. In the LK scenario, instead, the

attacker knows only some details about the forensic algorithm: e.g., he does

not know the exact algorithm or some of the parameters of the algorithm li ∈
L, or, for ML-based methods, he does not know (or knows only partially) the

training data D. Although indirectly, the amount of knowledge available to

the attacker about the forensic algorithm determines the specificity of attack.

In most of the early attacks in CF, it is (implicitly) assumed that the forensic

algorithm is fully known to the attacker, hence a targeted attack is launched

to the classifier. An obvious drawback of CF techniques designed to attack

a specific algorithm is that they neglect the possible reaction of the analyst

and the countermeasures that he could adopt to prevent the attack. Recently,

there was also a trend towards the development of more general approaches,

referred to as universal, that are designed in such a way to be effective against

an entire class of forensic classifiers [99,100].

Attacker’s capability: it is most suited for machine-learning methods, and

refers to the amount of control that the adversary has on training and testing

data. Therefore, the attacker’s capability is related to the influence of the

attack. In the exploratory attack scenario, the adversary’s capability is limited

to modifications of test data, and altering the training data is not allowed.

Viceversa, in the a causative attack scenario, the attack can interfere with the

training process; these attacks are usually referred to as poisoning attacks.

Most of the CF attacks proposed so far belong to the category of exploratory

attacks.

The above definition of the attack scenario, that allows to clearly formalize

the threat model for the problem under investigation, is of major importance
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not only to classify the attacks, but also to help the analyst, or more in

general, the system designer, to device proper techniques that can work in an

adversarial environment (see Section 3.3).

As we said, the large majority of the CF attacks proposed so far are

exploratory evasion attacks [98]. In the following, we provide some represen-

tative examples for the various attack models. The review of attacks against

deep learning forensic methods, which are very recent and still pretty limited

at the time of writing, is discussed later in a dedicated Section (3.2.4).

3.2.2 Attacks with perfect knowledge

In the perfect knowledge scenario, the attacker can build the attack by relying

on the knowledge of the forensic algorithm φ. Then, a targeted attack can be

launched to the system [101]. In this case, it is possible for the attacker to

induce an integrity violation, i.e., inducing a false negative decision error, by

introducing a limited, ideally minimum, distortion, thus preserving as much as

possible the quality of the attacker image. Generally speaking, the attacker

needs to solve an optimisation problem looking for the image which is in

some sense closest to the image under attack, among those for which the

output of the forensic algorithm is the wrong one. Although solving the

optimization problem is often not easy, the knowledge of the algorithm φ

permits to devise very powerful CF methods. This is the case of the CF

method in [102] for countering the model-based detectors of double (multiple)

JPEG compression based on the analysis of the First Significant Digits (FSD),

or the general approach in [103], where the optimal attack against Benford’s

law-based detectors is derived. The approaches in [104] for hiding the traces of

median filtering in digital images and the one in [105] to counter SIFT-based

copy move detection are other examples of closed form CF methods.

When the detector is more complicated, as it is often the case with ma-

chine learning-based approaches, the optimum attack can be implemented by

relying on gradient-descent solutions, see for instance [7], where a gradient-

based attack in the pixel domain is proposed and applied to counter SVM

manipulation detectors based on residual features, or [106], where a subop-

timum approach based on gradient analysis is proposed to counter forgery

detection.
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A problem with many PK approaches in the CF literature is that the

algorithm is directly applied in the feature domain, and then the distortion is

controlled (or minimized) in this domain. However, in this way, it is hard to

control the distortion finally introduced in the pixel domain, all the more that

the relationship between the pixel and feature domain is often non-invertible,

thus also raising the problem of mapping back the attack (e.g., in [102]). When

the relation between the feature domain and the pixel domain is invertible, as

it is the case with several transformed domains (e.g. the DCT domain), the

image distortion can be controlled by operating in the feature domain (e.g.

by resorting to optimal transport [107, 108], as it is the case in [99, 100]). In

general, when the relationship is more complicated, a suboptimum strategy

is to implement the attack in two steps: first the attack which minimises the

distortion in the feature domain is determined, then a new minimisation is

carried out in the pixel domain in order to get close to the desired attack, as

done in [106]. A gradient-based attack directly applied in the pixel domain,

which then does not require invertibility of pixel and feature domain, is the

one proposed in [7].

3.2.3 Attacks with limited knowledge

We consider the taxonomy introduced in [87], and already used therein to

classify the CF attacks within this category.

Universal attacks. The attacker only knows the feature space or class of

features X , adopted by the forensic detector. Since he is not aware of the

exact statistics used by the analyst, he performs an attack which is effective

against any detector φ′ inside the class Φ = {φ(L′,X ), ∀L′}.
Some examples of attacks referring to the first category are the universal

CF methods in [99] and [109], developed versus the class of detectors based on

first-order statistics of the image. The method in [99] is applied to deceive con-

trast enhancement detectors. Similarly, in [100], a universal method against

the class of detectors based on first order statistics in the DCT domain is

proposed, and used to counter the detection of double (multiple) JPEG com-

pression. Noticeably, the detectors based on the FSDs of DCT coefficients

(e.g. [53]) are particular instances of the first order DCT domain class.
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Attacks based on a surrogate detector. In this case, the attacker has a par-

tial knowledge of the algorithm φ; for example, he might know the feature

space X but not all the parameters of the algorithm L and/or, in the case of

ML-based methods, the training set D. In this case, the attacker generates

a surrogate detector φ̂ (sometimes called substitute detector), by exploiting

the information available to him and making an educated guess about the

parameters he does not know. Then, he builds the CF attack by performing

a targeted attack against φ̂, hoping that the attack will also work against the

real detector (attack transferability) [13]. Formally, if we let for instance l1, l2
be the unknown parameters, then L̂ = {l̂1, l̂2, l3, l4...} where l̂1 and l̂2 are the

attacker’s guesses of l1 and l2 and φ̂ = φ(L̂,X ;D). The effectiveness of the

method is then assessed against the original φ detector.

An example of attack based on a surrogate detector is the famous fingerprint-

copy attack for PRNU-based camera identification [110]: the real camera fin-

gerprint K (namely, a parameter of the classifier, K ∈ L) is unknown to the

attacker, who then bases the attack on an estimation of K, K̂, made by re-

lying on a set of available images drawn from the camera. Many attacks to

ML detectors fall into this category: in fact, even if it is often safely assumed

that the attacker knows the kind of classifier used (e.g., an SVM, or a neural

network), and its architecture, he rarely has access to the same dataset D
used by the forensic analyst to train the classifier. Reasonably, in this case,

the attacker builds another dataset D̂, sampled from the same distribution,

and uses it inside of the real one, thus attacking an home-made replica of the

detector φ(L,X ; D̂) (see for instance [7], and [98, 111] from the general ML

literature). Another LK attack for the case where the attacker knows only

the feature space X and guesses both L and D is provided in [106]. It is

worth stressing that such attacks work well under the assumption of attack

transferability, that is, assuming that the attack maintains the effectiveness

(at least in part) even against algorithms, different from the one targeted by

the attack. Noticeably, standard ML tools are known to be sensitive to the

problem of database mismatch [112], then, relying on home-made replica of

ML classifiers is not always effective to build an attack which works against

the targeted classifiers.



3.2. An Overview on Counter-Forensic Attacks 37

Laundering-type attacks. The attacker has only a very general and limited

knowledge concerning the algorithm; then, he attempts to erase the traces of

CF by applying some basic processing operations (e.g., filtering, resampling,

and etc...). In this case, the attacker does not target any specific detector or

class of detectors.

Early CF techniques developed against detection of resampling [89], single

and double JPEG compression [91, 113], contrast adjustment [90], median

filtering [114], and splicing detection [115], can be categorized as laundering-

type attacks. We already mentioned many of them in Section 3.1. It is worth

noticing that this way of categorizing the above attacks is quite recent. In

the literature, such attacks are often referred to as targeted attacks, then

they could be included in the PK category. The reason why these approaches

are not included among the PK attacks by [87] is the following: in that

methods, the knowledge of the algorithm is ’only’ marginally exploited (even

if it is available), and they boils down to the simple application of a basic

processing, which turns out to be effective to the purpose, without kind of

optimization. In most cases, the specific algorithm φ is only used to prove

the attack effectiveness, and not to guide the attack. Though very simplistic,

the application of a post-processing operation has recently been shown to be

very effective also against general SVM-based manipulation detectors trained

on rich features models [66].

A noticeable strength of such CF attacks with respect to most PK attacks

is that they are much easier to implement. Furthermore, by applying a basic

processing, the attacker can easily control the distortion introduced into the

image.

3.2.4 Attacks to deep learning-based image forensics

Given the recent trend in Image Forensics towards the use of deep learning

architectures, CF attacks to deep learning models have started been developed

as well in the last couple of years.

A key advantage of CNNs is their ability to learn forensic features directly

from the input data, that is, directly from the image. On the other hand,

an intelligent attacker can use this property to his advantage, thus enabling
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new kinds of CF attacks. The vulnerability of deep learning has recently

been studied by many works, also in forensics [116]. The main underlying

motivation for the vulnerability of CNNs for image forensics, and more in

general image recognition applications, is the following: since the space of

possible inputs to a CNN is substantially larger than the set of images used

to train it, an attacker can easily create modified images that fall into an

‘unseen’ regions of the image space and thus force a misclassification error.

The so called adversarial examples, originally introduced in [117], exploit

the above property to build very small (often quasi-imperceptible) perturba-

tions of the input image, which are sufficient to cause an incorrect decision.

In this way, an attacked image is produced which is visually indistinguishable

from the original one, but is misclassified by the CNN. These perturbations

are typically learned by computing the gradient of the loss function with re-

spect to the input image as done in the Fast Gradient Sign Method [14], and

DeepFool attacks [118], or by using iterative methods such as the Jacobian-

Based Saliency Map Attack [119], or the box constrained L-BFGS [117], that

approximate the gradient descent solution. The above mentioned adversarial

examples to DL models are attacks carried out at test time, and then belong

to the category of exploratory attacks; moreover, they assume that the at-

tacker has access to the CNN model (PK scenario). By following the specific

taxonomy for adversarial examples introduced in [120], the PK scenario is

often referred to as white-box scenario in DL literature. Similarly, the LK

scenario is referred to as gray-box scenario [121]. Black-box attacks are also

considered in the DL literature where the internal details are not available to

the attacker, which is a more realistic and challenging scenario; therefore, he

applied several times queries to gain the internal details.

CF adversarial examples have been proposed against CNNs in multime-

dia forensics. The first targeted attack based on adversarial examples was

proposed in [122] to fool a CNN-based camera model identification system.

In [123], adversarial examples against CNN-based methods for several com-

mon manipulations, and among them blurring, resizing and median filtering,

have been proposed. Adversarial perturbations have been shown to offer poor

robustness to image processing operations: in particular, the operation of

rounding to integers is sometimes already sufficient to wash out the perturba-
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tion and make an adversarial example ineffective [116]. A gradient-inspired

pixel domain attack to produce adversarial examples in the integer domain

has been proposed in [124], and has been applied against CNN-based detection

of resizing, median filtering and contrast adjustment.

Being targeted to a specific CNN detector, CF adversarial examples are

PK attacks. Thus the counterfeiter hopes that the attacked image produced

in this way can also work against other CNN detectors, as it is the case with

common DL applications of computer vision (pattern and image recognition),

where the attack transferability assumption holds under a wide variety of

scenarios [13,14].

Together with adversarial examples, CF researchers have started consid-

ering the use of Generative Adversarial Networks (GANs) [125]. GANs are a

learning framework developed to create generative models capable of statisti-

cally mimicking the distribution of training data. This is done by iteratively

training a discriminator to differentiate between real and generated samples

of data and training the generator to produce samples capable of fooling the

discriminator. GANs have been used by the computer vision community to

produce visually realistic images or super-resolution versions of images. A

GAN capable of removing forensic traces left by median filtering has already

been developed in [126]. Inspired to the work in [126], a GAN to perform

anti-forensics of JPEG compression has been proposed in [127]. CF attacks

obtained via GANs are PK attacks that target a specific forensic detector,

namely the discriminator.

3.3 Anti-Counter Forensics Methods

As a reaction to CF, several anti-CF methods have been developed to restore

the validity of the forensic analysis. Most of these approaches are tailored

against specific CF methods. By following [87], we adopt the viewpoint of

the analyst to classify the solutions proposed so far to counter CF attacks.

In particular, we distinguish between adversary-aware systems, intrinsically

more secure detectors. and solutions based on game-theoretic analysis.
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3.3.1 Adversary-aware detectors

This is the most common approach used so far. The analyst, who is assumed

to be aware of the CF method the system is subject to, develops a new

algorithm capable of revealing the attack, by looking for the specific traces

left by the CF tool. In most cases, this goal is achieved by resorting to

new, tailored, features. Then, a new algorithm φA is explicitly designed to

reveal if the document underwent the CF attack, and used in conjunction

with the original, unaware, algorithm φ. This is the case, for instance, of

the approaches adopted in [94, 128–130], to address respectively adversarial

detection of JPEG compression [94, 128], median filtering [129] and splicing

[130]. Among other examples, we mention the algorithm proposed in [131] for

defeating the fingerprint-copy attack to PRNU-based camera identification

and the one in [132], to combat the SIFT-keypoint removal and injection

attack against copy-move detectors. In other cases, the new algorithm is

obtained by using the same features of the original algorithm φ, and designing

an adversary-aware version of the algorithm φA, which is then used in place of

φ. Obviously, this approach is particularly suited for ML-based approaches,

where the original algorithm can be re-trained by including also examples of

attacked images in the training set. In this way, the analyst obtains a refined

detector φA = φ(L,X ;D ∪ DA), where DA is the set of attacked images used

for training. In general, this approach is viable when the feature space is

discriminative enough, i.e., it is capable to distinguish original, manipulated,

as well as attacked images. This is the case of general residual-based features

(e.g. the Subtractive Pixel Adjacency Matrix (SPAM), [69]), or, even better,

rich features models [59]. Examples of this approach can be found in [133]

for adversarial double compression detection, and in [134], for a variety of

manipulation detection problems under JPEG laundering attack.

Recently, exploiting the superior capabilities of deep learning architectures

to learn feature representations, adversary-aware training has widely been

used to improve robustness of DL models to adversarial examples [14].

The performance of the adversary-aware systems are assessed by (implic-

itly) assuming that the attacker keeps attacking the original, unaware, al-

gorithm φ. Therefore (by using the terminology introduced in the previous

section for the attacks), by adopting the above approach, what the analyst
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does is trying to exit the PK scenario.

3.3.2 Generally more secure detectors

As pointed out before, most of the anti-CF techniques are developed without

taking into account the possibility that the attacker foresees the move of the

analyst and react properly. Obviously, when the attacker anticipates that

the traces left by the CF tools may themselves be subjected to a forensics

analysis, then he may refine the counter-measures devising more powerful CF

techniques that leave less evidence into the forged documents. This obviously

leads to an unavoidable loop, wherein CF and anti-CF techniques are itera-

tively developed (the so called ’cat& mouse loop’), whose outcome can hardly

be foreseen [135,136]. A possible approach to avoid this problem is to design

the forensic techniques in such a way that they are intrinsically more resistant

to CF attempts and then, more difficult to attack even in the PK case. In this

case, then, differently from the previous case, the analyst does not specialize

the algorithm to resist to a particular CF tool.

Improved intrinsic security can be achieved in several ways. A possibil-

ity is to use higher order statistics; formally, being X the set of features of

the original algorithm, the algorithm is refined by considering larger feature

spaces X ′, where then X ′ ⊃ X . This is done for instance in [137, 138], where

second order statistics based on co-occurrence matrices are considered for the

detection of contrast enhancement in presence of attacks. A similar approach

is adopted in [50, 139, 140] for countering, respectively, JPEG, double JPEG

and local tampering anti-forensics. In all these cases, resorting to second-order

statistics allows the analyst to expose CF attacks and re-establish a correct

analysis. Another possible approach to design an intrinsically more secure

system consists in fusing the outputs of several forensic algorithms looking

for different traces [141].

More in general, approaches belonging to this category look for solutions

that can work under the (or a kind of) worst-case attack, for a given class of

attacks. For ML approaches, this can be achieved by means of aware train-

ing, considering examples of such worst-case attack A∗. An example of such a

method can be found in [133], for the detection of double JPEG compression,

where the original algorithm is refined by training on D ∪ DA∗ where A∗ is
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the optimum attack to first order statistics in the DCT domain. Another

possibility is to resort to intrinsically more secure features, as done in gen-

eral literature about ML security, by optimizing in some way the feature set,

for instance by looking for the best feature set (starting from a large feature

space) against a PK attack [111], or searching for intrinsically more secure ar-

chitectures [97]. Randomizing the feature selection according to a secret key,

thus preventing the attacker from gaining full knowledge of the system, is an-

other way to design a more secure algorithm; such a strategy has been proven

to be effective against PK attacks to SVM-based detectors [16]. Other ran-

domization selection strategies have been proposed in many security-related

areas (e.g., steganalysis, spam filtering and intrusion detection) but they have

not been applied in forensics.

3.3.3 Game-theoretic solutions

A possible approach to stop the never ending loop leading to the continuous

development of CF and anti-CF techniques, is to resort to Game Theory

[142, 143]. Game theory provides a way to model the interplay between two

rational players, namely the attacker and the forensic analyst, and tools that

can be used to study the interplay and then identify the optimum attack and

detection strategy for the attacker and the analyst [135, 136]. Such optimum

strategies are obtained by searching for the equilibrium point of the game,

namely a point that represents a satisfactory solution for both the contenders,

from which then neither the analyst nor the adversary has interest to deviate.

To elaborate, forensic games are typically formulated as two player games

[142,143], where the analyst’s utility is defined as the probability of detecting

a forgery and the attacker’s utility is defined as the probability that the forgery

is not detected.

By considering the strategy at the equilibrium of the game, the forensic

analyst can design an intrinsically secure forensic algorithm, at least in the

adversarial scenario considered for the analysis.

Game theoretical approaches for forensic tasks have been developed in

[144–146] for model-based analysis, and in [147,148] for system based a train-

ing data. Though rather theoretical in nature, these works provide a natural

framework to cast multimedia forensics in and can provide very useful insight
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about the achievable security of a wide class of multimedia forensic tasks [149].

A limitation with the game-theoretic approach is that it is often not easy

to define a ’solvable’ game for the problem under analysis (that is, a game that

can be solved using game theoretical tools and analysis). This is especially

true when the interaction between the forensic analyst and attacker is a non

trivial one, as it is often the case in multimedia forensic.





Chapter 4

Higher-Order, Adversary-Aware,
Double JPEG-Detection via Selected Training on
Attacked Samples

”If you have built castles in the air, your work need not be lost; that is where

they should be. Now put the foundations under them.”

Henry David Thoreau, Walden

This chapter is devoted to the design of an adversary-aware detector capa-

ble to reveal if an image has undergone a double JPEG compression, pos-

sibly in the presence of other processing or generic counter-forensic attacks.

Such a detector is obtained by training an SVM classifier in an adversary-

aware manner, including a limited number of properly selected examples of

attacked images. The chapter is organised as follows: the reasons behind this

research are given in Section 4.1. Then, in Section 4.2 we describe the general

idea behind the proposed detector and our choice of the set of features for

the adversary-aware classification (a quick introduction on related rich feature

models is also given in Section 2.4.1.2). The experimental campaign and the

results of the experiments are discussed in Sections 4.3 and 4.4.

4.1 Motivation and Contribution

A practical problem with many defence strategies for double JPEG detection,

as well as for other forensic detection tasks, is that they work against a spe-

cific attack, or class of attacks. When other kinds of attacks are considered,

however, these techniques are expected to fail, all the more that the attacker

may decide to combine his attacks with laundering-type processing, that is,

geometric transformations or other processing capable of impeding a correct
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detection. All the more that, in real applications, the attack is not known in

advance, thus impeding to build an ad-hoc detector. This problem is particu-

larly relevant with data driven detectors based on machine learning due to the

difficulty of training the detector on all possible attacks. In order to alleviate

the above problem, we built an SVM classifier based on a large number of

features computed both in the pixel and the frequency domain and add to

the training set some images which underwent a limited set of attacks. Using

such a large number of heterogeneous features ensures that the classifier has

the necessary degrees of freedom to distinguish images processed in several

different ways. The use of features computed in the pixel domain is motivated

by the need to cope with geometric attacks that de-synchronize the 8×8 grid

at the basis of JPEG compression. With regard to the attacked images used

to train the adversary-aware version of the classifier, we include only images

processed with the attacks that, when used against a non-aware version of the

classifier, result in the worst performance. The rationale behind such a choice

is that a detector trained to recognise images subject to this kind of Most

Powerful Attacks (MPAs) should also be able to detect double compressed

images subject to milder processing.

It is worth stressing that, although in our research we focused on dou-

ble JPEG detection, the arguments about the MPA-aware classification are

general and can be applied to other decision tests under adversarial condi-

tions. The interest of forensic researchers in the detection of double (and

also multiple) JPEG compression is motivated mainly by the fact that JPEG

is the most widely adopted compression standard, and when JPEG images

are manipulated by an attacker, double compression often occurs (since the

image is re-saved in JPEG format after the manipulation). Then, a double

compression is an indirect of indication that a manipulation has taken place.

4.2 MPA-Aware SVM Detector

The idea behind our approach is illustrated in Figure 4.1: training on benign

samples leaves wide room for attacks. Adding attacked samples to the training

set permits to refine the decision region and make new attacks more difficult.

Since it is not viable to consider all possible kinds of attacks, we train the
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Figure 4.1: Rationale behind the design of the adversary-aware classifier. The

introduction of a limited number of attacked samples (red dots) permits to

narrow the region around legitimate samples (blue) thus making more difficult

to camouflage green samples as blue ones.

classifier by including only those attacks that degrade most the performance

of an unaware version of the classifier. Hereafter we refer to such attacks

as MPAs, and the detector trained to recognise them MPA-aware detector.

When the analysis is limited to first order statistics and the attack must satisfy

a per-pixel distortion constraint, the optimum attack is known and the MPA

corresponds to this attack (see [99] and [100] for attacks in the spatial and

frequency domain respectively). The optimum attack in the DCT domain

has been used in [133] to build an adversary-aware SVM for double JPEG

detection, which was shown to be able to resist to double JPEG counter-

forensic attacks belonging to the same class, namely, first order attacks (e.g.,

the attack to the FSD coefficients [102,150]).

Exploiting the MPA-aware approach, we overcome the first order statistic

limitation inherent in the analysis proposed in [133], and build an adversary-

aware detector which is able to work under a wider variety of attacks. As a

second goal, we also aim at improving the resilience against attacks, like ge-

ometrical attacks, for which the visual distortion introduced cannot be mea-

sured (and hence constrained) on a per-pixel basis.

Figure 4.2 schematises the detection task addressed in this research: we
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Figure 4.2: Adversarial DJPEG detection task.

let H0 correspond to the case of single compressed images (in the absence of

manipulation), and H1 to the case in which the image is either compressed

twice or compressed, attacked and then compressed again. An attack placed

in the middle between the two compression stages may correspond to the

application of a processing operation or to a CF attack to single compressed

images, i.e. an attack aimed at erasing single compression traces so to make

the image look like an uncompressed one. When the attack occurs after the

second compression (last row in Figure 4.2), we implicitly assume that it ends

up with a JPEG image. This is the case of a CF attack aiming at making a

double compressed image look like a single compressed one. We observe that a

three class classification could also be considered to distinguish between single

compressed, double compressed, and double compressed and attacked images.

However, we opted for a two-class approach since our purpose is to use the

presence of double JPEG traces as an indication that the image has been

processed in any way after its acquisition. The rationale behind our approach

is that most images are stored in JPEG format, and hence any processing is

always accompanied by a double JPEG compression.

In order to build a classifier capable to capture different types of dependen-

cies among neighboring pixels, we need to resort to a large number of features.

A possibility would be to adopt the rich feature models for both spatial and

frequency domain described, respectively, in [59] and [151]. However, the

huge dimensionality of these models asks for an extremely large training set
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making the use of standard machine learning techniques, like the SVM, no

longer viable. By following a common trend in the literature, we select only

some higher-order features (both in spatial and frequency domain) to build

a model which is rich enough to capture the artifacts introduced by DJPEG

compression under various attacking conditions, for which SVM classification

is still feasible. We selected the SPAM features, described in Section 2.4.1.1

and 2.4.1.2, for the pixel (spatial) domain, and the CC-PEV features [152] for

the DCT domain. In the CC-PEV model, we considered the global histogram

and individual histograms for 5 DCT modes at low frequencies, total variation

and blockiness (capturing the inter-block dependence) and transition proba-

bility matrix from difference arrays (capturing the inter-block dependencies).

The final feature space dimensionality is 960, where 686 is the feature dimen-

sionality for SPAM and 274 is the one for CC-PEV (with reference to [152],

calibration is not considered for the features in the CC-PEV model).

4.3 Experimental Methodology

To create the datasets for our experiments, we started from gray-scale images

in uncompressed format. Part of the images were used for training (Str)
and part for testing (St). We built the images to be used for training and

testing according to the following procedure (we refer to Figure 4.2): for

the first class (H0), the images were single compressed with quality factor

QF 1; for the second class (H1), the double compressed images were built by

first compressing the images with various QF1s and then with QF2. The

attacked images were obtained by first compressing the same images with the

QF1s, then attacking them with various processing and/or counter-forensics,

and finally re-compressing them with QF2. For a meaningful analysis, we let

QF = QF2. In summary, for each image, we built a single compressed version

with QF2, many double compressed versions with second quality factor QF2

1The quality factor (QF ) is used by many algorithms to set the quality of the JPEG

image. A high quality factor corresponds to a high quality image (weak compression), a low

quality factor to a low quality image (strong compression). More specifically, the quality

factor determines the quantization matrix, i.e., the matrix of the quantization steps at the

various DCT frequencies, used for the JPEG compression (see [153] for the details of the

JPEG compression standard).
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(one for each QF1), and the same number of attacked versions for each attack.

To compress and attack the images we used the Matlab image process-

ing toolbox. Specifically, we considered geometric transformations (resizing,

zooming, rotation, cropping, mirroring and seam-carving), filtering operations

(median filtering, blurring, denoising), histogram enhancement and editing

(copy-move). For resizing and rotation, we considered the bilinear (BIL),

bicubic (BIC) and nearest-neighbor (NN) interpolation methods. Specifically,

we considered a resizing scaling factor of 0.9, a zooming factor of 1.2, and a ro-

tation angle of 5 degrees. Cropping was carried out by considering a 440×440

area both aligned and non-aligned with the 8 × 8 JPEG grid of the image.

As to seam carving, the number of vertical seams to be removed was cho-

sen in such a way that the final image has approximately the same size of

a resized image with resizing factor equal to 0.9. With regard to filtering,

In order to limit the visual degradation of the attacked images, we consid-

ered a 3 × 3 window for the median filter, and a 3 × 3 Gaussian smoothing

kernel with variance σ2 = 1 in the blurring operation. For denoising, we con-

sidered the wavelet-based filter proposed in [154] with σ2 = 10. Histogram

enhancement was performed by using contrast-limited adaptive histogram

equalization (CLAHE) [54,65,155,156]. Finally, in the copy-move operation,

a random part of the image of size 256 × 256 was copied and pasted into a

different part.

Regarding CF, we considered the anti-forensic JPEG algorithm described

in [6], which removes the blocking artifacts of JPEG compression by applying

a median filter followed by the addition of a Gaussian noise (dithering). Figure

4.3 depicts the scheme of the CF attack in [6].

Such a scheme is known to be quite an effective CF attack; however, its

impact on the attacked image is perceptually significant (especially when the

attack is applied in the DCT domain) [157]. To limit visual degradation, we

considered a 3x3 median filter and a small variance σ2 for the noise which

is related to the variance of the image and ranges from 1 to 2. It is worth

pointing out that, the CF scheme in [6] aims at erasing the traces of single

compression, and then corresponds to a case in which the attack is placed

between the two compression steps (last row in Figure 4.2). Finally, we also

consider the universal counter-forensic schemes of proposed in [133], that is,



4.4. Results 51

the MPA against first order based detector.

To build the classifier, we used the (960-dimensional) features extracted

from the images to feed an SVM with Gaussian kernel . The kernel parameters

are chosen by 5-fold cross validation. In the unaware case, we trained the SVM

with single and double compressed images and then tested it on single, double

and attacked images. In the adversary-aware case, we trained the SVM also

with examples of attacked images. To choose the attacks for aware training,

we considered the attacks leading to the worse classification accuracy in the

unaware case. In almost all our experiments we set QF2 = 85 and considered

several values of QF1 < QF2. Some experiments for the case QF2 = 95

have also been performed and reported to show that similar results hold for a

different choice of QF2, with some obvious differences in the numerical values

expressing the performance of the detector.

4.4 Results

In our experiments, camera-native (uncompressed) images were taken from

the RAISE dataset. We also used uncompressed images from the Dresden Im-

age Database [158] and the VISION database for additional testing. Specifi-

cally, the 2000 images in RAISE-2K were split as follows: 1400 images were

selected to build the training set (plus other 300 images used for setting the

kernel parameters, i.e., internal cross validation) and 300 images for the test

set. These images have a large size (4288× 2848), then to fasten the feature

computation, we sub-sampled them down to a size of 1072 × 770. Larger

images of size 2144× 1424 were also considered for testing.

4.4.1 Choice of the attacks for MPA-adversary aware training

We trained the unaware SVM classifier with the images in Str single com-

pressed with QF = 85 and double compressed with (QF1, QF2) = {(50,85),

(65,85), (70,85), (75,85), (80,85)}. Accordingly, the training set contained

1200 single compressed images for H0 and 7000 (5×1200) images for H1. Ta-

ble 4.1 shows the performance of the unaware SVM. The Area Under the

Curve (AUC) of the ROC curve for the classification single vs double and

single vs attacked images (for all the considered attacks) is given. The results
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Table 4.1: AUC values of the unaware SVM classifier.

Attack DJPEG
1st order

MPA

Stamm

Attack

wavelet

denoise

median

filtering

copyMove

256x256

AUC 1 0.98 0.43 0.8 0.62 0.99

Attack CLAHE
resize

BIC0.9

resize

BIL0.9

resize

NN0.9

rotation

BIC5

rotation

NN5

AUC 0.98 0.49 0.53 0.58 0.56 0.58

Attack
zoom

1.2

crop

align

crop

no align
mirror blur

seam-

carving

AUC 0.64 0.72 0.70 0.58 0.86 0.97

for rotation BIL are not reported being always very similar to those of the

BIC case. The unaware SVM is able to correctly classify single and double

compressed images with great accuracy (AUC = 100%). Not surprisingly, the

unaware SVM is also able to counter the double JPEG anti-forensic technique

in [133]. Indeed, since the scheme is limited to first order statistics of the DCT

coefficients, it leaves traces on higher order statistics. However, the unaware

SVM fails to classify the attacked samples for almost all the manipulations.

The most harmful attacks are the geometrical attacks and the counter-forensic

attack in [6], hereafter denoted as StammAttack, in which case the unaware

detector completely fails.

Figure 4.3: Scheme of the CF attack in [6].
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4.4.2 Generalization capabilities of the MPA-aware detector

Based on the above results, we built the MPA example images by considering

the resizing attack (with bicubic interpolation) and the anti-forensic attack

by Stamm et al. [6], and re-trained the SVM by adding examples of images

attacked in this way. In fact, these kinds of manipulations alter the image

in a completely different way and training the classifier to recognise one of

the two processing does not help with respect to the other. Accordingly, the

images of the training set Str were compressed with QF1 = {50, 65, 70, 75},
attacked (resized and attacked with the anti-forensic scheme in [6]) and then

re-compressed with QF2 = 85.2 Then, we added these images to the double

compressed images as further examples of the H1 class. The number of images

used for the manipulated class, then, raised to 16600 (7000 double + 4800

resized and 4800 CF attacked). Table 4.2 shows the results of the test against

the SVM trained in such a way. The AUC is above 90% for almost all the

processing operations and the counter-forensic attacks, thus confirming the

good generalization capability of the detector. The good performance against

non-aligned cropping shows that the detector is also robust to non-aligned

DJPEG compression (or similarly, to a grid de-calibration attack), since non-

aligned cropping between two compressions is equivalent to a non-aligned

DJPEG.

4.4.3 Refined MPA-aware detector

From the results in Table 4.2, we see that when a geometrical operation like

resizing and rotation is performed by using a nearest neighbor interpolation,

the performance of the classification degrade. Then, we refined the MPA-

aware detector by adding also some examples of such kind of manipulation in

the H1 class (thus adding further 4800 attacked samples). Table 4.3 shows

the results of the refined detector. As expected, the performance with respect

to resizing with NN interpolation improves. The performance with respect to

rotation with NN interpolation also improves. Finally, the performance with

respect to the other processing and attacks remain good.

2Notice that we did not consider the pair (80 − 85) for the training, as we found ex-

perimentally that including attacked images with such a small difference between the QF s

slightly reduces the performance of the classifier.
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Table 4.2: AUC values of the MPA-aware classifier.

Attack DJPEG
1st order

MPA

Stamm

Attack

wavelet

denoise

median

filtering

copyMove

256x256

AUC 0.99 0.98 0.96 0.90 0.98 0.99

Attack CLAHE
resize

BIC0.9

resize

BIL0.9

resize

NN0.9

rotation

BIC5

rotation

NN5

AUC 0.92 0.92 0.95 0.80 0.91 0.81

Attack
zoom

1.2

crop

align

crop

no align
mirror blur

seam-

carving

AUC 0.97 0.92 0.92 0.99 0.98 0.95

Table 4.3: AUC values of the refined MPA-aware classifier.

Attack DJPEG
1st order

MPA

Stamm

Attack

wavelet

denoise

median

filtering

copyMove

256x256

AUC 0.99 0.98 0.96 0.91 0.98 0.99

Attack CLAHE
resize

BIC0.9

resize

BIL0.9

resize

NN0.9

rotation

BIC5

rotation

NN5

AUC 0.91 0.92 0.94 0.92 0.92 0.91

Attack
zoom

1.2

crop

align

crop

no align
mirror blur

seam-

carving

AUC 0.97 0.92 0.93 0.99 0.98 0.95

In order to get more insight into the impact that the QF s have on the

performance, Table 4.4 and 4.5 show the AUC of the refined MPA-aware

detector for the QF pairs (65, 85) and (80, 85) respectively. Not surprisingly,

the (80, 85) case leads to worse results.

To verify that the classification results are not affected by the size of the

images, Table 4.6 shows the results we obtained by testing the detector on

the larger versions of the images of size 2144× 1424. A well known problem

with forensic tools based on machine learning, is that they may be affected

by the problem of database mis-match [112], that is, the classifier has poor

performance when tested with images coming from a different dataset with
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Table 4.4: AUC of the refined MPA-aware classifier for the pair (65, 85).

Attack DJPEG
1st order

MPA

Stamm

Attack

wavelet

denoise

median

filtering

copyMove

256x256

AUC 0.99 0.99 0.98 0.96 0.99 0.99

Attack CLAHE
resize

BIC0.9

resize

BIL0.9

resize

NN0.9

rotation

BIC5

rotation

NN5

AUC 0.96 0.96 0.97 0.95 0.97 0.95

Attack
zoom

1.2

crop

align

crop

no align
mirror blur

seam-

carving

AUC 0.98 0.97 0.96 0.99 0.99 0.95

Table 4.5: AUC of the refined MPA-aware classifier for the pair (80, 85).

Attack DJPEG
1st order

MPA

Stamm

Attack

wavelet

denoise

median

filtering

copyMove

256x256

AUC 0.99 0.98 0.92 0.79 0.94 0.96

Attack CLAHE
resize

BIC0.9

resize

BIL0.9

resize

NN0.9

rotation

BIC5

rotation

NN5

AUC 0.87 0.83 0.87 0.78 0.86 0.86

Attack
zoom

1.2

crop

align

crop

no align
mirror blur

seam-

carving

AUC 0.89 0.85 0.84 0.99 0.91 0.93

respect to training. To verify that our system is not affected by this problem,

we tested the refined MPA-aware classifier trained on RAISE-2K dataset us-

ing images from the Dresden database. Starting from the 752 uncompressed

images made available in that database, with size 1936 × 1296, we generated

single compressed, double compressed and attacked images according to the

same procedure described so far. Table 4.7 shows the performance of the

classifier when tested on a mix of images taken from both RAISE-2K and

Dresden datasets for the most dangerous attacks among those considered in

Table 4.3. As we can see the results do not differ much from those obtained
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Table 4.6: AUC values of the refined classifier for larger images.

Attack DJPEG
1st order

MPA

Stamm

Attack

wavelet

denoise

median

filtering

copyMove

256x256

AUC 0.99 0.98 0.96 0.91 0.90 0.98

Attack CLAHE
resize

BIC0.9

resize

BIL0.9

resize

NN0.9

rotation

BIC5

rotation

NN5

AUC 0.91 0.91 0.93 0.93 0.91 0.90

Attack
zoom

1.2

crop

align

crop

no align
mirror blur

seam-

carving

AUC 0.97 0.93 0.93 0.99 0.99 0.95

Table 4.7: AUC of the refined MPA-aware classifier tested on a mixture of

imaged from RAISE-2K (≈ 30%) and Dresden (≈ 70%).

Attack DJPEG
wavelet

denoise

resize

BIC0.9

resize

NN0.9

rotation

BIC5

rotation

NN5

AUC 0.92 0.87 0.91 0.89 0.92 0.89

using images from RAISE-2K dataset only. The situation is similar when

100% of the images come from a different database, as we can see from Table

4.8, where we report the AUC of the refined MPA-aware classifier tested on

Dresden and VISION datasets.

To show that results are not affected much by the choice of QF2, we also

run experiments for a quite different value of the second quality factor, that

is QF2 = 95. To train the model for QF2 = 95, the images of the training

set Str were compressed with QF1 = {75, 80, 85, 90}, attacked (resized and

attacked with the anti-forensic scheme in [6]) and then re-compressed with

QF2 = 95. We did not consider QF1 lower than 75 during training, since

they correspond to the easier cases for the detection and then including them

in the training set does not help much. Table 4.9 reports the AUC results

averaged on the test set built with QF1 = {70, 75, 80, 85, 90}, for some of the

main attacks and processing.
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Table 4.8: AUC of the refined MPA-aware classifier under mismatched

dataset. The Dresden (first row) and Vision (second row) dataset are consid-

ered.

Attack DJPEG
wavelet

denoise

resize

BIC0.9

resize

NN0.9

rotation

BIC5

rotation

NN5

AUC

(Dresden)
0.86 0.92 0.97 0.90 0.97 0.89

AUC

(Vision)
0.87 0.89 0.94 0.81 0.95 0.81

Table 4.9: AUC of the refined MPA-aware classifier trained for QF2 = 95.

Attack DJPEG
Stamm

Attack

wavelet

denoise

median

filtering

copyMove

256x256
CLAHE

AUC 0.99 0.95 0.95 0.97 0.97 0.88

Attack
resize

BIC0.9

rotation

BIC5

zoom

1.2

crop

align

crop

no align

seam-

carving

AUC 0.94 0.94 0.88 0.79 0.85 0.91

4.5 Final Remarks

In this chapter, we presented an adversary-aware double JPEG detector capa-

ble to work even in the presence of heterogeneous processing and CF attacks.

We have conducted our tests in a rather controlled scenario: training and

testing with the same QF2 and QF1 < QF2. As to the value of QF2,

the performance may decrease in case of mis-match between training and

testing. However, QF2 is generally known to the defender (since it can be

derived from the JPEG bitstream or reliably estimated from the image), then

many versions of the detector can be trained and used for different values of

QF2. Regarding QF1, performance degrade when the detector is tested with

QF1 > QF2. To get good performance in this case, examples of images for

which QF1 > QF2 must be included in the training set, even in this way of

the overall accuracy may decrease a bit (about 2% of the AUC value according
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to some preliminary tests we carried out3). In practice, better generalization

capabilities can be achieved at the price of a reduction of performance. It

is worth observing that the proposed approach is not meant for localization,

and the performance are expected to decrease on small images (or patches).

The average performance of the classifier for DJPEG detection trained with

QF2 = 85, and 95 on smaller images (under no attack) are reported in Table

4.10.

Table 4.10: AUC of the refined MPA-aware classifier tested on small patches.

Patches size 536× 356 268× 178

AUC (QF2 = 85) 0.82 0.78

AUC (QF2 = 90) 0.89 0.80

3The results are referred to the MPA-aware detector in Section 4.4.2



Chapter 5

Detection of Image Contrast Manipulation
Robust Against JPEG Compression

”Forensic science offers great potential, as it draws on almost every

discipline and, in doing so, creates widespread opportunity for innovation.”

Marl Walport

”We can all see, but can you observe?”

A.D. Garrett

JPEG compression is a powerful tool to remove manipulation traces, since

quantisation can effectively reduce the distinctiveness of certain features

without raising suspicion and without significantly degrading the perceptual

quality of the image. In particular, a task which is known to be very chal-

lenging in the presence of JPEG post processing, is the detection of contrast

adjustment. While in many case JPEG post processing is applied innocently

(as JPEG is the most common image format), in many others it may be

purposely applied by an attacker to erase the traces of manipulation. Then,

designing a JPEG-robust contrast manipulation detector is of primary impor-

tance. This is the purpose of the research described in this chapter.

Specifically, in Section 5.2, we propose a solution based on JPEG-aware

training and SVM classification, by limiting the analysis to the case of Adap-

tive Histogram Equalization (AHE). Then, in Section 5.3, we investigate the

use of CNN-based classification for the same purpose, again coupled with

JPEG-aware training, by focusing on the detection of a generic contrast ad-

justment. An introduction to the problem of contrast adjustment detection in

the presence of JPEG and the related state-of-the-art is provided in Section

5.1.
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5.1 An Overview on Contrast Adjustment Detection in

the presence of JPEG post-processing

When creating a forgery, adjustment of the contrast and lighting conditions of

image subparts is often performed to make the forgery more credible. There-

fore, the detection of this kind of manipulation has been widely studied in

image forensics. Due to peculiar traces left by contrast adjustment opera-

tors in the image histogram, early works were based on the analysis of im-

age first order statistics [36, 65, 159]. Anti-forensic methods against forensic

techniques based on first-order statistics have been developed as well; in ad-

dition to targeted approaches, aiming at removing the specific histogram arti-

facts the attacked detectors look at [90], universal approaches against generic

histogram-based detectors have also been developed with good results [90].

Expectedly, it is quite easy to cope with such attacks by developing detectors

based on second-order statistics [50,138]. Such ad-hoc detectors, however, fail

when different attacks are considered. Moreover, since, in real applications,

the attack is not known in advance, targeted anti-counter-forensic methods

are simple of limited applicability. Moreover, in most cases, the attack con-

sists in the application of one (or several) post-processing operations, e.g.,

a geometric transformation, filtering or compression (see Chapter 3, Section

3.2). Laundering attacks have in fact been shown to be very powerful against

manipulation detectors [66].

The performance of contrast manipulation detectors proposed in the lit-

erature have been shown to decrease significantly in the presence of even

mild post-processing and, in particular, all of them exhibit a poor robustness

against JPEG compression [36,65,66,140,156]. Detection of contrast manip-

ulation is not exception, and given poor resilience to JPEG compression is a

common problem of detectors of contrast manipulation.

5.2 SVM-based Detector of Contrast Enhancement ro-

bust to JPEG

In this section, we present a system that is able to detect contrast enhance-

ment by means of Adaptive Histogram Equalization (AHE) in the presence
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(in-camera) 
processing 

JPEG H0 

(in-camera) 
processing 

JPEG H1 
Contrast 

Adjustment 

Figure 5.1: Detection task considered in Section 5.2 and Section 5.3.

of JPEG compression, by training a JPEG-aware SVM detector based on

color SPAM features, i.e., an SVM detector trained on contrast-enhanced-

then-JPEG-compressed images.

In the following, we first formalize the detection problem, then we describe

the choice of the feature set and present the architecture of the proposed

detector (based on a pool of Support Vector Machines (SVMs) trained in an

adversary-aware modality).

The detection task we are facing with is schematised in Figure 5.1. We let

hypothesis H0 correspond to the case of pristine images and H1 to the case

of contrast adjusted (enhanced) images. In both cases, the images are JPEG

compressed at the end with a given Quality Factor (QF ). In this scheme,

JPEG compression can be regarded to either as a post-processing or as a

counter-forensic, laundering-type, attack.

In this section we focus on Adaptive Histogram Equalization (AHE) [160],

which applies contrast enhancement on a local basis. The detection of such

operator has not gathered much attention in the forensic literature. Com-

pared to the detection of other global contrast enhancement operators (like

for instance gamma correction and histogram stretching), the detection of

AHE is more challenging since AHE does not introduce easily identifiable ar-

tifacts in the image histogram, even if it leaves traces in different domains

that can be captured by CNNs (as shown in Section 5.3).

5.2.1 The CSPAM feature set

The choice of the feature set is a very important step in the design of our

detection. In particular, we need to select a sufficiently large number fea-
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tures which are capable of capturing as many types of dependencies among

neighboring pixels as possible. On the other hand, we want to limit the di-

mensionality of the feature set, so to be able to train an SVM. Common

residual-based features (e.g., [59,69]), largely used in multimedia forensics for

a wide variety of tasks (see Section 2.4), are designed for grayscale images

and cannot be directly applied to color images. In this case, a possibility

would be to extract the features from the luminance channel; however, con-

trast enhancement also modifies the relationship among color channels, and

hence considering the luminance only (or, similarly, converting the images to

grayscale), would result in a loss of possibly useful information. In order to

take into account the relationships among color channels, we considered the

color rich model features proposed in [60] for steganalysis (CSRMQ1), and

adapted it to our case. Basically, the rich color feature space proposed in [60]

consists of two different components. The first component is derived from the

spatial rich model as in [59] (SRMQ1): specifically, the SRMQ1 features are

computed for each color channel and added to keep the same dimensional-

ity of grayscale images. The second component is a collection of 3-D color

co-occurrences , computed from the same noise residuals as for the SRMQ1

model but formed across the three channels of each pixel. As described in the

previous chapter, in its complete form, the SRMQ1 model considers many

different types of residuals (39) and then the final feature space has a very

large dimensionality (consisting of 12.753 features), which cannot be adopted

for standard detection based on a single classifier. Therefore, in our case, we

adopted a new feature set by using the SPAM (Subtractive Pixel Adjacency

Matrix) feature set (described in Section 2.4.1.2), designed for one-channel im-

ages, as the base set for the color model. Specifically, according to the SPAM

model, the first component of the feature vector is obtained by considering the

second-order spatial co-occurrences (i.e., d = 2) of the first order residuals,

with a truncation parameter T = 3, computed for each channel R, G, and B

separately, and then merged. For the second component, the (second-order)

residual co-occurrences are computed with respect to the three channels, i.e.

across the color bands (R, G and B). We call CSPAM this simplification of

the CSRMQ1 set. Since the dimensionality of the SPAM set is 686, the final

dimensionality of the CSPAM set is 2× 686 = 1372. Figure 5.2 illustrates the



5.2. SVM-based Detector of Contrast Enhancement robust to JPEG 63

Figure 5.2: Illustration of the procedure for the extraction of the CSPAM

feature set.

procedure that we followed for the extraction of the color feature set used for

the SVM-based detection problem.

5.2.2 JPEG-aware detection scheme

Similarly to what happens with the contrast enhancement detectors proposed

in the literature, if we train the SVM classifier based on the CSPAM feature

set on pristine and enhanced images, without taking into account the JPEG

compression in the end, the detector can correctly reveal the enhancement in

the ideal scenario in which the enhancement of the contrast is the last step

of the manipulation chain, but it completely fails in the presence of JPEG

post-processing, even when JPEG compression is very mild.

To design a contrast enhancement detector robust to JPEG laundering

attack, we trained several adversary-aware versions of the SVM classifier,

where the classifier is trained with JPEG compressed images on one hand (H0)

and images subject to contrast enhancement followed by JPEG compression

with different QF s on the other hand (H1).

The overall architecture of the detector is reported in Figure 5.3. For a

given JPEG image, the value of the QF used for JPEG compression can be
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Figure 5.3: Scheme of the proposed JPEG-aware detector.

easily extracted (read) from the quantization table provided in the header of

the image bitstream and used to select the most suitable version of the SVM

classifier (i.e. the one trained with the QF which is most similar to the one

used to compress the test image).

In principle, we should train an SVM for every value of QF and then use

the corresponding SVM model for testing1. However, we experimentally veri-

fied that similar results can be obtained by training a lower number of SVMs

for some selected values of QF and then using the SVM corresponding to the

closest QF . By referring to Figure 5.4, we see that the performance decay

rather slowly (in terms of AUC) when the QF of the test image departs from

the QF used for training (matched value). Notice also that, not surprisingly,

the performance in the matched case increases for larger values of QF , since

a weaker compression is less effective in erasing the traces of AHE. Based on

our tests, we argued that a quantization step equal to 5 for medium-high QF

values, and 2 for very high QF s is appropriate. Then, we built our classifier

by considering the six SVM models reported in the scheme of Figure 5.3.

Figure 5.5 shows the results obtained by training one SVM model with a

1Since we are interested in medium-high qualities, we take QF > 80 (much lower QF

are not very common in practice since the visual image quality degrades too much).
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Figure 5.4: Performance of the SVMs as a function of the QF .

Figure 5.5: Performance of the SVM trained on the mixture of 6 QF s, as a

function of QF .

mixture of the six QFs (instead of 6 different SVM models). As we can see,

the average performance are lower (average AUC = 0.89).

5.2.2.1 Idempotency-based QF estimation

The proposed detector can be applied to JPEG images, in which case the

QF used to compress then can be obtained from the JPEG bitstream. How-

ever, if the compressed image is re-saved in uncompressed format (e.g., png,
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or bitmap) the proposed detector does not work any more. As we said, the

attacker himself might re-save the image to hide the compression QF (as a

countermeasure to the JPEG-aware detection). Therefore, we also propose an

algorithm to estimate the QF directly from image pixels, thus extending the

applicability of our detector. Another possibility to design a system which

is robust to attacks would be to train a single SVM classifier for all or some

selected values of the QF (properly quantized). However, based on our exper-

iments, by following this approach we get lower performance. Even if the drop

is not serious, the reduction of the performance in this case makes us prefer

the pool of SVMs, to the single SVM trained on a mixture of QF s. In order

to get an estimate of the QF from the pixel domain, we exploit the fact that

JPEG compression is an (almost) idempotent operator, that is, whenever ap-

plied multiple times with the same QF , it produces the same result obtained

with a single application. A similar property has been exploited in [161] for

video codec identification to estimate QF .

Based on this observation, our algorithm works as follow:

� the image under analysis I is compressed with various QF s. We start

from QF = 50 assuming that the image is never compressed with a

lower QF . Let IQF denote the image compressed with quality factor

QF ;

� the L1 distance between the images before and after compression is

computed for every QF , is ||I − IQF ||

� the value of the QF leading to the minimum distance is selected, that

is Q̂F = arg minQF ||I − IQF ||

To avoid the problem that QF tend to always produce small distances, we

identified a critical QF value, say QF ∗. Then, the above algorithm is applied

by considering QF ∈ [50 : 1 : QF ∗], that is, the local minimum is searched

in [50 : 1 : QF ∗]. If no local minimum is found inside this range, then a

finer search is performed over the QF s larger than QF ∗, and up to 98. For

higher QF s, namely 99 and 100, the system guess is always 98. The reason

is that very high values of QF (99 and 100) are difficult to estimate with no

errors and the detection performance of our system in these cases are generally

very good even in presence of a mismatch between the real QF and the one
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considered to train the SVM to training (see Figure 5.4). As a consequence,

when QF estimation is performed in the pixel domain with the idempotency-

based algorithm, the SVM model for QF=100 (SVM100 in Figure 5.3) is

never selected by the detector. The critical value QF ∗ is experimentally set

to 93.

5.2.3 Experimental Methodology

To produce the datasets for our experiments, we started from color images

in uncompressed format, part of which were used for training and part for

testing. The images for the H0 and H1 classes were built as detailed in Figure

5.1. The images were JPEG compressed with quality factor QF to produce

the H0 samples, while, the images for the H1 class were generated by first

applying the AHE operator and then compressing them with quality factor

QF (the same as for H0). For the unaware case, the training images were built

according to the same scheme but without considering the JPEG compression

stage at the end.

The Contrast-Limited implementation of AHE (CLAHE) was used for con-

trast enhancement [155]. With respect to ordinary AHE, CLAHE prevents

the overamplification of noise in relatively homogeneous regions. This is done

by clipping the histogram at a predefined value before computing the cumu-

lative distribution function (CDF); this limits the slope of the transformation

function (given by the CDF) which determines the contrast amplification.

The value at which the histogram is clipped, called clip limit, depends on the

normalization of the histogram and thereby on the size of the neighborhood

region, which by default is 8 × 8. On color images, the straightforward ap-

plication of CLAHE to each channel separately unnaturally changes the color

balance and produces visually unpleasant images. A common strategy to work

around this problem is to convert the images from the RGB to the HSV color

space and then applying CLAHE only to the luminance channel, namely the

Vchannel. Then, the image is converted back to the RGB domain. We then

followed this strategy to produce the AHE manipulated images in our case. In

our experiments, the clip limit parameter for CLAHE was set to 0.004. Some

sample images for the hypotheses H0 and H1 are provided in Figure 5.6 for

QF equal to 80 and 98. Regarding QF values, the images used for training
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(both under H0 and H1) were compressed with QF ∈ {80, 85, 90, 95, 98, 100},
whereas for the test images all the QF s in the range [80, 100] were considered.

The Matlab environment was used to process the images, to train and test

(a) H0 sample for QF 80 (b) H1 sample for QF 80

(c) H0 sample for QF 98 (d) H1 sample for QF 98

Figure 5.6: Visual comparison between an H0 and H1 images for two different

QF s.

the SVMs (with the LibSVM library package [162]) and run the idempotency-

based QF estimator. In our tests, we also considered the GIMP software (and

also Photoshop) for compressing the test images, in order to assess the per-

formance of the detector in the presence of a mismatch in the compression

software. Each SVM classifier was fed with the 1372-dimensional features

(CSPAM) extracted from the color images. A Gaussian kernel was adopted,

and the kernel parameters were determined by 5-fold cross-validation. In the
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unaware case, we trained the SVM with uncompressed pristine and contrast

manipulated images. In the aware case, to build the pool of SVMs detectors

depicted in Figure 5.3, we separately trained the six SVMs (namely SVM80,

SVM85, SVM90, SVM95, SVM98 and SVM100) on the corresponding JPEG

compressed versions of the images.

5.2.4 Results

We considered uncompressed (tiff) images taken from the RAISE-8K dataset,

consisting of about 8000 camera-native images (see Section 2.4.3). Specifi-

cally, we built our dataset as follows: 6000 images were used for the training

set (1000 of which were used for tuning the kernel parameters, i.e., for inter-

nal cross-validation) and 1997 images for the tests. To get a faster feature

computation, the images were subsampled to a size of 1072× 770.

5.2.4.1 The unaware case

In this section, we show the results of unaware classification. The unaware

SVM can perfectly classify uncompressed pristine and manipulated images,

and the Area Under Curve (AUC) of the ROC curve for the classification is

100%. We also run some tests in the presence of laundering attacks, that is

when both the pristine and manipulated images are subject to post-processing

operations. In particular, we considered a case of filtering (median filtering

with window size 3 × 3) and geometric transformations (resize with scaling

factor 0.9, rotation with an angle of 5 degrees). In all these cases, the perfor-

mance only slightly decreases, and the AUC remains above 90%. This shows

that the CSPAM feature set is discriminative enough for our classification

task.

When JPEG laundering is considered, however, the detector fails to clas-

sify the images, thus showing that the JPEG compression is very harmful

and confirming the necessity of developing a JPEG-robust detector. Table

5.1 shows the detection performance of the unaware SVM detection.
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Table 5.1: AUC values of the unaware SVM classifier.

QF 80 81 82 83 84 85 86

AUC 0.5441 0.5429 0.5415 0.5390 0.5378 0.5370 0.5331

QF 87 88 89 90 91 92 93

AUC 0.5310 0.5287 0.5274 0.5242 0.5199 0.5184 0.5118

QF 94 95 96 97 98 99 100

AUC 0.5081 0.5027 0.4955 0.4871 0.4754 0.4570 0.4507

Figure 5.7: Performance of the aware SVMs for the classification task (under

matched QF ).

5.2.4.2 Performance of the JPEG-aware detector

We now focus on the results achieved by the JPEG-aware detector. Figure 5.7

shows the performance of each SVM classifier tested under matched condition,

that is, when the images considered for training and testing are compressed

with the same QF . The performance improves significantly with respect to

the unaware case. We observe that the performance reduce when the QF

decreases. This is expected since the lower the QF , the more the traces

of AHE are erased by compression, and the detection task becomes harder.

Arguably, for much lower quality factors, it is possible that the traces are

almost completely erased; however, the quality of the images would also be
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Figure 5.8: Performance of the system based on the pool of aware SVM

classifiers.

seriously impaired.

In Figure 5.4 we report the results of the 6 SVMs for QF ∈ [80,100]. The

performance of the system based on the pool of aware SVM classifiers when

the QF value is extracted from the JPEG header (i.e., perfect estimation) can

be easily argued from these plots by considering for each image the closest QF

value in the set {80,85,90,95,98,100} and then select the corresponding SVM

for testing. The result is reported in Figure 5.8. From Figure 5.4, we also

observe that using the minimum distance criterium for the SVM selection is

a good choice. We also verified that by training only one SVM considering all

the 6 QF values above, the performance degrades significantly (the average

AUC is 87%).

When the QF is estimated on the pixel image according to the proposed

idempotency-based approach, the performance is expected to decrease because

of estimation errors. The average error in terms of L1 distance between real

and estimated QF s under H0 and H1 is reported in Table 5.2 and Table

5.3 respectively. The average is computed on the 1997 images in the test

set. The performance of the idempotency-based algorithm are pretty good,

leading to an average estimation error below 0.1% for every QF ≤ 98 Note

that the average errors equal to 1 and 2 obtained, respectively, for QF = 99

and 100 are expected, given that for such QF s the algorithm always decide
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Table 5.2: Average error of QF estimation for H0.

QF 80 81 82 83 84

Average Error 0.0856 0.1002 0.0586 0.0676 0.0656

QF 85 86 87 88 89

Average Error 0.0976 0.0190 5.0075e-04 0.0010 5.0075e-04

QF 90 91 92 93 94

Average Error 5.0075e-04 0 0 0.1202 0.1022

QF 95 96 97 98 99

Average Error 0.0315 0.0220 0.0015 0 1

QF 100

Average Error 2

Table 5.3: Average error of QF estimation for H1.

QF 80 81 82 83 84

Average Error 0.1017 0.1202 0.0686 0.0721 0.0631

QF 85 86 87 88 89

Average Error 0.1107 0.0325 0.0015 0.0015 0.0010

QF 90 91 92 93 94

Average Error 0.0010 0 0 0.1778 0.1402

QF 95 96 97 98 99

Average Error 0.0451 0.0451 0.0015 0 1

QF 100

Average Error 2

for 98 (see discussion in Section 5.2.2.1). Besides, we observe that the average

error in the various cases is slightly larger under H1 than under H0. Figure

5.9 shows the performance of the system when QF estimation is based on

JPEG-idempotency. The performance reduction with respect to the case of

perfect QF estimation is pretty small (in the order of 10−3 on the average)

and, expectedly (see the discussion in Section 5.2.2.1), pertains mainly to

the case of higher QF (99 and 100), where, however, the performance of the
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Figure 5.9: Performance of the system based on the pool of aware SVM

classifier when the QF is estimated by means of idempotency.

detector remains very good. We also verified that the performance for the

case of uncompressed images remains good. In this case, as a result of the

idempotency-based QF estimation, the SVM98 is always selected. The AUC

is 97,2% and then the performance reduction with respect to the unaware case

is very small.

5.2.4.3 Performance in the presence of software mismatch

All the results reported so far were obtained by working in the Matlab en-

vironment. However, the performance can be sensitive to a mismatch of the

software used for compression, as different software may use different JPEG

quantization tables. We may expect that this is especially the case when

the idempotency-based QF estimator is used; in this case, in fact, software

mismatch might also lead to a wrong estimation. Then, we assessed the per-

formance of the detector when the software used for compressing the test

images is different from the one used to compress the images for training and

inside the idempotency-based estimator. In particular, we used the GIMP

software for JPEG compression of the test images. Then, the test images

are compressed with GIMP while we keep using Matlab for the compression

of the images used for training (and for the idempotency-based estimation).

This corresponds to implement the last step of the processing chain in Figure
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Figure 5.10: Performance of the SVMs as a function of the QF in the presence

of software mismatch. The test images are compressed with GIMP while the

images used for training are compressed in Matlab.

5.1 with the GIMP software instead than with Matlab.

Figure 5.10 shows the results of the 5 SVMs for QF ∈ [80,100]. When

the QF value can be read from the JPEG header (i.e., perfect estimation),

the performance of the overall system based on the pool of aware SVM clas-

sifiers can be easily derived from these plots. The performance reduces with

respect to the matched case, although not drastically so (the AUC always

remains above 80%). The average error in terms of L1 distance between real

and estimated QF is reported in Table 5.4 and Table 5.5 under H0 and H1

respectively. By comparing these results with those reported in the previous

section for the matched case, we notice that the estimation remains good.

Figure 5.11 shows the performance of the proposed detector in the presence

of software mismatch when the QF estimation is made in the pixel domain

by means of the idempotency-based approach.

We also considered a mismatched case in which the Photoshop software

is used (instead of GIMP) for compressing the test images. In this case,

the idempotency-based approach has poorer performance with respect to the

GIMP software case. By focusing on the Photoshop qualities 10, 11, 12 for

the compression (which correspond to medium-high values of QF )2, the per-

2In Photoshop, the strength of the compression is determined by setting a parameter for
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Table 5.4: Average error of the QF estimation for H0 in the presence of

software mismatch (test images compressed with GIMP).

QF 80 81 82 83 84

Average Error 0.0200 0.0250 0.0130 0.0090 0.0100

QF 85 86 87 88 89

Average Error 0.0195 5.0075e-04 0 0 0

QF 90 91 92 93 94

Average Error 0 0 0 0.0401 0.0401

QF 95 96 97 98 99

Average Error 0.0045 0.0030 0 0 1

QF 100

Average Error 2

Table 5.5: Average error of the QF estimation for H1 in the presence of

software mismatch (test images compressed with GIMP).

QF 80 81 82 83 84

Average Error 0.0250 0.0300 0.0100 0.0090 5.0075e-04

QF 85 86 87 88 89

Average Error 0.0260 5.0075e-04 0 0 0

QF 90 91 92 93 94

Average Error 0 0 0 0.0376 0.0200

QF 95 96 97 98 99

Average Error 0.0030 0.0030 0 0 1

QF 100

Average Error 2

formance (AUC values) in the case of QF estimated from the image pixels

are 79, 85 and 90 respectively.

the image quality in a (non linear) scale from 0 to 12.
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Figure 5.11: Performance of the detector in the presence of software mismatch

(GIMP software).

5.3 CNN-Based Detection of Generic Contrast Adjust-

ment robust to JPEG Compression

In this section, we describe a JPEG-robust detector of contrast adjustment by

resorting to CNN-based classification. In particular, leveraging on the supe-

rior capability of CNNs, to authomatically learn discriminative features also

for very complicated tasks, we look for a generic detector of contrast adjust-

ment, that is, a detector that generalizes well to a wide variety of tonal ad-

justments. The proposed method relies on a single CNN. The CNN is directly

fed with the image pixels (with no pre-processing), hence the discriminative

features for our problem are self-learned by the CNN. More specifically, the

proposed detector is based on a JPEG-aware, patch-based CNN, which is used

to classify image regions, i.e. image patches. A test image is then divided

into patches which are tested separately by feeding them to the CNN. The

soft patch scores (CNN outputs) are collected and the global decision on the

image is performed on the score vector (in this way, we indirectly exploit the

fact that patches coming from a same image are generated under the same

hypothesis, hence assuming that the image is either pristine or globally ma-

nipulated in contrast). All the compression QF s inside a range of values are

considered to train the CNN.
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Figure 5.12: Pipeline of the proposed generic, JPEG-aware, contrast adjust-

ment detector. Adaptive histogram equalization, gamma correction (both

compression and expansion) and histogram stretching are used to train the

network.

We point out that, in this case, the pooled structure, where several CNNs

are specialized to work for one QF each, is not more effective than a single

CNN trained on all the QF s the performance depending rather on the size

and composition of the training set.

5.3.1 Proposed System

The detection task we are facing with is the same illustrated in Figure 5.1,

which the architecture of the proposed detection scheme is reported in Figure

5.12. The color image is divided into non-overlapping patches of size 64× 64

which are fed to a JPEG-aware CNN detector. The patch scores, i.e. the

CNN soft outputs for all the patches, are then collected and the final decision

is based on the score vector s = (s1, s2, ...sN×M ) (where N ×M is the total

number of blocks). The decision is made by simply thresholding the sum of

the scores, i.e. according to the statistic
∑

i si/(M ·N). Since patches coming

from the same image are drawn under the same hypothesis, such normalised

sum is expected to be large in one case (contrast adjusted image) and small

in the other (pristine image)3.

The JPEG-aware CNN is trained with JPEG compressed images on one

3We are considering the case of globally manipulated images.
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hand (H0) and images subject to contrast adjustment followed by JPEG

compression on the other (H1). The network architecture and the training

strategy are detailed in the following sections. In the attempt to build a

detector which generalizes to unseen adjustments, we consider contrast ad-

justments of different nature to train the network. Specifically, the processing

we selected are: adaptive histogram equalization, gamma correction (both

compression and expansion of the contrast) and histogram stretching.

Regarding the compression QF , we focus on values ranging from medium-

high to high values (i.e., QF ≥ 80), since these are the values commonly used

in practical applications.

5.3.1.1 CNN architecture

Our first attempts to train a network for our problem by using architectures

similar to those adopted for other forensic tasks [8, 73, 78] were unsuccessful.

A possible explanation is the following: while some processing operations,

e.g. local filtering and double JPEG, introduce local patterns that a properly

trained CNN with few layers is able to ’easily’ learn, common contrast ad-

justments do not leave local visual artifacts, thus calling for the adoption of

deeper models. We were in fact able to get higher accuracies by switching to

deeper architectures, with small kernel sizes and small strides of the convo-

lutional layers, inspired by those adopted in image classification and pattern

recognition applications [163]. In particular, as suggested in [163], we adopted

a kernel size of 3× 3 and stride 1 for all the convolutional layers, and only 1

fully connected layer. We set the number of convolutional layers to 9, which,

although lower than that adopted in [163] (16-19), is still a significant depth

compared to those commonly considered for forensic tasks [8, 73, 78] (up to

4-5).

More specifically, the structure of our network for patch classification (see

Figure 5.13) is detailed as follows: it takes a color patch of size 64 × 64 as

input and consists of,

� 5 convolutional layers followed by a max-pooling layer. In the first

convolutional layer 32 filters are applied. Then, the number of filters

increases by 32 at each layer. For all the filters, the kernel size is 3× 3
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and the stride is always 1. Max-pooling is applied with kernel size 2× 2

and stride 2 producing a final 27× 27× 160 feature map.

� 3 convolutional layers followed by a max-pooling layer. As before, the

number of filters of size 3× 3 (applied with stride 1) increases by 32 at

each layer. The pooling is the same as before, yielding a 10× 10× 256

feature map.

� A final convolutional layer with 128 filters of size 1 × 1 generating a

10× 10× 128 feature map.

� A fully-connected layer with 250 input neurons, dropout 0.5, and 2

output neurons, followed by a softmax layer (last 3 blocks in the scheme

of Figure 5.13).

Some comments regarding the main features of the above architecture are in

order: the use of many convolutions (5) before the first pooling layer permits

to consider a large receptive field for each neuron, which is good to capture

relationships among pixels in large neighborhoods; the stride 1 permits to

retain as much spatial information as possible. The purpose of the final con-

volutional layer is to reduce the number of parameters by halving the number

of maps (from 256 to 128), without affecting spatial information. The adop-

tion of only one fully connected layer also permits to reduce the number of

parameters without affecting too much the performance. Finally, we observe

that using small patches (64 × 64) permitted us to increase the depth of the

network for the same number of parameters. The use of small patches is also

suitable for tampering localization (the detection accuracy is then raised by

aggregating the patch scores).

5.3.1.2 CNN training strategy

We obtained the JPEG-aware CNN model by training the network in two

steps. First, the network is trained to recognize between patches coming from

pristine and contrast-adjusted images for the uncompressed case, getting a

(unaware) pre-trained model. Then, the aware model is obtained by fine-

tuning the unaware network, by feeding the CNN with JPEG compressed

examples of the above classes. Since the network is pretty deep and then the
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Figure 5.13: Architecture of the proposed network.
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number of images used for training is very large, we performed compression

on-the-fly by augmenting the data inside the network; hence, the compression

is performed directly on the 64 × 64 patches (that is, after image splitting).

Such a strategy is viable because the JPEG compression is a local operator

which can be applied separately on multiples of 8×8 image patches producing

the same result as if it were applied on the entire image.

5.3.2 Experimental Methodology

We built the training and testing sets by starting from color images in un-

compressed format. The images for the H0 and H1 classes were produced

as detailed in Figure 5.3. The adjustment of the contrast under H1 is ob-

tained by considering several algorithms. As we said, to generate the images

used for training, we considered the following operators: Adaptive Histogram

Equalization (in particular, the refined, Contrast Limited, implementation,

CLAHE, already used for the SVM case), Gamma Correction (γ Corr), and

Histogram Stretching (HS). Such operators are designed for one-channel im-

ages; to make them work on color images, we applied them as follows: for

the images processed with CLAHE, we followed the same steps described in

Section 5.2.3, first converting the images from RGB to HSV, applying the

enhancement to the luminance channel only (Vchannel), and then converting

back to the RGB domain The same strategy is adopted to generate the im-

ages processed with HS. Finally, for the γ Corr, the contrast is modified by

applying the operator to each channel (R, G and B) separately. The above

operators are applied in equal percentage to generate the class of contrast

adjusted images (H1). Regarding the parameters, the clip-limit parameter

for CLAHE is set to 0.005, the γ value to 1.5 and 0.7 (randomly chosen with

probability 0.5), and the saturation percentage of the HS to 5% for both black

and white values. We verified that the above choices do not introduce visually

unpleasant artifacts.

To generate the test images, we also considered different values of the

parameters for the same operators (to assess the performance under parameter

mismatch), and different operators, by processing the images with adjustment

tools provided by Photoshop. In particular, we considered the following tonal

adjustments:
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� AutoContrast, AutoColor, and AutoTone; algorithms which operate dif-

ferently with respect to the color channels. Clipping is set to 7% for Au-

toContrast and AutoColor and to 5% for AutoTone; the snap neutral

midtones option is selected for the AutoColor;

� Curves S; a (hand-made) smooth S-curve is applied to enhance the con-

trast in the midtones;

� Brightness, and Contrast; generic tools for enhancing and reducing

brightness and contrast; for the enhancement, we set Brightness to 50

(Brightness+) and Contrast to 70 (Contrast+), while for the reduction,

we set Brightness to -70 (Brightness-) and Contrast to -50 (Contrast-);

� Histogram Equalization (HistEq).

The HistEq manipulation is considered for completeness: although its visual

impact is much stronger with respect to that of the other manipulations,

and hence is rarely adopted in practice. The HistEq manipulation is often

considered in multimedia forensic literature.

Regarding JPEG compression, we randomly selected the QF s (uniformly)

in the range [90, 100] to compress the images used for training. For testing,

we also considered images compressed with QF 85 and 80.

5.3.3 Results

A before, for these experiments, we considered uncompressed, camera-native,

images (TIFF) taken from the RAISE-8K dataset, splitted into training and

test set, and then contrast-adjusted to produce the images for H1 in the

unaware case (i.e., without the final JPEG). The images are then divided

into 64× 64 patches for CNN training and testing: 2× 106 patches per class

(coming from more than 1000 training images) were selected to train the CNN,

whereas 2× 105 patches were used for testing. In the aware case, the patches

are JPEG compressed with QF ∈ [90, 100]. The overall performance of the

detector are tested on 300 images from the test set, both uncompressed and

compressed with QF = {100, 98, 95, 90, 85, 80}. The images used for training

were all processed with the OpenCV library for Python. For the tests, the

Photoshop software was adopted. We used the TensorFlow framework, via
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the Keras API [164], to implement the CNN. We ran our experiments using

2x Asus GeForce GTX1080TI - 11GB DDR5 gpu. The Adam solver is used

with learning rate 1e − 4 and momentum 0.99. We set the batch size for

training and testing to 32 images. Both the aware and unaware models were

trained for 3 epochs.

When training and testing are performed with uncompressed images (un-

aware case), the average test accuracy of the CNN on image patches is 93.5%,

where the average is taken on the 3 manipulations, i.e., CLAHE, γ Corr

(compression and expansion) and HS, and on all the QF s inside the training

range. For the overall system, we get almost perfect classification, that is,

the Area Under Curve (AUC) is 99, 8%, which is in line with the state of the

art [66]. A noticeable strength is that here these performance are achieved

by one (generic) system only, rather than using separate systems each spe-

cialized in one manipulation. By testing the unaware detector with JPEG

compressed images, the performance drop to AUC = 56% thus showing that

the CNN model is not robust to JPEG laundering attack.

Concerning the JPEG-aware case, the average accuracies that we obtained

at the patch level in the range of QF s in [90, 100] are: 0.84 for CLAHE, 0.72

for γ Corr and 0.79 for HS. These accuracies are not very high; however,

the performance are moderately good with respect to all the contrast ad-

justment operators. We also observe that specializing our network to work

with one QF only, we could have obtained higher performance at the patch

level; however, as said before, to be robust against common manipulations (as

recompression and saving in uncompressed formats), we look for a detector

of generic contrast adjustments which works well on a range of QF s. The

overall performance of the detector on full images are reported in Table 5.6

in terms of AUC, for both matched and mismatched processing parameters.

The CLAHE manipulation is the easiest to detect (the AUC is always above

98%). The most difficult case corresponds to γ Corr, where the AUC is below

90% for QF ≤ 95. This behavior is due to the fact that thus kind of adjust-

ment is difficult to detect by itself and mostly to the fact that the CNN is

simultaneously trained with values smaller and larger than 1, corresponding

to a compression and an expansion of the contrast4. Notably, these results

4We verified that if the detector is trained with γ = 1.5 only (gamma expansion), the
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Table 5.6: Performance (AUC) of the detector under matched processing.

The matched parameters are in bold.

QF

no jpg 100 98 95 90 85 80 75

CLAHE

0.003 100 99.9 99.8 98.9 97.6 97.1 96.8 96

0.005 100 99.9 99.9 99.4 98.9 98.8 98.5 98

0.007 100 99.9 100 99.6 99.1 98.9 98.7 98.5

γ Corr

1.5 98.8 98.5 94.2 89.2 87 84 81.2 81

1.7 99.4 98.9 95.7 91.8 90.4 89.7 89.2 88.1

0.7 99.1 97.1 92.3 87.3 85.6 81 78 69

0.6 99.7 99.5 97.3 91.6 86.7 83.7 80.1 77.3

HS (%)

3 99.6 98.1 95.8 91.4 87.8 85.7 83.5 83

5 99.5 98.9 97.6 93.7 92.6 91.5 90.3 89.4

7 100 99.3 98.3 95.5 94 93.7 93.6 93

significantly improve those achieved by the SVM-based approaches from the

literature, where, depending on the specific contrast adjustment considered

(gamma correction and histogram stretching), the AUC may drop to about

60% [156], and 72% [66] on the average, in the presence of JPEG compression

in the same range.

We observe that the performance are good in the presence of a mismatch in

the processing parameters: better performance are obtained when the adjust-

ment is stronger than in the matched case, and worse when it is weaker. The

performance remain very good in the absence of JPEG: the AUC is 99.6% on

the average in the matched case, which is in line with the AUC achieved by the

unaware detector. Expectedly, performance decrease as QF decreases. How-

ever, good robustness to JPEG compression is achieved (at least for CLAHE

and HS) also when the QF is 85 and 80, which are outside the training range,

whereas, below 80, performance become poorer. It is worth observing that,

for a fixed false alarm rate, the threshold on the aggregated score changes by

AUC for the γ Corr is above 97% for every QF ≥ 85. In this case, however, the performance

with respect to a compression (γ < 1) are very poor even with large QF (e.g. AUC = 78%

for QF = 95).
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Table 5.7: Performance (AUC) of the detector for different tonal adjustments.

QF

no jpg 100 98 95 90 85 80

HistEq 100 99.9 99.9 99.5 98.3 96.9 94.8

Brightness+ 97.5 97.7 95.2 93.6 91.2 87.8 85.6

Contrast+ 99.1 100 99.6 97.9 94.7 91.9 87.1

Brightness- 96.7 97.3 93.3 90.1 84.2 78.8 75.6

Contrast- 98.8 99.6 96.4 91.2 87 82 80

Curve S 99.6 99.8 99.8 99.1 97.7 96 93.6

AutoContrast 95.9 94.7 93 91.9 90.2 89 86.5

AutoColor 98.2 98.6 96.8 95.3 93.7 91.8 89.1

AutoTone 99.5 99.5 99 98.2 97.2 96.1 94.5

varying the QF : specifically, for a false alarm of 5%, the threshold ranges in

[0.56 : 0.71]. Note that, since the last compression QF is always known (or it

can be estimated), such a variability of the threshold is not a problem. Table

5.7 shows the results under various contrast/brightness adjustment performed

with Photoshop. Based on these results, we can argue that the CNN-based

detector scales well with respect to the adjustment type maintaining good

performance when the tones of the image are adjusted in different ways and,

possibly, selectively in different tonal ranges (Curve S), and when the adjust-

ment operates differently on the color channels (the Auto processing). The

AUC is large with respect to all the QF s for some of the processing (Auto-

Tone, Curve S, HistEq) and, in general, it remains above 90% in most of the

cases.





Chapter 6

Improving the Security
of Image Manipulation Detection Through One-
and-a-half-class Multiple Classification

”If you spend more on coffee than on IT security, you will be hacked, What’s

more, you deserve to be hacked.”

White House Cybersecurity Advisor, Richard Clarke

P
rotecting image manipulation detectors versus perfect knowledge attacks

requires the adoption of detector architectures, that are intrinsically dif-

ficult to attack. So, this chapter is devoted to design a multiple classifier

architecture, referred to as a 1.5C classifier, to limit the damage made by an

attacker with perfect knowledge acting against an image manipulation detec-

tor. The 1.5-Class (1.5C) architecture consists of one 2C classifier (2-Class

classification), and two 1C classifiers (1-Class classification) run in parallel

followed by a final 1C classifier.

This chapter is organised as follows: In the Section 6.1, we describe previ-

ous attempts to improve the security of image forensics analysis by resorting

to 1C classification. Then, in the Section 6.2, we introduce the proposed 1.5C

classifier for image manipulation detection and describe the strategy we fol-

lowed to train it. In the Subsection 6.2.4, we describe the methodology we

used to evaluate the effectiveness of the proposed system, while in Section

6.3, we present the corresponding experimental results. The chapter ends in

the Section 6.4 where we summarise the main results of this research.
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6.1 Prior art

The use of 1C classifiers is not novel in multimedia forensics and security-

related applications. In [165], the authors resort to 1C classification for video

forgery detection, in the attempt to devise a tool which works under chal-

lenging conditions, like those encountered in social networks. In particular,

the authors use of an architecture based on autoencoders trained on pristine

data. When used in this way, autoencoders behave as 1C classifiers, with a

large reconstruction error between the input and output being interpreted as

an anomaly, i.e. a forgery. More in general, one class modelling is popular

for anomaly detection in many different applications, where a good statistical

characterisation under abnormal condition is not available. As an example, we

mention the problem of acoustic novelty detection [166] or the problem of de-

tection of abnormal events in video sequences [167]. A method for adversarial

anomaly detection, which exploits the combination of multiple 1C classifiers

to increase the hardness of evasion attacks against intrusion detection systems

is provided in [168].

1C classification has often been proposed as an alternative solution to

conventional multiclass algorithms, that classify a sample based on a number

of pre-defined categories, when an exhaustive list of such categories does not

exist [169]. This problem is often referred to as classification in open set

conditions. Open set problems have been studied in several image forensic

and security-oriented applications, such as fingerprint spoof detection [170]

source device attribution [171], and camera model identification [172, 173].

In [173], in particular, a combination of one-class and multi-class SVMs is

used to simultaneously recognize the camera model among in a known set

and, at the same time, identify outliers, and models.

More recently, 1C classifiers have been used in conjunction with gener-

ative adversarial models (GANs) to design detectors which work under the

assumption that very few or no instances of malicious samples are available

for training. This is the case in [174], where the problem of forgery detection

of satellite imagery is addressed, and in [175], with regard to general fraud

detection, e.g. in reputation systems.
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6.2 Proposed System

In this section, we first formalise the detection problem addressed in this

chapter, then we describe the 1.5C architecture originally proposed in [97]

for pattern recognition applications, the choice of the feature set, and the

methodology that we followed to train the 1.5C classifier.

(a)

(b)

Figure 6.1: General manipulation detection task considered in this chapter

(a) and its adversarial version (b).

The basic detection task addressed in this section is schematised in Figure

6.1(a). Hypothesis H0 corresponds to the case of pristine images produced by

an acquisition device without any subsequent processing. H1 corresponds to

the case of processed or manipulated images. Figure 6.1(b) depicts the case in

which the same detection task is carried out in an adversarial setting, in the

presence of an attacker aiming at impeding a correct detection. Specifically,

we assume that the goal of the attacker is to avoid that the manipulation is

detected, that is, the attacker’s goal is to induce a missed detection error. In

the sequel, we denote with Pmd the probability of a missed detection error,

namely the probability that a manipulated image is detected as a pristine

image (also indicated as P (H0|H1)), and with Pfa the false alarm probability,

that is the probability that a pristine image is detected as being manipulated
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Figure 6.2: Architecture of the one-and-a-half class (1.5C) classifier. I is the

input image, while x is the feature vector extracted from I.

(namely, P (H1|H0)).

6.2.1 Architecture of the one-and-a-half-class (1.5C) classifier

The architecture of the one-and-a-half-class classifier adopted in this work is

depicted in Figure 6.2. Given an image I, a feature vector x(I), or simply

x, is extracted and used to feed a multiple classifier whose first stage consists

of the parallel application of three classifiers: a 2C classifier, trained with

examples belonging to both classes (in our case, pristine and manipulated

images) and two 1C classifiers, one trained with images belonging to the H0

class (pristine images) and the other trained with images from the H1 class

(manipulated images). The outputs of these classifiers represent the input of

a final 1C classifier, referred to as combination classifier. Since the goal of our

work is to increase the security in the presence of integrity violation attacks,

the final classifier is trained with pristine data.

We denote with d1(x), d2(x) and d3(x) the output respectively of the 2C,

1C trained on pristine images and 1C trained on manipulated images classi-

fiers; f(x) denotes the decision function of the downstream 1C combination

classifier trained with pristine images. For ease of reference, in the sequel
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we indicate the above classifiers with the acronyms 2CH0/1
, 1CH0 , 1CH1 and

1CcmbH0
, as indicated in Figure 6.2.

The rational idea behind the 1.5C architectureis the following: 2C classi-

fiers are often capable of achieving high accuracy in the absence of attacks,

however they do not generalize well to examples that were not properly rep-

resented in the training phase, thus easing the task of the adversary, that can

exploit the presence of unexplored regions of the features space to carry out

his attack. Such a situation is exemplified in part (a) of Figure 6.3, where the

attacker exploits the presence of empty regions to induce a missed detection

error (for simplicity, the figure refers to a case of perfect classification in the

absence of attacks). As a result, the 2C classifier may be easily attacked as

shown for instance in [106,133] in the case of image manipulation and forgery

detection. On the other hand, by defining a closed region enclosing the sam-

ples from one class only - usually the H0 class, 1C classifiers are intrinsically

more robust against attacks, even if they may get worse performance in the

absence of attacks. This behavior is illustrated in Figure 6.3 (b), where we see

that moving a sample from the H1 to the H0 region requires a larger distor-

tion, due to the closeness of the acceptance region for H0. Such an advantage

comes at the price of a reduced accuracy in the absence of attacks, since the

one class classifier is not able to properly shape the closed acceptance region

given that it is trained only on examples generated under H0 (the samples

for which a missed detection error occurs are highlighted by a circle in the

Figure).

The goal of the 1.5C classifier is to simultaneously retain the advantages

of 2C and 1C classification, as illustrated in Figure 6.3 (c). In particular, the

1.5C classifier is expected to have a similar robustness against attacks as the

1C classifier (moving a sample from H1 to H0 requires a similar distortion),

while the acceptance region is better shaped with respect to the 1C classi-

fication case, then the performance in the absence of attacks are improved

compared to the 1C classifier, and are more similar to those obtained by

the 2C classifier (the same perfect classification is achieved in the illustrative

example in the figure). This behaviour is confirmed in our experiments for

all the manipulation detection tasks we have considered (see the results in

Section 6.3.2 and 6.3.3).
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(a) 2-C (b) 1-C (c) 1.5C

Figure 6.3: Pictorial representation of the decision regions for 2C, 1C and

1.5C classifiers. Blue dots refer to H0 hypothesis, red triangles to H1. The

goal of the attacker is to take samples belonging to H1 detection region and

move them inside the region for which the detector decides in favour of H0.

The performance of the 1.5C classifier are in line with those of the 2C, while

it is expected to be more robust under attacks, since a larger distortion,

exemplified in the picture by a longer arrow, is needed to move a sample from

the H1 to the H0 region. The presence of red triangles within the H0 region

in part b) illustrates the lower performance of the 1C classifier in the absence

of attacks.

6.2.2 Implementation of 1.5C detector and choice of the feature set

The 1.5C architecture outlined in the previous section is a general one, and, in

principle, can be implemented by resorting to any kind of 1C and 2C classifiers.

We decided to implement all the classifiers the 1.5C classifier consists of by

means of Support Vector Machines (SVMs). The main reason is the ease

with which SVMs can be used to implement 1C classification. It goes without

saying that the use of alternative architectures can be explored as a future

research direction.

With regard to the choice of the feature set, we tried to balance between

two opposite requirements. On one hand, the features have to be powerful

enough to capture the different types of dependencies among neighbouring
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pixels in pristine and manipulated images. On the other hand, we want to keep

the dimensionality of the feature set limited, so to make it possible to design

the intermediate and combination classifiers as SVMs, without resorting to

more complicated architectures such as ensemble classifiers [176]. Specifically,

we selected the SPAM feature set, for which the number of features is reduced

by exploiting symmetries, yielding a final dimension of the feature vector

equal to 686. We refer to 2.4.1.2 for the details of the feature computation

procedure. SPAM features are designed for grayscale images; when working

with color images, they can be extracted from the luminance channel.

6.2.3 Training the 1.5C classifier

In this section, we describe the strategy we have adopted to train the interme-

diate and the combination classifiers. In general, training the 1.5C classifier

is not easy, especially when the detection task is not straightforward, as it

is often the case in image forensic applications. The difficulties are mainly

associated to the one-class classifiers which are difficult to train and may not

achieve good classification performance in many cases. The four classifiers

of the 1.5C system are all SVMs whose hyper-parameters are determined by

means of a preliminary internal validation phase. Let (xxxi, yi) be the training

pair for image Ii, where xxxi ∈ Rr denotes the feature vector of dimensionality

r and yi denotes the class label associated to the image.

For a general intermediate SVM (hereafter indicated by the index j ∈
{2CH0/1

, 1CH0 , 1CH1}), the decision function dj(xxx) learned by the classifier is

expressed as:

dj(xxx) =
n∑
i=1

yiαj,iKj(xxxi,xxx) + bj , (6.1)

where n is the number of training images, Kj(xxxi,xxx) is the kernel function of

the SVM, bj is the bias term, and αj is a vector of scalars with 0 ≤ αj,i ≤ Cj
where Cj is the cost term, that is, the penalty parameter of the error term

(over the training set) of the SVM optimization problem [42]. In our case,

xxxi is the SPAM feature vector of the i-th image; then, r = 686 and xxxi ∈
R686. For the 2CH0/1

SVM, we set yi = 1 for the images of the manipulated

class and yi = 0 for the pristine ones. For the 1C SVMs (1CH0 , 1CH1 ,and

1CcmbH0
) instead, training is unlabeled, that is, the SVMs are trained with (xxxi)
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only, and the decision function is given by (6.1) with yi = 1, ∀i [177]. In

particular, we adopt an RBF (Radial Basis Function) kernel for the SVMs,

that is, Kj(xxxi,xxx) = exp(−γj‖xxxi − xxx‖2), where γj determines the width of the

Gaussian kernel.

In a similar way, the decision function of the final combination classifier

(1CcmbH0
) is expressed by,

f(xxx) =

n∑
i=1

αf,iKf (d(xxxi),d(xxx)) + bf , (6.2)

where fffd(xxx) = (d1(xxx), d2(xxx), d3(xxx)) is the vector of the soft outputs of the

intermediate classifiers when the input feature vector is xxx, 0 ≤ αf,i ≤ Cf
and Cf is the cost term. The kernel Kf is again an RBF with parameter

γf . The best parameters γ∗j and C∗j (and γ∗f and C∗f ) of the classifiers, often

referred to as hyper-parameters or internal parameters, are determined during

the validation phase.

Some observations are in order. In a 2C SVM, the parameter C rules the

tradeoff between the margin of the separating hyperplane in the higher di-

mensional space (the transformation of the input xxx to the higher-dimensional

space defines the kernel [42]) and the misclassification of the training points.

A large C means that getting all the training points classified correctly, and

then a smaller margin, is preferable, even if this goes with the risk of data over-

fitting. For 1C SVMs, according to the formulation by Schölkopf et al. [178],

the selection of the hyper-parameters is conventionally carried out by consid-

ering γ and ν = 1/C (rather than γ and C), where ν determines the margin

of the decision region in the higher-dimensional space. More specifically, the

parameter ν sets an upper bound on the fraction of errors, i.e., training sam-

ples being misclassified [177] (for instance, by setting ν = 0.05, at most 5% of

the training samples are allowed to be wrongly classified).

The most important parameter for both 2C and 1C SVMs in the case of

RBF kernel is γ, which determines the width of the kernel and then determines

how far the influence of a training sample reaches. Specifically, γ defines the

inverse of the radius of influence: the smaller is γ, the fewer support vectors

are selected and the decision region becomes more spherical. Essentially, γ

regulates the tradeoff between capturing the complex shape of the data (large
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γ) and avoiding overfitting (small γ). If γ is too large, the radius of the area

of influence of the support vectors includes almost only the support vector

itself and no choice of the regularization terms C and ν is able to prevent

overfitting.

6.2.3.1 Choice of the hyper-parameters of intermediate classifiers

We optimized the hyper-parameters of 2CH0/1
on the validation set by means

of an exhaustive search. To do so, we first split the validation set into a

training and test set. Then we trained the system for every choice of the

parameters (C, γ), then we chose the pair with the best test accuracy, that

is the pair that minimizes Pe = 0.5Pfa + 0.5Pmd. For better performance in

terms of generalization capability, standard v-fold cross validation was also

performed for every C and γ [179], that is, we repeated the process v times

each time by splitting the set in a different way. The pair (C, γ) with the best

average cross-validation accuracy was then selected and used for training the

system on the training set.

Similarly, for 1CH0 and 1CH1 , we carried out an exhaustive search over

both γ and ν to find the pair leading to the best accuracy. However, the

1C classifiers tend by construction to have poor performance with respect to

the alternative class, i.e., the class of samples not used for training. Since we

wish to avoid missed detection events (H1 detected as H0), in order to increase

the security against integrity violation attacks, we validated the 1C SVMs by

weighting differently the two kinds of error probabilities. Let α and β be the

weights assigned to the probability of a false alarm and a missed detection,

respectively. While for 2CH0/1
we let α = β, for the 1C classifiers we set

α < β so that the classifiers are trained in such a way to minimize the error

probability term αPfa+βPmd. This corresponds to consider a relatively small

closed acceptance region for 1CH0 and 1CcmbH0
, and a relatively large closed

region for 1CH1 . The situation is illustrated in Figure 6.4. According to the

adversarial setup we are considered (see Figure 6.1(b)), in fact, the attacker

aims at entering the pristine region, or equivalently, exiting the manipulated

region; then, choosing α lower than β should improve the performance of the

1C classifiers in the presence of attacks. Obviously, a considerable unbalance

between the two weights may imply worse performance in the absence of
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H0 
Pristine

H1 
Manipulated

(a) 2CH0/1
: α = β

H1 
Manipulated

H0 
Pristine

(b) 1CH0 : α < β

H0
Pristine

H1
Manipulated

(c) 1CH1 : α < β

H1 
Manipulated

H0 
Pristine

(d) 1Ccmb
H0

: α < β

Figure 6.4: Pictorial representation of the decision regions of the classifiers

composing the overall 1.5C detector. To get an advantage in terms of security,

the 1C classifiers are designed by letting α < β. As a consequence, the 1C

classifiers trained on pristine images - (b) and (d)- will have smaller acceptance

regions, whereas the 1C trained on manipulated images - (c) - will have quite

a large acceptance region.

attacks. However, we verified that, thanks to the presence of 2CH0/1
, the

overall robustness of the 1.5C classifier remains good even when α is much

lower than β and then the 1C SVMs are designed by focusing more on the

security performance, at the possible cost of a lower robustness.
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6.2.4 Evaluation methodology

The goal of the 1.5C detector is to combine the good performance of a 2C

classifier in the absence of intentional attacks (robustness) and the improved

security achieved by 1C classification (security). To prove that this is indeed

the case, we will show that the 1.5C detector is more robust than the inter-

mediate 1C classifiers and that attacking the 1.5C detector requires a larger

distortion with respect to attacking the intermediate 2C classifier. In the next

subsections, we describe the exact methodology we have followed for our tests,

while the results we have got are presented and discussed in Section 6.3.

6.2.5 Goal of the detectors

To asses the effectiveness of the 1.5C architecture, we focused on the detection

of three different kinds of image manipulations, namely geometric transfor-

mation, filtering and contrast enhancement. Specifically, we considered the

following three processing operations: resizing, median filtering and histogram

equalization. With regard to resizing, we considered a bicubic interpolation

and a resizing scaling factor (zooming factor) equal to 1.3.

For median filtering, we set the window size to 3× 3, so to keep the visual

degradation of the filtered image limited. Finally, for histogram equalization,

we considered the Clip-Limited Adaptive Histogram Equalization (CLAHE)

algorithm [155]. With respect to standard Adaptive Histogram Equalization

(AHE), CLAHE does not over-amplify noise in relatively homogeneous regions

as done by AHE, by clipping the histogram before computing the enhancement

transformation. In our experiments, the clip-limit parameter was set to 0.05.

When working with color images, the CLAHE operator is applied to the

luminance channel, precisely to the Vchannel (then, the image is converted from

the RGB to the HSV color space). This is a commonly adopted strategy, since

the straightforward application of CLAHE to each color channel separately

would unnaturally change the color balance and produce a visually unpleasant

image. The same strategy is followed for the case of median filtering, which,

once again, is applied to the luminance channel only (the Vchannel in our case).

An example of a pristine image and the corresponding processed images is

given in Figure 6.5.
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(a) Pristine image (b) Histogram equalized image

(CLAHE)

(c) Median filtered image

(d) Resized image

Figure 6.5: Visual comparison between a pristine image (H0) and its manipu-

lated versions (H1), for the processing operators considered in this work. The

clip-limit parameter for the CLAHE is 0.05; the windows size for the median

filter is 3× 3; resizing is applied with a zooming factor equal to 1.3.
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6.2.6 Datasets creation

To produce the datasets for our experiments, we considered camera-native

(uncompressed) images. The images of the dataset were used to train, validate

and test the three intermediate classifiers (2CH0/1
, 1CH0 ,and 1CH1). The set

of images used for testing is further split to build the training and test sets for

the final combination classifier 1CcmbH0
. More specifically, let us denote with

SV the set of images used for the internal validation of the hyper-parameters

of the intermediate classifiers, where STr is the set used for training, and ST
the set used for testing, see Figure 6.6.

The test set ST is further split into three sets, namely SvT , StrT and StT ,

used, respectively, for internal validation, training and testing of 1CcmbH0
. Since

the dimensionality of the input feature vector of the downstream 1C is very

low, corresponding to the three soft outputs of the intermediate classifiers

(d ∈ R3), the number of images in SvT , StrT and StT (and hence in ST ) does

not need to be very large.

Starting from the above sets, no processing is applied to build the samples

of the first class (H0 - pristine images), see Figure 6.1(a). For the second

class (H1), the samples are built by applying different processing operators,

as detailed in Section 6.2.5.

6.2.7 Robustness analysis

The robustness of the 1.5C detector is assessed by adopting the setup illus-

trated in Figure 6.1(a). Therefore, the system is trained and tested under the

same conditions, i.e., by assuming that there is no attack at test time.

The performance of the 1.5C system are measured over the test set StT ,

i.e., the set used for testing the final 1C classifiers. The metric used is the

Area Under Curve (AUC) of the ROC curve of the classifier. By comparing

these results with those achieved by 2CH0/1
(which is tested on the entire ST

set - see Figure 6.6), we can compare the performance of the 1.5C architecture

with respect to a conventional 2C classifier, and assess the - possible - drop

of performance experienced in the former case.1 In general, 1C classifiers

1We verified experimentally that the fact that the performance of 2C and 1.5C are not

tested exactly on the same set does not affect the results.
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are known to have poor robustness in presence of post-processing, limiting

their applicability in practice. To show that this is not the case with the

overall 1.5C architecture, we also run some experiments to assess the robust-

ness performance of the 1.5C classifier in the presence of noise addition and

JPEG post-processing. Results confirm that, thanks to the presence of the

intermediate 2C classifier, the 1.5C system performs much better than the

intermediate 1C detectors in terms of robustness. For sake of simplicity, for

these tests, we only considered the case of resizing detection. The exact results

of our experiments will be detailed in Section 6.3.

Figure 6.6: Datasets used for training and testing the classifiers of the 1.5C

system. {SvT ∪ StrT ∪ StT } ≡ ST .

6.2.8 Security assessment

The security of the 1.5C classifier is assessed by evaluating the performance

of the system under attacks (see Figure 6.1(b)). These performance are com-

pared against those achieved by 2CH0/1
, when tested under the same attack.

The goal of this analysis is to validate the expectation that the 1.5C architec-

ture offers a security advantage over 2C classification, in that attacking the

system introduces a larger distortion into the attacked images.

In our scenario, the attacker aims at inducing a missed detection error,

by minimizing the distortion introduced into the image. It is worth stressing

that, a targeted PK attack is always successful in causing a misclassification,

i.e., it always enter the H0 region. However, it is expected that attacking a

more secure classifier will require a larger distortion.
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Regarding the attack algorithm, we considered the gradient-based attack

against SVM detectors described in [7]. The attack works by computing an

approximation of the gradient of the SVM output with respect to the image

pixels. The approximated gradient provides an approximation of the steepest

descent direction of the decision function. Then, the step size (strength of

the attack) is adjusted by controlling the percentage of modified pixels. If the

image cannot be successfully attacked by modifying a maximum prescribed

fraction of pixels, the modification is applied and the process is iterated. As

opposed to other approaches, the attack proposed in [7] is directly carried out

in the pixel domain and then it can be applied even when the relationship

between the feature and the pixel domain is not invertible, as it is the case

with the SPAM features. The implementation of the attack passes through

the definition of a safety margin ρ [7], which determines how much the attack

goes inside the acceptance region. By choosing a larger ρ (so to move the

attacked image more deeply inside the H0 region), the attack is more robust

to perturbations of the decision boundary. This advantage goes at the price

of a larger distortion introduced in the image.

In order to compare the security of the 1.5C classifier with respect to the

2C one, we run the targeted attack in [7] against 2CH0/1
and 1CcmbH0

. The

performance of the classifiers under attacks are assessed on a subset of images

in StT , processed with median filtering, resizing and CLAHE and then attacked

by means of the attack described above.

6.3 Experimental Results

The camera-native (uncompressed) images used for our experiments were

taken from the RAISE-8K dataset. Specifically, a total amount of 7997 im-

ages were used, split as follows (see Figure 6.6): 1000 images were selected to

build the validation set SV , 5000 for the training set STr, and the remaining

1997 for ST . Then, the images in ST were further split to build the validation,

training and test sets used for the combination classifier as follows: 300 images

were used to build SvT , 700 for StrT and the remaining 997 images to build StT .

Note that a much lower number of images would be sufficient for testing the

final SVM which is trained on just 3-dimensional input feature vectors. The



102
6. Improving the Security of Image Manipulation Detection Through

One-and-a-half-class Multiple Classification

images from every set were then processed to build the class of H1 samples,

whereas the unprocessed images were used to build the class of pristine images

(H0). For security assessment, the attack in [7] was applied to 100 images

in the set StT belonging to the H1 class. To speed up the feature extraction

step and the attacks, we sub-sampled the images from the RAISE-8K dataset

down to a size of about 1072× 770 without interpolation.

The Matlab environment was used to process the images and to design the

classifiers of the 1.5C system. All SVMs were trained and tested by using the

LibSVM library package [162]. We run our experiments on a system hardware

Intel(R) Core i7-6700 CPU @ 3.40 GHz with four cores, and 32 GB of RAM.

6.3.1 Hyper-parameters setting

As anticipated in Section 6.2.2, the SPAM features are extracted from the V

channel, obtained by converting the image from the RGB to the HSV color

space. Regarding the weights assigned to the two types of error probabilities

during the validations phase, we set α = 0.2 (β = 0.8) for 1CH0 and 1CH1 and

α = 0.1 (β = 0.9) for 1CcmbH0
. In making this choice of α and β, we verified

that the system robustness is not affected too much by the use of heavily

asymmetric weights. For validating the internal parameters of 2CH0/1
, we

followed the standard exhaustive search method (known as grid-search) in

the LibSVM library [162], which considers exponentially growing values for

C and γ to identify the best parameters [180]. Specifically, we considered the

following grid-search area: C ∈ {2−5, 2−3, ..., 215} and γ ∈ {2−15, 2−13, ..., 23}
and performed a 5-fold cross validation (i.e. ν = 5).

To set the hyper-parameters of 1CH0 , 1CH1 , and 1CcmbH0
, we followed a

similar strategy by taking ν, γ ∈ {2−10, 2−9, ..., 29, 210}. In addition, since

the distribution of the samples used for internal parameter validation is very

important to learn correctly the hyper-parameters of the 1C SVMs, we used

the entire training set to train the SVMs during the exhaustive search; then,

the validation set was used only to perform testing in this phase and choose the

pair (γ, ν) providing the best accuracy. To limit the computational burden,

v-fold cross validation was not performed in this case.

Table 6.1 shows the best hyper-parameters (C∗, γ∗) for 2CH0/1
and (ν∗,γ∗)

for the three 1C SVMs. From the tables, we see that, for the 1CcmbH0
SVM,
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Table 6.1: Hyper-parameters of the SVMs classifiers.

2CH0/1
1CH0 1CH1 1CcmbH0

Resizing C∗ = 211 ν∗ = 2−3 ν∗ = 2−9 ν∗ = 2−10

γ∗ = 2−1 γ∗ = 29 γ∗ = 27 γ∗ = 2−10

Median filter C∗ = 211 ν∗ = 2−5 ν∗ = 2−9 ν∗ = 2−10

γ∗ = 2−1 γ∗ = 27 γ∗ = 26 γ∗ = 2−10

CLAHE C∗ = 211 ν∗ = 2−3 ν∗ = 2−10 ν∗ = 2−10

γ∗ = 2−1 γ∗ = 29 γ∗ = 27 γ∗ = 2−10

the minimum values of ν and γ are selected, meaning that the SVM is able

to get a low probability of erroneous classification of the training samples by

relying on very few support vectors, hence minimizing the risk of overfitting.

6.3.2 Performance in the absence of attacks

The values of the decision functions of the four SVM classifiers over the test

set are reported in Figure 6.7 for the case of resizing detection. We see that

2CH0/1
is able to tell apart pristine and manipulated images, obtaining perfect

classification in the absence of attacks; moreover, the scatter plot shows that

the clouds of points are very well separated. The two intermediate 1C SVMs

also achieve high-accuracy, but the classification is not perfect. Finally, 1CcmbH0

achieves almost perfect classification, similarly to 2CH0/1
. For both 2CH0/1

and 1CcmbH0
, the decision threshold is set to 0. Note that while for 2CH0/1

,

1CH0 and 1CcmbH0
, the label y = 1 is assigned to the images of the pristine

class (H0), for 1CH1 , y = 1 is assigned to the manipulated class (H1), and

that is why the scatter plots in Figure 6.7c are reverted. Very similar results

were obtained for median filtering and CLAHE. Table 6.2 shows the AUC

values of the ROC curve for 2CH0/1
and the 1.5C classifiers, as well as those

of the intermediate 1C SVMs, for each detection task. We observe that by

using 1CcmbH0
, instead of 2CH0/1

, the performance drops very slightly in all the

cases.
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(a) 2CH0/1

(b) 1CH0

(c) 1CH1

(d) 1Ccmb
H0

Figure 6.7: Decision values of the four SVMs trained for resizing detection on

the test set, for both H0 (pristine samples) and H1 (manipulated samples).

Decision values of 2CH0/1
for the images in ST (a); decision values of the

intermediate 1C classifiers (1CH0 ,and 1CH1) for the images in ST (b)-(c);

decision values of 1CcmbH0
for the images in StT (d).
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Table 6.2: AUC values of all the classifiers for the three manipulation detection

tasks. The performance of the 1.5C system are those reported for 1CcmbH0
.

2CH0/1
1CH0 1CH1 1CcmbH0

Resizing 1 0.96 0.96 0.99

Median filter 1 0.99 0.99 0.99

CLAHE 1 0.95 0.97 0.99

6.3.2.1 Robustness of the classifiers

To assess the robustness of the 1.5C architecture compared to the 2C and the

1C detectors, we evaluated the performance of 2CH0/1
, 1CH0 , 1CH1 and 1CcmbH0

in the presence of Gaussian noise with zero mean and variance σ2 = 5 · 10−6,

10−5, 1.5 · 10−5 and 2 · 10−5 (standard deviation ranging from σ = 0.0022 to

σ = 0.0045), and in the presence of JPEG compression with Quality Factors

(QF) 85, 90, 95, and 98. For the case of noise addition, the average Mean

Square Error (MSE) introduced by the noise ranges from 0.3 to 1.

Tables 6.3 and 6.4 show the average accuracy of the tests on noisy images

and JPEG compressed images respectively, for the resizing detection task. We

see that while the performance of the 1Cs classifiers are significantly impaired

by the post-processing, the 1.5C classifier is more robust and its performance

remain comparable to those of the 2C detector.

Table 6.3: Robustness of the classifiers in the presence of JPEG compression

(accuracy).

QF 2CH0/1
1CH0 1CH1 1CcmbH0

85 0.90 0.71 0.83 0.88

90 0.94 0.75 0.87 0.93

95 0.98 0.82 0.90 0.97

98 0.99 0.87 0.91 0.99
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Table 6.4: Robustness of the classifiers under noise addition (accuracy).

Noise Parameter 2CH0/1
1CH0 1CH1 1CcmbH0

5 · 10−6 0.87 0.78 0.84 0.93

10−5 0.84 0.79 0.85 0.92

1.5 · 10−5 0.79 0.80 0.87 0.89

2 · 10−5 0.74 0.82 0.89 0.83

Expectedly, if we consider a larger noise (or a stronger compression), the

performance of the classifiers drop. In order to design a classifier that works

properly under these conditions, a possibility is to consider an aware classifier,

which takes into account the possible presence of post-processing during the

training phase, by including post-processed samples in the training set [133].

This analysis is outside the scope of this work, since here we are interested in

validating the 1.5C architecture, so we leave it for a future work.

6.3.3 Performance under attacks

In this section, we assess the performance of 2CH0/1
and the 1.5C classifiers

in the presence of attacks [7]. In all the experiments, the safety margin ρ for

the attack is set to 0.

6.3.3.1 Attack against 2CH0/1

For each detection task, we first run the attack against 2CH0/1
. As expected,

the attack is always successful in inducing an incorrect classification and 100%

of the manipulated images are classified as pristine images after the attack.

Moreover, all the images can be attacked in just one iteration of the algorithm

in [7]. Figure 6.8a shows the results for the case of resizing detection. Since

we set ρ = 0, the attack stops as soon as the decision boundary is crossed.

The values of the decision function for the other SVMs of the 1.5C c classifier

are shown in Figure 6.8 (from 6.8b to 6.8d)2. From Figure 6.8d, we see that

2Note that, while for 2CH0/1
, 1CH0 and 1Ccmb

H0
the attack is successful when it brings

the pristine samples above the threshold, for 1CH1 , the goal of the attacker is to move the
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(a) 2CH0/1

(b) 1CH0

(c) 1CH1

(d) 1Ccmb
H0

Figure 6.8: Decision values of the four SVMs on the 100 images in StT in

the presence of the attack in [7] under H1, for the resizing detection task.

The attack is carried out against the 2CH0/1
. Decision values of 2CH0/1

(a);

decision values of the intermediate 1C classifiers (1CH0 , and 1CH1) (b)-(c);

decision values of 1CcmbH0
(d).
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attacking 2CH0/1
is not enough to fool the 1.5C classifier: the attacked samples

in fact remain much below the decision threshold and the attack success rate

is 0%. The success rate of all the attacks is reported in Table 6.5, where the

percentage of misclassified attacked samples for the four SVMs is provided for

the three detection tasks. Figure 6.9 shows an example of processed image

for the three different tasks, before and after the attack against the 2CH0/1

classifier.

Table 6.5: Percentage of misclassified attacked images. The attack is carried

out against 2CH0/1
.

2CH0/1
1CH0 1CH1 1CcmbH0

Resizing 100% 1% 8% 0%

Median Filter 100% 4% 3% 0%

CLAHE 100% 20% 12% 0%

6.3.3.2 Attack against the 1.5C classifier

Figures 6.10 shows what happens when the attack is carried out against the

1.5C classifier. In this case, most of the times, the attack requires more than

one iteration to enter the H0 region. The figure refers to the case of resizing

detection, however, similar results are obtained for the other manipulations.

We observe that the values of the decision function for 2CH0/1
on the attacked

samples lie above the 0 threshold, and then the attack against the 1.5C is also

effective against 2CH0/1
. Moreover, we see that the attack is not much effective

against 1CH0 , and quite ineffective against 1CH1 , thus confirming that, thanks

to the adoption of a closed acceptance region, the 1C classifiers are more

difficult to attack. Accordingly, the attack is successful in inducing a wrong

classification for the 1.5C, mainly because 2CH0/1
fails to a strong extent. This

suggests that, in order to be successful against the 1.5C detector, the attack

has to introduce a larger distortion into the image. The attack success rate

against the four SVMs is reported in Table 6.6, for all the detection tasks.

samples below the threshold.
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(a) H1 sample for CLAHE (b) Attacked version of the

CLAHE image

(c) Difference between (a)

and (b)

(d)H1 sample for median fil-

tering

(e) Attacked version of the

median filtered image

(f) Difference between (d)

and (e)

(g) H1 sample for resizing (h) Attacked version of the

resized image

(i) Difference between (g)

and (h)

Figure 6.9: Visual comparison of processed image before and after the attack

to the 2CH0/1
.

Figure 6.11 shows an example of processed image for the three different tasks,

before and after the attack against the 1CcmbH0
classifier.

Table 6.7 compares the attack against 2CH0/1
and the 1.5C detector in

terms of MSE of the attack. Specifically, the MSE averaged on the 100 at-

tacked images in StT is reported in the table for the two attacks. The values

are referred to the image range (0 : 255). We see that, in order to make the
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(a) 2CH0/1

(b) 1CH0

(c) 1CH1

(d) 1Ccmb
H0

Figure 6.10: Decision values of the four SVMs on the 100 images in StT in the

presence of the attack in [7] under H1, for the resizing detection task. The

attack is carried out against the 1.5C classifier. Decision values of 2CH0/1
(a);

decision values of the intermediate 1C classifiers (1CH0 ,and 1CH1) (b)-(c);

decision values of 1CcmbH0
(d).
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(a) H1 sample for CLAHE (b) Attacked version of the

CLAHE image

(c) Difference between (a)

and (b)

(d)H1 sample for median fil-

tering

(e) Attacked version of the

median filtered image

(f) Difference between (d)

and (e)

(g) H1 sample for resizing (h) Attacked version of the

resized image

(i) [Difference between (g)

and (h)

Figure 6.11: Visual comparison of processed image before and after the attack

to the 1CcmbH0
.

1.5C classifier fail, the attacker must introduce a larger MSE with respect to

the case in which the targeted classifier is 2CH0/1
: the average value of the

MSE in the case of the attack against the 1.5C detector is more than twice

that necessary for the case of resizing and contrast enhancement and almost

double for the case of median filtering. The average percentage of pixels mod-

ified by the two attacks are reported in Table 6.8. The table confirms that, in
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Table 6.6: Percentage of misclassified attacked images. The attack is carried

out against 1CcmbH0
.

2CH0/1
1CH0 1CH1 1CcmbH0

Resizing 100% 1% 9% 100%

Median Filter 100% 20% 21% 100%

CLAHE 100% 23% 14% 100%

Table 6.7: Average MSE.

Resizing median Filter CLAHE

Attack against 2CH0/1
0.10 0.22 0.27

Attack against 1CcmbH0
0.17 0.60 0.43

order to be successful against the 1.5C classifier, the attacker has to modify a

larger number of pixels. The average Structural Similarity (SSIM) index [181]

has also been reported in Table 6.9.

Table 6.8: Average percentage of pixels modified by the attack.

Resizing median Filter CLAHE

Attack against 2CH0/1
9.5% 15.1% 12.3%

Attack against 1CcmbH0
13.4% 25.1% 15.1%

6.3.4 Comparison with 2C classifier based on Convolutional Neural

Networks (CNNs)

In order to assess the performance of the proposed system with respect to

state of the art CNN-based image manipulation detection, in this section, we

consider the case of CNN-based 2C classification in the presence of a targeted
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Table 6.9: Average SSIM.

Resizing median Filter CLAHE

Attack against 2CH0/1
0.9794 0.975 0.9920

Attack against 1CcmbH0
0.9609 0.958 0.9868

attack. For these experiments, we considered the CNN architecture in [8], used

in the literature for several manipulation detection tasks. We set the input

patch size to 128×128. The datasets for training and testing the models were

obtained by splitting into blocks the images in STr and SV for training (and

validation) and ST for testing. The same parameters setting used in [8] has

been adopted for training the models (optimization solver, learning rate, batch

size, etc . . . ). All the models were trained on 20 epochs. The average test

accuracy of the trained CNN models are 97.8%, 81% and 86.9% for resizing,

median filtering and CLAHE respectively.3 Given a test image, the decision is

made by dividing the image into non-overlapping patches, testing each patch

with the trained model, and then fusing the CNN outputs. For simplicity, the

normalized sum of the decision scores (’0’ for original, ’1’ for manipulated) is

considered as the final score for the entire image. Then, for a given an image,

the decision is made by thresholding the accumulated score. The performance

of the classification are measured again by relying on the ROC curve obtained

by varying the decision threshold: in particular we got AUC=1 for resizing,

AUC =0.98 for median filtering and AUC =0.93 for CLAHE.

To attack the CNN classifiers, we considered the well known Jacobian-

based Saliency Map Attack (JSMA) method [119], due to its good effective-

ness even in the presence of integer rounding. To keep the distortion low,

the attack is applied with the following setting: the relative amount of pixel

modification (θ) is set to 0.005; the maximum number of times the same pixel

can be modified is set to 3; finally, the maximum number of iterations for the

3The detection median filtering with a small (3 × 3) window, as well as the detection of

CLAHE, are not easy tasks. Deeper networks could give better performance in this cases;

however, this goes at the price of lower robustness against attacks, as deeper models are

known to be more vulnerable to attacks than shallow ones [117].
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attack is set to 8000. We verified that similar performance are obtained by

using the pixel-domain attack in [182] which extends the attack in [7] devel-

oped for the SVMs, to the case of CNNs. As before, the attack is applied

to 100 of images from the test set StT , belonging to the H1 class. In order

to be successful, the attack should be able to fool the CNN model, and then

revert the decision, for at least half of the patches of the image. To minimize

the overall distortion, the ’most favorable’ patches are considered by the at-

tack, that is, those patches that can be attacked by introducing the minimum

(MSE) distortion.

The final average MSE of the attack, averaged on all the 100 images, was:

0.055 for resizing, 0.094 for median filtering and 0.347 for CLAHE. We observe

that these MSE values are lower than those obtained with the 2C SVM for the

case of resize and median filtering detection, and always lower (significantly

lower) than those for the 1.5C case (see Table 6.7). This is not surprising,

since it is known that CNNs are vulnerable to adversarial attacks and can be

attacked by introducing very small perturbations. Assessing the security gain

that can be obtained by using CNNs to build a 1.5C classifier is an interesting

piece of work, and will be considered as a future research.

6.4 Concluding Remarks

In this chapter, we have described to use a multiple classifier architecture,

referred to as 1.5C classifier, to mitigate the damage made by an attacker

with perfect knowledge acting against an image manipulation detector. In

such a situation, the only possible defence for the analyst is to use a detector

which is intrinsically more difficult to attack. This is the case of 1C classi-

fiers, which, however, have the drawback of achieving inferior performance

with respect to more conventional 2C classifiers. By properly combining one

2C classifier and three 1C classifiers, the 1.5C classifier couples the advan-

tages of 2C and 1C solutions, achieving a superior security while retaining

the good performance of 2C classification in the absence of attacks. We im-

plemented a particular instantiation of the proposed architecture by relying

on four SVMs, and we trained it so to detect three kinds of image manipula-

tions, namely median filtering, resizing and adaptive histogram equalization.
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The experimental analysis we carried out confirms that the 1.5C architecture

is harder to attack than a 2C classifier with similar performance.





Chapter 7

On the Transferability of Adversarial Examples
Against CNN-Based Image Forensics

”Securing a computer system has traditionally been a battle of wits: the

penetrator tries to find the holes, and the designer tries to close them.”

Gosser

R
ecent research in Deep Learning (DL) has shown that adversarial exam-

ples against Convolutional Neural Network (CNN) classifiers present a

certain degree of transferability, i.e., they maintain part of their effectiveness

even against CNN models other than the one considered for the attack. In

this chapter, we investigate if and to which extent transferability holds against

CNN models developed for Image Forensic applications.

The chapter is organised as follows: in Section 7.1, we discuss the reason

behind the investigation we carried out, pointing out the consequences of the

transferability attacks. A brief introduction to the most common adversarial

attacks against DL classifiers is provided in Section 7.2. Then, in Section

7.3, we describe the methodology used for our experiments, including the

algorithms used to generate the adversarial examples, the CNN architectures

targeted by the attacks, the description of the experimental campaign, and

the datasets used for training and testing the CNNs. The results of the

experiments are presented in Section 7.4, together with a discussion of our

main findings.

7.1 Motivation and Contribution

As we said in the introductory part of this thesis (Chapter 2) Convolutional

Neural Networks (CNN) are increasingly used in a wide variety of image
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forensic applications due to their superior performance compared to standard

machine learning techniques (e.g., SVMs, NNs,...). However, as we already

mentioned in Chapter 3, such widespread use of CNNs is hindered by the

easiness with which adversarial attacks, namely adversarial examples, can be

built [117, 119, 183]. As a matter of fact, an attacker who has access to the

internal details of the CNN used for a certain image recognition task can easily

build an attacked image which is visually indistinguishable from the original

one, but is misclassified by the CNN. Such a problem is currently the subject

of an intense research activity, yet no satisfactory solution has been found

yet (see [184] for a recent survey on this topic). The problem is worsened by

the observation that adversarial attacks, carried out against a given network,

are often transferable to other networks designed for the same task [13]. This

means that even in a Limited Knowledge (LK) scenario, wherein the attacker

has only partial information about the to-be-attacked network, he can attack

a surrogate network mimicking the target one and the attack will be effective

also on the target network with large probability. Such a property opens

the way towards very powerful attacks that can be used in real applications,

where the attacker does not have full access to the attacked system.

Given that CNN-based image forensic tools are also endangered by the

existence of adversarial examples, as shown by many recent literature (see

Chapter 3, Section 3.2.4), the issue of the transferability of such adversarial

examples in image forensics applications is worth investigation. In fact, even

denying to the attacker a full access to the forensic tools would not guarantee

that the forger can not mislead the forensic analysis. Prior to our work, this

problem was only partially addressed by some few scattered works, like, [116]

and [123]. In particular, in [116] reports some tests aiming at assessing the

transferability of adversarial examples targeting various CNN-based camera

model identification systems. According to [116], in a camera model identifi-

cation scenario, attacks are only partially transferable, since the transferred

attack succeed in no more than 40% of the cases (often much less). In [123],

the transferability between different network models is assessed by consid-

ering a specific adversarial attack, named FGSM [14], which is a fast, yet

suboptimum, attack method (see Section 7.2 for an introduction to the at-

tacks to CNN models). The analyses carried out in the above works are very
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preliminary, hence calling for extensive tests and investigation addressing dif-

ferent sources of mismatch between the attacked network and the targeted

one, different forensics scenarios, and the impact that the attack strength has

on the transferability of the attacks, which is the contribution of this chapter.

Specifically, we consider two forensic tasks boiling down to a binary detection

problem, namely, median filtering and image resizing detection.

As we will see, our experiments cast serious doubts on the transferability

of adversarial attacks against CNN models in image forensic applications, thus

opening the way to the development of proper countermeasures, enforcing a

LK scenario (e.g., the feature randomization approach considered in the next

chapter).

7.2 Attack against DL models

In general, the attacks tailored to deep learning CNN models can be split into

two groups, targeted and untargeted attacks. Targeted attacks aim at fooling

a deep-learning model by inducing the model to output a specific target label

for the adversarial image, while untargeted attacks aim at letting the trained

network to misclassify the input, regardless of the output label. Obviously,

for a binary classification or detection task (which is the case we focus on in

this thesis), there is no difference between targeted and untargeted attacks.

With reference to binary classification, in the following, we present some

of the most famous and common adversarial attacks to CNN models proposed

in the DL literature. These attacks are all gradient-based methods, designed

for a white-box scenario (the CNN model used to craft the adversarial image

is fully known to the attacker).

7.2.1 L-BFGS

Authors in [117] generated adversarial examples using box-constrained L-

BFGS.

Given an image X, the method looks for an image Xadv, that is similar

to X under the L2 distance, yet is labeled differently by the classifier. Let y

be the ground truth class of X, then, Xadv is such that l(Xadv) 6= y, that is,

l(Xadv) = 1− y, where l() denotes the class label (then, l(Xadv) = 0 if y = 1,
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and viceversa). The constrained minimization problem is formalized as

min
X′

||X −X ′||22

s.t. l(X ′) = 1− y. (7.1)

This problem is very difficult to solve. An approximately optimum solution

is then found in [117] by solving the following relaxed problem:

min
X′

c||X −X ′||22 − Jθ(X, y), (7.2)

where Jθ(X, y) denotes the loss function (e.g., the cross-entropy) of the neu-

ral network model with parameters θ, and c is a scalar. The gradient-descent

algorithm is applied to solve (7.2). Line search is performed to find the con-

stant c > 0 that yields an adversarial example at minimum distance: in other

words, the optimization problem is solved for multiple values of c, adaptively

updating c using bisection search or any other method for one-dimensional

optimization.

In general, L-BFGS is computationally very demanding; therefore, fast,

although suboptimum, attack algorithms have also been proposed.

7.2.2 Fast Gradient Sign Method (FGSM) and Iterative FGSM (I-

FGSM)

The Fast Gradient Sign Method (FGSM) was originally proposed in [14], as

a fast, suboptimum, attack method.

Given an image X, FGSM sets

X ′ = X + ε(max(X)−min(X)) · sign(∇XJθ(X, y)) (7.3)

where ε is the (normalized) strength of the attack which has to be sufficiently

small so as to be undetectable, and strong enough to achieve misclassification.

Intuitively, for each pixel, the fast gradient sign method uses the gradient of

the loss function to determine in which direction the pixel’s intensity should be

changed; then, it shifts all pixels simultaneously. The fast gradient sign attack

was designed to be a fast attack, computationally much more efficient than

L-BFGS, yet it does not produce a close-to-minimal adversarial perturbation.
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(another difference with respect to the L-BFGS is that optimized for the L∞

distance metric instead of the L2.)

The one-shot attack in (7.3) often fails to get the adversarial images. A

less suboptimum scheme can be obtained by considering the refined iterative

version of the attack: specifically, at each iteration i + 1, the adversarial

perturbation is obtained as detailed above and the image is updated as

Xi+1 = Xi + ε(max(Xi)−min(Xi)) · sign(∇XJθ(Xi, y)) (7.4)

for some small strength ε (hence, each time, the attack makes a small step in

the direction of the gradient sign).

In practical implementations, the iterative algorithm is applied for a max-

imum number of steps (the process stops when an adversarial image is ob-

tained, prior that the prescribed maximum number of steps is reached).

7.2.3 Jacobian-based Saliency Map Attack (JSMA)

Papernot et al. introduced an attack optimized under the L0 distance [119],

known as the Jacobian-based Saliency Map Attack (JSMA). Roughly speak-

ing, JSMA consists of a greedy iterative procedure which relies on forward

propagation to compute, at each iteration, a saliency map, indicating the pix-

els that contribute most to the classification (specifically, a large value in this

map indicates that changing that pixel yields a significant increase of the like-

lihood of the wrong class). The pixels are then modified based on this map,

one at the time, by a relative amount θ, θ < 1 (θ is relative to the range of the

values of the image, the pixel modification being θ·(max(Xi)−min(Xi))). The

procedure ends when one of the following conditions occurs: the attacker suc-

ceeds in changing the classification result, hence getting an adversarial image

Xadv such that l(Xadv) 6= y; too many pixels are modified by the attack (that

is, an adversarial image cannot be found for a given maximum L0 distortion);

the prescribed maximum number of iterations is reached.

7.2.4 Projected Gradient Descent (PGD)

The Projected Gradient Descent (PGD) attack, proposed by [185], cares about

finding the perturbation that maximizes the loss function under some restric-

tions regarding the L∞ distortion.
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At each iteration i+ 1, the image is first updated according to some rule

getting Xi+1, then, the image is projected onto the space of the images hav-

ing a constrained L∞ distortion from the original image, with the maximum

distortion set to some value α, that is Xi+1 = ΠX+α(Xi+1) (where Π denotes

the projection operator).

When FGSM is considered for the updating (which is the case in practice),

PGD is a multi-step extension of the FGSM attack, similar to the I-FGSM.

Following the (simplified) attack procedure proposed by [186], PDG is imple-

mented as follows: the basic gradient sign attack is applied multiple times

with a small step size or strength ε (ε < α); after every step, the pixel values

of every intermediate results are clipped to ensure that the adversarial im-

age remains in the α-neighbourhood of the original image. Formally, at each

iteration i+ 1, the adversarial perturbation is refined by computing

[Xi+1]r,c = clip([Xi+1]r,c, {−α,+α}), (7.5)

for pixel (r, c), where Xi+1 takes the expression in (7.4).

Due to clipping, this attack may result in a highly suboptimal solution in

some cases. A binary search can be performed over ε and α to optimize the

choice of the hyperparameters.

In [186], the PDG attack applied as described above is called Basic Itera-

tive Method.

7.3 Methodology

In order to evaluate the factors that influence the transferability of adversar-

ial attacks against CNN-based detection of image processing operators, we

considered two different kinds of attacks, two detection tasks solved by re-

lying on two different networks, and three sources of mismatch between the

network used to create the adversarial attack (hereafter referred to as Source

Network - SN) and the one the attack should be transferred to (hereafter

referred to as Target Network - TN). We analysed separately the effect of

different sources of mismatches, namely, training data mismatch and network

architecture mismatch, on the transferability of the attacks.

In particular, we considered the cases of two different networks trained

on the same dataset and the case of a single network trained on different
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datasets. With reference to the terminology established in [13], we refer to

the first type of transferability as cross-model transferability and to the second

as cross-training transferability. We also considered the case of two different

networks trained on different datasets (cross-model-and-training transferabil-

ity). The combination of the above factors resulted in an extensive campaign

of experiments whose results will be discussed in Section 7.4.

7.3.1 Adversarial attacks

In our experiments, the adversarial examples were built by relying on the

FGSM, the JSMA algorithm, and the L-BFGS algorithm, described above.

The Foolbox toolbox [187] was used to implement them. The reason why

we considered in particular the FGSM and JSMA attacks is the following:

being suboptimal attack methods (that attempt to induce a misclassification

while keeping the distortion limited), FGSM and JSMA are expected to be

more robust to a mismatch, hence more transferable, with respect to other

more-close to the optimum gradient-descent attacks, and in particular, the L-

BFGS attack, that looks for the ’minimum’ adversarial perturbation causing

misclassification (i.e., minimizes the distortion). This claim is also supported

by the results we got in Section 7.4.

For the FGSM, we considered the refined iterative version I-FGSM. As

mentioned before (Section 7.2.2), the algorithm is applied iteratively for a

maximum number of steps S. Moreover, several values of ε are considered,

i.e. ε ∈ E; then, the value which minimizes the distortion of the final attacked

image with respect to the original one is selected, for the given maximum

number of iterations of the algorithm S. In the I-FGSM implementation in

Foolbox, ε corresponds to the normalized strength factor (same convention of

the formalism above (7.4)).

With regard to the JSMA algorithm, in addition to the relative amount

θ of pixel modification at each iteration, another important parameter is the

maximum number of times T the same pixel can be modified. We do not

consider any limit on the maximum number of iterations; then, the procedure

ends when the attacker succeeds or the pixels are modified by a too large

amount (i.e., the number of modifications reaches the maximum prescribed

number for all pixels).
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Both the I-FGSM and the JSMA algorithms produce a real-valued at-

tacked image. While in some cases we can assume that the attacked image

is used as is, in most applications image pixels must be mapped back into

the integer domain before being fed to the CNN. This may result in a loss of

effectiveness of the attack, since some of the subtle changes introduced by the

attack are deleted when pixels are rounded (or truncated) to integer values.

7.3.2 Datasets

In order to evaluate the transferability of the attacks when the SN and the TN

are trained on different datasets, we considered the RAISE-2K (R) dataset

and the VISION (V) dataset.

For our experiments, all the 2000 uncompressed, camera-native, images

(.tiff) were taken from the RAISE-2K dataset. The same number of images

were taken from the VISION dataset. To get similar resolution images for

the two datasets, we only selected the mobile devices for which the resolution

was not very different from that of the images of RAISE. Specifically, the

sizes of the images we considered range from a minimum of 2336×4160 up to

3480× 4640. The images from VISION dataset are in JPEG format. In order

to reduce the possible impact of compression artefact, we selected images for

which the JPEG Quality Factor is larger than 97. The images from both

R and V datasets were split into training (and validation) set and test set,

and then processed to produce the images for the manipulated class, namely,

median and resizing. For all our tests we considered one-channel images, then

all the images from R and V were converted to gray-scale.

7.3.3 Networks

In our experiments, we considered two different detection tasks, namely the

detection of image resizing (downsampling by a 0.8 factor) and median fil-

tering (by a 5 × 5 window). To cope with them, we built several networks

generally indicated as N tr
ar(task), where ”ar” indicates the architecture of the

network, ”tr” ∈ {R, V} the dataset used for training and ”task” ∈ {med, res}
the detection task (”med” indicating median filtering and ”res” resizing).

With regard to the architectures, we considered the network in [8] (re-

cently extended in [74]), hereafter referred to as BSnet (”ar” = BS), and the
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one presented in Chapter 5, Section 5.3, hereafter denoted as GCnet (”ar”

= GC). BSnet, originally proposed for image manipulation detection and

classification, consists of 3 convolutional layers, 3 max-pooling layers and 3

fully-connected layers. Residual-based features are extracted by constraining

the filters of the first layer (with 5 × 5 receptive field), by enforcing a high-

pass nature of the filters (see [74] for more details). For the second and third

convolutional layers the filter size is set to 7×7 and 5×5 respectively, and the

stride is set to 2. For the max-pooling, a kernel size 3× 3 is used with stride

2. GCnet is significantly deeper than BSnet, consisting of 9 convolutional

layers. The network has only 2 max-pooling layers and one fully-connected

layer. A kernel size of 3 × 3 and stride 1 was used for all the convolutional

layers. Max-pooling is applied with kernel size 2×2 and stride 2. The number

of parameters is then reduced by halving the number of feature maps in the

final convolutional layer, and considering just one fully-connected layer. The

reader may refer to Section 5.3 for more details on the GCnet architecture.

7.3.4 Experiments

The experimental campaign was designed in such a way to highlight attack

transferability in a wide variety of settings. Experiments have been split into

three categories according to the type of mismatch between the SN and the

TN. We started studying cross-training transferability, according to which

SN and TN share the same architecture, but are trained on different datasets.

Then we passed to analyse cross-model transferability, in which different net-

work architectures are trained on the same dataset. Eventually, we passed to

cross-model-and-training transferability according to which the SN and the

TN share neither the architecture nor the training data. All the tests have

been repeated for both resizing and median filtering detection. For sake of

simplicity we did not consider all possible combinations, however, the amount

of experiments we carried out is sufficient to draw a number of significant

conclusions. In particular, the experiments for the cross-training transferabil-

ity are carried out by considering only BSnet as the SN, trained on R i.e.,

SN = NR
BS (in this case TN = NV

BS) and on V i.e., SN = NR
BS (TN = NR

BS).

For the experiments on the cross-model transferability, BSnet is taken as SN,

GCnet as TN, both trained on R i.e., SN = NR
BS and TN = NR

GC. Finally, for



126
7. On the Transferability of Adversarial Examples Against CNN-Based

Image Forensics

the cross-model-and-training case, we set SN = NV
BS and TN = NR

GC. Table

7.1 summarize the notation for the 6 networks, along with the information

about the architecture, training dataset and task.

Table 7.1: The 6 trained network models considered in the experiments.

Network Task Architecture Training Dataset

NR
BS(res) resize BSnet RAISE

NV
BS(res) resize BSnet VISION

NR
BS(med) median filtering BSnet RAISE

NV
BS(med) median filtering BSnet VISION

NR
GC(res) resize GCnet RAISE

NR
GC(med) median filtering GCnet RAISE

With regard to the attacks, for the I-FGSM case, the number of steps S is

fixed to 10 (default). The best strength is searched in the range E = [0 : εs :

0.1], where εs is the search step size, which also corresponds to the minimum

(normalized) strength ε considered. Setting a larger εs generally corresponds

to consider a stronger attack. In our experiments, we considered εs = 0.001

and 0.01, for which the average PSNR remains above 40 dB. For the JSMA,

T is set to 7. The relative modification per pixel θ is set to 0.01 and 0.1,

the second case corresponding to a stronger attack. We did not consider θ

values larger than 0.1, since above this value the maximum pixel distortion

introduced by the attack starts becoming too large (> 70). For the BFGS,

we considered the default parameter for ε. Eventually, we repeated all the

experiments by rounding the output of the attack to integer values.

7.4 Results and Discussion

In this section we discuss the results of the experiments we have carried out.

We will focus on the floating point version of the attacks, being this case more

favorable to the attacker. For completeness, we also report the results for the

integer-valued case, that is, when the pixel values of the attacked images are

rounded to integers. According to our results, integer rounding does not have
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a big impact on the transferability of the attacks. Rather it influences the

effectiveness of the attack on the SN itself, as already reported in several

studies e.g. [116,124].

To build our modelsNR
BS andNV

BS (for both detection tasks), we considered

200.000 patches per class for training (and validation) and 10000 for testing.

In order to use all the images in the datasets R and V , a maximum number of

100 patches is selected (randomly) for each image. A number of 30 training

epochs was considered (as in [8]). For the deeper models NR
GC for both the

”med” and ”res” task, we used 106 patches for training, 105 for validation,

and 5 ∗ 104 for testing. To reach these numbers, all the image patches were

selected from all the images. By following the original setting (see Section

5.3), the number of training epochs is set to 3. The input patch size is set to

128× 128. For training both BSnet and GCnet, the Adam solver is used with

learning rate 10−4 and momentum 0.99. The batch size for training is set to

32 images, the test batch size to 100. Table 7.2 shows the accuracies achieved

by the BSnet and GCnet in the absence of attacks in the various cases.

Table 7.2: Accuracies of the trained models in the absence of attacks in the

various cases.

Network NR
BS(med) NV

BS(med) NR
BS(res) NV

BS(res) NR
GC(med) NR

GC(res)

Accuracy 98.1% 99.5% 97.5% 96.6% 98.4% 98.5%

In the next section, we discuss the performance of the models in the pres-

ence of attacks, in the matched and mismatched cases. In counter-forensic

applications, it is reasonable to assume that the attacks is only in one direc-

tion, since the attacker wants to pass off a manipulated image as an original

one. Therefore, in our experiments, we only attack images from the manipu-

lated class. In all the cases, the performance of the attack are assessed on 500

patches, obtained by attacking a subset of the patches from the corresponding

test set in each case. Obviously, we attack only images for which the clas-

sification of the network is correct. An attack is declared successful when it

is able to switch the network decision, i.e., when the manipulated image is

labeled as original after the attack (the output soft score for the original class

becomes larger than 0.5).

Table 7.3 shows the accuracies achieved by the networks in the absence of
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attacks on the manipulated class in various cases.

Table 7.3: Accuracies of the trained models in absence of attacks on the

manipulated class (H1) in various cases.

Network NR
BS(med) NV

BS(med) NR
BS(res) NV

BS(res) NR
GC(med) NR

GC(res)

Accuracy 98.2% 100% 97.6% 97.8% 100% 99.6%

7.4.1 Cross-training transferability

As detailed in Section 7.3.4, these experiments were carried out by consider-

ing only the BS architecture. The results we got are reported in Table 7.4

for resizing task and in Table 7.5 for median filtering task. For each attack

type, the table report the PSNR, L1 distortion and maximum absolute dis-

tortion, averaged on all the images successfully attacked in the matched case,

i.e., successfully fooling SN (see the last paragraph above, immediately be-

fore Section 7.4.1). The attack success rate (ASR) with respect to SN, TN,

and ASR with respect to TN on integer-valued attacked samples is reported

in the last three columns. As we can see, the attacks are generally non-

transferable and the images attacked using SN are not able to deceive the

TN. More specifically, with the FGSM attack, the adversarial examples can

be transferred in a significant number of cases only when the larger strength

is considered (εs = 0.01) and the SN corresponds to NR
BS(res) and NR

BS(med)

(attack success rate 0.692 and 0.845 respectively) and to NV
BS(res) (attack

success rate 0.941). For the JSMA case, the attack can be transferred only

when SN is NR
BS(res) and strong attack with θ = 0.1 is considered, with suc-

cess rate 0.782. Furthermore, we observe that the JSMA is never transferable

when the VISION dataset is used to train the SN. For the BFGS case, we

observe that the attack is not transferable, either with RAISE or VISION for

the resize and median tasks (the largest ASR that can be obtained on TN

being 20-30%). It is also interesting to observe that, for a given detection

task, the transferability is not symmetric with respect to the datasets used

for training. This suggests that, in forensic applications, the features learned

by the network may also be affected in some way and up to some extent by

the underlying dataset. If the model targeted by the attack (SN) has for some
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reasons a more intricate decision boundary, the attack could generalize less

to other models, thus being less transferable.

Table 7.4: Experimental results for Cross Training (resizing task). Transfer-

able attacks are highlighted in bold.

SN TN
Att

type
PSNR

L1

dist

max

dist

ASR

SN

ASR

TN

ASR

TN (Int)

NR
BS(res) NV

BS(res)
I-FGSM

εs = 0.01
40.02 2.53 2.55 1.000 0.692 0.711

NR
BS(res) NV

BS(res)
I-FGSM

εs = 0.001
58.46 0.26 0.27 1.000 0.0491 0.019

NR
BS(res) NV

BS(res)
JSMA

θ = 0.1
46.04 0.07 58.32 1.000 0.782 0.786

NR
BS(res) NV

BS(res)
JSMA

θ = 0.01
54.99 0.04 15.09 0.991 0.115 0.136

NR
BS(res) NV

BS(res)
BFGS

ε = 0.1
57.81 0.25 2.13 1.000 0.261 0.169

NV
BS(res) NR

BS(res)
I-FGSM

εs = 0.01
40.03 2.53 2.55 1.000 0.002 0.002

NV
BS(res) NR

BS(res)
I-FGSM

εs = 0.001
59.64 0.26 0.27 1.000 0.000 0.000

NV
BS(res) NR

BS(res)
JSMA

θ = 0.1
50.55 0.01 69.42 0.989 0.000 0.000

NV
BS(res) NR

BS(res)
JSMA

θ = 0.01
57.78 0.01 17.06 0.979 0.000 0.000

NV
BS(res) NR

BS(res)
BFGS

ε = 0.1
57.62 0.25 2.26 1.000 0.002 0.002

7.4.2 Cross-model transferability

In this case, the experiments were carried out by considering only the R

dataset and using the BS architecture for the SN. The results we have got are

reported in Table 7.6 for resizing task and Table 7.7 for median filtering task.

The experiments show the lack of transferability with respect to a mismatch in

the network model. The only exception is for the ”med” case, in which case the

stronger attack (with εs = 0.01) is transferable 82.5% of the times. However,

it is worth stressing that, when the FGSM is applied with such a strength,
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Table 7.5: Experimental results for Cross Training (median filtering task).

Transferable attacks are highlighted in bold.

SN TN
Att

type
PSNR

L1

dist

max

dist

ASR

SN

ASR

TN

ASR

TN (Int)

NR
BS(med) NV

BS(med)
I-FGSM

εs = 0.01
40.03 2.53 2.55 1.000 0.845 0.904

NR
BS(med) NV

BS(med)
I-FGSM

εs = 0.001
59.67 0.26 0.27 1.000 0.045 0.000

NR
BS(med) NV

BS(med)
JSMA

θ = 0.1
49.64 0.03 38.11 1.000 0.012 0.012

NR
BS(med) NV

BS(med)
JSMA

θ = 0.01
58.47 0.02 14.05 0.984 0.002 0.002

NR
BS(med) NV

BS(med)
BFGS

ε = 0.1
56.55 0.28 2.53 1.000 0.276 0.246

NV
BS(med) NR

BS(med)
I-FGSM

εs = 0.01
40.04 2.53 2.55 1.000 0.941 0.953

NV
BS(med) NR

BS(med)
I-FGSM

εs = 0.001
59.94 0.25 0.25 1.000 0.077 0.000

NV
BS(med) NR

BS(med)
JSMA

θ = 0.1
49.55 0.03 32.09 1.000 0.010 0.010

NV
BS(med) NR

BS(med)
JSMA

θ = 0.01
58.13 0.01 14.08 0.988 0.008 0.010

NV
BS(med) NR

BS(med)
BFGS

ε = 0.1
56.66 0.27 2.54 1.000 0.300 0.296

although the PSNR is not very low (40.03 dB), the average L1 distortion is

around 2.5 (a similar value is attained by the maximum absolute distortion).

With such values of L1, the visual quality of the FGSM attacked images is

impaired and peculiar visual artifacts appears, especially in relatively uniform

image patches.

The fact that the lack of transferability is even stronger in the ”res” case

than in the ”med” case can be probably justified by the ease of the median

filtering detection task (even because the median filtering is performed with a

rather large window size), compared to the resize. Therefore, we might expect

that in the case of ”med” similar peculiar features are learned by the shallow

and deeper network, hence facilitating the transferability of the attacks.
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Table 7.6: Experimental results for Cross Model (resizing task).

SN TN
Att

type
PSNR

L1

dist

max

dist

ASR

SN

ASR

TN

ASR

TN (Int)

NR
BS(res) NR

GC(res)
I-FGSM

εs = 0.01
40.02 2.53 2.55 1.000 0.002 0.004

NR
BS(res) NR

GC(res)
I-FGSM

εs = 0.001
58.48 0.31 0.33 1.000 0.002 0.000

NR
BS(res) NR

GC(res)
JSMA

θ = 0.1
46.09 0.07 57.88 1.000 0.016 0.010

NR
BS(res) NR

GC(res)
JSMA

θ = 0.01
54.98 0.04 15.14 0.992 0.006 0.008

NR
GC(res) NR

BS(res)
JSMA

θ = 0.1
46.34 0.20 26.81 1.000 0.004 0.004

NR
BS(res) NR

GC(res)
BFGS

ε = 0.1
57.80 0.25 2.13 1.000 0.061 0.063

Table 7.7: Experimental results for Cross Model (median filtering task).

Transferable attacks are highlighted in bold.

SN TN
Att

type
PSNR

L1

dist

max

dist

ASR

SN

ASR

TN

ASR

TN (Int)

NR
BS(med) NR

GC(med)
I-FGSM

εs = 0.01
40.03 2.53 2.55 1.000 0.825 0.877

NR
BS(med) NR

GC(med)
I-FGSM

εs = 0.001
59.67 0.26 0.27 1.000 0.181 0.004

NR
BS(med) NR

GC(med)
JSMA

θ = 0.1
49.64 0.03 38.11 1.000 0.010 0.010

NR
BS(med) NR

GC(med)
JSMA

θ = 0.01
58.47 0.02 14.05 0.984 0.016 0.018

NR
GC(med) NR

BS(med)
JSMA

θ = 0.1
47.52 0.06 27.76 1.000 0.022 0.022

NR
BS(med) NR

GC(med)
BFGS

ε = 0.1
56.55 0.28 2.53 1.000 0.272 0.272

We also performed some experiments by considering GCnet as SN, that

is considering SN = NR
GC(med) and TN = NR

BS(med) and SN = NR
GC(res)
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and TN = NR
BS(res). The overall degree of transferability of the attacks that

can be obtained is similar to the case in which BSnet is used as SN. However,

differently from the previous case, in this case there are many images for which

the network can not be attacked (then, the ASR on SN is lower). This is due

to the so called gradient-vanishing problem [44], that is, for some images,

the gradient is so (vanishingly) small, that the images can not be updated

during the attack (a descent direction can not be found). In these cases, the

attack fails again SN. This reveals a clear asymmetry of the attack (and then

as a consequence of the transferability) with respect to the architecture used

to build the SN. Notably, deeper networks are more prone to the gradient-

vanishing problem. The results we got from our experiments are reported in

the Table 7.8.

Table 7.8: Experimental results for Cross Model (median filtering and resizing

task) by considering GCnet as SN.

SN TN
Att

type
PSNR

ASR

SN

ASR

TN

NR
GC(med) NR

BS(med) BFGS 66.38 0.902 0.015

NR
GC(res) NR

BS(res) BFGS 70.34 0.576 0.017

NR
GC(med) NR

BS(med) I-FGSM 57.35 0.902 0.319

NR
GC(res) NR

BS(res) I-FGSM 58.86 0.576 0.007

7.4.3 Cross-model-and-training transferability

In this case, the experiments were carried out by considering the BS archi-

tecture trained on the V dataset as the SN, and the GC architecture trained

on the R dataset as the TN. Similar results can be obtained by combining

architecture and dataset in the other way round. The results we have got

are reported in Table 7.9 for resizing task and Table 7.10 for median filtering

task. Quite expectedly, the table shows that the transferability of the attacks

in this case decreases further and the attack success rate is below 0.01 in all

the cases but for the case of FGSM with εs = 0.01, for which a success rate

of 0.796 can still be achieved.

As a general behavior, according to our tests, for all the three types of
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mismatch considered, attacks obtained by JSMA are less transferable than

those produced by FGSM. A possible motivation can be the following: since

very few pixels are modified by JSMA (those which the network is more

sensitive to), it tends to overfit more the attacked model. We also observe

that, with JSMA, the average output scores returned by SN and TN on the

successfully attacked and transferred samples, are often very different (while

with FGSM they are more similar). We also observe that, while with JSMA

the SN scores for these samples are in the range [0.5, 0.6], with FGSM, such

output scores are always much larger than 0.5 (often > 0.9), both with SN

and TN.

Table 7.9: Experimental results for Cross Model and Training (resizing task).

SN TN
Att

type
PSNR

L1

dist

max

dist

ASR

SN

ASR

TN

ASR

TN (Int)

NV
BS(res) NR

GC(res)
I-FGSM,

εs = 0.01
40.03 2.53 2.55 1.000 0.004 0.004

NV
BS(res) NR

GC(res)
I-FGSM,

εs = 0.001
59.57 0.27 0.27 1.000 0.002 0.000

NV
BS(res) NR

GC(res)
JSMA,

θ = 0.1
50.20 0.02 70.87 1.000 0.000 0.000

NV
BS(res) NR

GC(res)
JSMA,

θ = 0.01
57.40 0.01 17.16 0.992 0.000 0.000

NR
GC(res) NV

BS(res)
JSMA,

θ = 0.1
45.22 0.09 26.96 1.000 0.171 0.173

NV
BS(res) NR

GC(res)
BFGS,

ε = 0.1
57.62 0.25 2.26 1.000 0.0103 0.002

7.5 Concluding Remarks

By focusing on two manipulation detection tasks, we investigated the trans-

ferability of adversarial examples in an image forensics scenario. We run

tests by considering two well known attack methodologies and several sources

of mismatch. Our tests show that adversarial examples are generally non-

transferable, in contrast to what happens in typical pattern recognition ap-

plications. This states an important result, since the lack of transferability
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Table 7.10: Experimental results for Cross Model and Training (median fil-

tering task).

SN TN
Att

type
PSNR

L1

dist

max

dist

ASR

SN

ASR

TN

ASR

TN (Int)

NV
BS(med) NR

GC(med)
I-FGSM,

εs = 0.01
40.04 2.53 2.55 1.000 0.796 0.830

NV
BS(med) NR

GC(med)
I-FGSM,

εs = 0.001
59.91 0.25 0.26 1.000 0.008 0.000

NV
BS(med) NR

GC(med)
JSMA,

θ = 0.1
49.56 0.03 31.83 1.000 0.008 0.008

NV
BS(med) NR

GC(med)
JSMA,

θ = 0.01
58.06 0.01 14.18 0.990 0.012 0.012

NR
GC(med) NV

BS(med)
JSMA,

θ = 0.1
47.61 0.06 27.70 0.997 0.022 0.060

NV
BS(med) NR

GC(med)
BFGS,

ε = 0.1
56.66 0.27 2.53 1.000 0.048 0.062

can be exploited by the forensic analyst to make the attack more difficult. For

instance, a LK scenario can be enforced in some way to combat adversarial

examples, as done for the approaches based on standard ML techniques.

To further investigate this important result, different sources of mismatch

between the SN and the TN should also be considered and analyzed. As an

example, we may wonder if a mismatch in the training procedure is enough

to prevent transferability. Moreover, the reason why image-forensic networks

are less prone to attack transfers should be understood.

On the attacker’s hand, as a result of our analysis, research is needed to

understand if and how the transferability can be improved by increasing the

strength of the attack in such a way to enter more inside the target region.

It is worth pointing that, increasing the strength of the attacks in order to

enter more inside the target region is not an easy task, given the complexity

of the decision boundary learnt by the CNNs. The amount of distortion

introduced in the image by the attack, or the value assumed by the decision

function, in fact, represent only an inaccurate proxy for the attack strength,

since controlling the amount of distortion (e.g., by letting the gradient descent

continue until a limit PSNR is reached for the attack), or setting a safe margin
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on the decision function for the attack, do not necessarily result in a stronger

attack.

Further results and considerations pertaining the attack transferability

will follow from the analysis of the effectiveness of the randomization-based

defence against adversarial examples carried out in the following chapter.





Chapter 8

Effectiveness of Random Deep Feature Selec-
tion for Securing Image Manipulation Detectors
Against Adversarial Examples

”All objects in the universe are unique. No two things that happen by chance

ever happen in exactly the same way. No two things are ever constructed or

manufactured in exactly the same way. No two things wear in exactly the

same way. No two things ever break in exactly the same way.”

Joe Nickell

”We can all see, but can you observe?”

A.D. Garrett, Everyone Lies

The purpose of this chapter is to investigate if the random feature selec-

tion approach, proposed in the literature to improve the robustness of

forensic detectors to targeted attacks for general model-based and standard

ML-based forensics, can be applied to detectors based on deep learning. In

particular, we study the transferability of adversarial examples targeting an

original CNN image manipulation detector to other detectors (a fully con-

nected neural network and a linear SVM) that rely on a random subset of

the features extracted from the flatten layer of the original network. The re-

search is conducted by considering three image manipulation detection tasks

(resizing, median filtering and contrast enhancement), two original network

architectures (the same BSnet and GCnet considered in Chapter 7) and three

classes of attacks.

This chapter is organised as follows: we first briefly explain the reasons

that pushed us to study the random feature selection approach in Section 8.1.

Then, the general proposed Random Deep Feature Selection (RDFS) scheme

is presented in Section 8.2. The methodology we followed for our experiments
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is described in Section 8.3. The results we got are reported and discussed in

Section 8.4.

8.1 Motivation

As we discussed in Section 3.3 of Chapter 3, a possibility to improve the gen-

eral robustness against Counter-Forensics, without specializing the forensic

algorithm against a particular tool (as it is often the case with adversary-

aware approaches,), is to resort to randomization strategies, in the attempt

to design generally more secure detectors (see Section 3.3.2). In fact, several

randomization approaches have been considered addressing standard machine

learning tools and, more recently, DL architectures. In [16], the authors pro-

pose to randomize the selection of the feature space according to a secret key

to prevent the attacker from gaining full knowledge about the system. In this

way, the analyst exits the Perfect Knowledge (PK) scenario, or, by following

the DL terminology [120], the white-box scenario, thus decreasing the success

rate of the attack. Said differently, random feature selection induces a Limited

Knowledge (LK) scenario for the attack.

The effectiveness of Random Feature Selection (RFS) has been proven

in [16] both theoretically, under simplifying assumptions, and in practice,

where it is experimentally validated by focusing on image manipulation de-

tection and SVM-based classification. With regard to DL literature, most of

the methods proposed so far focus on test time randomization [188], where

the input layer of the classifier is randomized at test time. A multi-channel

architecture, where each channel introduces its own randomization in a spe-

cial transformed domain based on a secret key, has recently been proposed

in [189].

Our goal is to extend the random feature selection approach described

in [16] to the case of CNN-based detection, where the features are extracted

by a convolutional neural network, to see if and to which extent the approach

can be used to combat adversarial examples. This scheme is referred to as

Random Deep Feature Selection (RDFS). To perform the classification based

on the randomly selected deep features, we consider two types of classifiers,

a Fully Connected (FC) network and a linear SVM. With regard to the FC
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network, it corresponds to a re-trained version of the classification part (the

FC layers) of the original CNN targeted by the attack.

To be effective, RDFS should improve the security of CNN-based detectors

against adversarial examples, at the expense of a negligible loss of performance

in the absence of attacks.

It is easy to argue that the effectiveness of the RDFS scheme is directly

related to the degree of transferability of the attack, hence to the amount of

mismatch (in the detection architecture) that the attack is capable to with-

stand, while remaining effective.

8.2 Random Deep Feature Selection (RDFS) for Secure

Image Classification

We now describe how we extended the random feature selection method de-

veloped in [16] for model-based and standard ML-based detectors based on

statistical and handcrafted features, to the case of CNN-based forensic detec-

tors. To be specific, the security model considered in this work is depicted

in Figure 8.1: given an original CNN detector, the CNN is only used as fea-

ture extractor. Let N be the dimensionality of the set of features. Then, K

features (K < N) are randomly selected among the N features, according

to a secret key. The reduced set of features obtained in this way is used to

train another detector, for instance, a Neural Network or an SVM classifier.

Obviously, the same scheme is applied during both training and testing, with

the same secret key. Without loss of generality, we let H0 be the hypothesis

that the image is original, and H1 the hypothesis that the image has been

tampered with. The adversarial attack is carried out in the pixel domain, as

shown in Figure 8.1. We assume that the attacker does not know the existence

of the randomization strategy and then he targets the original CNN classifier

(hence implementing a so called vanilla attack) [188, 190]. Also, we assume

that the attacker wants to pass off a manipulated image as an original one,

i.e., to induce the network to decide in favor of H0 when H1 holds, causing

a false negative error. At the same time, the attacker wants to minimize the

distortion introduced in the image as a consequence of the attack.

As mentioned in the previous section, the random feature selection en-
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Figure 8.1: Scheme of the proposed RDFS detector.

forces a limited knowledge scenario for the attack. In particular, the attacker

is not aware of the randomization defence mechanism, and, even if he is, he

does not know the subset of features used by the detector, and their number

K. Moreover, he has only a partial knowledge of the RDFS architecture of the

detector. The exact amount of knowledge available to the attacker depends

on the specific RDFS scheme considered, that is, on the specific architecture

of the detector. Specifically, we considered two different scenarios: the case

of a Fully-Connected (FC) network detector, and the case of a linear SVM

detector.

8.2.1 RDFS detection based on a Fully-Connected (FC) network

In this case, the RDFS detector is implemented by retraining the FC layers

of the original CNN. Given the selected random feature set of dimensionality

K (K < N), the same FC structure of the original network is re-trained

considering only the K input nodes. The number of layers depends then

on the original CNN architecture. Therefore, when the full feature set is

considered for the detection (K = N), there is no mismatch in the architecture

between this FC network and the classification architecture of the original

CNN targeted by the attack. However, even in this case, the attack is not

completely white-box, since, in the setup considered for our experiments, a

different training set (more precisely, a subset of the original set) is used to

train the detector.
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8.2.2 RDFS detection based on SVM

In this case, an SVM architecture is considered to implement the detector.

Then, in contrast to the previous case, the detector adopts a different clas-

sification structure of the original CNN, even when the full feature set is

considered (K = N). The amount of attack knowledge is less than in the

previous case, since here the attacker does not know the architecture of the

detector, in addition to the training data.

8.3 Application to Image Manipulation Detection

We are interested in evaluating the performance of the general RDFS ap-

proach introduced before for image manipulation detection applications, and

investigate which are the factors that mostly affect its effectiveness. Specifi-

cally, we run several experiments by considering three different manipulation

detection tasks. For each of them, two different state-of-the-art CNN archi-

tectures were considered. The security of the RDFS approach was assessed

by considering three different types of attacks.

8.3.1 Original CNN detectors

We considered three different detection tasks, namely the detection of im-

age resizing (downsampling, by a 0.8 factor), median filtering (by a 5 × 5

window), and adaptive histogram equalization (AHE), which applies contrast

enhancement on a local basis (the Contrast-Limited implementation of AHE,

CLAHE, was considered). Concerning the network architectures, we consid-

ered the same two networks considered in the previous chapter. In particular,

they are the network originally proposed

8.3.2 Reduced (deep feature) detectors

For each manipulation task, we built our reduced feature detectors as detailed

in the following. For a given choice of the random selection, the K features

were extracted from the flatten layers of the CNNs. Then, we trained the

original FC architecture of BSnet and GCnet with K input nodes, and a linear

SVM classifier fed with the K input features. Both the FC networks and the
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SVM were trained on a subset of images of the training set used to train the

original networks. Regarding the structure of the two FC networks, we have

2 layers with 4096 hidden nodes each for BSnet, and only one layer consisting

of 250 hidden nodes for GCnet. For the SVM, a Gaussian kernel was adopted,

and the kernel parameters were determined by 5-fold cross-validation.

To measure the performance of the reduced set detectors, for a given size

K of the reduced feature set, the experiments were repeated (both training

and testing) 50 times, each time with a different randomly chosen feature

subset.

8.3.3 Adversarial attacks

In all the cases, the attack is run against the original CNN model in a white-

box setting, i.e., it is assumed that the attacker knows everything about the

original model (note that assuming that the attacker attacks the original CNN

we are implicitly assuming that the attacker is not aware of - and/or he does

not react to - the defence mechanism).

In the experiments, we considered three gradient-based, iterative, attacks.

Specifically, the adversarial examples were built by relying on the following

algorithms: the original box constrained L-BFGS by Szegedy et al., the Itera-

tive Fast Gradient Sign Method, namely I-FGSM, and the Projected Gradient

Descent (PGD) attack (very similar to I-FGSM). We refer to Section 7.2 for

an introduction on these attack algorithms. As for the experiments of the

previous chapter, the Foolbox toolbox [187] was used to implement the at-

tacks.

In order to increase the diversity of the attacks considered, in these exper-

iments we also considered the L-BFGS attack: by looking for the ’minimum’

adversarial perturbation, L-BFGS tends to generate adversarial examples with

a very large PSNR, which are however (expectedly) less transferable compared

to those obtained with most of the other (suboptimum) attack methods, like

for instance FGSM.
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8.4 Experimental Results

In this section, we first describe the experimental setup for our experiments,

then we present and discuss the results of the tests we carried out in the

various settings.

8.4.1 Experimental setup

For our experiments, we considered uncompressed camera-native (.tiff) images

from RAISE-8K dataset. The images were split into training, validation,

and test sets and then processed to create the images for the H1 class, i.e.,

resizing, median, and adaptive histogram equalization (CLAHE). For all our

experiments, the images were converted to gray-scale.

To build the original CNNs for the three detection tasks, we considered

100.000 patches for training, 3000 and 10.000 for validation and testing re-

spectively, per class, for BSnet; for GCnet, 500.000 patches per class were

considered for training, 5000 and 10.000 for validation and testing respec-

tively. In order to use many images from the dataset and then enforce patch

diversity, a maximum number of 100 patches were selected randomly from

each image. For both networks, the input patch size was set to 64 × 641.

A number of 40 epochs was considered to train the BSnet models, and 4

epochs were considered for GCnet. For training the networks, we used the

Adam solver with learning rate 10−4 and momentum 0.99. The batch size

for training was set to 32. The accuracies achieved by the trained models in

the absence of attacks are: i) BSnet: 91.30% for resizing, 98.83% for median

filtering, and 90.45% for CLAHE; i) GCnet: 95.05% for resizing, 99.73% for

median filtering, and 98.30% for CLAHE.

In order to build the RDFS detectors, both the FC networks and the SVM

were trained on a subset of 20.000 patches per class selected from the original

training set of images, and validated on 1000 patches per class, selected from

1A smaller input size corresponds to a smaller dimensionality of the feature set used for

the classification (size of the flatten layer): specifically, for a 64× 64 input size, the features

are in the order of thousands (for both BSnet and GCnet), which is a good compromise (if,

on one hand, the randomization is not effective if the feature set is too small, on the other

hand, a too large dimensionality of the feature set complicates the analysis of the reduced

deep feature detectors, requiring a lot of training)
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the validation set used for the original CNN. Regarding the training procedure

for the reduced feature FC networks, we used the following setting: learning

rate of the Adam solver set to 10−5 and the momentum to 0.99 for a maximum

number of 50 epochs, with an early stop condition that ends training when the

validation loss changes less than 10−3 in the last 5 epochs (with a validation

batch size of 100). The number of reduced features K considered in our

experiments (for training and testing) for both the FC networks and the SVM

is: 5, 10, 30, 50, 200, 400, 600, and the full feature case K = N . The full

feature set size (size of the flatten layer of the original CNN) is N = 1728 with

BSnet and N = 3200 with GCnet. When GCnet is used as original CNN, the

case K = 600 is not considered, to save time. For every value of K, in fact, we

need to train 50 models (SVM and FC), one for every choice of the random

set takes time. However, as confirmed by the results with BSnet, the most

interesting cases are those with lower values of K (order of tens). For the

tests in the absence of attacks, we considered 4000 patches per class, taken

from the original test set.

With regard to the attacks, for L-BFGS, we used the default attack pa-

rameters [187]. For I-FGSM, the number of steps S was set to 10 (default),

the best strength is searched in the range E = [0 : 0.001, 0.1]. PGD is applied

considering the following setting: ε = 0.05, and α = 0.3, binary-search =

’True’ (binary-search = ’True’ means that the input values of ε and α are only

used for the initialization, and the optimum choice of ε and α is optimized

via the binary search). The above setting does not work for the CLAHE de-

tection task (the adversarial image cannot be found in most of the cases); for

that task, the following setting has been considered: ε = 0.025, and α = 0.01,

binary-search = ’False’. As we said, we only applied the attack to images of

the H1 class. In all the cases, the performance in the presence of attacks is

evaluated on 500 adversarial examples, obtained by attacking a subset of the

4000 patches of the H1 class. We checked that, with the above setting, all the

attacks are successful against the target original CNN, the success rate being

in the range [0.98:1]. The average PSNR for the attacked samples is between

40 and 70dB (often above 60 dB), the exact value depending on the attack

type, the target network and the detection task.
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8.4.2 Results of FC-based classification

The results we have got for this case are reported in Table 8.1 and 8.2 for the

case of BSnet and GCnet, respectively.2

Table 8.1: Accuracy (%) of the RDFS detector based on FC network, for the

case of BSnet [8].

Resize Median Filtering CLAHE

K
No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

5 91.0 69.9 61.6 65.6 88.7 79.8 51.0 73.0 73.0 87.4 89.2 88.0

10 95.0 68.0 55.7 62.0 93.2 80.6 44.5 67.1 78.0 88.0 89.1 78.6

30 97.0 58.5 43.4 48.8 96.8 79.7 30.8 56.1 80.1 89.5 90.7 64.7

50 97.4 52.0 35.9 40.1 97.7 80.0 24.6 53.5 80.7 90.2 91.3 56.3

200 97.8 31.0 13.7 17.4 98.7 77.6 10.8 44.8 81.5 91.6 94.0 42.8

400 97.7 20.7 7.2 9.1 98.8 76.6 7.5 42.6 81.3 91.8 94.5 41.0

600 97.9 16.4 5.4 7.1 98.9 80.5 6.0 43.0 80.5 91.5 93.8 36.6

N 98.0 31.5 0.6 20.3 99.0 81.9 4.3 39.7 80.5 91.8 93.9 35.1

By inspecting Table 8.1 we observe that, when the attack works well

against the FC network with K = N (last line of the tables), that is, when the

attack targeted to the original BSnet model can be successfully transferred

to the full feature FC detector, the proposed randomization strategy helps

and a significant gain in the accuracy can be achieved, at the expense of a

minor accuracy reduction in the absence of attacks. Specifically, the accuracy

gain is about 20-30% for K = 30 and 30-50% for K = 10, while the accuracy

reduction in the absence of attacks is only 2-4%, the exact value depending

on the task (with the exception of the resizing detection task with GCnet,

where a more significant loss of performance is experienced without attacks,

2L-BFGS and I-FGSM are referred to as BFGS and FGSM for short in the tables.
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see Table 8.2).

Table 8.2: Accuracy (%) of the RDFS detector based on FC network, for the

case of GCnet.

Resize Median Filtering CLAHE

K
No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

5 74.4 67.7 58.7 60.7 97.2 83.3 48.3 77.1 87.4 47.2 63.7 47.0

10 78.6 71.9 59.9 63.0 98.8 86.1 44.3 79.2 91.1 55.6 68.8 48.3

30 92.7 81.8 65.5 70.7 99.4 88.5 30.0 79.6 94.3 56.7 76.3 39.8

50 96.8 85.2 66.8 73.0 99.6 87.4 21.9 76.6 95.1 50.6 80.0 35.3

200 99.7 88.0 69.6 77.9 99.6 88.6 17.0 76.2 96.9 48.5 83.0 26.0

400 99.8 89.3 71.8 80.0 99.6 88.1 15.6 75.6 97.1 30.1 83.6 21.0

N 100 89.8 75.2 81.2 99.7 85.2 13.7 71.3 98.2 33.5 34.0 26.2

In some cases, however, it happens that the accuracy is already large also

for K = N , i.e., the attack fails against the full feature FC detector, meaning

that the attack targeted to the original CNN BSnet cannot be transferred

to the full feature FC detector. Stated in another way, just re-training the

FC network on a different set (a subset of the original training in our case)

decreases by itself the attack success rate. This behavior confirms the findings

of the previous chapter, showing that, at least for image forensic applications,

the adversarial examples are generally non-transferable, in contrast to what

happens in typical pattern recognition applications [13].

A similar behavior can be observed in Table 8.2, where we see that for

K = N the attack is even less effective than before (hence it is less transfer-

able). Then, again, in these cases, the randomization defence is not necessary

(e.g. for the case of PGD, the accuracy with K = N is 89.7% for resizing and

85.3% for median filtering). In the other cases, i.e., when the accuracy with
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K = N is low, the randomization approach increases the accuracy by 20-30%.

8.4.3 Results of SVM-based classification

The results we have got for this case are reported in Table 8.3 and 8.4 for the

case of BSnet and GCnet, respectively.

Table 8.3: Accuracy (%) of the RDFS detector based on SVM, for the case

of BSnet [8].

Resize Median Filtering CLAHE

K
No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

5 79.6 59.0 58.0 58.7 80.3 69.8 47.5 66.1 74.4 90.7 89.2 87.3

10 87.0 60.5 58.9 59.9 87.6 70.8 33.8 63.2 80.4 90.7 90.4 81.5

30 92.8 70.9 70.1 69.6 94.5 63.3 19.1 50.7 80.5 89.6 90.9 70.5

50 94.3 75.5 75.6 75.0 96.2 66.8 13.1 42.0 80.7 89.8 91.0 62.3

200 95.5 65.0 63.9 64.2 97.7 57.2 3.8 22.1 80.0 91.0 93.4 43.7

400 94.8 43.4 66.4 28.1 98.0 50.3 1.9 14.9 79.7 91.2 93.8 39.7

600 95.4 47.9 25.2 32.3 98.1 45.0 1.3 11.0 79.4 91.3 94.2 40.1

N 95.1 58.4 31.0 39.4 98.0 29.6 0.6 5.0 79.5 91.8 95.0 38.6

In this case, expectedly, the mismatch in the architecture decreases fur-

ther the success rate of the attack against the full feature SVM detector (case

with K = N), i.e. it increases the accuracy, without even resorting to ran-

domization. However, when this is not the case, randomization helps:

for instance, for BSnet under the L-BFGS attack, the accuracy passes

from 39.4 (for the resizing task), 5.0 (for the median filtering task) and 38.6

(for the CLAHE task), to 69.6%, 50.7%, and 70.5 % respectively, with a per-
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Table 8.4: Accuracy (%) of the RDFS detector based on SVM, for the case

of GCnet.

Resize Median Filtering CLAHE

K
No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

No

Attk
PGD FGSM BFGS

5 74.8 73.6 65.4 66.4 97.2 83.1 46.3 78.1 88.3 59.6 64.8 50.7

10 82.7 78.1 68.0 69.2 98.3 85.7 42.0 80.3 91.2 67.0 74.5 58.0

30 95.1 86.1 72.8 76.0 99.3 86.1 25.8 77.2 93.4 63.4 86.5 54.8

50 97.5 88.2 73.2 77.2 99.3 84.1 18.7 74.0 94.5 56.7 90.3 46.7

200 99.6 88.5 68.1 75.7 99.6 88.2 15.9 75.2 96.4 36.4 94.0 24.7

400 99.7 90.0 67.6 77.7 99.6 86.6 13.5 70.1 97.0 26.1 94.1 16.1

N 99.8 90.6 66.2 83.8 99.7 86.4 12.0 69.8 97.3 22.3 94.6 11.0

formance loss without attacks of 2.2% in the accuracy. Using less features, e.g

K = 10, the accuracy against the attacks can be improved further, though at

the expense of a higher loss of performance without attacks.

8.5 Discussion and Remarks

Inspired by the work in [16], we have evaluated the feasibility of using deep

feature randomization to improve the robustness of CNN detectors against

adversarial examples. Our experiments carried out in a wide variety of sce-

narios reveal that feature randomization somewhat helps in decreasing the

transferability of the attacks, hence improving the security of the detection.

However, the degree of effectiveness of the RDFS scheme depends on the de-

tection task, the kind of attack and the network, and, in some cases, the

mismatch in the architecture, between the original CNN targeted by the at-
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tack and the one used for the classification (an SVM or the retrained FC

layer) decreases by itself the attack success rate, that is, it is already enough

to prevent the transferability of the attack, thus making the randomization

unnecessary. Therefore, to better assess the effectiveness and understand the

limits of the RDFS scheme, our current research is focused on increasing the

strength of the attacks to improve the transferability of the adversarial exam-

ples, that is, to reinforce the attack (see the discussion at the end of Chapter

7).

As further research, it would be also interesting to investigate a sce-

nario more favourable to the attacker, where the attacker is aware of the

randomization-based defence. In particular, we can assume that the attacker

is aware of the feature selection mechanism and the architecture of the detec-

tor (only the secret key is unknown), and then can run a more powerful attack,

for instance by targeting an expected version of the classifier (in a way that

resembles the Expectation over Transformation (EOT) attack [190]). From

the defender’s side, the use of a different FC layer or an SVM with a different

kernel could be considered for the RDFS classification. More in general, one

could try to improve the effectiveness of the RDFS scheme by performing

feature regularization during the training of the original CNN, in such a way

to reduce the gap with the theoretical analysis carried out in [16] about the

effectiveness of the feature selection strategy. Finally, it would be also inter-

esting to consider the application of the RDFS scheme in a black-box attack

scenario, and assess the information leakage on the secret key in this case.





Chapter 9

Conclusion

”When you reach the end of what you should know, you will be at the begin-

ning of what you should sense.”

Kahlil Gibrán

”You only grow by coming to the end of something and by beginning something

else.”

John Irving

I
n this thesis, we proposed and investigated several different approaches for

the systematic development of Machine Learning (ML)-based techniques for

image manipulation detection capable to work in adversarial setting (Adver-

sarial Multimedia Forensics), with specific reference to binary manipulation

classification. In this chapter, we summarise the main contributions of the

thesis, discuss important open issues, and point out possible directions for

future research.

9.1 Summary

The first approach considered in this thesis for improving the robustness of

machine learning tools against attacks was adversarial (or adversary-aware)

training. We first introduced the concept of Most Powerful Attack (MPA)

and proposed a MPA-aware detector, that can improve the security of ML-

based image manipulation detection against a certain class of attacks. When

the MPA cannot be find analytically, as it is often the case in practice, a

possibility is to try to determine an approximation of the MPA experimentally,

by looking for the attacks that cause most damage to the unaware system.

The effectiveness of the MPA-aware training strategy has been validated by
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focusing on the problem of double JPEG detection, which is one of the most

common and studied problems in Image Forensics.

Aware training is also considered as a way to improve the robustness of

the forensic tools to JPEG post-processing. Several forensic tools, in fact,

have been shown to have poor robustness to JPEG, as highlighted by recent

research in the field. As a consequence, JPEG compression can also be consid-

ered and regarded to as a laundering-type Counter Forensic attack. Compared

to more complicated attacks tailored for the various cases, as an advantage,

the JPEG laundering attack is simple and easy to implement and does not

require any knowledge of the target detector. With reference to the problem

of contrast enhancement (CE) detection (which is well known to be a very

challenging tasks in presence of JPEG post-processing), the effectiveness of

JPEG-aware training has been assessed, for both standard ML (SVM-based

detection) and DL (CNN-based detection).

The second approach considered in this thesis for improving the security

of ML-based image manipulation detectors is the development of intrinsically

more secure algorithms, that are obtained by working both on the architecture

of the classifier and on the randomization of the feature set.

In the first case, we resorted to multiple classification. The one-and-a-half-

class architecture that we evaluated, consisting of parallel of a 2C and two

1C classifiers followed by a final 1C classifier, is borrowed from the general

literature of machine learning, and is purposely designed in the attempt to

simultaneously get the advantages of 2C and 1C classification, that is, to yield

at the same time good detection performance (similar to those obtained via

2C classifiers) and similar robustness to attacks as 1C classifiers.

We put the one-and-a-half-class approach at work by considering several

different image manipulation detection tasks, namely, the detection of geo-

metric operations, filtering and contrast enhancement. When applied to all

these cases, the multiple classification architecture was proved to get very

good results in terms of both robustness and security.

Recent studies in deep learning have shown that adversarial examples

present a certain degree of transferability, implying that the attack can be

effective even when it is carried out in a Limited Knowledge scenario. An

extensive analysis of the transferability of the attacks that we carried out
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revealed that, when (state-of-the-art) Image Forensic CNN-based detectors

are considered, adversarial examples are often non-transferable, in contrast

to what happens in typical pattern recognition applications, where the trans-

ferability of the attack is much stronger. The general lack of transferability

can then be exploited by the forensic analyst to make the attack more dif-

ficult, e.g. enforcing an LK scenario, as done with the approaches based on

standard ML techniques. Feature randomization selection goes in this direc-

tion. In the case of CNNs, the approach consists in selecting a random set of

features among those extracted from the convolutional part of the network.

The results we got for three image manipulation detection tasks (resizing, me-

dian filtering and contrast enhancement), two network architectures and three

classes of attacks, show that feature randomization indeed helps to mitigate

the dangerousness of adversarial examples.

9.2 Open Issues

With this thesis, we contributed to the development of Machine Learning

(ML)-based techniques for adversarial image manipulation detection. Several

direction for future research can be pointed out, starting from this work.

In particular, the robustification of DL-based methods to adversarial ex-

amples is a very important direction for future research. From a more fo-

cused perspective, the effectiveness of deep feature randomization (RDFS) to

improve the robustness of CNN detectors should be further tested against

stronger attacks and also considering scenarios more favourable to the at-

tacker, where the attacker is aware of the randomization-based defence. With

regard to considering stronger attacks, as pointed out in the conclusions of

Chapter 7, increasing the strength of the attack in such a way to obtain a

more powerful attack (entering more inside the decision region of the target

class) and then increase the attack transferability turns out to be a difficult

task and then worth investigating by itself. Related to this, the fact that

the adversarial examples against CNNs developed for image forensic tasks are

generally less transferable is a remarkable result of this thesis, which deserves

further investigation, being the starting point for the development of proper

defence mechanisms. In order to test the effectiveness of the RDFS scheme in
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a more challenging adversarial scenario, more advantage should be given to

the attacker by assuming that he is aware of the feature selection mechanism

and the architecture of the detector (the only unknown being the secret key),

and then run a more powerful gray-box attack targeting the RDFS classifier,

for instance by attacking an expected version of the classifier.

The possibility of performing feature regularization during training could

be investigated from the defender’s side, to improve the effectiveness of deep

feature randomization.

From a more general perspective, other more sophisticated randomization

strategies could be considered to improve the security of DL against adver-

sarial examples, where the gain in the security is provided by the secrecy of

the randomization key.

A security threat in DL that will deserve more and more attention in the

upcoming future is the one posed by the use of Generative Adversarial Net-

works (GANs) [125]. GANs have been used by the computer vision commu-

nity to produce realistic images, thus posing themselves a forensic challenge,

and there are already some works in the forensic literature investigating ap-

proaches for distinguishing GAN-generated images from real images. In this

respect, the use of color rich feature sets (e.g., the CRM model), capable to

expose possible (statistical) inconsistencies among the color bands of the im-

ages generated by GANs, or the analysis of the color co-occurrences, could

be investigated. On the adversarial side, an attacker might use GANs to

train a generator capable of falsifying forensic traces, and in fact, GAN-based

Counter-Forensic attacks have already been proposed [126].

Finally, a new class of attacks against DL architectures which is worth

mentioning is the class of so called backdoor attacks [191]. Backdoor attacks

are about poisoning the training set (e.g. by injecting a backdoor signal to a

portion of the images in the training set) so to ease inducing a classification

error at test time, thus creating a ’backdoor’ into the system. Although

the link with image forensics is weak, backdoor attacks represent a serious

threat in many security-related applications and then studying solutions to

improve the security of DL algorithms against such attacks is of paramount

importance.

The development of a new class of ML-based forensic tools thought to
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overcome the limitations of ML, and DL in particular, and to improve the

robustness against attacks, is just in its fancy. Better understanding the ca-

pacities and limits of ML-based and DL-based attacks, and improving forensic

techniques to protect or recognize these attacks as they emerge, will likely rep-

resent an important challenge for the years to come.
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By focusing on Image Forensics and image manipulation detection in particular, this 

thesis contributes to the above mission by developing novel techniques for 

enhancing the security of binary manipulation detectors based on machine 

learning in several adversarial scenarios. The validity of the proposed solutions has 

been assessed by considering several manipulation tasks, ranging from the 

detection of double compression and contrast adjustment, to the detection of 

geometric transformations and filtering operations.
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